ES2536603A1 - Dynamic control system of supercapacitors with optimization of loading and unloading. (Machine-translation by Google Translate, not legally binding) - Google Patents

Dynamic control system of supercapacitors with optimization of loading and unloading. (Machine-translation by Google Translate, not legally binding) Download PDF

Info

Publication number
ES2536603A1
ES2536603A1 ES201331565A ES201331565A ES2536603A1 ES 2536603 A1 ES2536603 A1 ES 2536603A1 ES 201331565 A ES201331565 A ES 201331565A ES 201331565 A ES201331565 A ES 201331565A ES 2536603 A1 ES2536603 A1 ES 2536603A1
Authority
ES
Spain
Prior art keywords
power
modules
control system
discharge
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
ES201331565A
Other languages
Spanish (es)
Other versions
ES2536603B1 (en
Inventor
Antonio CALO LOPEZ
Ayalid Mirlydeth VILLAMARIN VILLEGAS
Hugo Jose Rodriguez San Segundo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATON ENERGY SOLUTIONS S L
ATON ENERGY SOLUTIONS SL
Original Assignee
ATON ENERGY SOLUTIONS S L
ATON ENERGY SOLUTIONS SL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATON ENERGY SOLUTIONS S L, ATON ENERGY SOLUTIONS SL filed Critical ATON ENERGY SOLUTIONS S L
Priority to ES201331565A priority Critical patent/ES2536603B1/en
Priority to PCT/ES2014/070770 priority patent/WO2015059329A1/en
Publication of ES2536603A1 publication Critical patent/ES2536603A1/en
Application granted granted Critical
Publication of ES2536603B1 publication Critical patent/ES2536603B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

A dynamic control system is presented to optimize the time in which a series of supercapacitor modules is able to offer a certain energy. For this, a dynamic management of the load of said modules is carried out, as well as their download. Both managements, although controlled from the same device, must be separated, so that they are not always loading and unloading the same supercapacitor modules at the same time. Thus, there are always modules in charge, and the time available for download is extended. On the other hand, while the discharge is carried out at constant intensity, the load is carried out at constant power. In this way, the known property is used that the supercapacitors charge faster at constant power than at constant intensity. One of the most interesting results is that the system can offer output power much higher than the load power, during the relatively long time that the system has optimized. Therefore, said system becomes an effective power peak absorber. This application is known, but, unlike a simple supercapacitor, the present invention will do so for a long time. The applications are immediate: by absorbing peaks of power consumption, you can reduce, for example, the power contracted in a home, or the photovoltaic or wind power of a self-consumption system, both injected into the grid and isolated. It is also an interesting system to apply to electric vehicles with photovoltaic modules, being able to reduce the required power of the batteries, and therefore the size of them, in addition to lengthening their useful life. Elevators, which require high power peaks during certain periods of time, are also an immediate application. (Machine-translation by Google Translate, not legally binding)

Description

Sistema de control dinámico de supercondensadores con optimización de la carga y la descarga. Dynamic supercapacitor control system with optimization of loading and unloading.

Sector de la técnica Technical sector

La invención se encuadra en el sector técnico de electrónica, más concretamente en el relativo a la gestión de sistemas de almacenamiento y gestión energética de supercondensadores. 10 The invention is part of the technical electronics sector, more specifically in the management of storage systems and energy management of supercapacitors. 10

Estado de la técnica State of the art

Desde que en la década de los 50 del siglo pasado se inventaron los supercondensadores, destacan sus ventajas como acumuladores de energía de gran 15 capacidad. Además, su carga es mucho más rápida que la de otros sistemas de almacenamiento. Lo mismo se puede decir de su descarga, la cual, al contrario que otros acumuladores, puede realizarse hasta casi el vacío completo. Su vida útil también es una ventaja, puesto que presentan millones de ciclos, frente a los cientos o pocos miles de ciclos que pueden prestar las baterías convencionales. 20 Since supercondensers were invented in the 50s of the last century, their advantages stand out as large-capacity energy accumulators. In addition, its load is much faster than that of other storage systems. The same can be said of its discharge, which, unlike other accumulators, can be performed until almost full vacuum. Their useful life is also an advantage, since they have millions of cycles, compared to the hundreds or few thousands of cycles that conventional batteries can provide. twenty

