ES2461819A1 - Maxillo-mandibular advancement device based on bone anchor (Machine-translation by Google Translate, not legally binding) - Google Patents

Maxillo-mandibular advancement device based on bone anchor (Machine-translation by Google Translate, not legally binding) Download PDF

Info

Publication number
ES2461819A1
ES2461819A1 ES201201198A ES201201198A ES2461819A1 ES 2461819 A1 ES2461819 A1 ES 2461819A1 ES 201201198 A ES201201198 A ES 201201198A ES 201201198 A ES201201198 A ES 201201198A ES 2461819 A1 ES2461819 A1 ES 2461819A1
Authority
ES
Spain
Prior art keywords
orthod
bone
maxillary
class
skeletal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
ES201201198A
Other languages
Spanish (es)
Other versions
ES2461819B1 (en
Inventor
Alejandro IGLESIAS LINARES
Rosa María YANEZ VICO
Beatriz SOLANO MENDOZA
Marta MORALES FERNÁNDEZ
Asunción MENDOZA MENDOZA
Enrique SOLANO REINA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad de Sevilla
Original Assignee
Universidad de Sevilla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad de Sevilla filed Critical Universidad de Sevilla
Priority to ES201201198A priority Critical patent/ES2461819B1/en
Publication of ES2461819A1 publication Critical patent/ES2461819A1/en
Application granted granted Critical
Publication of ES2461819B1 publication Critical patent/ES2461819B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools

Abstract

Maxillo-mandibular advancement device based on bone anchorage consisting of two connecting rods (one for each side) anchored directly on two surgical miniplates (one in the upper jaw and one in the lower jaw). This type of appliance based on an intermaxillary fixed and non-removable device allows mainly three advantages compared to conventional orthopedics and the current one based on skeletal anchorage: 1) its direct action on the maxillary bones; 2) therapeutic action for 24 hours, to achieve a maximum orthopedic effect in the shortest possible time; 3) no dependence on patient collaboration (most frequent factor of failure in the literature). (Machine-translation by Google Translate, not legally binding)

Description

Dispositivo de avance máxilo-mandibular en base a anclaje óseo Maxillo-mandibular advancement device based on bone anchorage

Objeto de la invención Object of the invention

La invención se enmarca en el sector científico biosanitario, de aplicación al tejido de innovación, investigación y mejora de tratamientos para la optimización de la salud bucodental y deformidades maxilofaciales. Hasta el momento, los dispositivos empleados en ortodoncia para realizar terapias de ortopedia dentofacial contemplan el realizar un anclaje de ese tipo de aparatologías sobre los dientes. Este factor implica que toda la fuerza realizada por el aparato (fuerzas superiores a 400gr por cada hueso maxilar, dependiendo del tipo de aparatología específica) se transmite a los dientes en primer lugar para que estos a través de su inserción biológica en el hueso maxilar, transmitan parte de esa fuerza a los huesos maxilares superiores e inferiores en edad infantil (edades en las que se realiza este tipo de tratamiento ortopédico). Todo ello conlleva numerosos efectos indeseables en el niño sobre las estructuras dentarias, numerosas compensaciones dentoalveolares, fuerzas patológicas sobre el periodonto, obvios dolores en edad infantil y lesiones en gran número de ocasiones. El nuevo dispositivo diseñado consta de dos bielas (una por cada lado) ancladas directamente sobre dos miniplacas quirúrgicas (una en el maxilar superior y otra en el maxilar inferior). Este tipo de aparatología en base a un dispositivo intermaxilar fijada y no removible permite principalmente tres ventajas respecto a la ortopedia convencional y la actual en base a anclaje esquelético: 1) su acción directa sobre los huesos maxilares; 2) acción terapéutica durante 24 horas, para conseguir un máximo efecto ortopédico en el menor tiempo posible; 3) no dependencia de la colaboración del paciente (factor de fracaso de mayor frecuencia en la literatura). The invention is part of the biosanitary scientific sector, applied to the innovation, research and improvement of treatments for the optimization of oral health and maxillofacial deformities. So far, the devices used in orthodontics to perform dentofacial orthopedic therapies contemplate making an anchor of this type of appliances on the teeth. This factor implies that all the force made by the apparatus (forces greater than 400gr for each maxillary bone, depending on the type of specific apparatus) is transmitted to the teeth in the first place so that these through their biological insertion into the maxillary bone, transmit part of that force to the upper and lower maxillary bones in children (ages at which this type of orthopedic treatment is performed). All this entails numerous undesirable effects in the child on dental structures, numerous dentoalveolar compensations, pathological forces on the periodontium, obvious pains in childhood and injuries on a large number of occasions. The new designed device consists of two connecting rods (one on each side) anchored directly on two surgical miniplates (one in the upper jaw and one in the lower jaw). This type of apparatus based on a fixed and non-removable intermaxillary device mainly allows three advantages over conventional and current orthopedics based on skeletal anchorage: 1) its direct action on the maxillary bones; 2) therapeutic action for 24 hours, to achieve maximum orthopedic effect in the shortest possible time; 3) no dependence on patient collaboration (failure factor of greater frequency in the literature).

Estado de la técnica State of the art

En el campo de la ortodoncia, especialidad de la odontología, uno de los objetivos principales es la mejora de la función masticatoria mediante la facilitación de interdigitación entre la dentición superior e inferior. Este tipo de interdigitación depende en mayor medida de la relación o disposición de las bases óseas sobre las que se sustentan los dientes en la parte superior e inferior, es decir la relación entre el hueso maxilar superior y maxilar inferior, respectivamente. En este contexto, el nuevo modelo de aparatología que hemos diseñado ha servido para el desarrollo actual en un proyecto doctoral, de un nuevo concepto de la ortopedia dentofacial. In the field of orthodontics, a specialty of dentistry, one of the main objectives is the improvement of the masticatory function by facilitating interdigitation between the upper and lower dentition. This type of interdigitation depends to a greater extent on the relationship or arrangement of the bone bases on which the teeth are supported on the upper and lower part, that is, the relationship between the upper and lower maxillary bones, respectively. In this context, the new model of appliances that we have designed has served for the current development in a doctoral project of a new concept of dentofacial orthopedics.

La maloclusión de Clase 111 esquelética término que define una relación adelantada del hueso maxilar inferior respecto al superior, es una consecuencia común de una hipoplasia maxilar y/o hiperplasia mandibular, relacionada comunmente con una mordida cruzada anterior y una apariencia cóncava del perfil desde edades tempranas. El desarrollo de este tipo de maloclusión es uno de los problemas más complejos que aparecen en la práctica ortodóncica requiriendo con frecuencia su abordaje en etapas precoces del crecimiento. Hasta el momento la ortopedia dentofacial convencional, dirigida a la mejora entre las relaciones sagitales, transversales y verticales entre los huesos maxilares, se ha servido y se sirve de aparatologías que se anclan o "agarran" en soporte dentario para traccionar o empujar de los huesos de modo secundario. La ortopedia dentofacial convencional mediante máscara facial, mentonera, aparato de anclaje mandibular y el regulador de función 3 de Frankel entre otros, ha sido empleada a lo largo de la historia ortodóncica para el abordaje terapéutico y preventivo de la maloclusión esquelética de Clase 111. No obstante, los efectos compensatorios indeseables derivados de tal aparatología, aparecen desde antaño referenciados en la literatura científica ortodóncica. Se han documentado, de este modo, los efectos dentoalveolares producidos por esta aparatología, concluyendo que, más allá del efecto esquelético perseguido, la corrección de este tipo de maloclusiones en casos severos implica el desarrollo de una combinación de efectos secundarios a nivel dentoalveolar así como una rotación posterior mandibular con excesiva frecuencia. The term 111 Skeletal Class malocclusion that defines an advanced relationship of the lower maxillary bone to the superior, is a common consequence of a maxillary hypoplasia and / or mandibular hyperplasia, commonly related to an anterior cross bite and a concave profile appearance from an early age. . The development of this type of malocclusion is one of the most complex problems that appear in orthodontic practice, often requiring its approach in early stages of growth. So far, conventional dentofacial orthopedics, aimed at the improvement between sagittal, transverse and vertical relationships between the maxillary bones, has been used and uses devices that are anchored or "grabbed" in dental support to betray or push the bones secondary mode Conventional dentofacial orthopedics by means of a facial mask, chin guard, mandibular anchoring device and Frankel's function regulator 3 among others, has been used throughout orthodontic history for the therapeutic and preventive approach to Class 111 skeletal malocclusion. No However, the undesirable compensatory effects derived from such apparatus appear since ancient times referenced in the orthodontic scientific literature. In this way, the dentoalveolar effects produced by this apparatus have been documented, concluding that, beyond the skeletal effect pursued, the correction of this type of malocclusion in severe cases implies the development of a combination of side effects at the dentoalveolar level as well as a posterior mandibular rotation with excessive frequency.

Recientemente, la incorporación de dispositivos temporales de anclaje óseo a la Ortodoncia (TADs), ha supuesto un avance en las posibilidades terapéuticas. Inicialmente, el uso de los dispositivos de anclaje esquelético, concretamente minitornillos y miniplacas, surgieron con el objetivo de aumentar el anclaje durante el tratamiento ortodóncico, evitando así el uso de elementos complementarios que requieren una colaboración por parte del paciente. Partiendo de estos conceptos, y con el fin de evitar efectos indeseados recogidos en numerosas investigaciones, el anclaje óseo se presenta en la actualidad como una alternativa o complemento de tratamiento en la solución del problema esquelético de Clase 111. Liu C y col. combinaron el anclaje esquelético con la tracción maxilar mediante máscara facial. Posteriormente, De Clerck y col. desarrollaron un protocolo basado en la inserción de miniplacas maxilares y mandibulares conectadas entre sí mediante elásticos intermaxilares para ejercer fuerzas localizadas puramente a nivel esquelético. Sin embargo, los planteamientos descritos hasta el momento requieren y son estrictamente dependientes de la colaboración del paciente. Recently, the incorporation of temporary bone anchoring devices to Orthodontics (TADs) has meant an advance in therapeutic possibilities. Initially, the use of skeletal anchoring devices, specifically mini-rings and mini-plates, arose with the aim of increasing the anchor during orthodontic treatment, thus avoiding the use of complementary elements that require collaboration by the patient. Based on these concepts, and in order to avoid unwanted effects collected in numerous investigations, bone anchoring is currently presented as an alternative or complement of treatment in the solution of the Class 111 skeletal problem. Liu C et al. they combined the skeletal anchor with the maxillary traction by means of a facial mask. Subsequently, De Clerck et al. They developed a protocol based on the insertion of maxillary and mandibular mini-plates connected to each other by intermaxillary elastics to exert purely localized forces at the skeletal level. However, the approaches described so far require and are strictly dependent on the patient's collaboration.

