ES2546388B1 - Non-combustion thermal motor with a rotary cycle of condensable fluid in a closed circuit powered by the energy of a temperature difference - Google Patents

Non-combustion thermal motor with a rotary cycle of condensable fluid in a closed circuit powered by the energy of a temperature difference Download PDF

Info

Publication number
ES2546388B1
ES2546388B1 ES201400236A ES201400236A ES2546388B1 ES 2546388 B1 ES2546388 B1 ES 2546388B1 ES 201400236 A ES201400236 A ES 201400236A ES 201400236 A ES201400236 A ES 201400236A ES 2546388 B1 ES2546388 B1 ES 2546388B1
Authority
ES
Spain
Prior art keywords
temperature difference
closed circuit
fluid
energy
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES201400236A
Other languages
Spanish (es)
Other versions
ES2546388A2 (en
ES2546388R1 (en
Inventor
Jesús Miguel VILLA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to ES201400236A priority Critical patent/ES2546388B1/en
Publication of ES2546388A2 publication Critical patent/ES2546388A2/en
Publication of ES2546388R1 publication Critical patent/ES2546388R1/en
Application granted granted Critical
Publication of ES2546388B1 publication Critical patent/ES2546388B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Abstract

Motor térmico sin combustión de ciclo rotativo de fluido condensable en circuito cerrado alimentado por la energía de una diferencia de temperatura.#El sistema es un motor rotatorio basado en el calentamiento y enfriamiento de un fluido inmerso en un circuito cerrado, donde la zona caliente del motor en la cual se aporta calor hace que el gas aumente la presión y tienda a expandirse atravesando para ello una zona de álabes rotatorios. Una vez expandido se enfría en una zona con disipadores y otra zona de álabes rotatorios unidos al mismo eje de expansión lo vuelve a comprimir para llevarlo a su situación inicial.Non-combustion thermal motor with a rotary cycle of condensable fluid in a closed circuit powered by the energy of a temperature difference. # The system is a rotary motor based on the heating and cooling of a fluid immersed in a closed circuit, where the hot zone of the An engine in which heat is supplied causes the gas to increase the pressure and tends to expand through a zone of rotating blades. Once expanded it cools in an area with heatsinks and another area of rotating blades attached to the same axis of expansion compresses it again to take it to its initial situation.

Description

DESCRIPCIÓN DESCRIPTION

Motor térmico sin combustión de ciclo rotativo de fluido condensable en circuito cerrado alimentado por la energía de una diferencia de temperatura. Non-combustion thermal motor with a rotary cycle of condensable fluid in a closed circuit powered by the energy of a temperature difference.

5  5

Objeto de la invención Object of the invention

El objeto de la invención es aprovechar solo una diferencia de temperatura externa al motor para realizar un trabajo. De esta forma el calor residual de cualquier operación, o el calor del sol, puede ser aprovechado con mayor eficiencia. Teniendo en cuenta que 10 concentrar rayos solares es relativamente fácil, solo es necesario encontrar una diferencia de temperaturas para que el rotor gire y realice un trabajo. The object of the invention is to take advantage of only a temperature difference external to the engine to perform a job. In this way the residual heat of any operation, or the heat of the sun, can be used more efficiently. Given that concentrating solar rays is relatively easy, it is only necessary to find a temperature difference for the rotor to rotate and perform work.

De esta forma se simplificaría el hecho de que cualquier persona pueda usar una diferencia de temperatura para conseguir energía, sin pasar por las dificultades de 15 calderas de vapor, o combustión. This would simplify the fact that anyone can use a temperature difference to get energy, without going through the difficulties of steam boilers, or combustion.

Otro uso seria el aprovechar los ciclos de calor y frío a conveniencia, como bomba de calor en una vivienda. Another use would be to take advantage of heat and cold cycles for convenience, such as a heat pump in a home.