Sin embargo, no es hasta hace dos décadas cuando se produce su desarrollo comercial a gran escala. Ello fue debido al avance de la tecnología que permitió la reducción de la resistencia interna. Desde entonces, es muy numeroso el número de patentes que tienen que ver con este tipo de dispositivos y sus aplicaciones. 25 However, it is not until two decades ago that its large-scale commercial development occurs. This was due to the advancement of technology that allowed the reduction of internal resistance. Since then, the number of patents that have to do with this type of devices and their applications is very numerous. 25

El uso de supercondensadores se ha extendido especialmente allí donde es necesario un aporte intenso de energía en un breve periodo de tiempo, tal como motores de arranque (por ejemplo en vehículos eléctricos, donde también la rápida carga es de utilidad en frenadas), o absorción de breves picos de potencia en consumos de redes eléctricas. 30 The use of supercapacitors has been extended especially where an intense supply of energy is necessary in a short period of time, such as starter motors (for example in electric vehicles, where also rapid loading is useful in braking), or absorption of short power peaks in power grid consumption. 30

En lo que concierne a la utilidad para la presente invención, ha sido intenso el esfuerzo investigador. As regards the utility for the present invention, the research effort has been intense.

Por ejemplo, respecto a diseñar elementos de control que permitan aumentar la vida útil 35 de los supercondensadores evitando sobretensiones y aplicando controles a varios módulos de supercondensadores, son interesantes las patentes realizadas por X. Maynard et al. (US 2013/0093400 A1), o E. Cegnar et al. (US 2009/0315484 A1). En ambas, y según las tensiones de los distintos módulos, el centro de control decide qué módulo o módulos de condensadores se cargan en determinado momento y cuáles se 40 descargan. Mientras que Maynard se centra en la protección contra sobretensiones, en el caso de la patente de Cegnar et al., el sistema se aplica a activar luminarias LED de forma continua. For example, regarding the design of control elements that allow the useful life of supercapacitors to be increased by avoiding overvoltages and applying controls to various supercapacitor modules, patents made by X. Maynard et al. (US 2013/0093400 A1), or E. Cegnar et al. (US 2009/0315484 A1). In both, and according to the voltages of the different modules, the control center decides which capacitor module or modules are loaded at a certain moment and which are discharged. While Maynard focuses on surge protection, in the case of the Cegnar et al. Patent, the system is applied to continuously activate LED luminaires.

Otras patentes muy útiles son por ejemplo la US 2005/0041370 A1 de M. Wilk et al., o la 45 US 2013/0082520 A1 de F. Leeman et al. En ambas se describen distintos métodos de empaquetar e interconectar supercapacitadores de forma muy compacta, reduciendo así el espacio que el acumulador necesita. Other very useful patents are, for example, US 2005/0041370 A1 by M. Wilk et al., Or 45 US 2013/0082520 A1 by F. Leeman et al. Both describe different methods of packaging and interconnecting supercapacitors in a very compact way, thus reducing the space that the accumulator needs.

Son también de especial relevancia los inventos que utilizan supercondensadores como 50 complemento de otros acumuladores, como baterías o incluso sistemas hídricos. En estos sistemas, los supercondensadores permiten descargas instantáneas muy potentes, dejando las descargas más uniformes y prolongadas en el tiempo para los otros sistemas Also of special relevance are the inventions that use supercapacitors as a complement to other accumulators, such as batteries or even water systems. In these systems, supercapacitors allow very powerful instantaneous discharges, leaving more uniform and prolonged discharges in time for the other systems

