ES2456823B1 - PRODUCTION METHOD OF COMPLEX REPERTORIES OF RECOMBINANT MOLECULES - Google Patents

PRODUCTION METHOD OF COMPLEX REPERTORIES OF RECOMBINANT MOLECULES Download PDF

Info

Publication number
ES2456823B1
ES2456823B1 ES201231466A ES201231466A ES2456823B1 ES 2456823 B1 ES2456823 B1 ES 2456823B1 ES 201231466 A ES201231466 A ES 201231466A ES 201231466 A ES201231466 A ES 201231466A ES 2456823 B1 ES2456823 B1 ES 2456823B1
Authority
ES
Spain
Prior art keywords
recombinant
plant
viral
mixture
clones
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES201231466A
Other languages
Spanish (es)
Other versions
ES2456823A1 (en
Inventor
Diego Vicente ORZAEZ CALATAYUD
Jose Manuel JULVE PARREÑO
Antonio Granell Richart
Alejandro SARRION-PERDIGONES
Carlos GUTIERREZ CABRERA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Universidad Politecnica de Valencia
Universidad de las Palmas de Gran Canaria
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Universidad Politecnica de Valencia
Universidad de las Palmas de Gran Canaria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC, Universidad Politecnica de Valencia, Universidad de las Palmas de Gran Canaria filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to ES201231466A priority Critical patent/ES2456823B1/en
Priority to PCT/ES2013/070653 priority patent/WO2014044892A1/en
Publication of ES2456823A1 publication Critical patent/ES2456823A1/en
Application granted granted Critical
Publication of ES2456823B1 publication Critical patent/ES2456823B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • C12N15/8258Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon for the production of oral vaccines (antigens) or immunoglobulins

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

La presente invención describe un método de producción de repertorios complejos de moléculas recombinantes de forma consistente y reproducible, mediante la generación de forma transitoria de plantas multi-transgénicas que dan lugar a mosaicos somáticos inducidos por replicones virales que se excluyen entre sí. La presente invención también hace referencia a la planta multi-transgénica o un fragmento de la misma así obtenida, así como a los extractos o fracciones purificadas de las mismas que representen repertorios complejos de moléculas recombinantes, preferentemente proteínas recombinantes seleccionadas entre: enzimas, inmunoglobulinas, receptores de membrana, receptores intracelulares, lectinas, anticuerpos policlonales, antivenenos basados en antisueros, sueros inmunológicos para inmunidad pasiva, e inmunoglobulinas intravenosas.The present invention describes a method of producing complex repertoires of recombinant molecules in a consistent and reproducible manner, by transiently generating multi-transgenic plants that give rise to somatic mosaics induced by viral replicons that exclude each other. The present invention also refers to the multi-transgenic plant or a fragment thereof thus obtained, as well as to the extracts or purified fractions thereof that represent complex repertoires of recombinant molecules, preferably recombinant proteins selected from: enzymes, immunoglobulins, membrane receptors, intracellular receptors, lectins, polyclonal antibodies, antiserums based on antisera, immunological sera for passive immunity, and intravenous immunoglobulins.

Description


DESCRIPCIÓN
Método de producción de repertorios complejos de moléculas recombinantes.

SECTOR DE LA TÉCNICA 5

La presente invención se encuadra dentro de la tecnología “biotecnología agrícola”, siendo aplicable en la producción de conjuntos de moléculas recombinantes en los sectores químico, farmacéutico, veterinario y agrícola.
10 ESTADO DE LA TÉCNICA ANTERIOR

En la actualidad existe una demanda creciente de moléculas recombinantes, para su uso en distintos sectores como el farmacéutico, veterinario, energético, etc. Muchas de estas proteínas requieren de sistemas eucariotas para su producción. En la mayoría de los casos, el objetivo último de la técnica es la producción de una única 15 proteína de composición homogénea, como por ejemplo un factor de crecimiento o un anticuerpo monoclonal, y por ello la mayoría de los sistemas actuales están adaptados a este fin. Sin embargo no se dispone de metodologías que permitan producir repertorios complejos de proteínas diferentes de manera tal que la composición final de la mezcla sea altamente reproducible.
20
Algunos ejemplos de conjuntos complejos de proteínas que la industria produce y/o utiliza son los anticuerpos policlonales, las inmunoglobulinas hiperinmunes, los sueros inmunológicos para inmunidad pasiva o los antivenenos basados en antisueros. En todos los casos citados, el conjunto comprende, en todo o en parte, el repertorio de secuencias aminoacídicas que conforma la respuesta inmune de uno o varios individuos. La respuesta inmune de los mamíferos basa gran parte de su eficacia en el hecho de que comprende un amplio 25 repertorio (policlonal) de inmunoglobulinas (anticuerpos) distintas. De esta forma diferentes inmunoglobulinas reconocen diferentes regiones del patógeno/antígeno/toxina garantizando una mayor adaptabilidad y capacidad de neutralización. Análogamente, los anticuerpos policlonales resultan más eficaces que los monoclonales en gran cantidad de aplicaciones terapéuticas, como la neutralización de toxinas y agentes infecciosos, o de diagnóstico como la detección de especímenes de composición poco definida (
Bregenholt et al., 2006;
Dunman 30
and Nesin, 2003;
Haurum, 2006;
Koefoed et al., 2006;
Sharon et al., 2000).

A pesar de las ventajas inherentes a la policlonalidad, la producción de repertorios complejos de proteínas de forma recombinante ha sido poco abordada debido a su complejidad técnica. Prueba de ello es que en la actualidad los anticuerpos recombinantes comerciales son monoclonales. En aquellas aplicaciones donde es 35 necesario el uso de repertorios complejos, como en el caso de anticuerpos policlonales para diagnóstico, los antivenenos basados en antisueros, las inmunoglobulinas intravenosas para el tratamiento de inmunodeficiencias o las inmunoglobulinas hiperinmunes para terapias de inmunización pasiva, se recurre a producirlos de forma tradicional (no recombinante), mediante inmunización y posterior aislamiento y purificación de sueros policlonales en animales (ratón, conejo, cabra o caballo, entre otros) o humanos. 40

Los anticuerpos policlonales, los antivenenos basados en antisueros y otros productos inmunológicos para inmunidad pasiva obtenidos a partir de animales inmunizados presentan los siguientes problemas: (i) plantean problemas éticos en su manufactura; (ii) tienen alta variabilidad entre lotes, debido a las diferencias de respuesta inmunológica de distintos individuos (iii) requieren una exhaustiva caracterización de novo en cada lote (iv) 45 presentan riesgos de inmunogenicidad y transmisión inadvertida de patógenos cuando su uso es terapéutico.

Por su parte las inmunoglobulinas intravenosas para el tratamiento de inmunodeficiencias y las inmunoglobulinas hiperinmunes para terapias de inmunización pasiva se obtienen a partir de plasma sanguíneo de donantes humanos y su suministro es limitado. No existe alternativa recombinante en la actualidad. 50

Los problemas que presenta la obtención/producción/utilización de anticuerpos policlonales, antivenenos basados en antisueros, sueros inmunológicos para inmunidad pasiva obtenidos a partir de animales inmunizados, o las inmunoglobulinas intravenosas para el tratamiento de inmunodeficiencias y las inmunoglobulinas hiperinmunes para terapias de inmunización pasiva que se obtienen a partir de plasma 55 sanguíneo de donantes humanos, se podrían solventar mediante la producción recombinante de repertorios complejos de anticuerpos policlonales. Sin embargo, existen numerosos problemas técnicos que limitan esta posibilidad. Se han desarrollado algunas estrategias en este sentido basadas en animales transgénicos. Tal es el caso de los ratones transgénicos a los que se les ha introducido los loci de inmunoglobulinas humanas (US 6,111,166), los cuales pueden producir anticuerpos policlonales humanos mediante técnicas convencionales de 60 inmunización. Sin embargo este sistema produce cantidades mínimas de anticuerpos debido al pequeño tamaño de los animales. También se han obtenido animales transgénicos de mayor tamaño como vacas (
Kuroiwa et al., 2002).

