ES2477559T3 - Deposit for receiving a fluid - Google Patents
Deposit for receiving a fluid Download PDFInfo
- Publication number
- ES2477559T3 ES2477559T3 ES10723948.5T ES10723948T ES2477559T3 ES 2477559 T3 ES2477559 T3 ES 2477559T3 ES 10723948 T ES10723948 T ES 10723948T ES 2477559 T3 ES2477559 T3 ES 2477559T3
- Authority
- ES
- Spain
- Prior art keywords
- layer
- wall
- tank according
- polyethylene
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C1/00—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
- F17C1/16—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0104—Shape cylindrical
- F17C2201/0119—Shape cylindrical with flat end-piece
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0604—Liners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0607—Coatings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0614—Single wall
- F17C2203/0619—Single wall with two layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0614—Single wall
- F17C2203/0621—Single wall with three layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0614—Single wall
- F17C2203/0624—Single wall with four or more layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
- F17C2203/0646—Aluminium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
- F17C2203/0656—Metals in form of filaments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0658—Synthetics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0658—Synthetics
- F17C2203/066—Plastics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0658—Synthetics
- F17C2203/0663—Synthetics in form of fibers or filaments
- F17C2203/0673—Polymers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0658—Synthetics
- F17C2203/0675—Synthetics with details of composition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/05—Vessel or content identifications, e.g. labels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/05—Vessel or content identifications, e.g. labels
- F17C2205/051—Vessel or content identifications, e.g. labels by coating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/05—Vessel or content identifications, e.g. labels
- F17C2205/054—Vessel or content identifications, e.g. labels by bar codes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/05—Vessel or content identifications, e.g. labels
- F17C2205/058—Vessel or content identifications, e.g. labels by Radio Frequency Identification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/21—Shaping processes
- F17C2209/2109—Moulding
- F17C2209/2127—Moulding by blowing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/21—Shaping processes
- F17C2209/219—Working processes for non metal materials, e.g. extruding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/23—Manufacturing of particular parts or at special locations
- F17C2209/234—Manufacturing of particular parts or at special locations of closing end pieces, e.g. caps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/012—Hydrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0107—Single phase
- F17C2223/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/036—Very high pressure (>80 bar)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0337—Heat exchange with the fluid by cooling
- F17C2227/0339—Heat exchange with the fluid by cooling using the same fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0367—Localisation of heat exchange
- F17C2227/0369—Localisation of heat exchange in or on a vessel
- F17C2227/0376—Localisation of heat exchange in or on a vessel in wall contact
- F17C2227/0379—Localisation of heat exchange in or on a vessel in wall contact inside the vessel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0404—Parameters indicated or measured
- F17C2250/0469—Constraints, e.g. by gauges
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/01—Improving mechanical properties or manufacturing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0165—Applications for fluid transport or storage on the road
- F17C2270/0168—Applications for fluid transport or storage on the road by vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
Abstract
Depósito (1) para la recepción de un fluido, en particular de hidrógeno, bajo una presión elevada, en relación con la ambiental, de hasta 1.500 bares, que presenta un cuerpo hueco (2) que está delimitado por una pared (3), presentando la pared (3) una estructura de capas múltiples y un dispositivo (4) para alimentar o evacuar el fluido al o del cuerpo hueco (2), estando una capa exterior (32) de la pared (3) configurada como capa de refuerzo (32) y estando la capa de refuerzo (32) enrollada y/o trenzada a partir de filamentos o hilos, caracterizado porque una capa interior (31) de la pared (3) contiene polietileno reticulado.Tank (1) for the reception of a fluid, in particular of hydrogen, under a high pressure, relative to the ambient one, of up to 1,500 bars, which has a hollow body (2) that is delimited by a wall (3), the wall (3) presenting a multilayer structure and a device (4) for feeding or evacuating the fluid to or from the hollow body (2), an outer layer (32) of the wall (3) being configured as a reinforcing layer (32) and the reinforcement layer (32) being wound and / or braided from filaments or threads, characterized in that an inner layer (31) of the wall (3) contains cross-linked polyethylene.
Description
15 fifteen
25 25
35 35
45 Four. Five
55 55
65 65
E10723948 E10723948
02-07-2014 07-02-2014
DESCRIPCIÓN DESCRIPTION
Depósito para la recepción de un fluido Deposit for receiving a fluid
La invención se refiere a un depósito para la recepción de un fluido, en particular de hidrógeno, bajo una presión elevada, en relación con la ambiental, de hasta 1.500 bares, que presenta un cuerpo hueco que está delimitado por una pared, presentando la pared una estructura de capas múltiples y un dispositivo para alimentar o evacuar el fluido al o del cuerpo hueco, estando una capa exterior de la pared configurada como capa de refuerzo y estando la capa de refuerzo enrollada y/o trenzada a partir de filamentos o hilos. La invención se refiere además a un procedimiento para producir un depósito de este tipo. Por último, la invención se refiere a un sistema de abastecimiento de fluido con al menos un depósito de este tipo. En el estado actual de la técnica se conocen ya depósitos para la recepción de medios gaseosos o líquidos bajo presión, que presentan un cuerpo hueco con una pared de capas múltiples. Tales depósitos se emplean por ejemplo para abastecer la máquina de combustión interna en automóviles, conteniendo y poniendo a disposición el depósito sustancias combustibles gaseosas o líquidas. En este tipo de depósitos se recogen especialmente gases bajo presiones muy altas, que pueden ser ciertamente de hasta 1.500 bares. En el estado actual de la técnica es ya conocido el que la pared del depósito conste de una capa interior, compuesta por ejemplo de metal o de un material polimérico, y una capa exterior, que constituya una capa de refuerzo. El documento WO 00/66939 A1 revela un depósito moldeado por soplado según el preámbulo de la reivindicación 1 con una capa interior de polietileno. Este estado de la técnica ya conocido presenta como desventaja que, durante el proceso de repostado, en el que por ejemplo se introduce en el depósito un gas a alta presión y a una gran velocidad, se produce calor, que en caso dado puede dañar la pared interior del depósito, siempre que ésta esté compuesta de un material polimérico. Partiendo de este estado de la técnica, la invención tiene el objetivo de poner a disposición un depósito para la recepción de un fluido, que permita efectuar procesos de repostado rápidos sin sufrir daños a causa del calor producido durante dichos procesos de repostado. Otro objetivo de la invención es indicar un procedimiento de producción para un depósito de este tipo. Por último, también es un objetivo de la invención indicar un sistema de abastecimiento de fluido con, al menos, un depósito de este tipo. El objetivo se logra mediante la puesta a disposición de un depósito para la recepción de un fluido, en particular bajo una presión elevada, en relación con la ambiental, presentando el depósito un cuerpo hueco