ES2546354B1 - Solar generator with microlupas and current multiplier, with thermovoltaic cell with a thousand pairs of cables - Google Patents

Solar generator with microlupas and current multiplier, with thermovoltaic cell with a thousand pairs of cables Download PDF

Info

Publication number
ES2546354B1
ES2546354B1 ES201400258A ES201400258A ES2546354B1 ES 2546354 B1 ES2546354 B1 ES 2546354B1 ES 201400258 A ES201400258 A ES 201400258A ES 201400258 A ES201400258 A ES 201400258A ES 2546354 B1 ES2546354 B1 ES 2546354B1
Authority
ES
Spain
Prior art keywords
cables
cell
microlupas
thermovoltaic
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES201400258A
Other languages
Spanish (es)
Other versions
ES2546354A1 (en
Inventor
Fº JAVIER PORRAS VILA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to ES201400258A priority Critical patent/ES2546354B1/en
Publication of ES2546354A1 publication Critical patent/ES2546354A1/en
Application granted granted Critical
Publication of ES2546354B1 publication Critical patent/ES2546354B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

El generador solar con microlupas y multiplicador de corriente, con célula termovoltaica con mil parejas de cables, es un sistema de transformación de la energía renovable de una fuente de luz como el sol, en corriente eléctrica. Una cápsula de cristal (1) recogerá esta luz, y, la hará llegar a un conjunto de microlupas (2), en las que los rayos se concentrarán muchas veces sobre los focos situados sobre la superficie de una plancha metálica (13) que está en contacto con una célula termovoltaica (4) a la que le ponemos mil parejas de cables (14). Se añade un sistema multiplicador formado por una bobina principal (6) conectada a los cables (14) de la célula (4). Y, a los cables de esta bobina principal (6) se conectarán, en paralelo, los cables de otras bobinas secundarias (7-9). Todas las bobinas tendrán en su hueco un imán (10), o, un núcleo formado por barritas de hierro dulce.The solar generator with microlupas and multiplier of current, with thermovoltaic cell with a thousand pairs of cables, is a system of transformation of the renewable energy of a light source like the sun, in electrical current. A glass capsule (1) will collect this light, and, it will reach a set of microlupas (2), in which the rays will be concentrated many times on the foci located on the surface of a metal plate (13) that is in contact with a thermovoltaic cell (4) to which we put a thousand pairs of cables (14). A multiplier system consisting of a main coil (6) connected to the cables (14) of the cell (4) is added. And, the cables of this main coil (6) will connect, in parallel, the cables of other secondary coils (7-9). All coils will have in their hollow a magnet (10), or, a core formed by soft iron bars.

Description

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

DESCRIPCIONDESCRIPTION

Generador solar con microlupas y multiplicador de corriente, con celula termovoltaica con mil parejas de cables.Solar generator with microlupas and current multiplier, with thermovoltaic cell with a thousand pairs of cables.

Objeto de la invencionObject of the invention

El principal objetivo de la presente invencion es el de aprovechar una energla renovable como es la de los rayos del sol, - o, la de cualquier otra fuente de luz -, para que una celula termovoltaica (4) pueda multiplicar la potencia de las corrientes que transforma en electricidad, lo que se consigue mediante un sistema multiplicador (6-12) formado por bobinas (7-9), conectadas en paralelo a los cables de una bobina principal (6) que une sus propios cables a los dos cables de la celula termovoltaica (4). De esta manera, si la fuente de luz es una bombilla, su luz atravesara las microlupas (2) que pongamos por delante de ella, antes de la plancha metalica (13) que se halla en contacto con la celula termovoltaica (4), y, esto hara que la celula (4) se caliente tantas veces como microlupas (2) hayamos puesto ahl.The main objective of the present invention is to take advantage of a renewable energy such as that of the sun's rays, - or, of any other light source -, so that a thermovoltaic cell (4) can multiply the power of the currents which transforms into electricity, which is achieved by a multiplier system (6-12) formed by coils (7-9), connected in parallel to the wires of a main coil (6) that joins its own wires to the two wires of the thermovoltaic cell (4). In this way, if the light source is a bulb, its light will pass through the micro-tubes (2) that we put in front of it, before the metal plate (13) that is in contact with the thermovoltaic cell (4), and , this will cause the cell (4) to heat up as many times as microlupas (2) we have put there.