Sin embargo los animales transgénicos tienen ciertos inconvenientes. En primer lugar, la inestabilidad de los loci 65
de inmunoglobulinas compromete a largo plazo la producción de anticuerpos. En segundo lugar, es difícil eliminar las inmunoglobulinas del propio animal. En tercer lugar, los animales transgénicos no están exentos del riesgo de transmisión inadvertida de patógenos. Por último, la composición de la mezcla no es enteramente reproducible pues dependerá de las condiciones inmunofisiológicas del animal.
5
Una alternativa a los animales transgénicos consiste en producir anticuerpos policlonales recombinantes a partir de secuencias variables de inmunoglobulinas obtenidas de individuos con una respuesta inmune establecida, utilizando células de mamífero como plataforma de producción. Esta tecnología utiliza líneas celulares de mamíferos adaptadas para conseguir una integración sitio-específica de cada uno de los transgenes que constituyen la muestra (
Bregenholt et al., 2006;
Haurum, 2006;
Klitgaard et al., 2006;
Koefoed et al., 2011; 10
Koefoed et al., 2006;
Pedersen et al., 2010;
Wiberg et al., 2006). Esto elimina la variabilidad de expresión debida al efecto posicional del transgén y facilita la producción de mezclas reproducibles de anticuerpos policlonales con alta consistencia lote a lote a escala industrial (WO 2004/061104).

Más recientemente se ha desarrollado un protocolo que mediante selección individual de clones estables de 15 células de mamífero transformadas mediante inserciones al azar permite producir mezclas policlonales con reproducibilidad lote a lote (WO 2008/145133). Sin embargo, estas metodologías requieren un proceso laborioso de selección de clones individuales estables, por lo que es poco adecuada para mezclas policlonales de alta complejidad. Además los sistemas basados en células de mamífero tienen altos costes de inversión, producción, y escalado industrial, lo que hace atractivo el uso de plataformas alternativas que reduzcan los costes. 20

Un grupo de plataformas alternativas particularmente interesante son aquellas basadas en plantas. Las plantas se utilizan como biofactorías de proteínas de muy distinta índole utilizando para ello, entre otras metodologías, virus recombinantes (
Orzaez et al., 2009). Existen numerosos ejemplos de virus vegetales que han sido adaptados a la producción de proteínas recombinantes en plantas (
Gleba et al., 2004). Para ello el virus silvestre 25 se somete a una serie de modificaciones tendentes a convertirlo en un vector viral, esto es, un ácido nucleico, generalmente de naturaleza plasmídica capaz de transferir a la célula unidades autoreplicativas que albergan la secuencia que codifica la proteína de interés. Una de las principales ventajas del uso de vectores virales es que su capacidad autoreplicativa permite amplificar el número de copias del transgen en la célula, lo que favorece la obtención de altísimos niveles de producción recombinante. En la actualidad existen numerosos vectores virales 30 siendo explotados por laboratorios académicos y empresas biotecnológicas (por ejemplo WO 05/049839, WO 06/079546).

Hasta el momento, los vectores virales se han utilizado para la producción de productos homogéneos, como anticuerpos monoclonales, algunos de los cuales se encuentran en fases de ensayos clínicos. Un precedente en 35 el intento de avanzar hacia la producción de mezclas policlonales de anticuerpos basándose en sistemas virales de plantas aparece en un trabajo desarrollado por Julve et al., 2011 (resumen de tesis de Máster, Universidad Politécnica de Valencia). En concreto, se hace referencia a la producción de una mezcla policlonal de Nanobodies (VHHs) usando hojas de Nicotiana benthamiana. Sin embargo la metodología resumida en Julve et al., 2011 es muy laboriosa ya que se basa en la expresión individualizada de cada anticuerpo en hojas distintas e 40 independientes y su posterior mezcla y purificación conjunta dando lugar a una mezcla policlonal final. Por tanto, se trata de una estrategia basada en plantas mono-transgénicas que se mezclan posteriormente. La aproximación de Julve et al., 2011 no aporta procedimiento alguno para producir mezclas de proteínas recombinantes de complejidad alta o muy alta, ya que estas son inaccesibles a un método que no implique expresión simultánea. 45

Llevado de este único precedente, hasta la fecha no se han utilizado vectores virales para la producción simultánea de mezclas complejas de proteínas recombinantes, entre otras razones porque se considera que, según el modelo comúnmente aceptado de cuasiespecies, la competencia que tiene lugar entre los distintos clones que co-infectan una planta conduce al predominio de unos pocos clones sobre los demás. Es esperable 50 por tanto que la mezcla resultante tenga una composición singular y no reproducible, puesto que el concepto de “competencia entre clones” conduce al dominio de unas variantes sobre otras y por tanto a una escasísima reproducibilidad entre experimentos. El requerimiento de reproducibilidad sería muy ventajoso, ya que permitiría producir mezclas terapéuticas con composición constante lote a lote.
55
Por tanto, actualmente existe la necesidad de desarrollar un método para la producción de repertorios complejos de moléculas recombinantes, basado en plantas y tejidos que cumplan los requisitos de “multi-trangénesis” (co-expresión de los distintos transgenes simultáneamente en forma de mosaico somático en un mismo tejido) y de reproducibilidad del sistema de expresión (producción de mezclas altamente reproducibles entre experimentos independientes). 60

BREVE DESCRIPCIÓN DE LA INVENCIÓN

La presente invención describe un método para la obtención de mezclas policlonales de moléculas recombinantes, de forma consistente y reproducible, mediante la generación de forma transitoria de plantas 65
multi-transgénicas que dan lugar a mosaicos somáticos inducidos por replicones virales que se excluyen entre sí.

Las plataformas eucariotas actuales no ofrecen la posibilidad de producir repertorios complejos de proteínas, ya que están basadas en su mayoría en la introducción en el organismo recombinante de un único gen (o a lo sumo un grupo reducido de genes en el caso de proteína oligoméricas). La producción de mezclas policlonales 5 presenta dificultades técnicas, que son distintas según el tipo de plataforma utilizada.
(i) En el caso de organismos completos, como animales o plantas transgénicas, el problema técnico consiste en la dificultad de transformar el genoma de forma estable con un número alto de secuencias similares. A esto hay que añadir la dificultad de controlar los niveles de expresión de cada gen individual 10 integrado en el genoma, lo que dificulta la obtención de una mezcla definida.
(ii) En el caso de cultivos celulares, la competencia entre clones durante la fase de crecimiento del cultivo conduce a la pérdida de diversidad y por tanto a una escasa reproducibilidad. Una alternativa para obtener mezclas de composición definida consiste en producir de forma separada los diferentes 15 componentes de manera individualizada y realizar la mezcla a posteriori. Esto implica mantener líneas paralelas de producción y purificación, lo cual supone un coste creciente que resulta inviable cuando la complejidad de la mezcla alcanza un cierto umbral.

La presente invención está basada en un aspecto poco estudiado de la infección viral en plantas: la alta 20 estructuración espacial de las variantes clonales producidas durante el curso de la infección (
Elena et al., 2011;
Sardanyes and Elena, 2011). Esta distribución espacial ocurre como consecuencia de la propia estructura anatómica de las plantas y está facilitada por un fenómeno conocido como “exclusión de la superinfección” o ”interferencia homóloga”. Este fenómeno consiste en que la presencia de un clon viral “residente” en una célula o grupo de células impide la superinfección de las mismas por un segundo clon viral “retador” altamente 25 relacionado con el primero (Folimonova, 2012; Syller, 2012; Ziebell and Carr, 2010). Este fenómeno resulta especialmente evidente al infectar experimentalmente una planta con una mezcla compleja de variantes víricas. En este caso, las distintas variantes no entran en competencia entre todas ellas como cabría esperar, lo que daría lugar a una distribución homogénea liderada por el clon más apto. Por el contrario, cada variante coloniza una región de la planta excluyendo a las demás y dando lugar a una distribución espacial estructurada en 30 mosaico que permite la convivencia en diferentes células de la misma planta de las diferentes variantes clonales.