que está delimitado por una pared. La pared presenta una estructura de capas múltiples. En ésta está previsto un dispositivo para alimentar o evacuar fluido al o del cuerpo hueco. El depósito para la recepción del fluido se distingue porque la capa interior de la pared contiene polietileno reticulado. Con la elección según la invención de polietileno reticulado para la capa interior de la pared, que también se denomina “liner [forro]”, se pone a disposición un depósito que permite efectuar procesos de repostado rápidos sin que el calor que se produce durante éstos tenga efectos perjudiciales en el “liner”. En particular no se produce aquí ninguna deformación térmica del liner; el material del liner no puede 'correrse' bajo la acción del calor. La capa interior del depósito, el liner, se produce en un procedimiento de soplado. Para ello se extrude, en un procedimiento en sí ya conocido, un tubo flexible que, a continuación, se encierra en un útil de moldeado y se moldea inyectando un gas. El liner presenta preferentemente una forma que comprende un tramo cilíndrico alargado y dos, así llamados, casquetes polares, de forma aproximadamente semiesférica, que limitan el mismo. En el marco de la invención puede estar previsto ventajosamente que el polietileno del liner sea reticulado mediante peróxido, o mediante silano, o mediante la acción de energía de radiación. Aquí se prefiere especialmente la reticulación de polietileno mediante peróxido, en la que se forma un, así llamado, PE-Xa, realizándose la reticulación del polietileno a una temperatura elevada mediante peróxidos formadores de radicales. En la reticulación de polietileno se producen enlaces químicos entre cadenas de polímero adyacentes, de manera que se obtiene un material polimérico muy tenaz y especialmente estable a las altas temperaturas, que resulta excelentemente adecuado para el uso previsto arriba descrito. El grado de reticulación del polietileno puede controlarse mediante la elección y la cantidad empleada del peróxido y, además, mediante los parámetros del proceso de reticulación. Según la presente invención, el grado de reticulación del polietileno puede estar comprendido entre un 5 y un 95%, preferentemente entre un 15 y un 90% y con especial preferencia entre un 50 y un 85%. Los grados de reticulación de esta magnitud ocasionan la gran estabilidad térmica del liner. Con ello se impide el 'escurrimiento' del material, ya conocido en los termoplásticos. El polietileno empleado como material polimérico para la producción del cuerpo hueco en el procedimiento de soplado es un, así llamado, polietileno susceptible de soplarse. Para ello se elige un polietileno de viscosidad correspondientemente baja; el MFI está entre 0,1 y 2 g / 10 min a 190° C, carga 2,16 kg. La densidad de un polietileno susceptible de soplarse de este tipo está comprendida entre 0,93 y 0,965 g/cm3, preferentemente entre 0,948 y 0,960 g/cm3. Para el moldeado por soplado y la subsiguiente reticulación se prefieren aquí especialmente los, así llamados, tipos Phillips. The invention relates to a reservoir for the reception of a fluid, in particular hydrogen, under a high pressure, relative to the ambient one, of up to 1,500 bars, which has a hollow body that is delimited by a wall, presenting the wall a multilayer structure and a device for feeding or evacuating the fluid to or from the hollow body, an outer layer of the wall being configured as a reinforcement layer and the reinforcement layer being wound and / or braided from filaments or threads. The invention further relates to a process for producing such a deposit. Finally, the invention relates to a fluid supply system with at least one such tank. In the current state of the art, deposits for the reception of gaseous or liquid media under pressure are already known, which have a hollow body with a multi-layered wall. Such tanks are used, for example, to supply the internal combustion machine in automobiles, containing and making the tank available gaseous or liquid combustible substances. Especially in this type of tanks gases are collected under very high pressures, which can certainly be up to 1,500 bars. In the current state of the art it is already known that the tank wall consists of an inner layer, composed for example of metal or of a polymeric material, and an outer layer, which constitutes a reinforcing layer. WO 00/66939 A1 discloses a blow molded reservoir according to the preamble of claim 1 with an inner layer of polyethylene. This state of the art already known has a disadvantage that, during the refueling process, in which, for example, a gas at high pressure and at a high speed is introduced into the tank, heat is produced, which if necessary can damage the wall inside the tank, provided that it is composed of a polymeric material. Starting from this state of the art, the invention has the objective of making available a reservoir for the reception of a fluid, which allows rapid refueling processes without damage due to the heat produced during said refueling processes. Another object of the invention is to indicate a production process for such a deposit. Finally, it is also an object of the invention to indicate a fluid supply system with at least one such reservoir. The objective is achieved by making available a reservoir for the reception of a fluid, in particular under a high pressure, in relation to the environment, the reservoir presenting a hollow body that is delimited by a wall. The wall has a multilayer structure. A device for feeding or evacuating fluid to or from the hollow body is provided therein. The reservoir for the reception of the fluid is distinguished in that the inner layer of the wall contains cross-linked polyethylene. With the choice according to the invention of cross-linked polyethylene for the inner layer of the wall, which is also called "liner [liner]", a tank is made available that allows fast refueling processes without the heat produced during these have detrimental effects on the liner. In particular, no thermal deformation of the liner occurs here; The liner material cannot 'run' under the action of heat. The inner layer of the tank, the liner, is produced in a blowing procedure. For this purpose, a flexible tube is extruded in a process known per se, which is then enclosed in a molding tool and molded by injecting a gas. The liner preferably has a shape comprising an elongated cylindrical section and two, so-called, polar caps, approximately hemispherical, which limit it. Within the scope of the invention it can be advantageously provided that the liner polyethylene be crosslinked by peroxide, or by silane, or by the action of radiation energy. Especially preferred here is cross-linking of polyethylene by peroxide, in which a so-called PE-Xa is formed, cross-linking of polyethylene at an elevated temperature by radical forming peroxides. In the crosslinking of polyethylene chemical bonds between adjacent polymer chains are produced, so that a very tenacious and especially stable high temperature polymeric material is obtained, which is excellently suitable for the intended use described above. The degree of cross-linking of polyethylene can be controlled by the choice and amount of peroxide used and, in addition, by the parameters of the cross-linking process. According to the present invention, the degree of cross-linking of the polyethylene can be between 5 and 95%, preferably between 15 and 90% and especially preferably between 50 and 85%. The degrees of crosslinking of this magnitude cause the thermal stability of the liner. This prevents the 'runoff' of the material, already known in thermoplastics. The polyethylene used as a polymeric material for the production of the hollow body in the blowing process is a so-called polyethylene capable of blowing. For this, a correspondingly low viscosity polyethylene is chosen; The MFI is between 0.1 and 2 g / 10 min at 190 ° C, load 2.16 kg. The density of a polyethylene capable of being blown of this type is between 0.93 and 0.965 g / cm3, preferably between 0.948 and 0.960 g / cm3. For blow molding and subsequent crosslinking, so-called Phillips types are especially preferred here.