Antecedentes de la invencionBackground of the invention

El principal antecedente de esta invencion lo constituye la celula termoelectrica del flsico aleman T. J. Seebeck, inventada en el ano (1.823), formada por dos metales diferentes (tipo p, y, tipo n) que forman un circuito cerrado, al que se conecta una pareja de cables de cobre en la que se crea una diferencia de potencial cuando a la celula le llega calor. A partir de esta celula se han formado muchos dispositivos que aprovechan las cualidades de la celula de Seebeck. Entre ellos, he aportado, en dos registros anteriores, dos mejoras que pueden aumentar la energla que se puede crear con ellas. La primera de ellas es un modelo de utilidad, numero U200201805, titulado: Celula fotovoltaica de lupa multiple y escalonada en orden decreciente de lupas, en el que proponla un sistema de lupas que concentraban los rayos sobre otro sistema de lupas, que aun los reconcentraban mucho mas. El segundo dispositivo es mi Patente, numero P200401429, titulada: Celula foto-termovoltaica de efecto invernadero, en el que se anadla una campana de cristal que servla para acumular en su interior el calor que aportaban los rayos del sol, de manera que, a la celula de silicio le llegarla mucho mas calor del previsto cuando no esta esta campana En la invencion de hoy, se unen las cualidades de los dos registros anteriores, - sean las lupas y la campana -, y, se anade, tambien, un sistema multiplicador hecho con bobinas (6-12), que puede aumentar la potencia de las corrientes que salen de los cables de la celula (4), y, tambien puede aumentar el numero de estas corrientes. Ademas, el numero de parejas de cables (14) que se conectan a la celula (4), se aumenta hasta mil parejas, de manera que se pueden crear as! mil diferencias de potencial en las mil parejas de cables (14), mientras que, si solo se pone una pareja de cables (14), solo se creara una diferencia de potencial, como en la celula termovoltaica de Seebeck y en las que se han derivado de ella.The main antecedent of this invention is the thermoelectric cell of the German physicist TJ Seebeck, invented in the anus (1823), formed by two different metals (type p, and, type n) that form a closed circuit, to which a pair of copper wires in which a potential difference is created when heat reaches the cell. From this cell many devices have been formed that take advantage of the qualities of the Seebeck cell. Among them, I have contributed, in two previous records, two improvements that can increase the energy that can be created with them. The first of these is a utility model, number U200201805, entitled: Multiple magnifying and stepped magnifying glass photovoltaic cell, in which it proposes a system of magnifying glasses that concentrated the rays on another system of magnifying glasses, which still reconcentrated them much more. The second device is my Patent, number P200401429, entitled: Photo-thermovoltaic greenhouse cell, in which a glass bell is added that serves to accumulate inside the heat provided by the sun's rays, so that, at the silicon cell will get much hotter than expected when this bell is not present. In today's invention, the qualities of the two previous registers are joined, - be the magnifying glasses and the bell -, and, a system is also added. multiplier made with coils (6-12), which can increase the power of the currents that come out of the cell cables (4), and, can also increase the number of these currents. In addition, the number of cable pairs (14) that connect to the cell (4), is increased up to a thousand pairs, so that you can create as! thousand potential differences in the thousand pairs of cables (14), while, if only one pair of cables (14) is placed, only a potential difference will be created, as in the Seebeck thermovoltaic cell and in which they have been derived from it.