Esta invención describe el aprovechamiento del fenómeno natural de “exclusión de la superinfección” o ”interferencia homóloga” viral para la producción de conjuntos espacialmente delimitados de proteínas (mosaicos somáticos) que pueden dar lugar a mezclas policlonales de productos recombinantes de composición definida, 35 reproducible y con altos rendimientos.

La invención hace uso de vectores virales derivados de un virus vegetal. Hasta ahora, la principal ventaja que confieren los vectores virales es que permiten alcanzar altos rendimientos de proteína recombinante. Esto es debido a su capacidad de auto-replicación, que conlleva a su vez la amplificación del gen que codifica la proteína 40 recombinante a producir. Existen multitud de vectores virales descritos en la literatura del campo que se adaptan a esta descripción y que por tanto son utilizables para desarrollar el método de la invención. Dicho vector viral puede estar formado bien por un genoma viral completo o bien por un genoma viral del que se han eliminado partes superfluas, pero que conserva las funciones básicas del virus silvestre, y como mínimo la función de autoreplicación, la función de movimiento célula a célula y la capacidad de ejercer “interferencia homologa” entre 45 clones relacionados. Dicho vector viral ha de ser capaz además de incorporar de forma recombinante una secuencia de nucleótidos que codifique el o los genes de interés y de inducir su traducción a proteína en la célula huésped. Con la presente invención esa propiedad de interferencia homologa cobra tanta importancia como los altos niveles de producción.
50
En la presente invención, la producción de una mezcla formada por un número N de proteínas recombinantes distintas se realiza clonando en primer lugar los N genes que codifican las N proteínas de interés en una misma posición dentro del vector viral. El clonaje puede realizarse clon a clon de forma separada, o bien realizarse de forma conjunta en una sola reacción de clonación en el que se incluyen en una misma solución todas las variantes de genes de interés. Una vez generadas las N variantes clonales del vector viral, estas se transfieren 55 de forma conjunta y simultánea a la planta huésped utilizando alguna de los distintas metodologías de transferencia de vectores virales accesibles en el estado del arte, en una dilución tal que se favorezca la entrada de un número medio entre cero y uno de entidades replicativas por célula huésped.

En una realización preferida pero no limitante de la presente invención, la transferencia de las N variantes 60 clonales del vector viral a las células de la planta se realiza mediante transformación genética transitoria mediada por Agrobacterium tumefaciens de un clon infectivo del virus, generando así una planta transitoriamente multi-transgénica. En estas circunstancias, en cada célula del huésped se replica mayoritariamente una o ninguna de las variantes clonales del vector viral. Como consecuencia de la función de movimiento célula a célula, y eventualmente de la función de movimiento sistémico del replicón viral, cada clon viral se desplaza desde la 65
célula infectada inicialmente a células adyacentes y/o distantes que no hayan resultado a su vez infectadas primariamente por otro clon viral, amplificando allí su genoma y acumulando el producto del gen recombinante. Sin embargo, en virtud de la función de interferencia homóloga, cada clon viral queda excluido de aquellas células en las que exista una infección ya establecida por otro clon residente. Como consecuencia se obtiene una distribución estructurada en mosaico de los diferentes clones virales donde la abundancia relativa de cada 5 clon está en función, entre otros parámetros, de su capacidad de trasladarse de célula a célula. La interferencia homóloga provoca una distribución estructurada en mosaico de la variabilidad clonal que minimiza el efecto de competencia entre clones. Transcurrido el tiempo necesario para que se desarrolle un mosaico estable, se procede a la homogenización de la planta y a llevar a cabo los procesos de extracción y/o purificación convenientes en función de la naturaleza de las proteínas a producir, obteniéndose como resultado una mezcla 10 compleja de proteínas recombinantes cuya composición es consistente y reproducible entre experimentos.

La población de proteínas recombinantes producidas cambia durante las primeras etapas de infección, pero dado un tiempo de incubación suficientemente largo para que se hayan colonizado todas las células de la planta, la abundancia relativa de cada proteína en la mezcla (Ci) está en función de los siguientes parámetros: (Vi) la 15 velocidad de movimiento célula a célula de cada clon; (Pi) los niveles de producción de proteína específicos de cada clon; (ODRi) la abundancia relativa de cada clon en el inoculo inicial.

En principio, la co-existencia de dos o más clones en la misma célula hace necesario incluir un cuarto factor (Iij) que refleja en su caso el resultado de la interacción entre dos clones i y j cuando estos compiten por los recursos 20 biosintéticos de la misma célula. Iij es un parámetro complejo, diferente para cada par ij. La complejidad del parámetro Iij hace que Ci resulte altamente variable e impredecible en sistemas sin interferencia homóloga. Sin embargo, en la metodología descrita en esta invención, la existencia de un fenómeno de interferencia homóloga disminuye al mínimo la interacción entre clones, permitiendo despreciar el parámetro Iij y por tanto facilitando la predictibilidad y reproducibilidad de la expresión de mezclas policlonales. 25

Por tanto el sistema descrito permite la producción de mezclas de complejidad alta o muy alta e incluso de mezclas de composición indefinida con altos rendimientos. El límite teórico de componentes distintos que puede comprender dicha mezcla es del mismo orden que número total de células empleadas en el proceso de producción. Dado que la metodología es escalable simplemente aumentando el número de plantas, la 30 complejidad potencial de la mezcla es virtualmente ilimitada. Alternativamente, esta metodología puede utilizarse para la producción de una mezcla policlonal definida que comprenda N clones previamente seleccionados.

El requerimiento de reproducibilidad es muy ventajoso, ya que permitiría producir mezclas terapéuticas con composición constante lote a lote. El procedimiento de la invención da lugar a mezclas cuya composición es 35 altamente reproducible entre experimentos. La alta reproducibilidad de la expresión multitransgénica del procedimiento de la invención, se demuestra en los ejemplos, donde se describen experimentos en los que se ensayan mezclas de complejidad muy alta (>100 elementos). Se apunta que la posible razón de esta reproducibilidad es la puesta en acción de un fenómeno de interferencia homóloga, aunque este criterio es diferente al descrito en el estado de la técnica (actualmente no se ha establecido la conexión entre los 40 fenómenos de interferencia homóloga y reproducibilidad) y por tanto constituye una alternativa válida a los métodos previos de producción de mezclas complejas de proteínas recombinantes.

Además de la citada reproducibilidad, el método de la invención tiene una aplicación importante en la producción de complejos multiprotéicos policlonales, ya que la interferencia homóloga impide la formación de complejos 45 multiprotéicos distintos a los deseados. Así, cuando los clones a expresar forman homopolímeros, como homodímeros o homotetrámeros, la co-expresión de dos o más clones en una misma célula mediante los métodos tradicionales conduce a la formación de una mezcla inconsistente de heteropolímeros. En cambio el procedimiento de la invención favorece la formación preferente de homodímeros. Igualmente, el método de la invención facilita la expresión policlonal de mezclas de heteropolímeros de composición definida, como es el 50 caso de los anticuerpos policlonales.

En este caso particular, cada cadena pesada tiene una cadena ligera acompañante. Al expresar mezclas policlonales en sistemas sin interferencia homóloga tiene lugar un fenómeno conocido como “barajado de cadenas”, por el cual cada cadena pesada se puede unir con cualquier cadena ligera distinta de su 55 acompañante, dando lugar a un anticuerpo de actividad subóptima. El método de la invención permite minimizar el efecto de barajado de cadenas al minimizar la interferencia entre clones.

DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
60
La presente invención hace referencia a un método para la producción de al menos un repertorio complejo de N moléculas recombinantes, caracterizado por comprender los siguientes pasos:

i) ensamblar una colección de N secuencias nucleotídicas distintas en un vector viral de destino derivado de un virus vegetal que en su mecanismo de infección presenta la propiedad conocida como “interferencia 65
homóloga” o “exclusión de la superinfección”, de forma tal que se genere una colección de clones virales;

ii) transferencia de la colección de clones virales de forma conjunta y simultánea a una planta huésped o un órgano o tejido de una planta huésped que es susceptible de albergar la replicación y el movimiento del vector viral. 5

iii) generación de una planta transitoriamente multi-transgénica estructurada en forma de mosaico somático donde más del 80%, preferentemente más del 90%, de las células expresan exclusivamente una de las N moléculas recombinantes, o bien la expresan muy mayoritariamente, en una proporción molar que supone al menos el 80%, preferentemente al menos el 90%, del total de N moléculas recombinantes 10 producidas en esa misma célula.