15 fifteen
25 25
35 35
45 Four. Five
55 55
65 65
E10723948 E10723948
02-07-2014 07-02-2014
Tales tipos Phillips se producen mediante un catalizador de cromo sobre soporte de silicato en un procedimiento de polimerización. Además de polietileno, también puede emplearse para el soplado un copolímero de polietileno, prefiriéndose en este caso un comonómero de una poliolefina a base de un elemento constituyente C3 a C8. Para que sea posible reticular el polietileno, se añade al polietileno un agente reticulante, en el caso presente un peróxido orgánico. Los peróxidos orgánicos son particularmente adecuados para reticular polietileno. Según la invención se emplean con este fin peróxidos orgánicos que presentan una temperatura de reticulación típica mayor/igual que 170°C. Se prefieren muy especialmente aquellos que presentan una temperatura de reticulación mayor/igual que 175°C. De este modo se logra una reticulación sumamente uniforme y de alto grado del polietileno. Al polietileno pueden añadírsele otros componentes. Éstos pueden comprender por ejemplo estabilizantes, como por ejemplo antioxidantes fenólicos, o agentes auxiliares de procesamiento, como por ejemplo agentes deslizantes, o reforzadores de la reticulación, como por ejemplo TAC (cianurato de trialilo), o TAIC (isocianurato de trialilo), o trimetacrilato de trimetilolpropano, o divinilbenceno, o tereftalato de dialilo, o trimelitato de trialilo, o fosfato de trialilo, en concentraciones de un 0,2 a un 2,0 por ciento en peso. Para la reticulación, el cuerpo hueco producido en el procedimiento de soplado utilizando polietileno se expone durante cierto tiempo a una temperatura elevada. Esto puede comprender, por ejemplo, un periodo de 10 min a una temperatura de 180°C a 280°C. Para evitar durante el proceso de reticulación un colapso o un cambio de forma del cuerpo hueco producido en el procedimiento de soplado, puede estar previsto poner el cuerpo hueco bajo presión durante la reticulación mediante una sobrepresión continua del aire de soplado (aire de apoyo), que ejerce presión sobre el cuerpo hueco en un molde que determina el contorno exterior. En la reticulación del polietileno para obtener PE-Xb, que se forma por reticulación mediante silano, se debe considerar en primer lugar el, así llamado, proceso de dos etapas. Éste se denomina también proceso Sioplas. Para ello se injerta en primer lugar el polietileno con un silano con ayuda de peróxidos, a continuación se mezcla este polietileno injertado con un lote de catalizador y puede así emplearse para producir el cuerpo hueco en el procedimiento de moldeado por soplado. Como lote de catalizador resulta adecuado un compuesto organoestánnico, como por ejemplo DOTL (laurato de dioctilestaño). Esta composición de polietileno injertado y lote de catalizador puede contener adicionalmente otros aditivos. También es posible efectuar el injerto del silano en el polietileno en un, así llamado, procedimiento de una etapa. Para ello se alimenta a una extrusora una mezcla de polietileno, silano, peróxido y el catalizador. El silano, el peróxido y el catalizador forman una fase líquida, que se añade de manera dosificada al polietileno. Mediante una, así llamada, extrusión reactiva se realiza aquí en primer lugar el injerto del silano en el polietileno, teniendo lugar simultáneamente una mezcla homogénea con el catalizador. La reticulación del polietileno tiene lugar en presencia de humedad a una temperatura elevada, y habitualmente se realiza en una atmósfera de vapor de agua o en un baño de agua a una temperatura entre 90 y 105°C y durante un intervalo de tiempo de 6 a 15 horas, en función del espesor de la pared del cuerpo hueco a soplar. También es posible reticular polietileno mediante la acción de energía de radiación, lo que entonces se denomina PE-Xc. Con este fin resultan adecuados en esencia todos los polietilenos y sus copolímeros. Mediante la acción de haces electrónicos o rayos gamma se logra la reticulación del polietileno. La reticulación puede apoyarse también aquí con TAC o TAIC. Por último, también es posible reticular polietileno mediante luz UV, añadiendo al polietileno unos, así llamados, fotoiniciadores, por ejemplo benzofenonas sustituidas y sustancias similares, que inician la reacción de reticulación bajo la acción de luz UV. Además de la capa interior de la pared de polietileno reticulado, el depósito presenta una capa exterior de la pared. La capa exterior de la pared contiene un filamento o un hilo, que está compuesto por ejemplo de carbono, o de aramida, o de metal, o de boro, o de vidrio, o de un material de silicato, o de óxido de aluminio, o de un material polimérico muy tenaz y resistente a altas temperaturas, o de una mezcla de los anteriormente mencionados. Estos últimos se denominan también hilos híbridos. Este refuerzo por fibras de la capa exterior de la pared contiene además un material polimérico, preferentemente una resina epoxi. Los filamentos o hilos contenidos en la capa exterior de la pared están enrollados y/o trenzados alrededor de la capa interior de la pared del cuerpo hueco. En el caso de la envoltura puede estar previsto en particular que ésta esté configurada con un mayor espesor en los casquetes polares del depósito, para lograr en éstos una estabilidad especialmente alta. También puede estar previsto ventajosamente que la envoltura esté configurada con un gran espesor en la zona del dispositivo para la alimentación o evacuación del fluido, o en otros puntos, con el fin de reforzar el depósito en este punto. También puede ser ventajoso emplear en los casquetes polares del depósito y/o en la zona del dispositivo para la alimentación o evacuación del fluido, o en otros puntos, una técnica de trenzado especial, diferente de la técnica de trenzado aplicada en el tramo cilíndrico del depósito. Una técnica de trenzado especial así puede conferir a la capa exterior de la pared una resistencia sumamente alta. Such Phillips types are produced by a chromium catalyst on silicate support in a polymerization process. In addition to polyethylene, a polyethylene copolymer can also be used for blowing, in this case a comonomer of a polyolefin based on a constituent element C3 to C8 is preferred. In order to crosslink the polyethylene, a crosslinking agent is added to the polyethylene, in the case an organic peroxide is present. Organic peroxides are particularly suitable for cross-linking polyethylene. According to the invention, organic peroxides having a typical cross-linking temperature greater than / equal to 170 ° C are used for this purpose. Those with a cross-linking temperature greater than / equal to 175 ° C are especially preferred. In this way an extremely uniform and high degree cross-linking of polyethylene is achieved. Other components can be added to the polyethylene. These may comprise, for example, stabilizers, such as phenolic antioxidants, or auxiliary processing agents, such as sliding agents, or crosslinking enhancers, such as TAC (triallyl cyanurate), or TAIC (triallyl isocyanurate), or trimethylolpropane trimethacrylate, or divinylbenzene, or diallyl terephthalate, or triallyl trimellitate, or triallyl phosphate, in concentrations of 0.2 to 2.0 percent by weight. For crosslinking, the hollow body produced in the blowing process using polyethylene is exposed for some time at an elevated temperature. This may include, for example, a period of 10 min at a temperature of 180 ° C to 280 ° C. In order to avoid collapse or a change in the shape of the hollow body during the blowing process during the cross-linking process, it can be provided to place the hollow body under pressure during the cross-linking by continuous overpressure of the blowing air (support air), which exerts pressure on the hollow body in a mold that determines the outer contour. In the cross-linking of polyethylene to obtain PE-Xb, which is formed by cross-linking by silane, the so-called two-stage process must first be considered. This is also called the Sioplas process. For this, the polyethylene is first grafted with a silane with the aid of peroxides, then this grafted polyethylene is mixed with a batch of catalyst and can thus be used to produce the hollow body in the blow molding process. As the catalyst batch, an organostannic compound is suitable, such as DOTL (dioctyltin laurate). This grafted polyethylene composition and catalyst batch may additionally contain other additives. It is also possible to perform the grafting of the silane on the polyethylene in a so-called one-stage procedure. For this, a mixture of polyethylene, silane, peroxide and the catalyst is fed to an extruder. The silane, peroxide and catalyst form a liquid phase, which is added in a metered manner to the polyethylene. By means of a so-called reactive extrusion, the graft of the silane in the polyethylene is performed here first, while a homogeneous mixture with the catalyst takes place simultaneously. Cross-linking of polyethylene takes place in the presence of moisture at an elevated temperature, and is usually carried out in an atmosphere of water vapor or in a water bath at a temperature between 90 and 105 ° C and for a period of 6 to 15 hours, depending on the thickness of the hollow body wall to be blown. It is also possible to crosslink polyethylene by the action of radiation energy, which is then called PE-Xc. Essentially all polyethylenes and their copolymers are suitable for this purpose. Through the action of electronic beams or gamma rays, cross-linking of polyethylene is achieved. Crosslinking can also be supported here with TAC or TAIC. Finally, it is also possible to cross-link polyethylene by UV light, adding so-called photoinitiators to the polyethylene, for example substituted benzophenones and similar substances, which initiate the cross-linking reaction under the action of UV light. In addition to the inner layer of the cross-linked polyethylene wall, the reservoir has an outer layer of the wall. The outer layer of the wall contains a filament or a thread, which is composed for example of carbon, or aramid, or metal, or boron, or glass, or a silicate material, or aluminum oxide, or of a very tough and high temperature resistant polymeric material, or of a mixture of the aforementioned. The latter are also called hybrid threads. This fiber reinforcement of the outer layer of the wall also contains a polymeric material, preferably an epoxy resin. The filaments or threads contained in the outer layer of the wall are wound and / or braided around the inner layer of the wall of the hollow body. In the case of the envelope, it can be provided in particular that it is configured with a greater thickness in the polar caps of the tank, in order to achieve especially high stability therein. It can also be advantageously provided that the envelope is configured with a great thickness in the area of the device for feeding or evacuating the fluid, or at other points, in order to reinforce the reservoir at this point. It may also be advantageous to use in the polar caps of the tank and / or in the area of the device for the feeding or evacuation of the fluid, or at other points, a special braiding technique, different from the braiding technique applied in the cylindrical section of the Deposit. Such a special braiding technique can confer extremely high resistance to the outer layer of the wall.