Definidos los criterios de actuación actuales, plantamos la necesidad de evitar las compensaciones dentoalveolares no deseables que se producen con la terapia ortopédica dentofacial en casos severos. El tratamiento actual en base al empelo de anclaje óseo temporal para la prevención y tratamiento temprano (8-10 años de edad) de la maloclusión esquelética de Clase III adolece de escasa ambición en sus objetivos así como total dependencia de la colaboración del paciente infantil. A modo comparativo con los protocolos disponibles en la literatura científica ortodóncica, el diseño del nuevo dispositivo planteado obvia tales debilidades, puesto que se basa en un sistema fijo de propulsión intermaxilar. La importancia clínica de dicho abordaje de aplicación contínua, radica en la solución no quirúrgica de maloclusiones esqueléticas severas. De modo lógico, la aplicación de una terapia puramente ortopédica anclada en ambos huesos maxilares y conectados entre sí mediante bielas bilaterales no removibles, podría suponer el paradigma de corrección real de la maloclusión de Clase 111 en edad de crecimiento, es decir una verdadera terapia ortopédica dentofacial con aplicación de fuerza únicamente en las bases óseas maxilares. Once the current performance criteria have been defined, we plan the need to avoid undesirable dentoalveolar compensations that occur with dentofacial orthopedic therapy in severe cases. The current treatment based on the temporary bone anchoring for the prevention and early treatment (8-10 years of age) of Class III skeletal malocclusion suffers from low ambition in its objectives as well as total dependence on the collaboration of the child patient. In comparison with the protocols available in the orthodontic scientific literature, the design of the new device posed obvious such weaknesses, since it is based on a fixed intermaxillary propulsion system. The clinical importance of this approach of continuous application lies in the non-surgical solution of severe skeletal malocclusions. Logically, the application of a purely orthopedic therapy anchored in both maxillary bones and connected to each other by means of non-removable bilateral cranks, could suppose the paradigm of real correction of Class 111 malocclusion in growth age, that is to say a true orthopedic therapy dentofacial force application only in the maxillary bone bases.

Bibliografía Ellis EE, McNamara JA Jr. Components of adult class 111 malocclusion. J Oral Maxillofac Surg 1984; 42:295-305. Kapust A, Sinclair PM, Turley PK. Cephalometric effects of face masklexpansion therapy in class 111 children: a comparison of three age groups. Am J Orthod Dentofacial Orthop 1998; 113:204-212. Masaki F. The longitudinal study of morphological differences in the cranial base and facial structure between Japanese and American white. J Jpn Orthod Soc 1980; 39:436-456. Ferre Cabrero F. Acciones de la mentonera en clase 111 entre 5 y 10 años, con seguridad de su utilización. Ortodoncia Española 1990; 31:123-146. Sanborn RT. Differences between the facial skeletal patterns of Class 111 malocclusion and normal occlusion. Angle Orthod 1955; 25:208-222. Sadao S. Case report: developmental characterization of skeletal Class 111 malocclusion. Angle Orthod 1994; 64: 1 05-111. Bibliography Ellis EE, McNamara JA Jr. Components of adult class 111 malocclusion. J Oral Maxillofac Surg 1984; 42: 295-305. Kapust A, Sinclair PM, Turley PK. Cephalometric effects of face masklexpansion therapy in class 111 children: a comparison of three age groups. Am J Orthod Dentofacial Orthop 1998; 113: 204-212. Masaki F. The longitudinal study of morphological differences in the cranial base and facial structure between Japanese and American white. J Jpn Orthod Soc 1980; 39: 436-456. Ferre Cabrero F. Actions of the chin guard in class 111 between 5 and 10 years, with certainty of its use. Spanish Orthodontics 1990; 31: 123-146. Sanborn RT Differences between the facial skeletal patterns of Class 111 malocclusion and normal occlusion. Angle Orthod 1955; 25: 208-222. Sadao S. Case report: developmental characterization of skeletal Class 111 malocclusion. Angle Orthod 1994; 64: 1 05-111.

Williams S, Andersen CE. The morphology of the potential Class 111 skeletal pattern in the young child. Am J Orthod 1986; 89:302-311. Solano Reina, E. Nueva aproximación al diagnóstico ortodóncico a través del plano oclusal. Ortod Esp 2009; 49:180-207. Baccetti T, Franchi L, McNamara JA Jr. Cephalometric variables predicting the long term success or failure of combined rapid maxillary expansion and facial mask therapy. Am J Orthod Dentofac Orthop 2004; 126:16-22. Gu Y. Factors contributing to stability of protraction facemask treatment of Class 111 malocclusion. Aust Orthod J 2010; 26:171-177. Lee BD. Correction of crossbite. Dent Clin North Am 1978; 22:647-668. Gravely JF. A study of the mandibular closure path in Angle Class 111 relationship. BrJ Orthod 1984; 11:85-91. Sharma PS, Brown RV. Pseudo mesiocclusion: diagnosis and treatment. J Dent Child 1968; 35:385-392. Graber TM, Rakosi T, Petrovic AG. Ortopedia Dentofacial con aparatos funcionales. 2a Ed. España: Ed Harcourt Brace; 1998. Turley PT. The Don Spring Memorial Oration--Part 11: early management of the developing Class 111 malocclusion. Aust Orthod J 1993; 13:19-22. Rabie AB, Gu Y. Diagnostic criteria for pseudo-Class 111 malocclusion. Am J Orthod Dentofacial Orthop 2000; 117:1-9. Oppenheim A. Biologic orthodontic therapy and reality. Angle Orthod 1936; 6:69Williams S, Andersen CE. The morphology of the potential Class 111 skeletal pattern in the young child. Am J Orthod 1986; 89: 302-311. Solano Reina, E. New approach to orthodontic diagnosis through the plane occlusal Ortod Esp 2009; 49: 180-207. Baccetti T, Franchi L, McNamara JA Jr. Cephalometric variables predicting the long term success or failure of combined rapid maxillary expansion and facial mask therapy Am J Orthod Dentofac Orthop 2004; 126: 16-22. Gu Y. Factors contributing to stability of protraction facemask treatment of Class 111 malocclusion Aust Orthod J 2010; 26: 171-177. Read BD. Correction of crossbite. Dent Clin North Am 1978; 22: 647-668. Gravely JF. A study of the mandibular closure path in Angle Class 111 relationship. BrJ Orthod 1984; 11: 85-91. Sharma PS, Brown RV. Pseudo mesiocclusion: diagnosis and treatment. J Dent Child 1968; 35: 385-392. Graber TM, Rakosi T, Petrovic AG. Dentofacial Orthopedics with appliances functional. 2nd Ed. Spain: Ed Harcourt Brace; 1998 Turley PT. The Don Spring Memorial Oration - Part 11: early management of the developing Class 111 malocclusion. Aust Orthod J 1993; 13: 19-22. Rabie AB, Gu Y. Diagnostic criteria for pseudo-Class 111 malocclusion. Am J Orthod Dentofacial Orthop 2000; 117: 1-9. Oppenheim A. Biologic orthodontic therapy and reality. Angle Orthod 1936; 6:69

79. Kloehn S. Guiding alveolar growth and eruption of the teeth to reduce treatment time and produce a more balanced denture and face. Am J Orthod 1947; 17:10-33. Chul JJ. Controversies in the Timing of Orthodontic Treatment. Semin Orthod 2005; 11:112-118. Campbell PM. The dilemma of Class 111 treatment. Early or late? Angle Orthod 1983; 53:175-191. Joondeph DR. Early orthodontic treatment. Am J Orthod Dentofacial Orthop 1993; 79. Kloehn S. Guiding alveolar growth and eruption of the teeth to reduce treatment time and produce a more balanced denture and face. Am J Orthod 1947; 17: 10-33. Chul JJ. Controversies in the Timing of Orthodontic Treatment. Semin Orthod 2005; 11: 112-118. Campbell PM The dilemma of Class 111 treatment. Early or late? Angle Orthod 1983; 53: 175-191. Joondeph DR. Early orthodontic treatment. Am J Orthod Dentofacial Orthop 1993;

104:199-200. Ngan P. Early treatment of Class 111 malocclusion: is it worth the burden? Am J Orthod Dentofac Orthop 2006; 129:82-85. Proffit WR. The timing of early treatment: an overview. Am J Orthod Dentofac Orthop 2006; 129:47-49. 104: 199-200. Ngan P. Early treatment of Class 111 malocclusion: is it worth the burden? Am J Orthod Dentofac Orthop 2006; 129: 82-85. Proffit WR. The timing of early treatment: an overview. Am J Orthod Dentofac Orthop 2006; 129: 47-49.