Descripcion de la invencionDescription of the invention

El Generador solar con microlupas y multiplicador de corriente, con celula termovoltaica con mil parejas de cables, es un sistema de aprovechamiento de la luz del sol para transformar su energla renovable en energla electrica. Tambien se puede utilizar una bombilla como fuente de luz. El sistema esta formado por una capsula de cristal (1), - o, de metacrilato -, que servira para acumular el calor que se introduzca en el, procedenteThe solar generator with microlupas and current multiplier, with thermovoltaic cell with a thousand pairs of cables, is a system of use of sunlight to transform its renewable energy into electric energy. You can also use a bulb as a light source. The system is formed by a glass capsule (1), - or, of methacrylate -, which will serve to accumulate the heat that is introduced into it, from

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

de la radiacion solar. En el interior de la capsula de cristal (1) ponemos un conjunto de microlupas (2) de reducido diametro, que van a concentrar los rayos del sol y los van a dirigir hacia una plancha metalica (13) que se halla en contacto con una celula termovoltaica (4), de manera que la luz del sol que entra en el interior de la capsula (1), se va a multiplicar por el numero de microlupas (2) que hayamos puesto en su interior, y, ademas, tambien aumentara el calor acumulado en dicha capsula (1) a causa del efecto invernadero. Por debajo de estas microlupas (2) vamos a poner, a la distancia de concentration, - o, tambien, a la distancia focal, que es aquella en donde los rayos del sol se van a concentrar en un punto de la celula -, una plancha metalica (13), que tiene, por debajo, y, en contacto con ella, a la celula termovoltaica (4), que estara unida al soporte de las microlupas (2), por unos pequenos ejes verticales (3) que se pondran en las cuatro esquinas. Los dos cables (14) de la celula (4) de la figura n° 1, se van a conectar a una toma de tension (5). Estos cables (14) los hemos de multiplicar hasta poner mil parejas, - de la manera en que queda sugerido en la figura n° 2 -, para multiplicar por mil el numero de diferencias de potencial que se crean entre ellos. Como es logico, si cuando conectamos solo dos cables a la celula (4) de seebeck, el calor que esta tiene, determina la creation de una diferencia de potencial entre ellos, cuando conectamos un numero (n) de parejas de cables (14), se crearan (n) diferencias de potencial, lo que implica que se multiplicara por (n) la energla calorica que puede ofrecer esta misma celula termovoltaica (4). Describire, ahora, el sistema multiplicador (6-12) que, en la figura n° 1, se va a conectar a los dos cables (14) de la celula (4), aunque, en la figura n° 2, conectaremos un sistema multiplicador como el de la figura n° 1, a cada pareja de cables (14) de los que se muestran en la figura n° 2, lo que aun va a multiplicar mas la energla electrica que se puede obtener con esta celula termovoltaica (4). Por lo tanto, a cada pareja de cables (14) de la celula (4), vamos a conectar los cables de una bobina principal (6) de muchas espiras, que es la primera bobina (6) del sistema multiplicador de corriente (6-12). A este dispositivo, por tanto, - y, tal como se muestra en la figura n° 1 -, le podemos anadir un multiplicador de corriente (6-12), que comienza en los dos cables de la bobina principal (6), a los que podemos conectar, en paralelo, - cerca del punto de conexion con la celula (4) de la figura n° 1 -, varias bobinas de muchas espiras (7-9), que van a aprovechar la potencia que haya crecido en la bobina principal (6) para hacerla crecer en sus propias espiras. En los huecos de todas las bobinas pondremos un iman o un nucleo (10) de hierro dulce en forma de barritas, que se muestra en la figura n° 3. En una variante de la capsula (1), - figura n° 4 -, en su interior, anadimos unas bobinas de cristal (15), que tienen la funcion de hacer crecer el calor que llega del sol. Estas bobinas (15) conectan su cable superior, a la cara superior de la capsula (1), y, su cable inferior, se conecta a la plancha metalica (13) que tienen por debajo. Fecha de la invention: (16.03.13).of solar radiation. Inside the glass capsule (1) we put a set of microlupas (2) of reduced diameter, which will concentrate the sun's rays and will direct them to a metal plate (13) that is in contact with a thermovoltaic cell (4), so that the sunlight that enters inside the capsule (1), is going to be multiplied by the number of micro-tubes (2) that we have put inside, and, in addition, it will also increase the heat accumulated in said capsule (1) because of the greenhouse effect. Below these microlupas (2) we are going to put, at the concentration distance, - or, also, at the focal distance, which is the one where the sun's rays are going to concentrate at one point of the cell -, a metal plate (13), which has, underneath, and, in contact with it, the thermovoltaic cell (4), which will be attached to the support of the micro-tubes (2), by small vertical axes (3) that will be put in the four corners. The two cables (14) of the cell (4) of figure 1, will be connected to a voltage outlet (5). These cables (14) must be multiplied to one thousand pairs, - as suggested in Figure 2 -, to multiply by thousand the number of potential differences that are created between them. Of course, if when we connect only two cables to the seebeck cell (4), the heat that it has determines the creation of a potential difference between them, when we connect a number (n) of cable pairs (14) , (n) potential differences will be created, which implies that it will be multiplied by (n) the heat energy that this same thermovoltaic cell can offer (4). I will now describe the multiplier system (6-12) which, in figure 1, will be connected to the two cables (14) of the cell (4), although, in figure 2, we will connect a multiplier system like the one in figure n ° 1, to each pair of cables (14) of those shown in figure n ° 2, which is going to multiply even more the electric energy that can be obtained with this thermovoltaic cell ( 4). Therefore, to each pair of wires (14) of the cell (4), we are going to connect the wires of a main coil (6) of many turns, which is the first coil (6) of the current multiplier system (6 -12). To this device, therefore, - and, as shown in Figure 1 -, we can add a current multiplier (6-12), which starts at the two wires of the main coil (6), to which we can connect, in parallel, - near the point of connection with the cell (4) of figure 1 -, several coils of many turns (7-9), which will take advantage of the power that has grown in the main coil (6) to make it grow in its own turns. In the holes of all the coils we will put a magnet or a core (10) of sweet iron in the form of bars, which is shown in figure n ° 3. In a variant of the capsule (1), - figure n ° 4 - Inside, we add some glass coils (15), which have the function of growing the heat that comes from the sun. These coils (15) connect their upper cable, to the upper face of the capsule (1), and, their lower cable, connect to the metal plate (13) that they have below. Date of the invention: (16.03.13).