de acumulación. Ejemplos de inventos en este sentido son WO 2006/059016 A1 de J. Siaudeau, WO 2008/050031 A3 de E. Condemine, ES201100429 de E. Domínguez Amarillo, o US 2012/0025614 A1 de P. Taimela et al. Es útil la aplicación de esta combinación, por ejemplo, en sistemas de aporte ininterrumpido de potencia (uninterrupted power supply, o UPS). 5 of accumulation Examples of inventions in this regard are WO 2006/059016 A1 by J. Siaudeau, WO 2008/050031 A3 by E. Condemine, ES201100429 by E. Domínguez Amarillo, or US 2012/0025614 A1 by P. Taimela et al. The application of this combination is useful, for example, in uninterrupted power supply systems (UPS). 5

Por último, también existen inventos que aplican parte de lo anterior a utilidades específicas, tales como repartir potencia a distintos electrodomésticos de cocina (WO 2012/140399 A2), o señales de carretera impulsadas por módulos solares fotovoltaicos (US 2009/0211133 A1). 10 Finally, there are also inventions that apply part of the above to specific utilities, such as distributing power to different kitchen appliances (WO 2012/140399 A2), or road signs driven by photovoltaic solar modules (US 2009/0211133 A1). 10

Explicación de la invención Explanation of the invention.

El estudio de estado del arte permite observar que ningún invento conocido intenta prolongar el tiempo en el que una serie de módulos de supercondensadores puede 15 ofrecer una determinada potencia. The study of the state of the art shows that no known invention tries to extend the time in which a series of supercapacitor modules can offer a certain power.

La presente invención es un sistema (1) de control dinámico de supercondensadores que precisamente busca optimizar el tiempo de carga y descarga, prolongando este último. Utiliza muchos de los inventos mencionados anteriormente y los combina para alcanzar 20 ese objetivo. Se tendrá un número n de módulos de supercondensadores (2) (nombrados “a” a “n” en la Figura 1), cada uno de los cuales estará formado por varios supercondensadores unitarios conectados en serie. La conexión entre módulos de supercondensadores (2) es flexible mediante relés u otra forma de interconexión, de forma que se puedan conectar varios de ellos en serie y/o en paralelo, según se decida. 25 Esta decisión la tomará un sistema de control (3) como los relatados en las invenciones del apartado anterior. The present invention is a supercondenser dynamic control system (1) that precisely seeks to optimize the loading and unloading time, prolonging the latter. It uses many of the inventions mentioned above and combines them to achieve that goal. There will be a number n of supercapacitor modules (2) (named "a" to "n" in Figure 1), each of which will consist of several unit supercondensers connected in series. The connection between supercapacitor modules (2) is flexible by means of relays or another form of interconnection, so that several of them can be connected in series and / or in parallel, as decided. 25 This decision will be taken by a control system (3) as described in the inventions of the previous section.

Para tomar la decisión, el sistema (3) recopilará datos tanto de la fuente de potencia (que pueden ser módulos solares fotovoltaicos (4), molinos eólicos (5), la red eléctrica (6) o 30 cualquier otra fuente de potencia), como de la carga asociada al circuito (7) (por ejemplo, los distintos consumos de una vivienda). En función de los datos de carga y descarga, conectará en serie y/o paralelo los módulos de supercondensadores (2). Es importante destacar que la carga desde la fuente (4 a 6) se realiza de manera separada de la descarga hacia el consumo (7). Ello quiere decir que si, por ejemplo, la vivienda (7) está 35 consumiendo de los módulos “b” y “c”, la carga a partir de la fuente (4 a 6) se podrá realizar en otros módulos, por ejemplo el “a” y el “n”, o parcialmente en los mismos “b” y “c”. El número de módulos (2) que se carga o se descarga a la vez es variable y estará determinado por el sistema de control (3), que decidirá en función de los datos recibidos. Asimismo, la configuración del sistema (1) es también variable, por ejemplo en cuanto al 40 número total n de módulos de supercondensadores, pudiendo aumentar o disminuir en función de la aplicación final. To make the decision, the system (3) will collect data from both the power source (which can be photovoltaic solar modules (4), windmills (5), the power grid (6) or any other power source), as of the load associated with the circuit (7) (for example, the different consumptions of a house). Depending on the loading and unloading data, you will connect in series and / or parallel the supercapacitor modules (2). It is important to note that the load from the source (4 to 6) is carried out separately from the discharge towards consumption (7). This means that if, for example, the dwelling (7) is consuming the modules “b” and “c”, the load from the source (4 to 6) can be carried out in other modules, for example the "A" and "n", or partially therein "b" and "c". The number of modules (2) that is loaded or unloaded at the same time is variable and will be determined by the control system (3), which will decide based on the data received. Likewise, the configuration of the system (1) is also variable, for example in terms of the total number n of supercapacitor modules, being able to increase or decrease depending on the final application.