Ngan P, Yiu e, Hu A, Hagg u, Wei SH, Gunel E. eephalometric and occlusal changes following maxillary expansion and protraction. Eur J Orthod 1998; 20:237Ngan P, Yiu e, Hu A, Hagg u, Wei SH, Gunel E. eephalometric and occlusal changes following maxillary expansion and protraction. Eur J Orthod 1998; 20: 237

254. eozza P, Marino A, Mucedero M. An orthopaedic approach to the treatment of elass 111 malocclusions in the early mixed dentition. Eur J Orthod 2004; 26:191-199. eozza P, Baccetti T, Mucedero M, Pavoni e, Franchi L. Treatment and posttreatment effects of a facial mask combined with a bite-block appliance in elass 111 malocclusion. Am J Orthod Dentofacial Orthop 2010; 138:300-310. Gregoret J, Tuber E, Escobar H. Aparatología auxiliar. El tratamiento ortodóntico con arco recto. 1a ed. Madrid: NM Ediciones; 2003. Hata S, Itoh T, Nakagawa M, Kamogashira K, Ichikawa K, Matsumoto M, et al. Biomechanical effects of maxillary protraction on the craniofacial complex. AmJ Orthod Dentofac Orthop 1987; 91 :305-311. Ngan PW, Hagg U, Yiu e, Wei SH. Treatment response and long-term dentofacial adaptations to maxillary expansion and protraction. Semin Orthod 1997; 3:255-264. Reyes Be, Baccetti T, McNamara JA Jr. An estimate of craniofacial growth in elass 111 malocclusion. Angle Orthod 2006; 76:577-584. 254 eozza P, Marino A, Mucedero M. An orthopedic approach to the treatment of elass 111 malocclusions in the early mixed dentition. Eur J Orthod 2004; 26: 191-199. eozza P, Baccetti T, Mucedero M, Pavoni e, Franchi L. Treatment and posttreatment effects of a facial mask combined with a bite-block appliance in Elass 111 malocclusion. Am J Orthod Dentofacial Orthop 2010; 138: 300-310. Gregoret J, Tuber E, Escobar H. Auxiliary apparatus. Orthodontic treatment with straight bow. 1st ed. Madrid: NM Editions; 2003 Hata S, Itoh T, Nakagawa M, Kamogashira K, Ichikawa K, Matsumoto M, et al. Biomechanical effects of maxillary protraction on the craniofacial complex. AmJ Orthod Dentofac Orthop 1987; 91: 305-311. Ngan PW, Hagg U, Yiu e, Wei SH. Treatment response and long-term dentofacial adaptations to maxillary expansion and protraction. Semin Orthod 1997; 3: 255-264. Reyes Be, Baccetti T, McNamara JA Jr. An estimate of craniofacial growth in elass 111 malocclusion. Angle Orthod 2006; 76: 577-584.

Kuc-Michalska M, Baccetti T. Duration of the pubertal peak in skeletal elass I and elass 111 subjects. Angle Orthod 2010; 80:54-57. Takada K, Petdachai S, Sakuda M. ehanges in dentofacial morphology in skeletal elass 111 children treated by a modified maxillary protraction headgear and a chin cup: a longitudinal cephalometric appraisal. Eur J Orthod 1993; 15:211-221. Baik HS. elinical results of the maxillary protraction in Korean children. Am J Orthod Dentofacial Orthop 1995; 108:583-592. Yüksel S, Uc;em TI, Keykubat A. Early and late facemask therapy. Eur J Orthod 2001; 23:559-568. Turley PK. Managing the developing elass 111 malocclusion with palatal expansion and facemask therapy. Am J Orthod Dentofacial Orthop 2002; 122:349-352. Merwin D, Ngan P, Hagg U, Yiu e, Wei SH. Timing for effective application of anteriorly directed orthopedic force to the maxilla. Am J Orthod Dentofacial Orthop 1997; 112:292-299. Franchi L, Baccetti T, McNamara JA. Postpubertal assessment of treatment timing for maxillary expansion and protraction therapy followed by fixed appliances. Am J Orthod Dentofacial Orthop 2004; 126:555-568. Kuc-Michalska M, Baccetti T. Duration of the pubertal peak in skeletal elass I and elass 111 subjects. Angle Orthod 2010; 80: 54-57. Takada K, Petdachai S, Sakuda M. ehanges in dentofacial morphology in skeletal elass 111 children treated by a modified maxillary protraction headgear and a chin cup: a longitudinal cephalometric appraisal. Eur J Orthod 1993; 15: 211-221. Baik HS elinical results of the maxillary protraction in Korean children. Am J Orthod Dentofacial Orthop 1995; 108: 583-592. Yüksel S, Uc; in TI, Keykubat A. Early and late facemask therapy. Eur J Orthod 2001; 23: 559-568. PK Turley. Managing the developing elass 111 malocclusion with palatal expansion and facemask therapy. Am J Orthod Dentofacial Orthop 2002; 122: 349-352. Merwin D, Ngan P, Hagg U, Yiu e, Wei SH. Timing for effective application of anteriorly directed orthopedic force to the maxilla. Am J Orthod Dentofacial Orthop 1997; 112: 292-299. Franchi L, Baccetti T, McNamara JA. Postpubertal assessment of treatment timing for maxillary expansion and protraction therapy followed by fixed appliances. Am J Orthod Dentofacial Orthop 2004; 126: 555-568.

Kajiyama K, Murakami T, Suzuki A. eomparison of orthodontic and orthopedic effects of a modified maxillary protractor between deciduous and early mixed Kajiyama K, Murakami T, Suzuki A. eomparison of orthodontic and orthopedic effects of a modified maxillary protractor between deciduous and early mixed

dentitions. Am J Orthod Dentofacial Orthop 2004; 126:23-32. Ngan P, Hagg U, Yiu C, Merwin D, Wei SH. Cephalometric comparisons of Chinese and Caucasian surgical Class 111 patients. Int J Adult Orthodon Orthognath Surg 1997; 12:177-188. Saadia M, Torres E. Vertical changes in Class 111 patients after maxillary protraction with expansion in the primary and mixed dentitions. Pediatr Dent 2001; 23:125-130. Westwood PV, McNamara JA Jr, Baccetti T, Franchi L, Sarver DM. Long-term effects of Class 111 treatment with rapid maxillary expansion and facemask therapy followed by fixed appliances. Am J Orthod Dentofacial Orthop 2003; 123:306-320. Macdonald KE, Kapust AJ, Turley PK. Cephalometric changes after the correction of Class 111 malocclusion with maxillary expansion/facemask therapy. Am J Orthod Dentofacial Orthop 1999; 116:13-24. Cha KS. Skeletal changes of maxillary protraction in patients exhibiting skeletal class 111 malocclusion: a comparison of three skeletal maturation groups. Angle Orthod 2003; 73:26-35. Haas AJ. Palatal expansión: just the beginning of dentofacial orthopedics. Am J Orthod Dentofacial Orthop 1970; 57: 219-255. Williams MD, Sarver DM, Sadowsky PL, Bradley E. Combined rapid maxillary expansion and protraction facemask in the treatment of Class 111 malocclusions in growing children: a prospective long-term study. Semin Orthod 1997; 3:265-274. Baccetti T, McGill JS, Franchi L, McNamara JA Jr, Tollaro 1. Skeletal effects of early treatment of Class 111 malocclusion with maxillary expansion and face mask therapy. Am J Orthod Dentofacial Orthop 1998; 113:333-343. Gautam P, Valiathan A, Adhikari R. Stress and displacement patterns in the craniofacial skeleton with rapid maxillary expansion: a finite element method study. Am J Orthod Dentofacial Orthop 2007; 132:1-11. Silva Filho OG, Magro AC, Filho LC. Early treatment of the Class 111 malocclusion with rapid maxillary expansion and maxillary protraction. Am J Orthod Dentofacial Orthop 1998; 113:196-203. Baccetti T, Franchi L, McNamara JA. Treatment and posttreatment craniofacial changes after rapid maxillary expansion and facemask therapy. Am J Orthod Dentofacial Orthop 2000; 118:404-413. Vaughn GA, Mason B, Moon HB, Turley PK. The effects of maxillary protraction therapy with or without rapid palatal expansion: a prospective, randomized clinical trial. Am J Orthod Dentofacial Orthop 2005; 128:299-309. dentitions Am J Orthod Dentofacial Orthop 2004; 126: 23-32. Ngan P, Hagg U, Yiu C, Merwin D, Wei SH. Cephalometric comparisons of Chinese and Caucasian surgical Class 111 patients. Int J Adult Orthodon Orthognath Surg 1997; 12: 177-188. Saadia M, Torres E. Vertical changes in Class 111 patients after maxillary protraction with expansion in the primary and mixed dentitions. Pediatr Dent 2001; 23: 125-130. Westwood PV, McNamara JA Jr, Baccetti T, Franchi L, Sarver DM. Long-term effects of Class 111 treatment with rapid maxillary expansion and facemask therapy followed by fixed appliances. Am J Orthod Dentofacial Orthop 2003; 123: 306-320. Macdonald KE, Kapust AJ, Turley PK. Cephalometric changes after the correction of Class 111 malocclusion with maxillary expansion / facemask therapy. Am J Orthod Dentofacial Orthop 1999; 116: 13-24. Cha KS. Skeletal changes of maxillary protraction in patients exhibiting skeletal class 111 malocclusion: a comparison of three skeletal maturation groups. Angle Orthod 2003; 73: 26-35. Haas AJ. Palatal expansion: just the beginning of dentofacial orthopedics. Am J Orthod Dentofacial Orthop 1970; 57: 219-255. Williams MD, Sarver DM, Sadowsky PL, Bradley E. Combined rapid maxillary expansion and protraction facemask in the treatment of Class 111 malocclusions in growing children: a prospective long-term study. Semin Orthod 1997; 3: 265-274. Baccetti T, McGill JS, Franchi L, McNamara JA Jr, Tollaro 1. Skeletal effects of early treatment of Class 111 malocclusion with maxillary expansion and face mask therapy. Am J Orthod Dentofacial Orthop 1998; 113: 333-343. Gautam P, Valiathan A, Adhikari R. Stress and displacement patterns in the craniofacial skeleton with rapid maxillary expansion: a finite element method study. Am J Orthod Dentofacial Orthop 2007; 132: 1-11. Silva Filho OG, Magro AC, Filho LC. Early treatment of the Class 111 malocclusion with rapid maxillary expansion and maxillary protraction. Am J Orthod Dentofacial Orthop 1998; 113: 196-203. Baccetti T, Franchi L, McNamara JA. Treatment and posttreatment craniofacial changes after rapid maxillary expansion and facemask therapy. Am J Orthod Dentofacial Orthop 2000; 118: 404-413. Vaughn GA, Mason B, Moon HB, Turley PK. The effects of maxillary protraction therapy with or without rapid palatal expansion: a prospective, randomized clinical trial. Am J Orthod Dentofacial Orthop 2005; 128: 299-309.