Description de las figurasDescription of the figures

Figura n° 1: vista lateral del generador solar con microlupas, con el multiplicador de corriente (6-12). Estos elementos basicos son la capsula de cristal (1), las microlupas (2) situadas en su interior, y, los ejes verticales (3) que unen al soporte de las microlupas (2) con la plancha metalica (13) y la celula termovoltaica (4) con la que se halla en contacto por debajo, cuyos cables se unen a una toma de tension (5). La capsula de cristal (1) encierra en su interior todos los componentes resenados. El sistema multiplicador de corriente (6-12) esta formado por una primera bobina principal (6) de muchas espiras, que conecta sus cables a los cables de la celula (4). A los cables de la bobina principal (6), hemos conectado, en paralelo, otras tres bobinas (7-9). En el nucleo o iman (10) de la bobina inferior (9), se une otro iman o nucleo (10) con una bobina inducida (11) cuyos cables se conectan a un amperlmetro (12).Figure 1: side view of the solar generator with microlupas, with the current multiplier (6-12). These basic elements are the glass capsule (1), the microlupas (2) located inside, and, the vertical axes (3) that join the support of the microlupas (2) with the metal plate (13) and the cell thermo-PV (4) with which it is in contact below, whose cables are connected to a voltage outlet (5). The glass capsule (1) encloses inside all the components resenados. The current multiplier system (6-12) is formed by a first main coil (6) of many turns, which connects its cables to the cell cables (4). To the wires of the main coil (6), we have connected, in parallel, three other coils (7-9). In the core or magnet (10) of the lower coil (9), another magnet or core (10) is connected to an induced coil (11) whose cables are connected to an ammeter (12).