En una realización preferente de la presente invención, el método anteriormente descrito se caracteriza por que las N moléculas recombinantes son N proteínas recombinantes. En este caso, el paso i) se caracteriza por ensamblar una colección de N secuencias nucleotídicas distintas que corresponden a las secuencias codificantes 15 de cada una de las N proteínas distintas que se quieren producir en formato policlonal, en un vector viral de destino derivado de un virus vegetal que en su mecanismo de infección presenta la propiedad conocida como “interferencia homóloga” o “exclusión de la superinfección”, de forma tal que permita su traducción a proteínas, formándose una colección de clones virales. Así mismo, el paso ii) se caracteriza por la transferencia de la colección de clones virales de forma conjunta y simultánea a una planta huésped o un órgano o tejido de una 20 planta huésped que es susceptible de albergar la replicación y el movimiento del vector viral, así como la traducción de las N proteínas recombinantes.

En otra realización preferente de la presente invención, el método anteriormente descrito se caracteriza por que el vector viral de destino del paso ii) se encuentra en forma de un clon infectivo insertado en un vector binario y 25 utiliza la transformación transitoria basada en Agrobacterium tumefaciens como mecanismo de entrada en las células de la planta huésped generando así una planta multi-transgénica que expresa las N moléculas recombinantes, preferentemente N proteínas recombinantes, en forma de mosaico somático. Preferentemente, el vector viral está desprovisto de su función de movimiento sistémico. Más preferentemente, el vector viral se hace llegar a las células de la planta huésped mediante un sistema mecánico. Aún más preferentemente, el sistema 30 mecánico se selecciona de entre el siguiente grupo: infiltración a vacío, infiltración por sobrepresión y espray.

En otra realización preferente de la presente invención, el método anteriormente descrito se caracteriza por que las N secuencias nucleotídicas del paso i) codifican al menos una variante de secuencia de una familia de proteínas. Preferentemente, la familia de proteínas se selecciona de entre el siguiente grupo: enzimas, 35 inmunoglobulinas, receptores de membrana, receptores intracelulares, y lectinas.

En otra realización preferente de la presente invención, el método anteriormente descrito se caracteriza por que es combinado con un sistema de expresión sin interferencia homóloga que permite la producción de proteínas heteromultiméricas donde algunos de los componentes del multímero son variables y se producen mediante el 40 sistema con interferencia, mientras que otros componentes son constantes y se producen mediante el sistema no interferente.

En otra realización preferente de la presente invención, el método anteriormente descrito se caracteriza por que las N secuencias nucleotídicas del paso i) codifican al menos una secuencia variable de al menos una 45 inmunoglobulina. Preferentemente, la inmunoglobulina es producida por linfocitos obtenidos a partir de animales inmunizados frente a un antígeno.

En otra realización preferente de la presente invención, el método anteriormente descrito se caracteriza por que las N secuencias nucleotídicas del paso i) codifican al menos una secuencia variable de al menos una 50 inmunoglobulina o su fragmento, seleccionados mediante una técnica de selección in vitro de anticuerpos recombinantes (phage display).

La presente invención hace referencia también al uso del método descrito anteriormente, para producir de forma recombinante una mezcla compleja de homopolímeros. 55

Así mismo, la presente invención hace referencia también al uso del método descrito anteriormente para producir de forma recombinante una mezcla compleja de heteropolímeros donde cada célula produce un solo tipo de heteropolímero, minimizando el efecto de “barajado de cadenas”.
60
La presente invención hace referencia también a una planta transitoriamente multi-transgénica o un fragmento de la misma, caracterizada por que es obtenida en el paso iii) del método descrito anteriormente, planta o fragmento de planta (órgano, tejido) transfectados con una colección de clones virales como la descrita en el paso ii) del método descrito en la reivindicación 1, y que expresa una mezcla policlonal de proteínas.
65
Preferentemente, la planta o el fragmento de la misma expresa en todo o en parte y de modo recombinante, al menos un repertorio complejo de anticuerpos policlonales. Más preferentemente, los anticuerpos policlonales son similares a los producidos por un animal o un grupo de animales en respuesta a un proceso de inmunización frente a un antígeno, un grupo de antígenos o un agente patógeno.
5
La presente invención hace referencia también a un extracto crudo obtenido de una planta descrita anteriormente.

Así mismo, la presente invención hace referencia también a una mezcla purificada o parcialmente purificada de anticuerpos obtenidos a partir de un extracto crudo descrito anteriormente. 10

Por último, la presente invención hace referencia también a un repertorio complejo de N moléculas recombinantes, caracterizado por que se produce mediante el método descrito anteriormente. Preferentemente, las N moléculas recombinantes son N proteínas recombinantes. Más preferentemente, las N proteínas recombinantes se seleccionan de entre el siguiente grupo: anticuerpos policlonales, antivenenos basados en 15 antisueros, sueros inmunológicos para inmunidad pasiva, e inmunoglobulinas intravenosas.

El método de la invención comienza con el clonaje de los fragmentos de DNA que codifican las proteínas recombinantes en un vector viral derivado de un virus de plantas como TMV, PVX, CTV, CMV o cualquier otro virus que presente la propiedad de interferencia homóloga. 20

En una realización particular de la técnica, el vector deriva de un virus de RNA de simple cadena. En otra realización particular el vector viral consiste en un virus de RNA de simple cadena que mantiene en su genoma las funciones de replicación y de movimiento célula a célula pero que se le ha eliminado la función de movimiento sistémico. El movimiento sistémico, que tiene lugar a través de los haces vasculares, puede generar cuellos de 25 botella en la extensión de los clones virales a lo largo de la planta, con lo que su supresión facilita la reproducibilidad de la técnica.

La transferencia de los fragmentos de DNA al vector viral se puede realizar mediante cualquiera de las técnicas de ensamblaje de fragmentos de DNA accesibles al estado del arte, como digestión/ligación con enzimas de 30 restricción tipo II, digestión/ligación cíclica con enzimas de restricción tipo IIS, recombinación sitio-específica, clonaje independiente de ligasa, recombinación homóloga o técnicas de ensamblaje por PCR.

Los fragmentos de DNA pueden incorporarse, bien de uno en uno, bien en grupo, generando una genoteca de vectores virales, cada uno comprendiendo una secuencia distinta. 35

En una realización particular de la técnica, los distintos fragmentos de DNA pueden codificar distintos anticuerpos completos comprendiendo distintas secuencias variables provenientes de humanos, de ratón, de camélidos o de otros mamíferos.
40
En otra realización particular los fragmentos de DNA pueden codificar fragmentos de anticuerpos del tipo scFv o VHH provenientes de humanos, de ratón, de camélidos o de otros mamíferos.

En otra realización particular, cada vector viral puede incorporar dos o más fragmentos de DNA en dos posiciones distintas de su genoma, codificando, por ejemplo, una cadena pesada de un anticuerpo y la 45 correspondiente cadena ligera del mismo anticuerpo de forma que la co-expresión de ambas en la misma célula dé lugar a una combinación funcional.

En todos los casos, el resultado final será una colección de F clones del vector viral conteniendo fragmentos o combinaciones de fragmentos recombinantes de DNA que en su conjunto representan N secuencias distintas, 50 donde N es cualquier valor entre 2 y F.