20  twenty

Antecedentes de la invención Background of the invention

La máquina de vapor fue la primera máquina que usaba el calor externo para realizar un trabajo. Actualmente se usan turbinas para realizar trabajos a través de vapor de agua o de combustión de gas. Existe un motor térmico sin combustión interna, Stirling, que usa 25 un movimiento alterno sin embargo usa fluidos no condensables. La presente memoria explica el funcionamiento de un motor térmico de ciclo rotativo movido por fluido que puede ser condensable y que aprovecha solo la energía de una diferencia de temperatura. The steam engine was the first machine that used external heat to do a job. Currently turbines are used to perform work through water vapor or gas combustion. There is a thermal engine without internal combustion, Stirling, which uses an alternate movement but uses non-condensable fluids. This report explains the operation of a fluid-driven rotary cycle thermal engine that can be condensable and that uses only the energy of a temperature difference.

30  30

El rendimiento de un motor térmico ideal según Sadi Carnot se basa en la diferencia entre temperaturas. Por lo tanto mientras mayor sea la diferencia de temperatura aportada mayor será el rendimiento. The performance of an ideal thermal engine according to Sadi Carnot is based on the difference between temperatures. Therefore, the greater the difference in temperature contributed, the greater the yield.

El hecho de que existan gases incombustibles y condensables que modifican 35 notablemente su presión ante una mínima diferencia de temperatura, hace posible este motor. Un ejemplo de estos gases, es cualquier gas frigorígeno no combustible, aunque también el aire. The fact that there are incombustible and condensable gases that significantly change their pressure before a minimum temperature difference makes this engine possible. An example of these gases is any non-combustible refrigerant gas, but also the air.

Descripción de la invención 40 Description of the Invention 40

El motor consta de dos partes principales, una donde se calienta el fluido y otra donde se enfría. The engine consists of two main parts, one where the fluid is heated and another where it cools.

En la parte caliente la fuente de energía se aporta en forma de calor a una cámara que 45 rodea la parte de expansión del motor. El fluido es introducido dentro del motor, y al calentarse va desplazando los álabes en dirección a la zona de menor presión, como si de una turbina se tratase. Solo que esta turbina, succiona fluido y lo calienta dentro de si misma, a través de sus paredes o del estator. Por lo que crea un movimiento rotatorio en el eje de los álabes. Una vez recorrido los álabes necesarios el fluido expandido y 50 caliente pasa a la zona de enfriamiento donde otros álabes en zona fría lo van In the hot part the energy source is provided in the form of heat to a chamber that surrounds the expansion part of the engine. The fluid is introduced into the engine, and when heated it moves the blades in the direction of the area of least pressure, as if it were a turbine. Only that this turbine sucks fluid and heats it inside itself, through its walls or the stator. So it creates a rotational movement in the axis of the blades. Once the necessary blades have been run, the expanded and hot fluid passes to the cooling zone where other blades in the cold zone go.

succionando y comprimiendo para tras enfriarse volver a entrar de nuevo en la zona de calentamiento. Estos álabes de compresión usan el movimiento del rotor para volver a comprimir el fluido, y es necesario enfriar para absorber el calor de la compresión. De esta forma los álabes en la zona de expansión aportan un trabajo sobre el rotor que gira, y parte de este trabajo es aprovechado en la zona fría para volverlo a introducir 5 comprimido. El resto del trabajo es aprovechable, descontando rozamientos. Por eso se cumple que mientras mayor sea la diferencia de temperatura entre la zona fría y caliente del motor, mayor rendimiento se obtiene. sucking and compressing to cool again to re-enter the heating zone. These compression blades use the movement of the rotor to compress the fluid again, and it is necessary to cool to absorb the heat of compression. In this way, the blades in the expansion zone provide a work on the rotating rotor, and part of this work is used in the cold zone to reintroduce it 5 tablets. The rest of the work is usable, discounting friction. That is why it is fulfilled that the greater the temperature difference between the cold and hot zone of the engine, the greater the performance is obtained.