15 fifteen
25 25
35 35
45 Four. Five
55 55
65 65
E10723948 E10723948
02-07-2014 07-02-2014
Según la invención, puede estar previsto que la capa exterior no esté unida a la capa interior. Esto puede traer consigo ventajas en la estabilidad a largo plazo del depósito. En otra forma de realización de la invención, la capa interior puede también estar unida a la capa exterior. De este modo puede crearse un depósito sumamente resistente. El depósito presenta además un dispositivo para alimentar o evacuar el fluido al o del cuerpo hueco. Este, así llamado, boss constituye una abertura en la pared del depósito que sirve para llenar o vaciar el depósito del fluido a recibir. Puede estar previsto ventajosamente que, en un punto de la superficie del depósito situado aproximadamente enfrente del boss, esté previsto un medio que facilite la aplicación de la capa exterior mediante enrollado y/o trenzado. El medio puede ser aquí un saliente de la superficie o un hueco previsto en la misma, en el que por ejemplo pueda introducirse un eje, o comprender una ejecución similar. En este caso, el medio permite manejar el depósito más fácilmente para la operación de enrollado o trenzado. El medio puede servir aquí por ejemplo para centrar el depósito durante la operación de enrollado y/o trenzado. También puede utilizarse ventajosamente como alojamiento de enrollado, para mover el depósito. Por último, el medio puede servir también para fijar el depósito en su uso posterior. De esto resulta una mayor calidad de la capa exterior a aplicar. Así, es posible producir un depósito más resistente. En un perfeccionamiento preferido de la invención puede estar previsto que exista una capa barrera para reducir la difusión del fluido a través de la pared. De este modo se hace posible crear un depósito que presenta una tasa de fuga sumamente baja y en particular es apto para recoger el fluido a almacenar durante un periodo muy largo sin pérdidas importantes de presión. Con este fin puede estar previsto que la capa barrera esté dispuesta sobre la superficie interior de la capa interior. De este modo se evita de una manera fiable una difusión del fluido a través de la pared del depósito. Según la invención, puede estar previsto que la capa barrera sea un polímero, como por ejemplo alcohol etilenvinílico (EVOH), o una lámina o un revestimiento, en particular a base de un silazano, o una combinación de los anteriormente mencionados. El espesor de la capa barrera puede estar comprendido entre 0,1 y 1.000 µm, preferentemente entre 0,5 y 1,5 µm. Mediante la elección del tipo de capa barrera y del espesor respectivo de la capa barrera puede lograrse, en función del fluido a almacenar, una disminución sumamente favorable de la difusión a través de la pared. Así, por ejemplo es posible reducir de un modo muy eficaz la difusión de hidrógeno a través de la pared de un depósito de este tipo aplicando una capa del silazano sobre la superficie interior de la capa interior, estando el espesor de esta capa barrera entre 0,5 µm y 1,5 µm. En un perfeccionamiento de la presente invención puede estar previsto que el depósito presente una capa protectora exterior, aplicada sobre la capa exterior de la pared. La capa protectora exterior puede incluir un termoplástico, o un producto de coextrusión, o un tubo termo-retráctil, o un tejido de malla o de punto, o un trenzado, o una combinación de los anteriormente mencionados. Una capa protectora exterior de este tipo para el depósito resulta ventajosa si éste está expuesto a cargas mecánicas, como por ejemplo golpes o efectos de fuerzas similares. Una capa protectora exterior de este tipo impide en particular la posibilidad de que se produzcan daños, por ejemplo en la pared exterior, que puedan acarrear una rotura de esta pared. La capa protectora exterior puede también estar configurada de manera que constituya una capa ignífuga que proteja el depósito eficazmente contra la acción del fuego. Con este fin puede estar previsto ventajosamente que la capa ignífuga contenga, así llamados, materiales intumescentes, que, bajo la acción de una temperatura elevada, desprenden gases o agua y enfrían así el depósito o lo aíslan contra la acción de gases calientes y/o, mediante la formación de una capa calorífuga con una baja conductibilidad térmica, protegen el depósito durante cierto tiempo contra la acción del calor. Tales materiales intumescentes son, por ejemplo: Composiciones que comprenden un donador de 'carbono' (por ejemplo polialcoholes), un donador de ácido (por ejemplo polifosfato de amonio) y un propelente (por ejemplo melamina). Éstos forman entonces una voluminosa capa protectora aislante mediante una carbonización y un espumado simultáneo. Otros materiales intumescentes comprenden por ejemplo hidratos que, bajo la acción del calor, desarrollan un efecto endotérmico mediante el desprendimiento de vapor refrigerante. Un ejemplo de ello es un silicato de metal alcalino hidratado. También se conocen materiales intumescentes que desprenden gas, que comprenden por ejemplo melamina, melamina metilolizada, hexametoximetilmelamina, monofosfato de melamina, difosfato de melamina, polifosfato de melamina, pirofosfato de melamina, urea, dimetilurea, diciandiamida, fosfato de guanilurea, glicina o fosfato de amina. Los materiales precedentes liberan nitrógeno gaseoso cuando se descomponen bajo la acción de calor. También podrían utilizarse compuestos que liberen dióxido de carbono o vapor de agua bajo la acción de calor. La capa protectora exterior puede servir también para identificar el depósito mediante el registro o la representación de información expresada en forma alfanumérica, o como código de barras, o como código de colores. Por último, la capa protectora exterior puede estar prevista también para proporcionar al depósito un aspecto atractivo. En un perfeccionamiento de la invención puede estar previsto también que exista una capa metálica. La capa metálica puede estar dispuesta sobre la capa interior. La capa metálica está realizada aquí preferentemente de tal manera que no oponga ninguna resistencia a la difusión del fluido a través de la pared del depósito. According to the invention, it can be provided that the outer layer is not attached to the inner layer. This can bring advantages in the long-term stability of the deposit. In another embodiment of the invention, the inner layer may also be attached to the outer layer. In this way an extremely resistant deposit can be created. The tank also has a device to feed or evacuate the fluid to or from the hollow body. This, so called, boss constitutes an opening in the wall of the reservoir that serves to fill or empty the reservoir of the fluid to be received. It may be advantageously provided that, at a point on the surface of the tank approximately in front of the boss, a means is provided that facilitates the application of the outer layer by winding and / or braiding. The medium can here be a projection of the surface or a recess provided therein, in which for example an axis can be introduced, or comprise a similar embodiment. In this case, the medium makes it possible to handle the tank more easily for the winding or braiding operation. The medium can be used here for example to center the tank during the winding and / or braiding operation. It can also be used advantageously as a winding housing, to move the tank. Finally, the medium can also be used to fix the tank for later use. This results in a higher quality of the outer layer to be applied. Thus, it is possible to produce a stronger tank. In a preferred refinement of the invention it may be provided that there is a barrier layer to reduce the diffusion of the fluid through the wall. This makes it possible to create a reservoir that has an extremely low leakage rate and in particular it is suitable for collecting the fluid to be stored for a very long period without significant pressure losses. For this purpose it may be provided that the barrier layer is arranged on the inner surface of the inner layer. This reliably prevents diffusion of the fluid through the tank wall. According to the invention, it may be provided that the barrier layer is a polymer, such as ethylene vinyl alcohol (EVOH), or a sheet or a coating, in particular based on a silazane, or a combination of the aforementioned. The thickness of the barrier layer may be between 0.1 and 1,000 µm, preferably between 0.5 and 1.5 µm. By choosing the type of barrier layer and the respective thickness of the barrier layer, an extremely favorable decrease in diffusion through the wall can be achieved, depending on the fluid to be stored. Thus, for example, it is possible to reduce the diffusion of hydrogen in