A continuación, los F clones virales comprendiendo N secuencias recombinantes distintas son transferidos de forma conjunta y simultánea a las células vegetales de la planta huésped utilizando alguno de los mecanismos del estado del arte para inducir la formación de replicones virales. La planta huésped puede ser cualquier 55 especie vegetal susceptible de albergar un replicón viral. Puede tratarse de una planta completa o un explanto de ésta como una hoja u otro órgano como un fruto o una raíz. En una realización particular, la planta huésped es una planta del género Nicotiana. En otra realización particular la planta huésped pertenece a la especie Nicotiana benthamiana.
60
En una realización particular, la transferencia conjunta de los distintos clones virales a las células de la planta huésped puede estar mediada por la bacteria Agrobacterium. Dicha bacteria es capaz de transferir a la célula vegetal un fragmento de DNA (T-DNA) que comprende el o los genes de interés, de forma que sean producidos por la célula vegetal. La transferencia es transitoria porque no requiere integración del T-DNA en el cromosoma de la célula, por tanto el T-DNA no se transfiere a la línea germinal y su expresión dura unos pocos días. En esta 65
realización particular, los replicones virales pueden introducirse íntegramente dentro del T-DNA a transferir en forma de un DNA copia introducida en el T-DNA de la bacteria. De este modo, Agrobacterium funciona como lanzadera para transferir el replicón viral al interior de la célula.

Para obtener la producción policlonal de proteínas recombinantes utilizando Agrobacterium tumefaciens como 5 lanzadera, la genoteca de vectores virales ha de estar preferentemente integrada en un vector binario que contenga un T-DNA, de modo que la secuencia viral se encuentre bajo la regulación de un promotor que opera en la célula huésped. Cada uno de los clones de la colección de vectores binarios se transfiere, bien de uno en uno, bien de forma conjunta, a células Agrobacterium tumefaciens, generando una colección policlonal de cepas de Agrobacterium. Este proceso se puede bien realizar directamente, bien mediante un paso intermedio en 10 Escherichia coli que facilite el proceso de trasformación. En este segundo caso, la genoteca se transfiere primero a células de Escherichia coli, dando lugar a una colección de colonias independientes. Posteriormente las colonias se crecen independientemente o de forma conjunta en condiciones que minimicen la pérdida de diversidad, aislándose a partir de dichas colonias la colección de plásmidos binarios. A partir de esta última preparación se procede a la transformación de células competentes de Agrobacterium tumefaciens para dar 15 lugar a una colección “semilla” de Agrobacterium.

La colección “semilla” comprende uno o varios cultivos de Agrobacterium obtenidos a partir de la transformación inicial de la colección de plásmidos binarios en una preparación de células competentes de Agrobacterium. La colección puede ser mantenida en forma de F cultivos de Agrobacterium, cada uno albergando uno de los F 20 clones, mantenidos de forma separada y almacenados en condiciones de congelación. En este caso F ha de ser mayor o igual que N. Esta opción es la habitual para un N número pequeño y conocido, como 5, 10, 20 o 100 secuencias distintas, en cuyo caso F es habitualmente igual a N. También es el caso habitual para un número N pequeño pero desconocido, como 5, 10, 20 o 100 secuencias distintas, en cuyo caso F es habitualmente mayor que N. Alternativamente, cuando N es un número grande, generalmente mayor que 10 y habitualmente mayor 25 que 50 e incluso mayor que 1000, la colección “semilla” puede conservarse en forma un stock conjunto mantenido en condiciones de congelación o liofilización que contiene un número F de bacterias viables, donde F es mucho mayor, al menos un orden de magnitud mayor que N.

Para obtener una mezcla policlonal recombinante, el cultivo semilla de Agrobacterium se cultiva el tiempo 30 suficiente para al menos duplicar y habitualmente multiplicar por 5 o incluso por 10 o más el número inicial de células contenidas en la alícuota inicial. A continuación este cultivo se transfiere a una solución tampón adecuada, se diluye convenientemente obteniéndose la mezcla de infiltración, que posteriormente se inocula en algún punto discreto de la planta huésped mediante alguna de las tecnologías de agroinoculación disponibles en el estado del arte. 35

En una realización particular, los clones virales están desprovistos de la capacidad de movimiento sistémico. En este caso se hace llegar artificialmente la mezcla de infiltración al mayor número posible de células huésped. Para ello se ponen en contacto las células de Agrobacterium presentes en la mezcla de infiltración con las células de la planta huésped de forma que las primeras sean competentes para transferir su T-DNA a las 40 segundas de forma eficiente. Esto se puede llevar a cabo mediante agroinfiltración, mediante inmersión a vacío o mediante cualquier otro sistema asequible al estado del arte, como técnicas de spray, uso de abrasivos, surfactantes, etc.

Una vez el T-DNA alcanza el núcleo de algunas células, el replicón se transcribe, dando lugar a un genoma viral 45 activo que se replica en la célula inicial y se transfiere a las células vecinas. A continuación la planta infectada por la mezcla policlonal de replicones se mantiene en condiciones favorables de luz y humedad por un periodo variable de tiempo que comprende entre 4 días como mínimo y el ciclo completo de crecimiento de la planta como máximo; durante este tiempo los clones virales se replican, se mueven célula a célula hasta encontrar una célula ocupada por otro replicón, y traducen la proteína de interés cuya información albergan en su genoma. En 50 conjunto, el resultado final es una distribución en mosaico de los diferentes clones a lo largo y ancho de la superficie de la planta. En dicho mosaico, cada tesela está formada por un número variable de células. Las células interiores de la tesela expresan exclusivamente una de las proteínas recombinantes de la mezcla, o cuando menos la expresan en una proporción molar muy mayoritaria, donde el rango de contaminación con otras proteínas de la mezcla es menor al límite de detección de proteínas fluorescentes en un microscopio confocal y 55 en cualquier caso menor del 10% en relación molar. Excepcionalmente algunas células situadas en la frontera entre dos teselas contiguas pueden expresar más de una proteína recombinante en proporciones molares cercanas a 50%. El número total de éstas células frontera susceptibles de expresar simultáneamente más de una proteína recombinante está en función del tamaño medio de la teselas. El tamaño medio de las teselas depende a su vez de la concentración de células de Agrobacterium en la mezcla de infiltración, y por extensión de la 60 densidad óptica total del cultivo (ODT), siendo este parámetro modulable experimentalmente. En conjunto, el número máximo de células susceptibles de co-expresar de forma detectable más de una proteína fluorescente puede ser ajustado experimentalmente de forma que sea menor del 10%, o menor del 5% y eventualmente menor del 1%.
65
Transcurrido el tiempo de incubación, se cosecha el material vegetal y se purifica el conjunto de proteínas interés utilizando un método de purificación que sea común a todos los componentes de la mezcla, obteniéndose una mezcla policlonal de proteínas de composición definida.

La presente invención permite modular el tamaño y número de teselas del mosaico de expresión mediante la 5 manipulación de la densidad óptica de la mezcla de infiltración. Así, mezclas de infiltración de N clones con ODT de 0.1 dan lugar a teselas de mayor tamaño que mezclas de infiltración conteniendo los mismos N clones a una ODT de 0.033. A su vez mezclas de infiltración de N clones con ODT de 0.033 dan lugar a teselas de mayor tamaño que mezclas de infiltración conteniendo los mismos N clones a una ODT de 0.01. Las teselas grandes conteniendo de media varias decenas o incluso centenares de células necesitan de menores concentraciones de 10 Agrobacterium, lo que facilita la eliminación de posible toxinas asociadas a esta bacteria. Además el empleo de teselas grandes minimiza la interacción residual entre clones, ya que ésta tiene lugar fundamentalmente en la zona frontera entre teselas contiguas. Por su parte, la utilización de teselas pequeñas, comprendiendo unas pocas células o decenas de células de media, facilita la expresión de un mayor número de clones por planta, favoreciendo la diversidad policlonal. Asimismo, la utilización de teselas pequeñas formadas por unas pocas 15 células o decenas de células minimiza la influencia de la velocidad de movimiento (Vi) en la composición final de la mezcla.