Como resultado, se tiene siempre cargado un número calculado de módulos de supercondensadores (2), de tal forma que la descarga, que se puede producir con varios 45 módulos (2) en serie y/o en paralelo, se prolonga en el tiempo. Dicho tiempo será optimizado por el sistema de control (3) según los datos recibidos en cada momento. El óptimo dependerá de la potencia de entrada, y de la intensidad de salida. As a result, a calculated number of supercapacitor modules (2) is always loaded, so that the discharge, which can be produced with several modules (2) in series and / or in parallel, is prolonged over time. This time will be optimized by the control system (3) according to the data received at each moment. The optimum will depend on the input power, and the output intensity.

Por otro lado, se realiza la entrada al sistema (1) a potencia constante, mientras que la salida es a intensidad constante. De este modo, la carga de los módulos de 50 supercondensadores (2) será más rápida que la descarga, puesto que el voltaje de entrada siempre será el máximo posible (en la salida vendrá determinado siempre por la On the other hand, the input to the system (1) is made at constant power, while the output is at constant intensity. In this way, the load of the 50 supercapacitor modules (2) will be faster than the discharge, since the input voltage will always be the maximum possible (at the output it will always be determined by the

intensidad). Este método ayuda a la optimización del tiempo de descarga que realiza el sistema de control (3). intensity). This method helps to optimize the download time performed by the control system (3).

El resultado del sistema de control dinámico es un tiempo optimizado, prolongado, de la descarga de los módulos de supercondensadores (2). Ello implica extender en el tiempo 5 las ventajas de los supercondensadores, es decir, lograr suministrar elevadas potencias durante un tiempo más prolongado, cuyo óptimo dependerá de la configuración del sistema de control dinámico (1). The result of the dynamic control system is an optimized, prolonged time of the discharge of the supercapacitor modules (2). This implies extending the advantages of supercapacitors in time 5, that is to say, providing high powers for a longer time, the optimum of which will depend on the configuration of the dynamic control system (1).

Descripción de los dibujos 10 Description of the drawings 10

Figura 1. Sistema de control dinámico (1) formado por varios módulos de supercondensadores (2) y un sistema de control (3) de los mismos, que gestiona la carga desde una fuente (4 a 6) y la descarga en cualquier dispositivo (7). Figure 1. Dynamic control system (1) formed by several supercapacitor modules (2) and a control system (3) thereof, which manages the load from a source (4 to 6) and the discharge on any device ( 7).

Figura 2. Curva de consumo de una vivienda tipo en un día típico. La potencia contratada “c” deberá coincidir con el máximo de potencia consumida si se desea cubrir todo el consumo. Sin embargo, utilizando el sistema de control dinámico (1), la potencia contratada puede bajar a “b” o incluso a “a”. Figure 2. Consumption curve of a type house on a typical day. The contracted power “c” must match the maximum power consumed if it is desired to cover all consumption. However, using the dynamic control system (1), the contracted power can be lowered to “b” or even “a”.