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

Figura n° 2: Vista lateral de la celula termovoltaica (4) que tiene una plancha metalica (13) sobre ella. Se destaca en esta figura las parejas de cables (14) que se han multiplicado y que salen de la celula termovoltaica (4), y, se conectan todos a la toma de tension (5).Figure 2: Side view of the thermovoltaic cell (4) that has a metal plate (13) on it. It is highlighted in this figure the pairs of cables (14) that have multiplied and leave the thermovoltaic cell (4), and, all are connected to the power socket (5).

Figura n° 3: vista en perspectiva del nucleo o del iman (10), que no esta laminado, como es habitual, sino que esta formado por finas barritas de hierro dulce, o, de iman.Figure n ° 3: perspective view of the core or magnet (10), which is not laminated, as usual, but is formed by thin bars of soft iron, or, of magnet.

Figura n° 4: Vista lateral de la capsula (1) en una variante, en cuyo interior se han instalado unas bobinas (15), hechas de cristal tambien, situadas en vertical.Figure 4: Side view of the capsule (1) in a variant, inside which coils (15), also made of glass, are placed vertically.

Figuras n° 1-4:Figures 1-4:

1) Capsula de cristal1) Glass capsule

2) Microlupas2) Microlupas

3) Ejes verticales3) Vertical axes

4) Celula termovoltaica4) Thermovoltaic cell

5) Toma de tension5) Tension socket

6) Bobina principal del multiplicador de corriente6) Main coil of the current multiplier

7) Bobina secundaria del multiplicador de corriente7) Secondary current multiplier coil

8) Bobina secundaria del multiplicador de corriente8) Secondary current multiplier coil

9) Bobina secundaria del multiplicador de corriente9) Secondary current multiplier coil

10) Imanes, o, nucleos, formados por finas barritas de hierro dulce laminado10) Magnets, or, cores, formed by thin bars of rolled sweet iron

11) Bobina inducida11) Induced coil

12) Amperlmetro12) Ammeter

13) Plancha metalica13) Metal plate

14) Cables multiples de la celula termovoltaica14) Multiple thermovoltaic cell cables

15) Solenoides de cristal15) Crystal solenoids

Descripcion de un modo de realizacion preferidoDescription of a preferred embodiment

El Generador solar con microlupas y multiplicador de corriente, con celula termovoltaica con mil parejas de cables, esta caracterizado por los siguientes componentes: una capsula de cristal (1), en la que los rayos del sol que entren en ella, se van a dirigir hacia unas microlupas (2) situadas en su interior, que concentraran los rayos y los dirigiran a un toco en donde hemos situado una celula termovoltaica (4). Unos ejes verticales (3) unen el soporte de las micro lupas (2), con la celula termovoltaica (4), cuyas mil parejas de cables (14) se unen a una toma de tension (5), - tal como se muestra en la figura n° 2 -.The solar generator with microlupas and current multiplier, with thermovoltaic cell with a thousand pairs of cables, is characterized by the following components: a glass capsule (1), in which the sun's rays that enter it, will be directed towards microlupas (2) located inside, which will concentrate the rays and direct them to a tap where we have placed a thermovoltaic cell (4). Some vertical axes (3) join the support of the micro magnifiers (2), with the thermovoltaic cell (4), whose thousand pairs of cables (14) are connected to a tension socket (5), - as shown in Figure 2 -.