En la presente invención se hace referencia a una colección “semilla”, la cual comprende un número N de clones distintos y conocidos, conservados de forma separada en forma de N cultivos criopreservados. Así mismo, la 20 presente invención permite modular la composición final de la mezcla policlonal mediante la manipulación de la composición de la mezcla de infiltración. Dado un tiempo de incubación suficientemente largo para que se hayan colonizado todas las células de la planta, la abundancia relativa de cada proteína en la mezcla (Ci) estará en función de los siguientes parámetros: (Vi) la velocidad de movimiento célula a célula de cada clon; (Pi) los niveles de producción de proteína específicos de cada clon; (ODRi) la abundancia relativa de cada clon en el inóculo 25 inicial. Siendo Pi y Vi valores constantes y específicos para cada clon, es posible manipular la composición de la mezcla modificando los valores de ODRi para cada clon. Para ello, los N clones semilla son crecidos de forma separada el tiempo suficiente para al menos duplicar y habitualmente multiplicar por 5 o incluso por 10 o más el número inicial de células contenidas en la alícuota inicial. A continuación se determina la densidad óptica de cada cultivo y se procede a mezclar los distintos cultivos en proporciones definidas para dar lugar a la mezcla de 30 infiltración final. La manipulación de las ODs relativas de cada clon permite modular de forma significativa y reproducible la composición final de la mezcla, ya que este parámetro determina la abundancia relativa de los foci iniciales que infectan a la planta para cada clon.

En una realización particular de la técnica, la expresión policlonal basada en vectores virales con interferencia 35 homóloga se combina con otro sistema de expresión que no presenta el fenómeno de interferencia homóloga. En una realización particular, el segundo sistema “no interferente” consiste en la transferencia mediada por Agrobacterium de un T-DNA que no comprende ninguna estructura autoreplicativa. Esta realización particular permite producir complejos multiprotéicos recombinantes en la que uno o varios de los componentes de la mezcla son variables y se expresan mediante el uso de una plataforma con interferencia homóloga, y el resto de 40 los componentes son constantes para todos los clones y se co-expresan mediante un sistema sin interferencia homóloga. En otra realización particular del procedimiento mixto, la parte variable del complejo multiproteico está constituido por una mezcla policlonal de anticuerpos o fragmentos de anticuerpos, mientras que la parte constante está formada por un péptido constante que media la formación de estructuras poliméricas de anticuerpos como la cadena J, o por una estructura que protege a los anticuerpos frente a degradación 45 proteolítica como el Componente Secretor.

En la presente invención, el término “repertorio complejo de N moléculas recombinantes” se refiere a N moléculas de DNA o RNA recombinantes, N proteínas recombinantes codificadas por dichas moléculas de DNA o RNA, o los metabolitos resultantes de la actividad de dichas N proteínas recombinantes. Preferentemente, este 50 término se refiere a un conjunto de más de 10 moléculas de DNA o RNA que difieren entre sí al menos en un nucleótido de su secuencia nucleotídica o un conjunto de más de 10 proteínas distintas que difieren entre sí al menos en un amino-acido de su secuencia peptídica y que son producidas en un organismo distinto del que son originales mediante estrategias de DNA recombinante.
55
En la presente invención, el término “N proteínas recombinantes” se refiere a N enzimas, N inmunoglobulinas, N receptores de membrana, N receptores intracelulares, N lectinas N anticuerpos policlonales, N antivenenos basados en antisueros, N sueros inmunológicos para inmunidad pasiva, y N inmunoglobulinas intravenosas.

En la presente invención, el término “colección de N secuencias nucleotídicas distintas” se refiere a un conjunto 60 formado por un número indeterminado de fragmentos de DNA o RNA que difieren entre sí al menos en una posición nucleotídica dentro de su secuencia.

En la presente invención, el término “vector viral de destino” se refiere a un ácido nucleico derivado de un virus que codifica la funciones necesarias para su reproducción en la célula huésped y en el cual se integran de forma 65
recombinante aquellos fragmentos de ácidos nucleicos que se pretende expresar de forma recombinante.

En la presente invención, el término “colección de clones virales” se refiere a un conjunto de ácidos nucleicos derivados de un virus que difieren en su secuencia en al menos en un nucleótido.
5
En la presente invención, el término “planta huésped” se refiere a cualquier organismo vegetal en cuyas células puede tener lugar la replicación de un virus o un vector viral.

En la presente invención, el término “planta transitoriamente multi-transgénica estructurada en forma de mosaico somático o un fragmento de la misma” se refiere a una planta completa o un fragmento de una planta que 10 comprende un conjunto de más de dos células, en las cuales se ha introducido mediante técnicas de transformación genética un conjunto de transgenes de manera tal que cada célula individual recibe y expresa cero, uno o más de un transgen, los cuales transgenes no son necesariamente idénticos a los que recibe y expresa el resto de las células del conjunto, y en las que el paquete de cero uno o más genes recibidos puede o no integrarse establemente en el genoma y por tanto puede o no transmitirse a la progenie y dejar de expresarse 15 en dichas células al cabo de un cierto tiempo.

En la presente invención, el término “clon infectivo insertado en un vector binario” se refiere a una secuencia de DNA derivada de un virus vegetal que se encuentra insertada en un vector binario y que, transferido el conjunto al núcleo de una célula, es capaz de inducir su propia transcripción dando lugar a una molécula de RNA con 20 capacidad para infectar la célula huésped.

En la presente invención, el término “transformación transitoria basada en Agrobacterium tumefaciens” se refiere a una transferencia de una o más moléculas de DNA desde el citoplasma de la bacteria Agrobaterium al núcleo de la célula vegetal, que tiene lugar de forma transitoria sin que ocurra necesariamente la integración estable de 25 dichas moléculas de DNA o parte de las mismas en el DNA cromosómico de la célula huésped.

En la presente invención, el término “función de movimiento sistémico” se refiere a la capacidad de un virus vegetal de moverse largas distancias dentro de la planta huésped viajando a través de su sistema vascular.
30
En la presente invención, el término “sistema mecánico” se refiere a cualquier procedimiento que implique la aplicación de una fuerza, una presión externa o una corriente eléctrica o cualquier otro mecanismo de permeabilización de membrana para favorecer la entrada de un DNA en la célula huésped.

En la presente invención, el término “variante de secuencia de una familia de proteínas” se refiere a cada una de 35 las variantes individuales que se pueden presentar en un conjunto de proteínas de una misma familia.

En la presente invención, el término “sistema de expresión sin interferencia homóloga” se refiere a cualquier sistema de producción de proteínas recombinantes que esté basado en un vector que de forma natural no presenta el fenómeno de interferencia homóloga, es decir, que en el caso de que dos o más clones de dicho 40 vector colonicen la misma célula, éstos no se excluyen necesariamente entre sí de modo que ninguno de ellos prevalece necesariamente sobre los demás.

En la presente invención, el término “secuencias variables de inmunoglobulinas” se refiere a las regiones de proteínas inmunoglobulinas que presentan alta variabilidad de secuencia y donde reside su capacidad de unión 45 al antígeno.

En la presente invención, el término “secuencias variables de inmunoglobulinas o sus fragmentos seleccionados mediante una técnica de selección in vitro de anticuerpos recombinantes como phage display” se refiere a todo o parte de una o varias regiones variables de inmunoglobulinas seleccionadas por su capacidad de unión a un 50 determinado antígeno o conjunto de antígenos mediante procedimientos de selección in vitro.

En la presente invención, el término “repertorio complejo de anticuerpos policlonales” se refiere a un conjunto formado por un número mayor de diez proteínas inmunoglobulinas distintas, donde la diferencia entre ellas radica, al menos parcialmente, en la secuencia aminoacídica de sus regiones variables. 55

En la presente invención, el término “extracto crudo” se refiere a una mezcla compleja de compuestos, obtenida a partir de una planta o tejido vegetal y que se obtiene mediante un proceso de extracción que incluye la ruptura de las células del tejido vegetal a partir del que se obtiene y la solubilización de los compuestos celulares liberados en un solvente adecuado. 60

En la presente invención, el término “mezcla purificada o parcialmente purificada de anticuerpos obtenidos a partir de un extracto crudo” se refiere a un conjunto de N anticuerpos distintos, que difieren entre sí al menos en un aminoácido de su secuencia peptídica, aislados a partir de un extracto crudo del material vegetal donde se producen de forma recombinante en condiciones que permiten la eliminación total o parcial del resto de los 65
compuestos celulares presentes en el extracto.