Descripción de una forma de realización preferida 10 Description of a preferred embodiment 10

Tenemos una especie de turbina y en su exterior esta rodeada de una cámara (2) donde hacemos circular aceite térmico caliente procedente de un colector solar o de calor residual. El fluido de trabajo sería gas frigorígeno no combustible a presión. El fluido estaría antes de entrar en el motor en estado líquido, y al entrar en el motor (1) pasaría a 15 estado gaseoso y calentándose. El aumento de presión por el calor suministrado hace que el gas circule hacia una zona de menor presión para expandirse. Para llegar a esa zona debe atravesar todos los álabes (3) que sean necesarios, según la diferencia de temperatura prevista. Y también atraviesa todos los estators o paredes de la turbina donde se suministra calor. De esta forma los álabes le imprimen al rotor un movimiento 20 giratorio. We have a kind of turbine and outside it is surrounded by a chamber (2) where we circulate hot thermal oil from a solar collector or residual heat. The working fluid would be a non-combustible refrigerant gas under pressure. The fluid would be before entering the engine in a liquid state, and upon entering the engine (1) it would go into a gaseous and warming state. The increase in pressure due to the heat supplied causes the gas to circulate to an area of lower pressure to expand. To reach that area you must cross all the blades (3) that are necessary, depending on the expected temperature difference. And it also crosses all the stators or walls of the turbine where heat is supplied. In this way the blades give the rotor a rotating movement 20.

Una vez pasado los álabes de expansión el gas pasa a una cámara donde se retira el aporte de calor, por lo tanto se enfría al aire ambiente. Dependiendo del calor aplicado esta cámara será más o menos grande o será necesario introducir los disipadores (4) de 25 calor necesarios. Once the expansion blades have passed, the gas passes to a chamber where the heat input is removed, therefore it cools to ambient air. Depending on the heat applied, this chamber will be more or less large or it will be necessary to introduce the necessary heat sinks (4).

Después de ésta cámara el mismo rotor mueve otros álabes (5) que comprimen el gas de nuevo para volverlo a introducir en un tubo en estado liquido (6). Esta sería la zona de compresión, donde es importante aplicar la temperatura mas fría, para retirar también el 30 calor de la compresión del gas. After this chamber the same rotor moves other blades (5) that compress the gas again to reinsert it into a tube in a liquid state (6). This would be the compression zone, where it is important to apply the coldest temperature, to also remove the heat from the compression of the gas.

Es interesante disponer de un depósito (7) para acumular fluido condensado a baja temperatura. Tanto para la continuidad de trabajo del motor, como para depositar lubricantes, así como para disponer de gas para enfriar para uso directo. 35 It is interesting to have a reservoir (7) to accumulate condensed fluid at low temperature. So much for the continuity of work of the engine, as to deposit lubricants, as well as to have gas to cool for direct use. 35

Explicación de los dibujos Explanation of the drawings

Se trata de una sección del motor. It is a section of the engine.

40 40

Claims (1)

REIVINDICACIONES 1. Sistemas de motor térmico sin combustión de ciclo rotativo de fluido condensable en circuito cerrado alimentado por la energía de una diferencia de temperatura caracterizado por una cámara (2) donde se aporta el calor en forma de fluido a alta 5 temperatura, un punto (1) donde se introduce otro fluido condensable a presión que atraviesa una zona caliente de álabes (3) que está unida a una zona de expansión del gas dotada de disipadores de calor (4), al terminar la zona de expansión y enfriamiento, otra zona de álabes (5) invertidos con respecto a la anterior va disminuyendo el diámetro hasta un tubo de salida que se une con el inicio y está dotado de disipadores de calor (4) 10 y un depósito acumulador (7). 1. Thermal motor systems without combustion of the rotary cycle of condensable fluid in a closed circuit powered by the energy of a temperature difference characterized by a chamber (2) where heat is supplied in the form of fluid at a high temperature, a point ( 1) where another condensable pressurized fluid is introduced that crosses a hot zone of blades (3) that is connected to a gas expansion zone equipped with heat sinks (4), at the end of the expansion and cooling zone, another zone of inverted blades (5) with respect to the previous one decreases the diameter to an outlet pipe that joins the start and is provided with heat sinks (4) 10 and an accumulator tank (7).
ES201400236A 2014-03-22 2014-03-22 Non-combustion thermal motor with a rotary cycle of condensable fluid in a closed circuit powered by the energy of a temperature difference Active ES2546388B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES201400236A ES2546388B1 (en) 2014-03-22 2014-03-22 Non-combustion thermal motor with a rotary cycle of condensable fluid in a closed circuit powered by the energy of a temperature difference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201400236A ES2546388B1 (en) 2014-03-22 2014-03-22 Non-combustion thermal motor with a rotary cycle of condensable fluid in a closed circuit powered by the energy of a temperature difference