a very efficient way through the wall of such a tank by applying a layer of silazane on the inner surface of the inner layer, the thickness of this barrier layer being between 0 , 5 µm and 1.5 µm. In an improvement of the present invention it may be provided that the reservoir has an outer protective layer, applied on the outer layer of the wall. The outer protective layer may include a thermoplastic, or a coextrusion product, or a heat shrink tube, or a mesh or knitted fabric, or a braid, or a combination of those mentioned above. Such an outer protective layer for the deposit is advantageous if it is exposed to mechanical loads, such as shocks or effects of similar forces. An outer protective layer of this type in particular prevents the possibility of damage occurring, for example in the outer wall, which can lead to a breakage of this wall. The outer protective layer may also be configured so as to constitute a flame retardant layer that effectively protects the tank from fire. To this end, it may be advantageously provided that the flame retardant layer contains so-called intumescent materials, which, under the action of a high temperature, release gases or water and thus cool the tank or insulate it against the action of hot gases and / or By forming a heat-insulating layer with low thermal conductivity, they protect the tank for some time against the action of heat. Such intumescent materials are, for example: Compositions comprising a 'carbon' donor (for example polyalcohols), an acid donor (for example ammonium polyphosphate) and a propellant (for example melamine). These then form a bulky insulating protective layer by means of carbonization and simultaneous foaming. Other intumescent materials comprise, for example, hydrates that, under the action of heat, develop an endothermic effect by the release of refrigerant vapor. An example of this is a hydrated alkali metal silicate. Gas-emitting intumescent materials are also known, comprising, for example, melamine, methylolized melamine, hexamethoxymethylmelamine, melamine monophosphate, melamine diphosphate, melamine polyphosphate, melamine pyrophosphate, urea, dimethylurea, dicyandiamide, guanyl phosphate, guanil phosphate amine. The preceding materials release gaseous nitrogen when they decompose under the action of heat. Compounds that release carbon dioxide or water vapor under the action of heat could also be used. The outer protective layer can also serve to identify the deposit by registering or representing information expressed in alphanumeric form, or as a barcode, or as a color code. Finally, the outer protective layer can also be provided to give the tank an attractive appearance. In an improvement of the invention it can also be provided that there is a metallic layer. The metal layer may be arranged on the inner layer. The metal layer is preferably made here in such a way that it does not oppose any resistance to diffusion of the fluid through the wall of the reservoir.
15 fifteen
25 25
35 35
45 Four. Five
55 55
65 65
E10723948 E10723948
02-07-2014 07-02-2014
Con este fin, la capa metálica puede por ejemplo estar perforada o estar dispuesta sólo por secciones. De este modo es posible producir un depósito sumamente resistente. En otra forma de realización, la capa metálica también puede estar prevista sobre la capa de refuerzo. De este modo se obtiene un depósito que presenta una pared sumamente sólida. Por último, la capa metálica puede estar dispuesta también sobre la capa exterior del depósito. En este caso, el depósito está sumamente protegido contra agentes externos, como golpes o efectos de fuerzas. En un perfeccionamiento de la invención puede estar previsto que el depósito presente medios para la fijación que estén fijados a la pared exterior. Estos medios pueden comprender orejas de fijación o bandas de metal o de material polimérico. En particular, el depósito puede presentar medios para la sujeción que estén fijados a la capa exterior de la pared. También puede estar previsto ventajosamente que estén configurados medios para la fijación en la capa protectora exterior. De este modo, el depósito puede estar fijado ventajosamente en un vehículo por ejemplo en una situación de montaje. En un perfeccionamiento de la invención puede estar previsto que el depósito presente un elemento sensor en al menos una capa de la pared. El elemento sensor puede ser por ejemplo una banda extensométrica, que en caso de una variación longitudinal emita una información mediante un enlace de señales. De este modo es posible, en caso de producirse daños, si por ejemplo debido a un mal funcionamiento o un error de manejo el depósito se deforma o sufre daños mecánicos, disparar una indicación que impida un funcionamiento ulterior del depósito y prevenga así posibles peligros. En un perfeccionamiento de la invención, el depósito puede incluir también un elemento de identificación, que caracterice el depósito de forma inequívoca y almacene datos y los ponga a disposición. Éste puede comprender datos relativos a su historial de formación (historial de producción y utilización), relativos a su servicio y relativos a otros estados. Con este fin, el elemento de identificación puede ser por ejemplo un código de barras, un código alfanumérico, un elemento realizado en relieve o en hueco, un holograma, un elemento de color o un elemento RFID (Radio Frecuency Identification Device [dispositivo de identificación por radiofrecuencia], identificación por medio de ondas electromagnéticas) o un elemento comparable. De este modo es posible permitir o garantizar el aseguramiento de la calidad del depósito, así como un seguimiento de su servicio. El procedimiento para la producción del depósito según la invención se distingue porque la capa interior se produce utilizando polietileno en un proceso de soplado que es reticulado tras la conformación. De este modo es posible producir un liner que está realizado con una gran precisión en lo que se refiere a sus dimensiones y que, por lo tanto, satisface los grandes requisitos de seguridad que se le plantean. Además, el proceso de reticulación no se inicia hasta que el componente ya ha adquirido su forma, lo que tiene ventajas en cuanto a la calidad y uniformidad de la reticulación. Resulta particularmente ventajoso que el liner, producido en un proceso de soplado, se estabilice en un molde mediante una sobrepresión del aire de soplado (aire de apoyo), realizándose la reticulación a una temperatura elevada. Así, mediante el aire de apoyo, se preserva el liner de un colapso mientras el polietileno se transforma a un estado sólido a través del proceso de reticulación en curso. Al mismo tiempo, el procedimiento de soplado para la producción del liner puede también estar configurado ventajosamente de manera que estén previstos varios útiles de conformación que, en una sucesión continua, inflen el tubo flexible extrudido hasta obtener el cuerpo hueco deseado y estén de nuevo disponibles para producir el siguiente componente inmediatamente después de la reticulación y retirada de la pieza. De este modo, dependiendo del número de útiles previsto, puede realizarse una producción de liner en una cadencia rápida. Esto puede realizarse por ejemplo en una instalación tipo carrusel. Un sistema de abastecimiento de fluido según la invención con al menos un depósito del tipo arriba descrito se aplica preferentemente en un automóvil, o en un dispositivo de generación de energía estacionario o móvil, especialmente descentralizado, o en un sistema de almacenamiento de energía. El depósito sirve especialmente para recibir hidrógeno a una presión que puede ser de hasta 1.500 bares. La presente invención se describe más detalladamente por medio de las figuras. Figura 1 representación esquemática en sección de un tramo de un depósito según la invención. Figura 2 representación esquemática en sección de un tramo de un segundo depósito según la invención. La figura 1 muestra esquemáticamente un tramo de un depósito según la invención en una representación en sección. El depósito 1 presenta en esencia un diseño alargado en forma de un tramo central cilíndrico 11, que presenta unos casquetes polares 12 (en la figura se muestra sólo uno) conformados en los dos extremos del cilindro. En un casquete polar 12 está configurado el dispositivo 4 para la alimentación o evacuación del fluido. El cuerpo hueco 2 del depósito 1, está rodeado de una pared multicapa 3, que presenta una capa interior 31 que contiene polietileno reticulado. La capa interior 31 se ha producido en una pieza en un proceso de soplado utilizando polietileno y a continuación se ha reticulado. La capa interior 31 tiene en esencia el mismo espesor de