Figura 3. Modo de realización de la invención, preferente pero no exclusivo, en el que una instalación renovable fotovoltaica (4) y/o eólica (5) inyecta al sistema de control dinámico (1), que está conectado a un inversor de corriente (8). Este también está conectado a la red eléctrica (6), y al dispositivo de descarga (7). Figure 3. Embodiment of the invention, preferred but not exclusive, in which a renewable photovoltaic (4) and / or wind (5) installation injects the dynamic control system (1), which is connected to a power inverter (8). This is also connected to the mains (6), and to the discharge device (7).

Figura 4. Modo de realización de la invención, preferente pero no exclusivo, en el que una instalación renovable fotovoltaica (4) y/o eólica (5) inyecta al sistema de control dinámico (1) y a un acumulador (10) a través de un regulador de carga (9). Ambos, sistema (1) y acumulador (10), están conectados a un inversor de corriente (8) que descarga en el dispositivo (7). 30 Figure 4. Embodiment of the invention, preferred but not exclusive, in which a renewable photovoltaic (4) and / or wind (5) installation injects the dynamic control system (1) and an accumulator (10) through a charge regulator (9). Both system (1) and accumulator (10), are connected to a power inverter (8) that discharges into the device (7). 30

Figura 5. Curva típica de consumo de un ascensor. El par se corresponde con la corriente y en cada caso los valores son distintos dependiendo del contrapesado, el peso de cabina y la carga que hay en la cabina. IME es la corriente que se mantiene en régimen nominal. IM1L es un pico instantáneo. IMAE1 y IMAE2 son las corrientes en el primer y 35 segundo Jerk. Típicamente se toma IMAE1 para dimensionar los convertidores de frecuencia porque la corriente al final del primer Jerk se mantiene prácticamente durante todo el proceso de aceleración. Este proceso varía en función de como esté parametrizado el ascensor pero suele durar entre 1 y 2 segundos. Figure 5. Typical consumption curve of an elevator. The torque corresponds to the current and in each case the values are different depending on the counterweight, the weight of the cabin and the load in the cabin. IME is the current that is maintained in nominal regime. IM1L is an instantaneous peak. IMAE1 and IMAE2 are the currents in the first and 35 second Jerk. Typically, IMAE1 is taken to size the frequency converters because the current at the end of the first Jerk is maintained practically throughout the acceleration process. This process varies depending on how the elevator is parameterized but usually takes between 1 and 2 seconds.

Modos de realización de la invención Embodiments of the invention

Una de las aplicaciones del sistema (1), preferente pero no exclusiva, es la reducción de potencia eléctrica contratada. Por ejemplo, en una vivienda tipo, un consumo típico de potencia es el representado en la Figura 2. La potencia contratada debe ser siempre la 45 máxima que se espera consumir en cualquier determinado momento. Ello implica que la vivienda de la Figura 2 deberá contratar la potencia “c” para cubrir su máximo de potencia. Sin embargo, se observa que esa potencia solamente se necesita durante un intervalo muy pequeño de tiempo. De hecho, los máximos picos de potencia, muy por encima de los mínimos, siempre se dan en intervalos de minutos, como mucho de una 50 hora. One of the applications of the system (1), preferred but not exclusive, is the reduction of contracted electrical power. For example, in a typical house, a typical power consumption is the one represented in Figure 2. The contracted power must always be the maximum that is expected to be consumed at any given time. This implies that the dwelling of Figure 2 must hire the power “c” to cover its maximum power. However, it is observed that this power is only needed for a very small interval of time. In fact, the maximum power peaks, well above the minimum, are always given in minute intervals, at most 50 hours.