Farronato G, Giannini L, Galbiati G, Maspero C. Sagittal and vertical effects of rapid maxillary expansion in Class 1, 11, and 111 occlusions. Angle Orthod 2011; 81 :298-303. Arman A, Ufuk Toygar T, Abuhijleh E. Evaluation of maxillary protraction and fixed appliance therapy in Class 111 patients. Eur J Orthod 2006; 28:383-392. Tortop T, Keykubat A, Yuksel S. Facemask therapy with and without expansiono Am J Orthod Dentofacial Orthop 2007; 132:467-474. Janzen EK, Bluher JA. The cephalometric, anatomic, and histologic changes in Macaca mulatta after application of a continuous-acting retraction force on the mandible. Am J Orthod 1965; 51:823-855. Uu ZP, U CJ, Hu HK, Chen JW, U F, Zou SJ. Efficacy of short-term chincup therapy for mandibular growth retardation in Class 111 malocclusion. Angle Orthod 2011; 81:162-168 Graber LW. Chin cup therapy for mandibular prognathism. Am J Orthod 1977; 72:23-41. Sugawara J, Asano T, Endo N, Mitani H. Long-term effects of chincap therapy on skeletal profile in mandibular prognathism. Am J Orthod Dentofacial Orthop 1990; Farronato G, Giannini L, Galbiati G, Maspero C. Sagittal and vertical effects of rapid maxillary expansion in Class 1, 11, and 111 occlusions. Angle Orthod 2011; 81: 298-303. Arman A, Ufuk Toygar T, Abuhijleh E. Evaluation of maxillary protraction and fixed appliance therapy in Class 111 patients. Eur J Orthod 2006; 28: 383-392. Tortop T, Keykubat A, Yuksel S. Facemask therapy with and without expansiono Am J Orthod Dentofacial Orthop 2007; 132: 467-474. Janzen EK, Bluher JA. The cephalometric, anatomic, and histologic changes in Macaca mulatta after application of a continuous-acting retraction force on the mandible. Am J Orthod 1965; 51: 823-855. Uu ZP, U CJ, Hu HK, Chen JW, U F, Zou SJ. Efficacy of short-term chincup therapy for mandibular growth retardation in Class 111 malocclusion. Angle Orthod 2011; 81: 162-168 Graber LW. Chin cup therapy for mandibular prognathism. Am J Orthod 1977; 72: 23-41. Sugawara J, Asano T, Endo N, Mitani H. Long-term effects of chincap therapy on skeletal profile in mandibular prognathism. Am J Orthod Dentofacial Orthop 1990;

98: 127-133. Gokalp H, Kurt G. Magnetic resonance imaging of the condylar growth pattern and disk position after chin cup therapy: a preliminary study. Angle Orthod 2005; 75:568-575. Deguchi T, Iwahara K. Electromyographic investigation of chin cup therapy in Class 111 malocclusion. Angle Orthod 1998; 68:419-424. Abdelnaby YL, Nassar EA. Chin cup effects using two different force magnitudes in the management of Class 111 malocclusions Angle Orthod 2010; 80:957-962. Deguchi T, McNamara JA Jr. Craniofacial adaptations induced by chincup therapy in Class 111 patients. Am J Orthod Dentofacial Orthop 1999; 115: 175-182. Deguchi T, Kuroda T, Minoshima Y, Graber TM. Craniofacial features of patients with Class 111 abnormalities: growth-related changes and effects of short-term and long-term chincup therapy. Am J Orthod Dentofacial Orthop 2002; 121 :84-92. Un HC, Chang HP, Chang HF. Treatment Effects of Occipitomental Anchorage Appliance of Maxillary Protraction Combined with Chincup Traction in Children with Class 111 Malocclusion. J Formos Med Assoc 2007; 106:380-391. Wendell PD, Nanda R, Sakamoto T, Nakamura S. The effects of chin cup therapy on the mandible: a longitudinal study. Am J Orthod 1985; 87:265-274. 98: 127-133. Gokalp H, Kurt G. Magnetic resonance imaging of the condylar growth pattern and disk position after chin cup therapy: a preliminary study. Angle Orthod 2005; 75: 568-575. Deguchi T, Iwahara K. Electromyographic investigation of chin cup therapy in Class 111 malocclusion. Angle Orthod 1998; 68: 419-424. Abdelnaby YL, Nassar EA. Chin cup effects using two different force magnitudes in the management of Class 111 malocclusions Angle Orthod 2010; 80: 957-962. Deguchi T, McNamara JA Jr. Craniofacial adaptations induced by chincup therapy in Class 111 patients. Am J Orthod Dentofacial Orthop 1999; 115: 175-182. Deguchi T, Kuroda T, Minoshima Y, Graber TM. Craniofacial features of patients with Class 111 abnormalities: growth-related changes and effects of short-term and long-term chincup therapy. Am J Orthod Dentofacial Orthop 2002; 121: 84-92. An HC, Chang HP, Chang HF. Treatment Effects of Occipitomental Anchorage Appliance of Maxillary Protraction Combined with Chincup Traction in Children with Class 111 Malocclusion. J Formos Med Assoc 2007; 106: 380-391. Wendell PD, Nanda R, Sakamoto T, Nakamura S. The effects of chin cup therapy on the mandible: a longitudinal study. Am J Orthod 1985; 87: 265-274.

Deguchi T, Kitsugi A. Stability of changes associated with chin cup treatment. Angle Orthod 1996; 66:139-145. I§can HN, Dinyer M, Gültan A, Meral O, Taner-Sarisoy L. Effects of vertical chincap therapy on the mandibular morphology in open-bite patients. Am J Orthod Dentofacial Orthop 2002; 122:506-511. Arun T, Erverdi N. An alternative method to correct Class 111 malocclusion: early treatment. Turk J Orthod 1997; 10:279-284. Battagel JM, Orton HS. A comparative study of the effects of customized facemask therapy or headgear to the lower arch on the developing Class 111 face. Eur J Orthod 1995; 17:467-482. Frankel R. Maxillary retrusion in Class 111 and treatment with the function corrector Deguchi T, Kitsugi A. Stability of changes associated with chin cup treatment. Angle Orthod 1996; 66: 139-145. I§can HN, Dinyer M, Gültan A, Meral O, Taner-Sarisoy L. Effects of vertical chincap therapy on the mandibular morphology in open-bite patients. Am J Orthod Dentofacial Orthop 2002; 122: 506-511. Arun T, Erverdi N. An alternative method to correct Class 111 malocclusion: early treatment. Turk J Orthod 1997; 10: 279-284. Battagel JM, Orton HS. A comparative study of the effects of customized facemask therapy or headgear to the lower arch on the developing Class 111 face. Eur J Orthod 1995; 17: 467-482. Frankel R. Maxillary retrusion in Class 111 and treatment with the function corrector

111. Rep Congr Eur Orthod Soc 1970; 46:249-259. Ulgen M, Firatli S. The effects of the Frankel's function regulator on the Class 111 malocclusion. Am J Orthod Dentofac Orthop 1994; 105:561-567. McNamara JA Jr, Huge SA. The functional regulator (FR-3) of Frankel. Am J Orthod 1985; 88:409-424. Pangrazio-Kulbersh V, Berger J, Kersten G. Effects of protraction mechanics on the midface. Am J Orthod Dentofacial Orthop 1998; 114:484-491. Ngan P, Hu AM, Fields HW Jr. Treatment of Class 111 problems begins with differential diagnosis of anterior crossbites. Pediatr Dent 1997; 19:386-395. Turley PT. Early management of the developing Class 111 malocclusion. Aust Orthod J 1993; 13: 19-22. Yoshida 1, Ishii H, Yamaguchi N, Mizoguchi 1. Maxillary protraction and chincap appliance treatment effects and long-term changes in skeletal class 111 patients. Angle Orthod 1999; 69:543-552. Wisth PJ, Tritrapunt A, Rygh P, BlZle OE, Norderval K. The effect of maxillary protraction on front occlusion and facial morphology. Acta Odontol Scand 1987; 45:227-237. Shanker S, Ngan P, Wade D, Beck M, Yiu C, Hagg U, et al. Cephalometric A point changes during and after maxillary protraction and expansiono Am J Orthod Dentofacial Orthop 1996; 110:423-430. Chong YH, Ive JC, Artun J. Changes following the use of protraction headgear for early correction of Class 111 malocclusion. Angle Orthod 1996; 66:351-362. Gallagher RW, Miranda F, Buschang PH. Maxillary protraction: treatment and posttreatment effects. Am J Orthod Dentofacial Orthop 1998; 113:612-619. 111. Rep Congr Eur Orthod Soc 1970; 46: 249-259. Ulgen M, Firatli S. The effects of the Frankel's function regulator on the Class 111 malocclusion Am J Orthod Dentofac Orthop 1994; 105: 561-567. McNamara JA Jr, Huge SA. The functional regulator (FR-3) of Frankel. Am J Orthod 1985; 88: 409-424. Pangrazio-Kulbersh V, Berger J, Kersten G. Effects of protraction mechanics on the midface Am J Orthod Dentofacial Orthop 1998; 114: 484-491. Ngan P, Hu AM, Fields HW Jr. Treatment of Class 111 problems begins with differential diagnosis of anterior crossbites. Pediatr Dent 1997; 19: 386-395. Turley PT. Early management of the developing Class 111 malocclusion. Aust Orthod J 1993; 13: 19-22. Yoshida 1, Ishii H, Yamaguchi N, Mizoguchi 1. Maxillary protraction and chincap appliance treatment effects and long-term changes in skeletal class 111 patients. Angle Orthod 1999; 69: 543-552. Wisth PJ, Tritrapunt A, Rygh P, BlZle OE, Norderval K. The effect of maxillary protraction on front occlusion and facial morphology. Odontol Scand 1987 Act; 45: 227-237. Shanker S, Ngan P, Wade D, Beck M, Yiu C, Hagg U, et al. Cephalometric A point changes during and after maxillary protraction and expansiono Am J Orthod Dentofacial Orthop 1996; 110: 423-430. Chong YH, Ive JC, Artun J. Changes following the use of protraction headgear for early correction of Class 111 malocclusion. Angle Orthod 1996; 66: 351-362. Gallagher RW, Miranda F, Buschang PH. Maxillary protraction: treatment and posttreatment effects. Am J Orthod Dentofacial Orthop 1998; 113: 612-619.