pared en todas partes. La capa exterior 32 de la pared 3 es una capa de refuerzo. Esta capa de refuerzo se ha creado enrollando y/o trenzando hilos o fibras y está reforzada mediante un duroplástico, en el caso presente mediante una resina epoxi. To this end, the metal layer may, for example, be perforated or arranged only by sections. In this way it is possible to produce a highly resistant deposit. In another embodiment, the metal layer may also be provided on the reinforcement layer. In this way a deposit is obtained that has an extremely solid wall. Finally, the metal layer can also be arranged on the outer layer of the tank. In this case, the deposit is highly protected against external agents, such as blows or the effects of forces. In an improvement of the invention it may be provided that the reservoir has fixing means that are fixed to the outer wall. These means may comprise fixing ears or bands of metal or polymeric material. In particular, the reservoir may have means for fastening that are fixed to the outer layer of the wall. It may also be advantageously provided that means for fixing on the outer protective layer are configured. In this way, the tank can be advantageously fixed in a vehicle for example in a mounting situation. In an improvement of the invention it may be provided that the reservoir has a sensor element in at least one layer of the wall. The sensor element can be for example an extensometric band, which in the case of a longitudinal variation emits information via a signal link. In this way it is possible, in case of damage, if, for example, due to a malfunction or a handling error, the tank is deformed or mechanically damaged, trigger an indication that prevents further operation of the tank and thus prevents possible dangers. In an improvement of the invention, the deposit may also include an identification element, which characterizes the deposit unequivocally and stores data and makes it available. This may include data related to your training history (production and use history), related to your service and related to other states. For this purpose, the identification element may be, for example, a bar code, an alphanumeric code, an element embossed or hollow, a hologram, a color element or an RFID element (Radio Frecuency Identification Device). by radiofrequency], identification by means of electromagnetic waves) or a comparable element. In this way it is possible to allow or guarantee the quality assurance of the deposit, as well as a follow-up of your service. The process for the production of the tank according to the invention is distinguished in that the inner layer is produced using polyethylene in a blowing process that is crosslinked after forming. In this way it is possible to produce a liner that is made with great precision in terms of its dimensions and, therefore, satisfies the great safety requirements that are posed. In addition, the cross-linking process does not start until the component has already acquired its shape, which has advantages in terms of the quality and uniformity of the cross-linking. It is particularly advantageous that the liner, produced in a blowing process, is stabilized in a mold by an overpressure of the blowing air (support air), the crosslinking being carried out at an elevated temperature. Thus, through the support air, the liner is preserved from a collapse while the polyethylene is transformed to a solid state through the ongoing crosslinking process. At the same time, the blowing process for the production of the liner can also be advantageously configured so that several forming tools are provided which, in a continuous sequence, inflate the extruded flexible tube until the desired hollow body is obtained and are again available to produce the next component immediately after crosslinking and removal of the piece. Thus, depending on the expected number of tools, liner production can be carried out at a rapid rate. This can be done, for example, in a carousel installation. A fluid supply system according to the invention with at least one tank of the type described above is preferably applied in a car, or in a stationary or mobile power generation device, especially decentralized, or in an energy storage system. The tank is specially used to receive hydrogen at a pressure that can be up to 1,500 bar. The present invention is described in more detail by means of the figures. Figure 1 schematic sectional representation of a section of a tank according to the invention. Figure 2 schematic sectional representation of a section of a second tank according to the invention. Figure 1 schematically shows a section of a tank according to the invention in a sectional representation. The tank 1 essentially has an elongated design in the form of a cylindrical central section 11, which has polar caps 12 (only one shown in the figure) formed at the two ends of the cylinder. In a polar cap 12 device 4 is configured for feeding or evacuating the fluid. The hollow body 2 of the tank 1 is surrounded by a multilayer wall 3, which has an inner layer 31 containing cross-linked polyethylene. The inner layer 31 was produced in one piece in a blowing process using polyethylene and then crosslinked. The inner layer 31 has essentially the same wall thickness everywhere. The outer layer 32 of the wall 3 is a reinforcing layer. This reinforcement layer has been created by winding and / or braiding threads or fibers and is reinforced by a duroplast, in the present case by an epoxy resin.
E10723948 E10723948
02-07-2014 07-02-2014
El espesor de la capa exterior 32 varía en diferentes tramos en función de los requisitos de estabilidad. En la figura está representado que la capa exterior 32 está engrosada en la zona del dispositivo 4 para la alimentación o evacuación del fluido, ya que en este punto se presentan fuerzas que debe absorber la capa exterior 32. La capa exterior 32 no está unida a la capa interior 31. The thickness of the outer layer 32 varies in different sections depending on the stability requirements. In the figure it is shown that the outer layer 32 is thickened in the area of the device 4 for the feeding or evacuation of the fluid, since at this point there are forces that the outer layer 32 must absorb. The outer layer 32 is not attached to the inner layer 31.
5 En la figura 2 se muestra esquemáticamente un tramo de un segundo depósito según la invención en una representación en sección. En un casquete polar 12 está configurado un dispositivo 4 para la alimentación o evacuación del fluido. En la figura se muestra además que en la superficie interior de la capa interior 31 está dispuesta una capa barrera de difusión 5, que reduce eficazmente o impide la difusión del fluido del cuerpo hueco 2 a través de la pared 3. In Figure 2 a section of a second tank according to the invention is shown schematically in a sectional representation. A device 4 for feeding or evacuating the fluid is configured in a polar cap 12. In the figure it is further shown that on the inner surface of the inner layer 31 a diffusion barrier layer 5 is provided, which effectively reduces or prevents the diffusion of the fluid from the hollow body 2 through the wall 3.
10 En el ejemplo presente, la capa barrera de difusión 5 es una capa de silazano. En la capa exterior 32 está dispuesta una capa protectora 6, que está configurada en forma de un tubo termoretráctil que reviste en gran parte el depósito. En el presente ejemplo de realización está dispuesto aproximadamente en el tramo central 11, de manera contigua a la capa exterior 32, un elemento sensor 7 que está configurado como una banda extensométrica. El elemento sensor In the present example, the diffusion barrier layer 5 is a silazane layer. In the outer layer 32 a protective layer 6 is arranged, which is configured in the form of a heat shrinkable tube that largely covers the reservoir. In the present exemplary embodiment, a sensor element 7 which is configured as an extensometric band is disposed approximately in the central section 11, adjacent to the outer layer 32. The sensor element
15 7 está en condiciones de, mediante unas líneas de señales aquí no mostradas o, como alternativa, sin contacto, emitir una señal sobre el estado del depósito 1 que, mediante una electrónica de evaluación aquí no mostrada, proporciona información de la que se desprende si el depósito 1 está, por ejemplo, dañado. 15 7 is able to, by means of signal lines not shown here or, alternatively, without contact, emit a signal about the state of the tank 1 which, by means of an evaluation electronics not shown here, provides information from which it emerges if the tank 1 is, for example, damaged.