Por todo lo anterior, el sistema (1) se puede diseñar de forma tal que el tiempo de descarga cubra los picos de potencia en tiempos tales que permita reducir la potencia contratada a un nivel “b”, o incluso a un nivel “a” (ver Figura 2). Durante los intervalos en los que el sistema (1) no está funcionando (la mayor parte del tiempo) se carga con la fuente (4 a 6), y solamente funcionará en los intervalos de tiempo limitados en que se den 5 los picos de potencia. For all the above, the system (1) can be designed in such a way that the discharge time covers the power peaks at times such that it allows reducing the contracted power to a level "b", or even to a level "a" (see Figure 2). During the intervals in which the system (1) is not working (most of the time) it is loaded with the source (4 to 6), and will only work in the limited time intervals in which 5 power peaks occur .

Este mismo concepto es aplicable a otros sectores más industriales, como por ejemplo el de los ascensores o escaleras mecánicas. Estos necesitan su potencia máxima sólo durante determinados momentos, especialmente en el arranque. La Figura 5 representa 10 la curva de consumo de un ascensor típico. La corriente nominal IME es la corriente que utilizará el ascensor tan sólo unos segundos después del arranque. Se observa que el valor de esta corriente es mucho menor, incluso la mitad, de las corrientes utilizadas para el arranque. Por ello, se puede utilizar el sistema (1) para, por un lado, reducir la potencia contratada necesaria para un sector tradicionalmente con elevados consumos 15 energéticos; y, por otro lado, también se podría conectar el ascensor o escalera mecánica a una fuente de potencia (4 a 6) acoplada a un sistema (1), de tal forma dichos picos de potencia se aporten mediante este sistema y pueda servir además como sistema de emergencia alternativo, en caso de corte de suministro eléctrico. This same concept is applicable to other more industrial sectors, such as elevators or escalators. These need their maximum power only during certain moments, especially at startup. Figure 5 represents the consumption curve of a typical elevator. The nominal current IME is the current that the elevator will use only a few seconds after starting. It is observed that the value of this current is much less, even half, of the currents used for starting. Therefore, the system (1) can be used to, on the one hand, reduce the contracted power necessary for a sector traditionally with high energy consumption; and, on the other hand, the elevator or escalator could also be connected to a power source (4 to 6) coupled to a system (1), in such a way such power peaks are provided by this system and can also serve as alternative emergency system, in case of power failure.

En el mismo sentido, otro modo de realización, también preferente pero no exclusivo, es la reducción de potencia fotovoltaica o eólica de un sistema de autoconsumo inyectado a la red, tal y como se representa en la Figura 3. En dicho sistema, la fuente renovable 4 y/ó 5 inyecta directamente al sistema de control dinámico (1), cargando los módulos de supercondensadores. El sistema (1) se conecta a un inversor de corriente (8), también 25 conectado a la red eléctrica (6), y finalmente a la carga final (7), por ejemplo la vivienda. El número de módulos fotovoltaicos (4) y/o molinos eólicos (5) se reduce, ya que los picos de potencia son absorbidos por el sistema de control dinámico (1). In the same sense, another embodiment, also preferred but not exclusive, is the reduction of photovoltaic or wind power of a self-consumption system injected into the network, as shown in Figure 3. In said system, the source Renewable 4 and / or 5 directly injects the dynamic control system (1), charging the supercapacitor modules. The system (1) is connected to a power inverter (8), also connected to the power grid (6), and finally to the final load (7), for example the house. The number of photovoltaic modules (4) and / or windmills (5) is reduced, since the power peaks are absorbed by the dynamic control system (1).

Otro modo de realización no exclusivo es la aplicación a un sistema fotovoltaico y/o eólico 30 aislado, como el representado en la Figura 4. Es aplicable, por ejemplo, tanto a una vivienda aislada de la red, como a un coche eléctrico. En dicho sistema, la fuente (4 y/ó 5) inyecta tanto directamente al acumulador (10) a través de un regulador (9), como al sistema de control dinámico (1). Ambos, acumulador (10) y sistema (1) se conectan a un inversor de corriente (8), que a su vez descarga en, por ejemplo, la vivienda (7). También 35 en este caso se ve reducido el parque fotovoltaico y/o eólico necesario, ya que los picos de potencia durante un tiempo prolongado optimizado son absorbidos mediante el sistema de control dinámico (1). Another non-exclusive embodiment is the application to an isolated photovoltaic and / or wind system 30, such as that shown in Figure 4. It is applicable, for example, to a home isolated from the grid, as well as to an electric car. In said system, the source (4 and / or 5) injects both directly to the accumulator (10) through a regulator (9), and to the dynamic control system (1). Both, accumulator (10) and system (1) are connected to a power inverter (8), which in turn discharges into, for example, housing (7). Also in this case, the necessary photovoltaic and / or wind park is reduced, since the peak power optimized for a long time is absorbed by the dynamic control system (1).