Hagg u, Tse A, Bendeus M, Rabie AB. Long-term follow-up of early treatment with reverse headgear. Eur J Orthod 2003; 25:95-102. Wells AP, Sarver OM, Proffit WR. Long-term efficacy of reverse pull headgear therapy. Angle Orthod 2006; 76:915-922. Toffol LO, Pavoni C, Baccetti T, Franchi L, Cozza P. Orthopedic Treatment Outcomes in Class 111 Malocclusion. Angle Orthod 2008; 78:561-573. Sugawara J, Mitani H. Facial growth of skeletal Class 111 malocclusion and the effects, limitations, and long-term dentofacial adaptations to chincap therapy. Semin Orthod 1997; 3:244-254. Shapiro PA, Kokich VG. Treatment alternatives for children with severe maxillary hypoplasia. Eur J Orthod 1984; 6:141-147. Smalley WM, Shapiro PA, Hohl TH, Kokich VG, Branemark PI. Osseointegrated titanium implants for maxillofacial protraction in monkeys. Am J Orthod Oentofacial Orthop 1988; 94:285-295. Silva Filho OG, Ozawa TO, Okada CH, Okada HY, Carvalho RM. Intentional ankylosis of deciduous canines to reinforce maxillary protraction. J Clin Orthod 2003; 37:315-320 Singer SL, Henry PJ, Rosenberg 1. Osseointegrated implants as an adjunct to facemask therapy: a case reporto Angle Orthod 2000; 70:253-262. Enacar A, Giray B, Pehlivanoglu M, Iplikcioglu H. Facemask therapy with rigid anchorage in a patient with maxillary hypoplasia and severe oligodontia. Am J Orthod Oentofacial Orthop 2003; 123:571-577. Hong H, Ngan P, Han G, Qi LG, Wei SH. Use of onplants as stable anchorage for facemask treatment: a case reporto Angle Orthod 2005; 75:453-460. Kircelli BH, Pekta§ ZO, U9kan S. Orthopedic protraction with skeletal anchorage in a patient with maxillary hypoplasia and hypodontia. Angle Orthod 2006; 76: 156Hagg u, Tse A, Bendeus M, Rabie AB. Long-term follow-up of early treatment with reverse headgear. Eur J Orthod 2003; 25: 95-102. Wells AP, Sarver OM, Proffit WR. Long-term efficacy of reverse pull headgear therapy. Angle Orthod 2006; 76: 915-922. Toffol LO, Pavoni C, Baccetti T, Franchi L, Cozza P. Orthopedic Treatment Outcomes in Class 111 Malocclusion. Angle Orthod 2008; 78: 561-573. Sugawara J, Mitani H. Facial growth of skeletal Class 111 malocclusion and the effects, limitations, and long-term dentofacial adaptations to chincap therapy. Semin Orthod 1997; 3: 244-254. Shapiro PA, Kokich VG. Treatment alternatives for children with severe maxillary hypoplasia. Eur J Orthod 1984; 6: 141-147. Smalley WM, Shapiro PA, Hohl TH, Kokich VG, Branemark PI. Osseointegrated titanium implants for maxillofacial protraction in monkeys. Am J Orthod Oentofacial Orthop 1988; 94: 285-295. Silva Filho OG, Ozawa TO, Okada CH, Okada HY, Carvalho RM. Intentional ankylosis of deciduous canines to reinforce maxillary protraction. J Clin Orthod 2003; 37: 315-320 Singer SL, Henry PJ, Rosenberg 1. Osseointegrated implants as an adjunct to facemask therapy: a case report Angle Orthod 2000; 70: 253-262. Enacar A, Giray B, Pehlivanoglu M, Iplikcioglu H. Facemask therapy with rigid anchorage in a patient with maxillary hypoplasia and severe oligodontia. Am J Orthod Oentofacial Orthop 2003; 123: 571-577. Hong H, Ngan P, Han G, Qi LG, Wei SH. Use of onplants as stable anchorage for facemask treatment: a case report Angle Orthod 2005; 75: 453-460. Kircelli BH, Pekta§ ZO, U9kan S. Orthopedic protraction with skeletal anchorage in a patient with maxillary hypoplasia and hypodontia. Angle Orthod 2006; 76: 156

163. Kircelli BH, Pektas ZO. Midfacial protraction with skeletally anchored face mask therapy: a novel approach and preliminary results. Am J Orthod Oentofacial Orthop 2008; 133:440-449. Cha BK, Choi OS, Ngan P, Jost-Brinkmann PG, Kim SM, Jang IS. Maxillary protraction with miniplates providing skeletal anchorage in a growing Class 111 patient. Am J Orthod Oentofacial Orthop 2011; 139:99-112. Cheng SJ , Tseng IY , Lee JJ , Kok SH A. prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Implants 2004; 19:100-106. 163. Kircelli BH, Pektas ZO. Midfacial protraction with skeletally anchored face mask therapy: a novel approach and preliminary results. Am J Orthod Oentofacial Orthop 2008; 133: 440-449. Cha BK, Choi OS, Ngan P, Jost-Brinkmann PG, Kim SM, Jang IS. Maxillary protraction with miniplates providing skeletal anchorage in a growing Class 111 patient. Am J Orthod Oentofacial Orthop 2011; 139: 99-112. Cheng SJ, Tseng IY, Lee JJ, Kok SH A. prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Implants 2004; 19: 100-106.

Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop 2006; 130:18-25. Leung MT, Rabie AB, Wong RW. Stability of connected mini-implants and miniplates for skeletal anchorage in orthodontics. Eur J Orthod 2008; 30:483-489. Costa A, Raffainl M, Melsen B. Miniscrews as orthodontic anchorage: a preliminary reporto Int J Adult Orthodon Orthognath Surg 1998; 13:201-209. De Clerck H, Geerinckx V, Siciliano S. The Zygoma Anchorage System. J Clin Orthod 2002; 36:455-459. Chung KR, Kim YS, Unton JL, Lee YJ. The miniplate with tube for skeletal anchorage. J Clin Orthod 2002; 36:407-412. Cornelis MA, Scheffler NR, De Clerck HJ, Tulloch JF, Behets CN. Systematic review of the experimental use of temporary skeletal anchorage devices in orthodontics. Am J Orthod Dentofacial Orthop 2007; 131 :52-58. Umemori M, Sugawara J, Mitani H, Nagasaka H, Kawamura H. Skeletal anchorage system for open-bite correction. Am J Orthod Dentofacial Orthop 1999; 115: 166Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop 2006; 130: 18-25. Leung MT, Rabie AB, Wong RW. Stability of connected mini-implants and miniplates for skeletal anchorage in orthodontics. Eur J Orthod 2008; 30: 483-489. Costa A, Raffainl M, Melsen B. Miniscrews as orthodontic anchorage: a preliminary report Int J Adult Orthodon Orthognath Surg 1998; 13: 201-209. From Clerck H, Geerinckx V, Siciliano S. The Zygoma Anchorage System. J Clin Orthod 2002; 36: 455-459. Chung KR, Kim YS, Unton JL, Lee YJ. The miniplate with tube for skeletal anchorage. J Clin Orthod 2002; 36: 407-412. Cornelis MA, Scheffler NR, De Clerck HJ, Tulloch JF, Behets CN. Systematic review of the experimental use of temporary skeletal anchorage devices in orthodontics. Am J Orthod Dentofacial Orthop 2007; 131: 52-58. Umemori M, Sugawara J, Mitani H, Nagasaka H, Kawamura H. Skeletal anchorage system for open-bite correction. Am J Orthod Dentofacial Orthop 1999; 115: 166

174. Cornelis MA, De Clerck HJ. Biomechanics of skeletal anchorage. Part 1. Class 11 extraction treatment. J Clin Orthod 2006; 40:261-269. Cornelis MA, Scheffler NR, Mahy P, Siciliano S, De Clerck HJ, Tulloch JF. Modified miniplates for temporary skeletal anchorage in orthodontics: placement and removal surgeries. J Oral Maxillofac Surg 2008; 66:1439-1445. Cheung LK, Samman N, Pang M, Tideman H. Titanium miniplate fixation for osteotomies in facial fibrous dysplasia--a histologic study of the screw/bone interface. Int J Oral Maxillofac Surg 1995; 24:401-405. Hwang K, Schmitt JM, Hollinger JO. Interface between titanium miniplate/screw and human calvaria. J Craniofac Surg 2000; 11 :184-188. Hirai H, Okumura A, Goto M, Katsuki T. Histologic study of the bone adjacent to titanium bone screws used for mandibular fracture treatment. J Oral Maxillofac Surg 2001; 59:531-537. Daimaruya T, Nagasaka H, Umemori M, Sugawara J, Mitani H. The influences of molar intrusion on the inferior alveolar neurovascular bundle and root using the skeletal anchorage system in dogs. Angle Orthod 2001; 71 :60-70. Cornelis MA, Vandergugten S, Mahy P, De Clerck HJ, Legenlé B, D'Hoore W, et al. Orthodontic loading of titanium miniplates in dogs: microradiographic and histological evaluation. Clin Orallmplants Res 2008; 19:1054-1062. 174. Cornelis MA, De Clerck HJ. Biomechanics of skeletal anchorage. Part 1. Class 11 extraction treatment. J Clin Orthod 2006; 40: 261-269. Cornelis MA, Scheffler NR, Mahy P, Siciliano S, De Clerck HJ, Tulloch JF. Modified miniplates for temporary skeletal anchorage in orthodontics: placement and removal surgeries. J Oral Maxillofac Surg 2008; 66: 1439-1445. Cheung LK, Samman N, Pang M, Tideman H. Titanium miniplate fixation for osteotomies in facial fibrous dysplasia - a histologic study of the screw / bone interface. Int J Oral Maxillofac Surg 1995; 24: 401-405. Hwang K, Schmitt JM, Hollinger JO. Interface between titanium miniplate / screw and human calvaria. J Craniofac Surg 2000; 11: 184-188. Hirai H, Okumura A, Goto M, Katsuki T. Histologic study of the bone adjacent to titanium bone screws used for mandibular fracture treatment. J Oral Maxillofac Surg 2001; 59: 531-537. Daimaruya T, Nagasaka H, Umemori M, Sugawara J, Mitani H. The influences of molar intrusion on the inferior alveolar neurovascular bundle and root using the skeletal anchorage system in dogs. Angle Orthod 2001; 71: 60-70. Cornelis MA, Vandergugten S, Mahy P, De Clerck HJ, Legenlé B, D'Hoore W, et al. Orthodontic loading of titanium miniplates in dogs: microradiographic and histological evaluation. Clin Orallmplants Res 2008; 19: 1054-1062.