55

1010

15fifteen

20twenty

2525

3030

3535

4040

En una celula (4) que mida (45 x 45) centimetros, habra (2.025) centimetros cuadrados. En cada uno de ellos podemos poner un cable (14) lo que determina (2.025) cables, o, lo que es lo mismo, (1.012) parejas de cables (14). Construimos, de esta manera, una celula termovoltaica que va a tener cuatro sistemas que van a multiplicar la energla que llegue de la fuente, del sol, o, de una bombilla: el primero es el de la capsula (1) que produce un efecto invernadero, de manera que, por lo menos, puede duplicar el calor que llegara a la celula (4). El segundo sistema es el de las microlupas (2). El tercero es el de las mil parejas de cables (14) de la celula (4), y, el cuarto sistema es el de las bobinas del sistema-multiplicador (6-12). De esta manera, la luz del sol que entre en la capsula (1) va a multiplicar su calor en funcion del numero de microlupas (2) que hayamos puesto en su interior, y, ademas, la capsula (1) se va a encargar de acumular y aumentar aun mas el calor que le va a llegar a la celula (4) porque va a atravesar unas pequenas aberturas practicadas en las aristas del soporte de las micro lupas (2), o, las junturas de estas micro lupas (2).In a cell (4) measuring (45 x 45) centimeters, there will be (2,025) square centimeters. In each of them we can put a cable (14) which determines (2,025) cables, or, what is the same, (1,012) pairs of cables (14). We build, in this way, a thermovoltaic cell that will have four systems that will multiply the energy that comes from the source, from the sun, or from a light bulb: the first is that of the capsule (1) that produces an effect greenhouse, so that at least it can double the heat that will reach the cell (4). The second system is that of the microlupas (2). The third is that of the thousand pairs of cables (14) of the cell (4), and, the fourth system is that of the coils of the multiplier system (6-12). In this way, the sunlight that enters the capsule (1) will multiply its heat depending on the number of microlupas (2) that we have put inside, and, in addition, the capsule (1) will be commissioned to accumulate and increase even more the heat that will reach the cell (4) because it will pass through small openings made in the edges of the support of the micro magnifiers (2), or, the joints of these micro magnifiers (2 ).

Anadimos ahora, el tercer sistema multiplicador de corriente (6-12), que esta formado por una bobina principal (6) de muchas espiras, que conecta sus cables a la celula (4). A los cables de la bobina principal (6), hemos conectado, en paralelo, otras tres bobinas (7, 8, 9). En ellas, la corriente electrica que les llega desde los cables de la bobina principal (6) va a dividir su intensidad a la mitad, pero, su voltaje va a ser el mismo que haya crecido en las espiras de la bobina principal (6). Y, asl, como la potencia de la corriente habra crecido en la bobina principal (6), tambien la intensidad habra crecido en proporcion directa con el voltaje... lo que se traduce en que, la division de la intensidad que se produce en la entrada de las bobinas siguientes (7, 8, 9), conectadas en paralelo, se va a dividir a la mitad respecto del valor que habla crecido en las espiras de la bobina principal (6), y, no respecto del valor de corriente que habla llegado por los cables (14) de la celula termovoltaica (4), lo que asegura que el valor de potencia que va a crecer en las bobinas secundarias (7-9), va a ser mas que suficiente. En cualquier caso, en lo que se refiere al nucleo (10) de una bobina, lo que importa realmente es el valor de voltaje, porque, si este es grande, la bobina va a inducir un gran campo magnetico en los imanes o nucleos (10) que tendra en su hueco. Estos nucleos (10) estaran formados por finas barritas de hierro dulce laminado que formaran la figura del paraleleplpedo habitual en un nucleo - figura n° 3 -. Esta disposition en forma de barritas independientes, sirve para que puedan aguantar, - mucho mas que las tlpicas laminas de hierro dulce -, el gran calor que se forma en el hueco de las bobinas.We add now, the third current multiplier system (6-12), which is formed by a main coil (6) of many turns, which connects its cables to the cell (4). To the wires of the main coil (6), we have connected, in parallel, three other coils (7, 8, 9). In them, the electric current that comes from the wires of the main coil (6) will divide its intensity in half, but, its voltage will be the same that has grown in the turns of the main coil (6) . And, as well, as the power of the current will have increased in the main coil (6), the intensity will also have increased in direct proportion to the voltage ... which translates into that, the division of the intensity that is produced in the input of the following coils (7, 8, 9), connected in parallel, will be divided in half with respect to the value that has grown in the turns of the main coil (6), and, not with respect to the current value that speaks arrived by the cables (14) of the thermovoltaic cell (4), which ensures that the value of power that will grow in the secondary coils (7-9), will be more than enough. In any case, as regards the core (10) of a coil, what really matters is the voltage value, because, if it is large, the coil will induce a large magnetic field in the magnets or nuclei ( 10) that you will have in your hole. These cores (10) will be formed by thin bars of rolled sweet iron that will form the figure of the usual parallelepiped in a nucleus - figure 3 -. This disposition in the form of independent bars, serves so that they can withstand - much more than the typical sheets of soft iron -, the great heat that forms in the recess of the coils.