En la presente invención, el término “repertorio complejo de antivenenos basados en antisueros” se refiere a un conjunto de inmunoglobulinas obtenidas a partir de sueros de animales inmunizados con una sustancia tóxica.
5
En la presente invención, el término “repertorio complejo de sueros inmunológicos para inmunidad pasiva” se refiere a un conjunto de inmunoglobulinas obtenidas a partir de sueros de animales inmunizados frente a un agente patógeno o una sustancia tóxica y que resultan efectivos en la protección de un organismo receptor frente a dicho agente patógeno o dicha sustancia, sin necesidad de activar una respuesta inmunológica en el organismo receptor. 10

En la presente invención, el término “repertorio complejo de inmunoglobulinas intravenosas” se refiere a un conjunto formado por un número indeterminado de inmunoglobulinas distintas que se pueden suministrar a un animal o a un ser humano por vía intravenosa para producirle algún tipo de beneficio.
15
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. 20

DESCRIPCIÓN DE LAS FIGURAS

Figura 1. Producción individualizada de VHHs. (A) Alineamiento de secuencias aminoacídicas de las 9 VHHs producidas en plantas de N. benthamiana: SEQ. ID. No. 1, SEQ. ID. No. 2, SEQ. ID. No. 3, SEQ. ID. No. 4, SEQ. 25 ID. No. 5, SEQ. ID. No. 6, SEQ. ID. No. 7, SEQ. ID. No. 8, SEQ. ID. No. y SEQ. ID. No. 9. (B) Análisis Western Blot de las diferentes VHHs producidas de forma individualizada.

Figura 2. Producción de un repertorio oligoclonal de VHHs en una planta transitoriamente oligo-transgénica. (A) Análisis SDS-PAGE de fracciones purificadas (E1 y E2) y último lavado (F) de un repertorio de 9 VHHs 30 producidas en una planta transitoriamente oligo-transgénica de la invención. El bandeo discreto de proteínas está revelado con azul de Coomassie. (B) Electroforesis en 2D con revelado de nitrato de plata de la fracción E2.

Figura 3. Producción de un repertorio policlonal de VHHs en una planta transitoriamente multi-transgénica. (A) Análisis SDS-PAGE de fracciones purificadas (E1 y E2) y él último lavado (F) de un repertorio formado por un 35 número indefinido de VHHs (F>104) producidas en una planta transitoriamente multi-transgénica de la invención. El bandeo continuo de proteínas está revelado con azul de Coomassie. (B) Electroforesis 2D con revelado mediante marcaje fluorescente diferencial (DIGE) de tres fracciones E2 correspondientes a tres experimentos independientes de producción de VHHs policlonales. Los tres experimentos se realizaron a partir de un mismo cultivo semilla de Agrobacterium tumefaciens que alberga una genoteca de VHHs obtenidas de sueros de 40 camellos no hiper-inmunizados.

Figura 4. Gráficos de dispersión de las fracciones purificadas de VHH policlonales producidas en tres experimentos independientes. El eje de abcisas representa el ratio de intensidad entre dos experimentos para cada spot. El eje de ordenadas representa la intensidad absoluta (volumen) de cada spot en el experimento 45 DIGE.

EJEMPLOS

A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que ponen de 50 manifiesto la eficacia de la invención en producir plantas multi-transgénicas así como la reproducibilidad del método para la producción de repertorios complejos de moléculas recombinantes, preferentemente proteínas recombinantes, objeto de la presente invención. En concreto, los ensayos realizados muestran la producción de repertorios complejos de N proteínas recombinantes. La existencia de N proteínas recombinantes necesariamente implica la presencia de N moléculas de DNA y RNA recombinantes precursores de las mismas. 55 Estos ejemplos específicos que se proporcionan sirven para ilustrar la naturaleza de la presente invención y se incluyen solamente con fines ilustrativos, por lo que no han de ser interpretados como limitaciones a la invención que aquí se reivindica. Por tanto, los ejemplos descritos más adelante ilustran la invención sin limitar el campo de aplicación de la misma.
60
EJEMPLO 1. Producción de una mezcla oligoclonal de nano-anticuerpos de camello (VHHs) en plantas de N. benthamiana transitoriamente oligo-transgénicas

Para demostrar las posibilidades de la expresión policlonal basada en interferencia homóloga para la producción de mezclas de moléculas recombinantes, preferentemente proteínas recombinantes de interés industrial o 65
farmacéutico, se utilizó de manera preferente y no limitante una pequeña colección de clones de fragmentos de anticuerpos camélidos de simple cadena (también llamados nanobodies o VHHs).

En este ejemplo se comprobó la posibilidad de producir simultáneamente un número discreto (N<10) de proteínas recombinantes dando lugar a una mezcla de composición definida (oligoclonal) donde se conoce la 5 identidad de todas y cada una de las proteínas de la mezcla. Para ello una población de VHHs fue amplificada a partir de una preparación de cDNA obtenida de una fracción de células nucleadas de sangre de camello utilizando los oligonucleótidos VHHF (SEQ. ID. No. 10) y VHHR (SEQ. ID. No. 11). A partir de la dicha amplificación, las VHHs fueron transferidas el vector pGTMV (SEQ. ID. No. 12) utilizando una reacción GoldenGate de un solo fragmento (
Engler et al., 2009;
Engler et al., 2008;
Sarrion-Perdigones et al., 2011) 10 mediada por ligasa de T4 y el enzima de restricción BsaI en una incubación de 35 ciclos. De esta forma se aislaron los nueve clones distintos (pGTMV_VHH1 hasta pGTMV_VHH9) que se utilizaron en la expresión oligoclonal. Todas las construcciones contenían una fusión a una cola de seis histidinas incorporadas por el vector pGTMV. Las secuencias nucleotídicas de las regiones codificantes de cada una de las 9 VHHs clonadas se muestran como SEQ. ID. No. 1, SEQ. ID. No. 2, SEQ. ID. No. 3, SEQ. ID. No. 4, SEQ. ID. No. 5, SEQ. ID. No. 15 6, SEQ. ID. No. 7, SEQ. ID. No. 8, SEQ. ID. No. y SEQ. ID. No. 9. Un alineamiento amino-acídico de las secuencias VHH implicadas en el experimento se muestra en la FIGURA 1A.

En primer lugar se ensayó la expresión individualizada de las diferentes VHH. Todos los clones derivados de pGTMV fueron transferidos a Agrobacterium tumefaciens y conservados en forma de cultivos semilla. 20 Posteriormente, una alícuota de 10 L de cada uno de los cultivos semilla se descongeló y se creció a 28ºC en agitación (200 rpm) durante 18h en 1 mL de LB con 12g/mL de Carbencilina y 50 g/mL de Rifampicina. A continuación, 100 L de cada cultivo se transfirieron a 5 mL de LB con 12g/mL de Carbencilina y 50 g/mL de Rifampicina y se crecieron durante 18h a 28ºC en agitación (200 rpm). Los cultivos resultantes de centrifugaron a 500 g durante 15 minutos y el precipitado de células se resuspendió en 10 mL de tampón de infiltración (MES 25 10mM pH 5,6, Cloruro cálcico 10mM, acetosiringona 2M).