Claims (4)

REIVINDICACIONES 1. Sistema de control dinámico de supercondensadores con optimización de la carga y la descarga (1) caracterizado por estar compuesto por un número variable de módulos de supercondensadores (2), dichos módulos compuestos por un número también variable de supercondensadores conectados en serie entre sí, y por un sistema de control (3), que 5 permite que la carga de los módulos (2) se pueda realizar de forma separada o conjunta de la descarga, así como la conexión de los mismos en serie o paralelo según se necesite potencia de salida, y según se estime la necesidad de carga, prolongando de este modo el tiempo de descarga hasta alcanzar un óptimo, teniendo siempre módulos en carga, y realizando la carga a potencia constante y la descarga a intensidad constante. 10 1. Dynamic supercapacitor control system with optimization of the load and discharge (1) characterized by being composed of a variable number of supercapacitor modules (2), said modules consisting of also a variable number of supercapacitors connected in series with each other , and by a control system (3), which 5 allows the loading of the modules (2) can be carried out separately or jointly from the discharge, as well as the connection of them in series or parallel as power is needed output, and as the need for charging is estimated, thus prolonging the discharge time until reaching an optimum, always having modules in charge, and carrying out the load at constant power and the discharge at constant intensity. 10 2. Sistema de control dinámico de supercondensadores con optimización de la carga y la descarga (1) según reivindicación 1, caracterizado por que cuando se aplica para reducir la potencia eléctrica contratada en un suministro eléctrico, en edificaciones o en sistemas de ascensores o escaleras mecánicas, absorbe picos de potencia durante el tiempo 15 optimizado; así como también aplicarse en ascensores o escaleras mecánicas de tal forma que dichos picos de potencia se aporten mediante este sistema (1), acoplado a una fuente de potencia (4 a 6) haciéndolo funcionar de forma autónoma y pueda servir además como sistema de emergencia alternativo, en caso de corte de suministro eléctrico. 20 2. Dynamic supercapacitor control system with optimization of the load and discharge (1) according to claim 1, characterized in that when applied to reduce the electrical power contracted in an electrical supply, in buildings or in elevator systems or escalators , absorbs power peaks during optimized time; as well as being applied in elevators or escalators in such a way that said power peaks are provided by this system (1), coupled to a power source (4 to 6) by operating it autonomously and can also serve as an emergency system alternative, in case of power failure. twenty 3. Sistema de control dinámico de supercondensadores con optimización de la carga y la descarga (1) según reivindicación 1, caracterizado por que cuando se aplica para reducir la potencia fotovoltaica o eólica de un sistema de autoconsumo conectado a red, absorbe picos de potencia durante el tiempo máximo de descarga. 25 3. Dynamic supercapacitor control system with optimization of the load and discharge (1) according to claim 1, characterized in that when applied to reduce the photovoltaic or wind power of a self-consumption system connected to the network, it absorbs power peaks during The maximum download time. 25 4. Sistema de control dinámico de supercondensadores con optimización de la carga y la descarga (1) según reivindicación 1, caracterizado por que cuando se aplica para reducir la potencia fotovoltaica o eólica, así como la capacidad de acumulación, de un sistema de autoconsumo aislado, absorbe picos de potencia durante el tiempo máximo de descarga. 30 4. Supercondenser dynamic control system with optimization of the load and discharge (1) according to claim 1, characterized in that when applied to reduce the photovoltaic or wind power, as well as the accumulation capacity, of an isolated self-consumption system , absorbs power peaks during the maximum discharge time. 30
ES201331565A 2013-10-24 2013-10-24 Dynamic supercapacitor control system with optimization of loading and unloading. Expired - Fee Related ES2536603B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES201331565A ES2536603B1 (en) 2013-10-24 2013-10-24 Dynamic supercapacitor control system with optimization of loading and unloading.
PCT/ES2014/070770 WO2015059329A1 (en) 2013-10-24 2014-10-09 System for dynamic control of supercapacitors with optimisation of charging and discharging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201331565A ES2536603B1 (en) 2013-10-24 2013-10-24 Dynamic supercapacitor control system with optimization of loading and unloading.
ES88084917782 2013-10-24