Cornelis MA, Mahy P, Devogelaer JP, De Clerck HJ, Nyssen-Behets C. Does orthodontic loading influence bone mineral density around titanium miniplates? An experimental study in dogs. Orthod Craniofac Res 2010; 13:21-27. Liu C, Hou M, Liang L, Huang X, Zhang T, Zhang H, et al. Sutural distraction osteogenesis (SDO) versus osteotomy distraction osteogenesis (ODO) for midfacial advancement: a new technique and primary clinical reporto J Craniofac Surg 2005; 16:537-548. De Clerck HJ, Cornelis MA, Cevidanes LH, Heymann GC, Tulloch CJ. Orthopedic Traction of the Maxilla With Miniplates: A New Perspective for Treatment of Midface Deficiency. J Oral Maxillofac Surg 2009; 67:2123-2129. Cevidanes L, Baccetti T, Franchi L, McNamara JA Jr, De Clerck H. Comparison of two protocols for maxillary protraction: bone anchors versus facemask with rapid maxillary expansiono Angle Orthod 2010; 80:799-806. Heymann GC, Cevidanes L, Cornelis M, De Clerck HJ, Tulloch JF. Threedimensional analysis of maxillary protraction with intermaxillary elastics to miniplates. Am J Orthod Dentofacial Orthop 2010; 137:274-284. Cevidanes L, Oliveira AEF, Motta A, Phillips C, Burke B, Tyndall D. Head orientation in CBCT-generated lateral cephalograms. Angle Orthod 2009; 79:971Cornelis MA, Mahy P, Devogelaer JP, De Clerck HJ, Nyssen-Behets C. Does orthodontic loading influence bone mineral density around titanium miniplates? An experimental study in dogs. Orthod Craniofac Res 2010; 13: 21-27. Liu C, Hou M, Liang L, Huang X, Zhang T, Zhang H, et al. Sutural distraction osteogenesis (SDO) versus osteotomy distraction osteogenesis (ODO) for midfacial advancement: a new technique and primary clinical report J Craniofac Surg 2005; 16: 537-548. From Clerck HJ, Cornelis MA, Cevidanes LH, Heymann GC, Tulloch CJ. Orthopedic Traction of the Maxilla With Miniplates: A New Perspective for Treatment of Midface Deficiency. J Oral Maxillofac Surg 2009; 67: 2123-2129. Cevidanes L, Baccetti T, Franchi L, McNamara JA Jr, De Clerck H. Comparison of two protocols for maxillary protraction: bone anchors versus facemask with rapid maxillary expansiono Angle Orthod 2010; 80: 799-806. Heymann GC, Cevidanes L, Cornelis M, De Clerck HJ, Tulloch JF. Threedimensional analysis of maxillary protraction with intermaxillary elastics to miniplates. Am J Orthod Dentofacial Orthop 2010; 137: 274-284. Cevidanes L, Oliveira AEF, Motta A, Phillips C, Burke B, Tyndall D. Head orientation in CBCT-generated lateral cephalograms. Angle Orthod 2009; 79: 971

977. De Clerck H, Cevidanes L, Baccetti T. Dentofacial effects of bone-anchored maxillary protraction: a controlled study of consecutively treated Class 111 patients. Am J Orthod Dentofacial Orthop 2010; 138:577-581. 977 De Clerck H, Cevidanes L, Baccetti T. Dentofacial effects of bone-anchored maxillary protraction: a controlled study of consecutively treated Class 111 patients. Am J Orthod Dentofacial Orthop 2010; 138: 577-581.

Baccetti T, De Clerck HJ, Cevidanes LH, Franchi L. Morphometric analysis of treatment effects of bone-anchored maxillary protraction in growing Class 111 patients. Eur J Orthod 2011; 33: 121-125. Cornelis MA, Scheffler NR, Nyssen-Behets C, De Clerck HJ, Tulloch JF. Patients' and orthodontists' perceptions of miniplates used for temporary skeletal anchorage: a prospective study. Am J Orthod Dentofacial Orthop 2008; 133:18-24. De Clerck H. Bollard Modified Miniplate [Sede Web]. Bruselas: Michael De Baets; 2008. [Diciembre 2009: 20 Febrero 2010]. http://vvvvw.hugodeclerck.net. Southard TE, Franciscus RG, Fridrich KL, Nieves MA, Keller JC, Holton NE, et al. Restricting facial bone growth with skeletal fixation: a preliminary study. Am J Orthod Dentofacial Orthop 2006; 130:218-222. Wang S, Liu Y, Fang D, Shi S. The miniature pig: a useful large animal model for dental and orofacial research. Oral Dis 2007; 13:530-537. Baccetti T, De Clerck HJ, Cevidanes LH, Franchi L. Morphometric analysis of treatment effects of bone-anchored maxillary protraction in growing Class 111 patients. Eur J Orthod 2011; 33: 121-125. Cornelis MA, Scheffler NR, Nyssen-Behets C, De Clerck HJ, Tulloch JF. Patients' and orthodontists' perceptions of miniplates used for temporary skeletal anchorage: a prospective study. Am J Orthod Dentofacial Orthop 2008; 133: 18-24. From Clerck H. Bollard Modified Miniplate [Web Site]. Brussels: Michael De Baets; 2008. [December 2009: February 20, 2010]. http://vvvvw.hugodeclerck.net. Southard TE, Franciscus RG, Fridrich KL, Nieves MA, Keller JC, Holton NE, et al. Restricting facial bone growth with skeletal fixation: a preliminary study. Am J Orthod Dentofacial Orthop 2006; 130: 218-222. Wang S, Liu Y, Fang D, Shi S. The miniature pig: a useful large animal model for dental and orofacial research. Oral Dis 2007; 13: 530-537.

Bjork A. Variations in the growth pattern of the human mandible: longitudinal radiographic study by the implant meted. J Dent Res 1963; 42:400-411. Hildebrand T, Rüegsegger P. A new method for the model independent assessment of thickness in threedimensional images. J Microsc 1997; 185:67-75. Ulrich D, van Rietbergen B, Laib A, Rüegsegger P. The ability of three dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 1999; 25:55-60. Jiao K, Dai J, Wang MO, Niu LN, Yu SB, Liu XD. Age-and sex-related changes of mandibular condylar cartilage and subchondral bone: a histomorphometric and micro-CT study in rats. Arch Oral Bio12010; 55:155-163. Bjork A. Variations in the growth pattern of the human mandible: longitudinal radiographic study by the implant meted. J Dent Res 1963; 42: 400-411. Hildebrand T, Rüegsegger P. A new method for the model independent assessment of thickness in threedimensional images. J Microsc 1997; 185: 67-75. Ulrich D, van Rietbergen B, Laib A, Rüegsegger P. The ability of three dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 1999; 25: 55-60. Jiao K, Dai J, Wang MO, Niu LN, Yu SB, Liu XD. Age-and sex-related changes of mandibular condylar cartilage and subchondral bone: a histomorphometric and micro-CT study in rats. Arch Oral Bio12010; 55: 155-163.

Descripción del contenido de las figuras Description of the content of the figures

Figura 1. Se describen en la figura las partes implicadas en el diseño en una disposición desacoplada entre sí para poder diferenciar las partes y obviando los tornillos de inserción de morfología convencional y conocida. En la figura se observan: Figure 1. The parts involved in the design in an uncoupled arrangement are described in the figure in order to be able to differentiate the parts and bypassing the insertion screws of conventional and known morphology. The figure shows:

1) Las miniplacas en aleación de acero o titanio serían superficies lisas de morfología estrellada y con tres perforaciones para la insercción de los minitornillos descritos en el punto anterior. En la parte central contendrían un punto de insercción para la biela hembra y macho, respectivamente, que se anclarían mediante un tornillo de rosca y plano con insercción mediante llave allen. 1) The mini-plates in alloy steel or titanium would be smooth surfaces of starry morphology and with three perforations for the insertion of the mini-rings described in the previous point. In the central part they would contain an insertion point for the female and male connecting rod, respectively, which would be anchored by means of a flat and threaded screw with an Allen key insert.

2) El pivote hembra tendría unas dimensiones de 5mm de sección en su parte interna hueca y 1 ,5mm de grosor de tubo. Contendría una espiral descendente de cobertura por la parte externa que le conferiría carácter flexible a modo de muelle externo(1mm de sección en Niquel-Titanio) de amortiguación de la fuerza. Se fabricaría en aleación de acero y contendría en su extremo de unión con la miniplaca una perforación o punto de anclaje que serviría para su unión con la miniplaca, con la que iría unida mediante un tornillo de rosca plano con insercción mediante llave allen. La longitud de los pivotes sería de 35mm 2) The female pivot would have dimensions of 5mm of section in its hollow internal part and 1.5mm of tube thickness. It would contain a downward spiral of coverage on the outside that would give it a flexible nature as an external spring (1mm section in Nickel-Titanium) for damping force. It would be made of alloy steel and would contain at its end of union with the mini-plate a perforation or anchor point that would serve for its union with the mini-plate, with which it would be joined by means of a flat thread screw with an Allen key insert. The length of the pivots would be 35mm

3) El pivote macho tendría una dimensión maciza de 4,8mm de sección en aleación de acero. Contendría en su extremo inferior (de unión con la miniplaca del maxilar inferior) un extremo curvo con unión mediante tornillo de rosca plano con insercción mediante llave allen. La longitud de los pivotes sería de 35mm. 3) The male pivot would have a solid dimension of 4.8mm section in steel alloy. It would contain in its lower end (of union with the miniplate of the lower jaw) a curved end with union by means of screw of flat thread with insertion by Allen key. The length of the pivots would be 35mm.