Ejemplo de realización: Example of realization:
20 Un polietileno susceptible de soplarse, que presenta un MFI de 0,3 g / 10 min a 190° C, carga 2,16 kg, se procesa mediante un procedimiento de soplado para obtener un liner. La densidad del polietileno soplable es de 0,95 g/cm3. El polietileno soplable contiene un peróxido orgánico que presenta una temperatura de reticulación de 175°C. 20 A polyethylene capable of blowing, having an MFI of 0.3 g / 10 min at 190 ° C, loading 2.16 kg, is processed by a blowing process to obtain a liner. The density of blown polyethylene is 0.95 g / cm3. The blown polyethylene contains an organic peroxide having a cross-linking temperature of 175 ° C.
25 Tras la conformación, el cuerpo hueco soplado se expone a una temperatura de 240°C durante 5 min para lograr la reticulación. Con este fin, el cuerpo hueco se preserva de un eventual cambio de forma por medio de aire de apoyo en el molde. Una vez enfriado el cuerpo hueco, éste se envuelve con fibras de carbono impregnadas de una resina epoxi, hasta alcanzar un espesor de capa de 15 a 45 mm. 25 After forming, the hollow blown body is exposed at a temperature of 240 ° C for 5 min to achieve crosslinking. To this end, the hollow body is preserved from an eventual change of shape by means of supporting air in the mold. Once the hollow body has cooled, it is wrapped with carbon fibers impregnated with an epoxy resin, until a layer thickness of 15 to 45 mm is reached.
30 El depósito así producido resiste una presión del fluido almacenado en el mismo de 1.000 bares. El depósito puede llenarse con hidrógeno, pudiendo establecerse una presión de 700 bares en un plazo de 3 a 5 min. 30 The tank thus produced resists a fluid pressure stored therein of 1,000 bars. The tank can be filled with hydrogen, and a pressure of 700 bars can be established within 3 to 5 minutes.
E10723948 E10723948
02-07-2014 07-02-2014
- Lista de referencias Reference List
- 1 one
- Depósito Deposit
- 11 eleven
- Tramo central Central section
- 5 5
- 12 Casquete polar 12 Polar cap
- 2 2
- Cuerpo hueco Hollow body
- 3 3
- Pared Wall
- 31 31
- Capa interior Inner layer
- 32 32
- Capa exterior Outer layer
- 10 10
- 4 Dispositivo para la alimentación o evacuación del fluido 4 Device for feeding or evacuating the fluid
- 5 5
- Capa barrera de difusión Diffusion barrier layer
- 6 6
- Capa protectora Protective layer
- 7 7
- Elemento sensor Sensor element
Claims (9)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200910025386 DE102009025386A1 (en) | 2009-06-16 | 2009-06-16 | Storage for receiving a fluid |
DE102009025386 | 2009-06-16 | ||
PCT/EP2010/003561 WO2010145794A1 (en) | 2009-06-16 | 2010-06-14 | Reservoir for receiving a fluid |
Publications (1)
Publication Number | Publication Date |
---|---|
ES2477559T3 true ES2477559T3 (en) | 2014-07-17 |
Family
ID=42338392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES10723948.5T Active ES2477559T3 (en) | 2009-06-16 | 2010-06-14 | Deposit for receiving a fluid |
Country Status (10)
Country | Link |
---|---|
US (1) | US20120080106A1 (en) |
EP (1) | EP2443379B1 (en) |
JP (1) | JP2012530226A (en) |
CN (1) | CN102803816B (en) |
BR (1) | BRPI1010062A2 (en) |
CA (1) | CA2764698A1 (en) |
DE (1) | DE102009025386A1 (en) |
ES (1) | ES2477559T3 (en) |
PL (1) | PL2443379T3 (en) |
WO (1) | WO2010145794A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5409688B2 (en) * | 2011-04-06 | 2014-02-05 | 本田技研工業株式会社 | Pressure vessel |
KR101337908B1 (en) * | 2011-12-01 | 2013-12-09 | 기아자동차주식회사 | Hydrogen safety charging system and method using real-time tank deformation data of fuel cell vehicle |
DE102013101425A1 (en) * | 2013-02-08 | 2014-08-28 | Rehau Ag + Co | Apparatus for storing and dispensing liquid and / or gaseous media under pressure, and to a fuel energy conversion apparatus and method for assembling a device for storing and dispensing liquid and / or gaseous media under pressure |
EP2902692B1 (en) | 2013-12-06 | 2017-10-25 | MAGNA STEYR Engineering AG & Co KG | Component of a tank system |
DE102014223127A1 (en) | 2014-11-12 | 2016-05-12 | Bayerische Motoren Werke Aktiengesellschaft | Pressure vessel, method for producing a pressure vessel and braiding machine |
DE102015203535B4 (en) * | 2015-02-27 | 2018-09-27 | Kautex Textron Gmbh & Co. Kg | Pressure vessel and method of manufacturing a pressure vessel |
DE102018128364A1 (en) * | 2018-11-13 | 2020-05-14 | Bayerische Motoren Werke Aktiengesellschaft | System and method for identifying a pressure vessel and pressure vessel |
CN112048115B (en) * | 2019-06-06 | 2023-09-26 | 神华(北京)新材料科技有限公司 | Composite material of metal and polyolefin, preparation method and container thereof |
US11299036B2 (en) * | 2019-11-06 | 2022-04-12 | GM Global Technology Operations LLC | Hydrogen storage tank having a nanoporous breather layer |
CN112824740A (en) * | 2019-11-20 | 2021-05-21 | 刘振国 | Inner container of hydrogen storage tank and preparation method thereof |
KR20220119162A (en) * | 2020-01-14 | 2022-08-26 | 플라스틱 옴니엄 뉴 에너지스 프랑스 | End fittings for pressurized fluid reservoirs |
DE102020107562A1 (en) | 2020-03-19 | 2021-09-23 | Bayerische Motoren Werke Aktiengesellschaft | Pressure vessel system with a barrier layer and a metal layer, motor vehicle and method for producing the pressure vessel system |
FR3112380B1 (en) | 2020-07-08 | 2022-07-22 | Gaztransport Et Technigaz | Storage facility for a liquefied gas and/or a dangerous liquid |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3280567A (en) * | 1962-12-24 | 1966-10-25 | Us Rubber Co | Reinforced off-axis chamber ports |
US3874544A (en) * | 1973-03-21 | 1975-04-01 | Amolga Corp | Pressure vessel with liner |
JPS55744A (en) * | 1978-06-20 | 1980-01-07 | Japan Atom Energy Res Inst | Modification of polyethylene molded article by cross-linking |
JPS5648944A (en) * | 1979-09-17 | 1981-05-02 | Mitsubishi Petrochemical Co | Bridged polyethylene hollow molding vessel |
DE3149145C1 (en) * | 1981-12-11 | 1983-08-25 | Dynamit Nobel Ag, 5210 Troisdorf | Use of cross-linked polyethylene |
US4785956A (en) * | 1982-08-23 | 1988-11-22 | Essef Industries, Inc. | Tank fitting for a filament-wound vessel |
US4445623A (en) * | 1982-09-30 | 1984-05-01 | Kolling Byron M | Molded trash container cover |