Publications (2)

Publication Number Publication Date
ES2536603A1 true ES2536603A1 (en) 2015-05-26
ES2536603B1 ES2536603B1 (en) 2016-03-08

Family

ID=52992311

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201331565A Expired - Fee Related ES2536603B1 (en) 2013-10-24 2013-10-24 Dynamic supercapacitor control system with optimization of loading and unloading.

Country Status (2)

Country Link
ES (1) ES2536603B1 (en)
WO (1) WO2015059329A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106253433B (en) * 2016-08-31 2019-06-18 英诺爱科(北京)科技有限公司 A kind of model racing car charging system and model racing car system
CN106329695B (en) * 2016-08-31 2019-06-18 英诺爱科(北京)科技有限公司 Remote controlled and switching energy management system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101309017B (en) * 2008-07-11 2012-05-30 中国科学院电工研究所 Wind power and photovoltaic power complementary power supply system based on mixed energy accumulation of super capacitor accumulator
US8245801B2 (en) * 2009-11-05 2012-08-21 Bluways Usa, Inc. Expandable energy storage control system architecture
CN101924372B (en) * 2010-08-10 2013-05-29 北京国电富通科技发展有限责任公司 Energy storage control system

Also Published As

Publication number Publication date
WO2015059329A1 (en) 2015-04-30
ES2536603B1 (en) 2016-03-08

Similar Documents

Publication Publication Date Title
ES2890329T3 (en) Domestic power installation and operation method for operating a domestic power installation
ES2665979T3 (en) Elevator system with an energy storage device
ES2532638T3 (en) Emergency power supply equipment
KR101093956B1 (en) Energy Storage System
ES2865032T3 (en) Power conversion control with energy storage
KR101084214B1 (en) Grid-connected energy storage system and method for controlling grid-connected energy storage system
ES2671845T3 (en) Microgrid control device and control procedure for them
ES2586137T3 (en) Drive system and work machine
ES2535059B1 (en) Method and system to control a power supply to a load
CN106816884A (en) Energy storage system
BRPI0604436B1 (en) “Power Supply System”
ES2432890A2 (en) Hybrid electric generator set
US20170012429A1 (en) System and method for managing the delivery of electric power
ES2371215T3 (en) A PHOTOVOLTAIC SYSTEM.
KR20130082240A (en) Control device for charging and discharging of super capacitor and rechargeable battery
JP2012010531A (en) Dc power distribution system
CN106208030A (en) A kind of virtual inertia control system of independent wind storage direct-current grid
ES2536603B1 (en) Dynamic supercapacitor control system with optimization of loading and unloading.
CN202435115U (en) Standby power supply system of wind generating set
RU168497U1 (en) Autonomous solar photovoltaic installation
CN104037917B (en) A kind of ocean type solar charging/discharging controller
JP2016116435A (en) Power conversion system
KR20130026788A (en) Wind power system and method the same
KR101077880B1 (en) emergency power source supply system using multiple power generation
ES2929545T3 (en) electric power system

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2536603

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20160308

FD2A Announcement of lapse in spain

Effective date: 20210930