Descripción de la invención Hasta el momento, los dispositivos empleados en ortodoncia para realizar terapias de ortopedia dentofacial contemplaban y de hecho contemplan el realizar un anclaje de ese tipo de aparatologías sobre los dientes. Este factor implica que toda la fuerza realizada por el aparato (fuerzas superiores a 400gr por cada hemimaxilar, dependiendo del tipo de aparatología específica) se transmite a los dientes en primer lugar para que estos a través de su inserción biológica en el hueso maxilar, transmitan parte de esa fuerza a los huesos maxilares superiores e inferiores en edad infantil (edades en las que se realiza este tipo de tratamiento ortopédico). Todo ello conlleva numerosos efectos indeseables en el niño sobre las estructuras dentarias, numerosas compensaciones dentoalveolares, fuerzas patológicas sobre el periodonto, obvios dolores en edad infantil y lesiones en gran número de ocasiones. DESCRIPTION OF THE INVENTION Until now, the devices used in orthodontics to perform dentofacial orthopedic therapies contemplated and in fact contemplate performing an anchoring of this type of apparatus on the teeth. This factor implies that all the force made by the apparatus (forces greater than 400gr for each hemimaxillary, depending on the type of specific apparatus) is transmitted to the teeth in the first place so that these through their biological insertion into the maxillary bone, transmit part of that force to the upper and lower maxillary bones in childhood (ages at which this type of orthopedic treatment is performed). All this entails numerous undesirable effects in the child on dental structures, numerous dentoalveolar compensations, pathological forces on the periodontium, obvious pains in childhood and injuries on a large number of occasions.

Para solucionar el anclaje sobre dientes se ha diseñado un tipo de aparatología en base a anclaje esquelético, sobre los huesos maxilares. Los principios del aparato desarrollado se basan en la incorporación de dispositivos temporales de anclaje óseo a la Ortodoncia (TAOs). Esto ha supuesto un avance en las posibilidades terapéuticas. Inicialmente, el uso de los dispositivos de anclaje esquelético, concretamente minitornillos y miniplacas, surgieron con el objetivo de aumentar el anclaje durante el tratamiento ortodóncico, evitando así el uso de elementos complementarios que requieren una colaboración por parte del paciente. Partiendo de estos conceptos, y con el fin de evitar efectos indeseados recogidos en numerosas investigaciones, el anclaje óseo se presenta en la actualidad como una alternativa o complemento de tratamiento en la solución del problema esquelético de Clase 111. Liu C y col. combinaron el anclaje esquelético con la tracción maxilar mediante máscara facial. El anclaje esquelético para ortopedia tal y como se está entendiendo en la actualidad, adolece de la principal debilidad de este tipo de aparatologías, su incomodidad y sobretodo su dependencia de la colaboración en el uso por parte del paciente infantil. To solve the anchorage on teeth, a type of apparatus based on skeletal anchorage has been designed, on the maxillary bones. The principles of the developed apparatus are based on the incorporation of temporary bone anchoring devices to Orthodontics (TAOs). This has meant an advance in therapeutic possibilities. Initially, the use of skeletal anchoring devices, specifically mini-rings and mini-plates, arose with the aim of increasing the anchor during orthodontic treatment, thus avoiding the use of complementary elements that require collaboration by the patient. Based on these concepts, and in order to avoid unwanted effects collected in numerous investigations, bone anchoring is currently presented as an alternative or complement of treatment in the solution of the Class 111 skeletal problem. Liu C et al. they combined the skeletal anchor with the maxillary traction by means of a facial mask. The skeletal anchor for orthopedics as it is being understood today, suffers from the main weakness of this type of apparatus, its discomfort and, above all, its dependence on collaboration in the use by the child patient.

El nuevo dispositivo diseñado constaría de dos bielas (una por cada lado) ancladas directamente sobre dos miniplacas quirúrgicas (una en el maxilar superior y otra en el maxilar inferior). Este tipo de aparatología en base a un dispositivo intermaxilar fijada y no removible permite principalmente tres ventajas respecto a la ortopedia convencional y la actual en base a anclaje esquelético: 1) su acción directa sobre los huesos maxilares; 2) acción terapéutica durante 24 horas, para conseguir un máximo efecto ortopédico en el menor tiempo posible; 3) no dependencia de la colaboración del paciente (factor de fracaso de mayor frecuencia en la literatura). The new designed device would consist of two connecting rods (one on each side) anchored directly on two surgical miniplates (one in the upper jaw and one in the lower jaw). This type of apparatus based on a fixed and non-removable intermaxillary device mainly allows three advantages over conventional and current orthopedics based on skeletal anchorage: 1) its direct action on the maxillary bones; 2) therapeutic action for 24 hours, to achieve maximum orthopedic effect in the shortest possible time; 3) no dependence on patient collaboration (failure factor of greater frequency in the literature).

La invención descrita, la apartología de propulsión intermaxilar ortopédica en base a anclaje óseo consiste en un sistema de bielas bilaterales. Cada biela constaría de diversas partes independientes que se unirían entre sí para formar la aparatología completa. En mayor detalle su construcción se basa en 1) minitornillos de acero de sujección con calibre variable en secciones de 1,6 a 2,6mm 2) Miniplacas de aleación en base a acero o titanio en función del tipo de oseointegración perseguida; 3) pivote hembra de anclaje sobre las miniplacas ancladas en el hueso maxilar superior; 4) pivote macho anclado sobre las miniplacas sustentadas a nivel del maxilar inferior. Este pivote macho sería un vástago macizo de mayor longitud que el pivote descrito en en punto número 3 y que se insertaría dentro de él haciendo tope en el final. 5)tornillos de fijación de las bielas a las miniplacas tanto en el maxilar superior como inferior. The described invention, the orthopedic intermaxillary propulsion apartology based on bone anchoring consists of a system of bilateral cranks. Each connecting rod would consist of several independent parts that would join together to form the complete apparatus. In more detail its construction is based on 1) steel fasteners with variable calipers in sections from 1.6 to 2.6mm 2) Alloy miniplates based on steel or titanium depending on the type of osseointegration pursued; 3) female anchor pivot on the mini-plates anchored in the upper maxillary bone; 4) male pivot anchored on the miniplates held at the level of the lower jaw. This male pivot would be a solid rod of greater length than the pivot described in point number 3 and that would be inserted inside it, butting at the end. 5) fixing screws from the connecting rods to the mini-plates in both the upper and lower jaw.

1) El minitornillo, siendo tres por cada miniplaca, tienen una sección variable y longitud variable en función del tipo de morfología ósea encontrada, oscilando de entre los 1,6-2,6 mm de sección y los 6-12mm de longitud. Con espiral de insercción y acabados en punta confiriendoles características de autorroscados. Es necesario para su insercción en el hueso el empleo de un "driver" que acopla en la cabeza del minitornillo y que actuaría de director en la insercción del tornillo mediante un roscado en sentido horario 1) The mini-ring, being three for each miniplate, has a variable section and variable length depending on the type of bone morphology found, ranging from 1.6-2.6 mm in section and 6-12mm in length. With spiral of insertion and finished in end conferring them characteristics of self-tapping. It is necessary for its insertion in the bone the use of a "driver" that fits in the head of the mini-ring and that would act as a director in the screw insertion by means of a threaded clockwise

2) Las miniplacas en aleación de acero o titanio serían superficies lisas de morfología estrellada y con tres perforaciones para la insercción de los minitornillos descritos en el punto anterior. En la parte central contendrían un punto de insercción para la biela hembra y macho, respectivamente, que se anclarían mediante un tornillo de rosca y plano con insercción mediante llave allen. 2) The mini-plates in alloy steel or titanium would be smooth surfaces of starry morphology and with three perforations for the insertion of the mini-rings described in the previous point. In the central part they would contain an insertion point for the female and male connecting rod, respectively, which would be anchored by means of a flat and threaded screw with an Allen key insert.

3) El pivote hembra tendría unas dimensiones de 5mm de sección en su parte interna hueca y 1,5mm de grosor de tubo. Contendría una espiral descendente de cobertura por la parte externa que le conferiría carácter flexible a modo de muelle externo(1mm de sección en Niquel-Titanio) de amortiguación de la fuerza. Se fabricaría en aleación de acero y contendría en su extremo de unión con la miniplaca una perforación o punto de anclaje que serviría para su unión con la miniplaca, con la que iría unida mediante un tornillo de rosca plano con insercción mediante llave allen. La longitud de los pivotes sería de 35mm 3) The female pivot would have dimensions of 5mm of section in its hollow internal part and 1.5mm of tube thickness. It would contain a downward spiral of coverage on the outside that would give it a flexible nature as an external spring (1mm section in Nickel-Titanium) for damping force. It would be made of alloy steel and would contain at its end of union with the mini-plate a perforation or anchor point that would serve for its union with the mini-plate, with which it would be joined by means of a flat thread screw with an Allen key insert. The length of the pivots would be 35mm

4) El pivote macho tendría una dimensión maciza de 4,8mm de sección en aleación de acero. Contendría en su extremo inferior (de unión con la miniplaca del maxilar inferior) un extremo curvo con unión mediante tornillo de rosca plano con insercción mediante llave allen. La longitud de los pivotes sería de 35mm. 4) The male pivot would have a solid dimension of 4.8mm section in steel alloy. It would contain in its lower end (of union with the miniplate of the lower jaw) a curved end with union by means of screw of flat thread with insertion by Allen key. The length of the pivots would be 35mm.