EP0134363A3 (en) * | 1983-09-13 | 1985-11-13 | Everlast Hot Water Systems (Proprietary) Limited | Container for use as a pressure vessel in a hot water system |
US4826644A (en) * | 1986-12-01 | 1989-05-02 | Convault, Inc. | Method for entombment of tanks in concrete |
DE3912270A1 (en) * | 1988-04-30 | 1990-10-18 | Holger Knappe | PLASTIC CONTAINER FOR LIQUIDS OR GASES |
GB8818622D0 (en) * | 1988-08-05 | 1988-09-07 | British Petroleum Co Plc | Container for high pressure gases |
SE468649B (en) * | 1991-05-24 | 1993-02-22 | Kb Komposit Foersaeljnings Ab | ARMED PLASTIC CONTAINER, SATISFIED TO ASTAD A COMBUSTION BODY FOR THIS AND APPLIANCE BEFORE IMPLEMENTING THE SET |
US5256400A (en) * | 1991-12-04 | 1993-10-26 | Advanced Polymer Systems, Inc. | Pressurized product delivery systems |
US5429845A (en) * | 1992-01-10 | 1995-07-04 | Brunswick Corporation | Boss for a filament wound pressure vessel |
US5287987A (en) * | 1992-08-31 | 1994-02-22 | Comdyne I, Inc. | Filament wound pressure vessel |
US5861200A (en) * | 1993-05-14 | 1999-01-19 | Rowley; William | Thin wall copper sleeve for all plastic conduit |
US5553734A (en) * | 1994-08-31 | 1996-09-10 | Sharp; Bruce R. | Double walled storage tank systems with enhanced wall integrity |
JPH08219392A (en) * | 1995-02-15 | 1996-08-30 | Toray Ind Inc | Gas cylinder |
US5655572A (en) * | 1995-06-05 | 1997-08-12 | Teleflex Incorporated | Hose assembly |
JPH0996399A (en) * | 1995-07-25 | 1997-04-08 | Toyoda Gosei Co Ltd | Pressure container |
SE508117C2 (en) * | 1996-05-31 | 1998-08-31 | Perstorp Ab | Process for producing a pressure vessel and pressure vessel, especially for hot water heaters, prepared by the method |
SE511172C2 (en) * | 1996-11-04 | 1999-08-16 | Composite Scandinavia Ab | Reinforced plastic container, process for its manufacture and apparatus for carrying out the process |
DE19751411C1 (en) * | 1997-11-14 | 1999-01-14 | Mannesmann Ag | Composite fibre-reinforced pressurised gas tank including liner with end neck sections |
JPH11179792A (en) * | 1997-12-24 | 1999-07-06 | Sekisui Chem Co Ltd | Manufacture of synthetic resin hollow molded body |
NO309667B1 (en) * | 1999-04-29 | 2001-03-05 | Raufoss Composites As | Process for producing a pressure vessel |
DE19937470A1 (en) * | 1999-08-07 | 2001-02-08 | Ralph Funck | Pressure vessel and process for its manufacture |
JP2001214998A (en) * | 2000-02-03 | 2001-08-10 | Mitsubishi Chemicals Corp | Pressure vessel |
DE10125288B4 (en) * | 2000-05-15 | 2006-09-21 | Mcs Cylinder Systems Gmbh | Carrier with identity data and other data of a composite pressure vessel |
FR2813235B1 (en) * | 2000-08-30 | 2002-10-25 | Commissariat Energie Atomique | THERMOPLASTIC STRUCTURE AND RESERVOIR |
JP2002188794A (en) * | 2000-12-21 | 2002-07-05 | Honda Motor Co Ltd | High pressure hydrogen tank and manufacturing method thereof |
JP2003065437A (en) * | 2001-08-27 | 2003-03-05 | Denso Corp | Pressure vessel |
JP4073649B2 (en) * | 2001-09-11 | 2008-04-09 | 本田技研工業株式会社 | Gas tank manufacturing method and gas tank |
CZ298770B6 (en) * | 2002-02-15 | 2008-01-23 | Thin-walled liner for high-pressure cylinders | |
US6787007B2 (en) * | 2002-09-23 | 2004-09-07 | Bechtel Bwxt Idaho, Llc | Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion |
JP4588307B2 (en) * | 2003-10-03 | 2010-12-01 | 富士重工業株式会社 | Pressure vessel manufacturing method |
JP4431006B2 (en) * | 2004-08-02 | 2010-03-10 | 富士重工業株式会社 | Method for manufacturing liner for pressure vessel and liner made of liquid crystal resin |
JP2008164113A (en) * | 2006-12-28 | 2008-07-17 | Nippon Polyethylene Kk | Mouthpiece member, and pressure container using the same and its manufacturing method |
-
2009
- 2009-06-16 DE DE200910025386 patent/DE102009025386A1/en not_active Withdrawn
-
2010
- 2010-06-14 PL PL10723948T patent/PL2443379T3/en unknown
- 2010-06-14 EP EP20100723948 patent/EP2443379B1/en not_active Not-in-force
- 2010-06-14 WO PCT/EP2010/003561 patent/WO2010145794A1/en active Application Filing
- 2010-06-14 ES ES10723948.5T patent/ES2477559T3/en active Active
- 2010-06-14 BR BRPI1010062A patent/BRPI1010062A2/en not_active Application Discontinuation
- 2010-06-14 JP JP2012515383A patent/JP2012530226A/en active Pending
- 2010-06-14 US US13/376,396 patent/US20120080106A1/en not_active Abandoned
- 2010-06-14 CA CA 2764698 patent/CA2764698A1/en not_active Abandoned
- 2010-06-14 CN CN201080027093.7A patent/CN102803816B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN102803816B (en) | 2015-04-01 |
CA2764698A1 (en) | 2010-12-23 |
JP2012530226A (en) | 2012-11-29 |
PL2443379T3 (en) | 2014-09-30 |
US20120080106A1 (en) | 2012-04-05 |
WO2010145794A1 (en) | 2010-12-23 |
DE102009025386A1 (en) | 2010-12-23 |
EP2443379A1 (en) | 2012-04-25 |
CN102803816A (en) | 2012-11-28 |
EP2443379B1 (en) | 2014-04-09 |
BRPI1010062A2 (en) | 2016-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2477559T3 (en) | Deposit for receiving a fluid | |
ES2280395T3 (en) | MULTI-PATH THERMOPLASTIC STRUCTURE FOR GAS DEPOSIT. | |
ES2286100T3 (en) | PRESSURE CONTAINER REINFORCED WITH FIBERS AND MANUFACTURING PROCEDURE OF THE SAME. | |
US20120214088A1 (en) | Hydrogen storage tank | |
AU751261B2 (en) | Container system for pressurized fluids | |
US9464758B2 (en) | Pressure vessel and production method thereof | |
CN105705856A (en) | High-pressure composite vessel and the method of manufacturing high-pressure composite vessel | |
US20210190266A1 (en) | Method of manufacturing high-pressure tank | |
JP6512153B2 (en) | Method of manufacturing high pressure tank | |
KR20150095953A (en) | Liner for gas storage tank | |
US10158130B2 (en) | High-pressure tank | |
KR20230033025A (en) | Pre-expanded polyamide beads, molded polyamide foam, and production method therefor | |
US11448365B2 (en) | Pressure vessel | |
US20120073683A1 (en) | Method for producing a molded part, and a molded part thus produced | |
EP2668019B1 (en) | Method to improve the barrier properties of composite gas cylinders | |
US12077359B2 (en) | Containers for transporting and storing liquid compositions | |
EP3583346A1 (en) | Composite pressure vessel for hydrogen storage | |
KR20230086100A (en) | Manufacturing apparatus for liner of hydrogen storage tank and method of the same | |
WO2011141592A1 (en) | Flexible pipe, method for manufacturing flexible pipes and formulation used for same | |
JP2013193678A (en) | Fuel tank and method of manufacturing the same |