Publications (3)

Publication Number Publication Date
ES2546388A2 ES2546388A2 (en) 2015-09-23
ES2546388R1 ES2546388R1 (en) 2015-11-11
ES2546388B1 true ES2546388B1 (en) 2016-09-14

Family

ID=54146028

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201400236A Active ES2546388B1 (en) 2014-03-22 2014-03-22 Non-combustion thermal motor with a rotary cycle of condensable fluid in a closed circuit powered by the energy of a temperature difference

Country Status (1)

Country Link
ES (1) ES2546388B1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH597512A5 (en) * 1974-03-18 1978-04-14 Posnansky Mario
US4069673A (en) * 1975-10-01 1978-01-24 The Laitram Corporation Sealed turbine engine
US4055948A (en) * 1975-12-08 1977-11-01 Kraus Robert A Solar thermal-radiation, absorption and conversion system
US5419135A (en) * 1992-02-21 1995-05-30 Wiggs; B. Ryland Space-based power generator
US7340899B1 (en) * 2004-10-26 2008-03-11 Solar Energy Production Corporation Solar power generation system

Also Published As

Publication number Publication date
ES2546388A2 (en) 2015-09-23
ES2546388R1 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
ES2332134T3 (en) PROCEDURE AND DEVICE FOR THE EXECUTION OF A THERMODYNAMIC CYCLE.
JP6660095B2 (en) Apparatus for controlling a closed loop operating according to a Rankine cycle and method of using the same
ES2717307T3 (en) Heater with heat pump
BR112016030958A2 (en) INTERNAL COMBUSTION ENGINE THERMAL ENERGY RECOVERY SYSTEM
JP2015518935A5 (en)
CN103228912A (en) Heat exchanger for direct evaporation in organic rankine cycle systems and method
ES2934228T3 (en) Thermodynamic boiler with thermal compressor
HRP20231260T1 (en) Cogenerative organic rankine cycle system
US20160161158A1 (en) Multi-Cycle Power Generator
ES2293384T3 (en) PROCEDURE FOR ENERGY CONVERSION ENDS IN MECHANIZED ENERGY WITH A LOW PRESSURE EXPANSION DEVICE.
ES2546388B1 (en) Non-combustion thermal motor with a rotary cycle of condensable fluid in a closed circuit powered by the energy of a temperature difference
ES2929973T3 (en) Thermal insulation device between a turbine whose wheel is driven in rotation by a hot fluid and an electric generator with a rotor coupled to this wheel, in particular for a turbogenerator
ES2933433T3 (en) Closed circuit operating according to a Rankine cycle with an emergency circuit stop device and procedure using such a circuit
RU2018105270A (en) THERMODYNAMIC ENGINE
ES2585879B1 (en) Thermal machine with thermodynamic cycle and its operating procedure
ES2479240B2 (en) Combined cycle with closed Brayton cycle, sub-environmental cold focus, with high polytropic coefficient work fluids
ES2929649T3 (en) Method of detecting and extracting the gaseous fluid contained in a closed loop operating according to a Rankine cycle and device using such a method
ES2821742T3 (en) Thermal power plant, in particular for the use of low temperature heat sources
ES2430791B1 (en) SYSTEMS WITH PARABOLIC CYLINDRICAL SOLAR COLLECTOR FOR HOUSING
ES2666423T3 (en) Cogeneration plant and procedure to operate a cogeneration plant
ES2680043B1 (en) Regenerative alternative thermal machine with double effect, closed and open processes and its operating procedure
ES2383805B1 (en) LOW TEMPERATURE HEAT SOURCE REVALUATION SYSTEM.
ES2586425B1 (en) EFFICIENT PUMP ANTI-CAVITATION SYSTEM FOR ORGANIC RANKINE POWER CYCLES
KR200371801Y1 (en) Turbine driving device utilizing physical energy when vaporizing liquefied gas by natural heat or waste heat
CN203796510U (en) Diethyl ether temperature difference power machine

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2546388

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20160914