Es mas, aun podemos multiplicar un poco mas la cantidad de energla electrica que se puede conseguir con este tercer multiplicador. Para esto, solo tenemos que alargar los imanes, o, los nucleos (10), y arrollar en ellos otras bobinas inducidas (11), iguales que las anteriores (7-9), en donde se van a inducir muchas corrientes electricas por segundo.Moreover, we can multiply a little more the amount of electric energy that can be achieved with this third multiplier. For this, we only have to lengthen the magnets, or, the cores (10), and wind in them other induced coils (11), same as the previous ones (7-9), where many electric currents will be induced per second .

Claims (1)

ES 2 546 354 A1ES 2 546 354 A1 REIVINDICACIONES 1. Generador solar con microlupas y multiplicador de corriente, con celula termovoltaica con mil parejas de cables, caracterizado por ser un sistema formado por una capsula de 5 cristal (1), en cuyo interior ponemos un panel con un conjunto de microlupas (2). Por debajo de estas microlupas (2) vamos a poner, a la distancia focal, una plancha metalica (13) que tiene en contacto, por debajo de ella, una celula termovoltaica (4), que estara unida al soporte de las microlupas (2), mediante unos ejes verticales (3) que se pondran en las cuatro esquinas. Las mil parejas de cables (14) que se pondran en los ejes de la1. Solar generator with microlupas and current multiplier, with thermovoltaic cell with a thousand pairs of cables, characterized by being a system formed by a 5 glass capsule (1), inside which we put a panel with a set of microlupas (2) . Below these microlupas (2) we are going to put, at the focal distance, a metal plate (13) that has, in contact with it, a thermovoltaic cell (4), which will be attached to the support of the microlupas (2 ), by means of vertical axes (3) that will be placed in the four corners. The thousand pairs of cables (14) that will be placed on the axes of the 10 celula (4) se van a conectar a una toma de tension (5). A cada pareja de cables (14) de la10 cell (4) will be connected to a voltage outlet (5). To each pair of cables (14) of the celula (4) vamos a conectar una bobina principal (6) de hilo de cobre, que forma parte del sistema multiplicador de corriente (6-12). Al dispositivo descrito le anadimos un multiplicador de corriente (6-12) en los dos cables de la bobina principal (6), a los que conectamos, en paralelo, - cerca del punto de conexion con los cables (14) de la celulacell (4) we are going to connect a main coil (6) of copper wire, which is part of the current multiplier system (6-12). To the described device we add a current multiplier (6-12) in the two wires of the main coil (6), to which we connect, in parallel, - near the connection point with the wires (14) of the cell 15 (4) -, tres bobinas (7-9). En los huecos de todas las bobinas (6-11), vamos a poner15 (4) -, three coils (7-9). In the holes of all the coils (6-11), we will put imanes o nucleos (10) de hierro dulce, formados por barritas magneticas o imanes, que, al juntarlas, formaran el paraleleplpedo habitual en un nucleo. En estos nucleos (10) se arrollan otras bobinas inducidas, iguales que las anteriores, cuyos cables se van a conectar a una baterla, o, a otra toma de tension.magnets or cores (10) of soft iron, formed by magnetic bars or magnets, which, when joined together, will form the usual parallelepiped in a nucleus. In these cores (10) other induced coils are wound, the same as the previous ones, whose cables are to be connected to a battery, or, to another voltage outlet. 20twenty
ES201400258A 2014-03-21 2014-03-21 Solar generator with microlupas and current multiplier, with thermovoltaic cell with a thousand pairs of cables Active ES2546354B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES201400258A ES2546354B1 (en) 2014-03-21 2014-03-21 Solar generator with microlupas and current multiplier, with thermovoltaic cell with a thousand pairs of cables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201400258A ES2546354B1 (en) 2014-03-21 2014-03-21 Solar generator with microlupas and current multiplier, with thermovoltaic cell with a thousand pairs of cables