5) El tornillo de rosca plano con insercción mediante llave allen, tendría una cabeza plana con perforación para la insercción de llave allen hexagonal de 2,5 de radio, aleación en acero-vanadio. 5) The flat screw with an Allen key insertion would have a flat head with perforation for the insertion of a hexagonal Allen key with a radius of 2.5, alloy in vanadium steel.

En cada una de las hemimaxilas las vielas se anclarían a nivel de la zona retromolar en el hueso maxilar superior para realizar una fuerza de empuje en sentido inferior y anterior de la magnitud entorno a los 300gr por lado, con constancia en dirección, sentido e intensidad y que se transmitiría a la parte inferior insertada en el hueso maxilar inferior en la zona inferior al canino en la región más próxima al borde inferior del cuerpo mandibular. In each of the hemimaxyls, the vines would be anchored at the level of the retromolar area in the upper maxillary bone to perform a pushing force in the lower and anterior direction of the magnitude around 300gr per side, with constancy in direction, direction and intensity and that it would be transmitted to the lower part inserted in the lower maxillary bone in the area inferior to the canine in the region closest to the lower edge of the mandibular body.

Modo de realización de la invención Embodiment of the invention

El modelo de realización o confección de la aparatología presentada implica la obtención de dos pilares para cada biela de acero: un macho y una hembra de calibres descritos y con una longitud de los pivotes de 35m m fabricados en aleación de acero. The model of realization or preparation of the presented apparatus implies the obtaining of two pillars for each steel connecting rod: a male and a female of described calipers and with a length of 35mm pivots made of steel alloy.

La colocación de la biela sería en un emplazamiento óseo con base a nivel del hueso maxilar superior e inferior. La biela actuaría como un mecanismo de avance forzado del hueso maxilar inferior produciendo un efecto de estímulo de crecimiento a nivel del hueso condilar ejerciendo la fuerza exclusivamente a nivel óseo y evitando los efectos indeseables a nivel dentario y dentoaveolar. The placement of the connecting rod would be in a bone location based on the level of the upper and lower maxillary bone. The connecting rod would act as a mechanism of forced advancement of the lower maxillary bone producing a growth stimulation effect at the level of the condylar bone exerting force exclusively at the bone level and avoiding undesirable effects at the dental and dentoaveolar level.

En definitiva la construcción de estas bielas que se interconectarían entre sí implican un mecanismo de producción en serie sencillo con unas medidas prefijadas según la descripción ofrecida en el punto anterior. In short, the construction of these connecting rods that would interconnect with each other implies a simple series production mechanism with preset measures according to the description given in the previous point.

Estas bielas emulan a los aparatos intraorales de uso removible (funcionales) que nada tienen que ver en diseño sino en su función que es la de mantener la mandíbula en una posición adelantada la mayor parte del tiempo posible para estimular el crecimiento condilar. Las bielas por su parte realizarían ese avance con un diseño de insercción permanente no removible por parte del paciente (por tanto de efecto durante las 24 horas del día) y con un diseño simple y reducido que permite una función oral habitual sin obviar las molestias implicadas en cualquier tipo de aparatología que se instale en la boca así como las molestias derivadas de la insercción quirúrgica de las miniplacas. These cranks emulate the intraoral devices of removable use (functional) that have nothing to do with design but in their function which is to keep the jaw in an advanced position as much as possible to stimulate condylar growth. The cranks for their part would make that advance with a permanent non-removable insert design by the patient (therefore effective 24 hours a day) and with a simple and reduced design that allows a regular oral function without obviating the discomforts involved in any type of apparatus that is installed in the mouth as well as the discomfort derived from the surgical insertion of the miniplates.

Claims (3)

Reivindicaciones  Claims 1.-Dispositivo de avance máxilo-mandibular en base a anclaje óseo caracterizado por: 1.-Maxillo-mandibular advancement device based on bone anchor characterized by: a) un dispositivo de propulsión intermaxilar anclado a nivel de los huesos a) an intermaxillary propulsion device anchored at bone level maxilares jaws b) un sistema único de anclaje óseo a partir de miniplacas con vástago de b) a unique system of bone anchoring from miniplates with shank of unión a las bielas tanto superiores como inferiores. connection to both upper and lower cranks. c) un sistema de propulsión por contacto en avance con 300gr de fuerza c) a system of propulsion by contact in advance with 300gr of force por lado y construido por dos vielas macho y hembra acopladas entre sí y per side and built by two male and female vielas coupled to each other and fijadas a los sistemas de anclaje óseo. fixed to the bone anchoring systems. 2.-Dispositivo de avance máxilo-mandibular en base a anclaje óseo, según reivindicación 1, caracterizado por la unión del sistema a la región retromolar en el hueso maxilar superior y a la región inferior canina en el borde del cuerpo mandibular distinta a los sistemas actuales de anclaje óseo. 2. Maxillo-mandibular advancement device based on bone anchorage, according to claim 1, characterized by the union of the system to the retromolar region in the upper maxillary bone and to the lower canine region at the edge of the mandibular body other than current systems of bone anchor. 3.-Dispositivo de avance máxilo-mandibular en base a anclaje óseo, según reivindicación 1, caracterizado por la posibilidad de realizar tratamientos ortopédicos de duración continua maximizando la eficiencia del aparato con efecto durante 24 horas y no dependiente de colaboración del paciente infantil. 3. Maxillo-mandibular advancement device based on bone anchorage, according to claim 1, characterized by the possibility of performing orthopedic treatments of continuous duration maximizing the efficiency of the device with effect for 24 hours and not dependent on collaboration of the child patient.
ES201201198A 2012-11-20 2012-11-20 Maxillo-mandibular advancement device based on bone anchorage. Active ES2461819B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES201201198A ES2461819B1 (en) 2012-11-20 2012-11-20 Maxillo-mandibular advancement device based on bone anchorage.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201201198A ES2461819B1 (en) 2012-11-20 2012-11-20 Maxillo-mandibular advancement device based on bone anchorage.

Publications (2)

Publication Number Publication Date
ES2461819A1 true ES2461819A1 (en) 2014-05-21
ES2461819B1 ES2461819B1 (en) 2015-02-23

Family

ID=50725527

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201201198A Active ES2461819B1 (en) 2012-11-20 2012-11-20 Maxillo-mandibular advancement device based on bone anchorage.

Country Status (1)

Country Link
ES (1) ES2461819B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798773A (en) * 1972-05-08 1974-03-26 M Northcutt Device for improving the alignment of the upper and lower sets of teeth with each other
US4708646A (en) * 1986-04-01 1987-11-24 Jasper James J Orthodontic device for correcting the bite
WO1995015730A1 (en) * 1993-12-06 1995-06-15 West Richard P Adjustable bite corrector
KR20110130764A (en) * 2010-05-28 2011-12-06 권순용 Anchor unit of orthodontic treatment and orthodontic treating apparatus having the same
KR20120106048A (en) * 2011-03-17 2012-09-26 경희대학교 산학협력단 Anchor unit of orthodontic treatment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798773A (en) * 1972-05-08 1974-03-26 M Northcutt Device for improving the alignment of the upper and lower sets of teeth with each other
US4708646A (en) * 1986-04-01 1987-11-24 Jasper James J Orthodontic device for correcting the bite
WO1995015730A1 (en) * 1993-12-06 1995-06-15 West Richard P Adjustable bite corrector
KR20110130764A (en) * 2010-05-28 2011-12-06 권순용 Anchor unit of orthodontic treatment and orthodontic treating apparatus having the same
KR20120106048A (en) * 2011-03-17 2012-09-26 경희대학교 산학협력단 Anchor unit of orthodontic treatment

Also Published As

Publication number Publication date
ES2461819B1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
Şar et al. Dentofacial effects of skeletal anchored treatment modalities for the correction of maxillary retrognathia
Kircelli et al. Midfacial protraction with skeletally anchored face mask therapy: a novel approach and preliminary results
Azamian et al. Treatment options for class III malocclusion in growing patients with emphasis on maxillary protraction
da Silva Filho et al. Early treatment of the Class III malocclusion with rapid maxillary expansion and maxillary protraction
Cha et al. Skeletal anchorage for orthopedic correction of growing class III patients
Marzouk et al. Molar intrusion in open-bite adults using zygomatic miniplates
Chugh et al. Early orthopedic correction of skeletal Class III malocclusion using combined reverse twin block and face mask therapy
Dessner et al. Mandibular lengthening using preprogrammed intraoral tooth-borne distraction devices
Showkatbakhsh et al. Treatment of maxillary deficiency by miniplates: a case report
Amini et al. A new approach to correct a Class III malocclusion with miniscrews: a case report
ES2461819A1 (en) Maxillo-mandibular advancement device based on bone anchor (Machine-translation by Google Translate, not legally binding)
Pavoni et al. The effects of facial mask/bite block therapy with or without rapid palatal expansion
Papadopoulou et al. Effects of hybrid-Hyrax, Alt-RAMEC and miniscrew reinforced heavy Class III elastics in growing maxillary retrusive patients. A four-year follow-up pilot study
WO2016079569A1 (en) Bone fixation system
Showkatbakhsh et al. A novel approach in treatment of maxillary deficiency by reverse chin cup
Tehranchi et al. Advances in management of class II malocclusions
Wilmes et al. The benefit system and its scope in contemporary orthodontic protocols
Guerrero et al. Mandibular intraoral distraction osteogenesis
Abdolreza et al. Treatment Protocol for Skeletal Class III Malocclusion in Growing Patients
Veziroglu et al. Maxillomandibular fixation screws for early removal of hardware and correction of lingual tilting in alveolar distraction osteogenesis
Aslan et al. Maxillary protraction in a case with miniscrew bone anchorage
CORNER Treatment of maxillary transversal deficiency by using a mini-implant-borne rapid maxillary expander and aligners in combination
Nayak et al. Skeletal Anchorage System in Orthodontics.
Vale et al. A New Orthodontic-Surgical Approach to Mandibular Retrognathia. Bioengineering 2021, 8, 180
Erverdi et al. Expanding the limits for esthetic strategies by skeletal anchorage

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2461819

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20150223