Publications (2)

Publication Number Publication Date
ES2546354A1 ES2546354A1 (en) 2015-09-22
ES2546354B1 true ES2546354B1 (en) 2016-06-30

Family

ID=54146016

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201400258A Active ES2546354B1 (en) 2014-03-21 2014-03-21 Solar generator with microlupas and current multiplier, with thermovoltaic cell with a thousand pairs of cables

Country Status (1)

Country Link
ES (1) ES2546354B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2634808B1 (en) * 2016-03-29 2018-08-16 Fco. Javier Porras Vila Improved system of creation of high hardness glass, with lamps, hemispheres, magnifiers and fire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES1053078Y (en) * 2002-07-12 2003-07-01 Vila F Javier Porras PHOTOVOLTAIC CELL OF MULTIPLE AND SCALEED LUPA IN DECREASING ORDER OF LUPAS.
CN1934716A (en) * 2004-03-16 2007-03-21 高频率科技有限公司 Electric energy generating modules with a two-dimensional profile and method of fabricating the same
ES2394464B1 (en) * 2010-04-23 2013-12-12 Fco. Javier Porras Vila TRANSFORMER GENERATOR BOX

Also Published As

Publication number Publication date
ES2546354A1 (en) 2015-09-22

Similar Documents

Publication Publication Date Title
WO2014204553A3 (en) Active cooling of structures immersed in plasma
ES2546354B1 (en) Solar generator with microlupas and current multiplier, with thermovoltaic cell with a thousand pairs of cables
CN104485501B (en) Adjustable terahertz wave coupler with graphene three-output-port structure
ES2394464B1 (en) TRANSFORMER GENERATOR BOX
FR3009907B1 (en) DEVICE FOR CONVERTING THERMAL ENERGY IN ELECTRICAL ENERGY
CN202003558U (en) Demonstration instrument of electromagnetic induction and energy conversion
MX348456B (en) Sunlight concentrating and harvesting device.
RU161367U1 (en) DEMO STAND
CN205812542U (en) Outdoor special electrical control cabinet
ES2514891B1 (en) Photo-thermo-voltaic plate with magnifiers and solenoids, greenhouse
CN203204279U (en) Photographic studio for children
CN202600329U (en) Indoor photostudio with flashing device generating stable apertures and omni-directional multi-angle shooting function
Sardinha Três corpos: Artaud, Foucault, Deleuze.
RU2013110789A (en) WIND-ELECTRIC-GENERATOR
CN204648143U (en) A kind of optical module edge frame member of LED street lamp
PE20170785A1 (en) TIGHT STRUCTURE FOR AN EXTERNAL SOLAR RECEIVER IN A TOWER OF A CONCENTRATION SOLAR POWER PLANT
TH136596B (en) "Sunlight heating equipment with reflector inside the air-insulating layer To increase the water temperature at high speed
CN202472204U (en) Shot box
ES2526243B1 (en) Autonomous heating device
TH136596A (en) Sunlight heating device with a reflector inside an air-insulating layer to increase the water temperature at high speed.
Norton et al. North-South Asymmetries: the Solar Dynamo and Hemispheric Coupling
CN102418908A (en) Buffering device between magnetic rings and lamp tube
ES1191284U (en) Systems similar to air conditioning for transport stops with various technologies (Machine-translation by Google Translate, not legally binding)
UA111900C2 (en) COMPLEX SOLAR ENERGY BATTERY
UA83131U (en) Sensor

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2546354

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20160630