De igual forma se procedió con cultivos de Agrobacterium que albergan el módulo 5´de TMV deconstruído (pICH17388) y el módulo integrasa (PICH14011) necesarios para el establecimiento del replicón viral (
Marillonnet et al., 2004a). Se midió la densidad óptica (OD) de cada cultivo de Agrobacterium y se realizaron las diluciones 30 pertinentes en tampón de infiltración para llevar cada cultivo a una OD=0.1 medida en un espectrómetro. Posteriormente se realizaron nueve mezclas, una para cada VHH (pGTMV_VHHi: pICH17388: PICH14011 en proporción 1:1:1), y cada mezcla se infiltró por separado en los espacios intercelulares de hojas de Nicotiana benthamiana mediante una jeringa de 2 mL sin aguja. Se infiltraron 3 hojas por muestra, utilizando para ello plantas diferentes. Durante los días siguientes a la infiltración se observó en algunos clones la aparición de un 35 fenómeno de necrosis similar a la respuesta hipersensible (HR) por lo que se decidió adelantar el proceso de recolección con anterioridad a la aparición de síntomas (6 dpi) y recolectar todas las plantas en esa fase. Tras la recolección las muestras (hojas enteras) se pesaron y congelaron en nitrógeno líquido y se almacenaron en un congelador a -80ºC. Para la extracción el material vegetal se trituró el material vegetal en un mortero en presencia de nitrógeno líquido con tampón PBS en proporción 1:3 (peso de tejido: volumen de tampón). 40 Posteriormente el extracto crudo se centrifugó a 10 krpm durante 15 min a 4ºC y el sobrenadante se filtró dos veces con papel de filtro y una vez más en filtros steriCup. El extracto resultante se pasó por una columna de afinidad Ni Agarose y la proteínas purificadas se eluyeron en tampón fosfato 50 mM a pH4.0 y la fracción de elución se neutralizó inmediatamente con 1/5 de volumen de PBS. Una alícuota de 6 µl de cada elución se resolvió en una electroforesis PAGE y se reveló por Western blot utilizando un anticuerpo primario murino anti-45 histidinas seguido de un anticuerpo secundario anti-ratón conjugado a la peroxidasa de rábano. El resultado de dicho Western blot se puede observar en la FIGURA 1B. Todas las VHHs ensayadas se expresaron y purificaron en N. benthamiana, aunque con distintos rendimientos. Así, las VHH4, VHH5, VHH6, VHH7, VHH8 y VHH9 se produjeron a niveles entre 80 y 120 g de proteína purificada por gramo de peso fresco, mientras que para las tres VHHs restantes se obtuvieron niveles de entre 2 y 10 g de proteína por gramo de peso fresco. 50

Seguidamente se ensayó la expresión oligoclonal de las nueve VHHs. Para ello los cultivos semilla se crecieron individualmente tal y como se describió en el experimento anterior, pero en este caso todos los cultivos se combinaron en usa sola mezcla de infiltración formada por los cultivos (pGTMV_VHH1: pGTMV_VHH2: pGTMV_VHH3: … :pGTMV_VHH9 .pICH17388: PICH14011) en proporción (1:1:1: …:1:9:9). Se realizó una única 55 infiltración en tres hojas de tres plantas distintas de N. benthamiana. Transcurridos 6 dpi, el material vegetal se recolectó y las proteínas recombinantes se purificaron siguiendo el procedimiento descrito más arriba. Como resultado se obtuvo una mezcla de VHHs con un rendimiento de 80 g de proteína purificada por gramo de peso fresco. La mezcla se resolvió mediante electroforesis PAGE como se muestra en la FIGURA 2A. En esta figura se muestran las carreras correspondientes al último lavado (F) y dos eluciones sucesivas (E1 y E2) del proceso 60 de purificación. En dicha electroforesis, revelada con azul de Coomassie, se observa un patrón discreto de bandas compatible con la expresión simultánea de varias VHHs. Dado que las distintas VHHs tienen tamaños similares, a continuación se procedió a resolverlas atendiendo a las diferencias de punto isoeléctrico mediante una electroforesis en dos dimensiones. Así, 25 g de la mezcla policlonal recombinante previamente purificada por afinidad se resolvieron en geles de 2D con un rango de pH entre 4.0 y 9.0, y posteriormente se detectaron 65
mediante tinción con plata. En la FIGURA 2B se muestra el resultado de la electroforesis 2D, en la que es posible identificar un mínimo de 9 spots diferenciables en la banda de pesos moleculares correspondientes a las proteínas del tipo VHH, lo que demuestra la composición oligoclonal de la muestra.

EJEMPLO 2. Producción de una mezcla policlonal de anticuerpos VHH 5

En este ejemplo se demuestra la posibilidad de producir repertorios complejos o muy complejos (N>100) de proteínas recombinantes de composición desconocida de forma reproducible. Para ello se realizó una reacción Goldengate con las VHHs amplificadas con los oligos SEQ. ID. No. 1, y SEQ. ID. No. 2 a partir de cDNA obtenido de una fracción de células nucleadas de sangre de camello y dicha mezcla de reacción se transformó 10 directamente en células competentes de Agrobacterium GV2011 sembrándose posteriormente en placas LBAgar suplementadas con 50 g/mL de kanamicina. Los 2x104 clones resultantes se recogieron directamente de las placas en alícuotas de 0.5 mL de medio LB y se congelaron a -80ºC en presencia de 15% glicerol. Posteriormente se descongeló una de las alíquotas y se subcultivó en 5 mL de LB durante 2 horas. El cultivo resultante (cultivo pGTMV_VHHp) se centrifugó a 500 g durante 15 minutos y el precipitado de células se 15 resuspendió en 10 mL de tampón de infiltración (MES 10mM pH 5,6, Cloruro cálcico 10mM, acetosiringona 2M). De igual forma se procedió con cultivos de Agrobacterium que albergan el módulo 5´de TMV deconstruído (pICH17388) y el módulo integrasa (PICH14011) necesarios para el establecimiento del replicón viral (
Marillonnet et al., 2004b). Se midió la OD de cada cultivo de Agrobacterium y se realizaron las diluciones pertinentes en tampón de infiltración para llevar cada cultivo a una OD=0.1 medida en un espectrómetro. Posteriormente se 20 combinaron los cultivos en la proporción adecuada (1:1:1) (pGTMV_ VHHp : pICH17388: PICH14011) y se procedió a infiltrar las mezclas en hojas de N. benthamiana. Para comprobar la reproducibilidad de la expresión policlonal, el mismo experimento se repitió en otras dos ocasiones con un grupo distinto de plantas partiendo de dos nuevas alícuotas criopreservadas del pGTMV_VHHp. En total se realizaron tres experimentos independientes (EXP1, EXP2 y EXP3). En todos los casos se dejaron transcurrir seis días desde la infiltración y 25 la recolección. Transcurridos los 6 dpi en cada caso, el material vegetal se recolectó separadamente y las proteínas recombinantes se purificaron siguiendo el procedimiento descrito en el experimento anterior. Un análisis PAGE de las VHHs purificadas no reveló diferencias en el patrón de tamaños de la mezcla (FIGURA 3A). En esta figura se muestran las carreras correspondientes al último lavado (F) y dos eluciones sucesivas (E1 y E2) del proceso de purificación de uno de los experimentos. En dicha electroforesis, revelada con azul de 30 Coomassie, se observa un patrón continuo de bandas compatible con la expresión simultánea de múltiples VHHs.

Posteriormente las tres mezclas policlonales de VHHs se resolvieron de forma conjunta atendiendo a las diferencias de punto isoeléctrico mediante una electroforesis en dos dimensiones. Así, 10 g de cada mezcla 35 policlonal recombinante previamente purificada por afinidad se etiquetaron cada una con un fluoróforo diferente y se sometieron a un análisis DIGE resolviéndose en un gel de 2D con un rango de pH entre 4.0 y 9.0. El escaneado posterior muestra la huella 2D de cada una de las mezclas recombinantes marcada con un fluoróforo diferente. El patrón de distribución de los spots resultó muy similar en los tres experimentos (FIGURA 3B), lo que demuestra la reproducibilidad de la técnica. Los geles de 2D se analizaron con el paquete de software Decyder. 40 Se detectaron un número mínimo de 216 spots mayoritarios. Todos spots mayoritarios resultaron ser coincidentes en los tres experimentos. A partir de los datos de volumen de cada spot se realizó un análisis de dispersión de los datos entre los diferentes experimentos tomados de dos en dos. En la FIGURA 4A se muestra gráficamente la estrecha distribución de la dispersión entre experimentos, lo que indica una alta reproducibilidad entre experimentos independientes. La gráfica de dispersión mostrada en la FIGURA 4 representa para cada 45 punto el logaritmo del ratio entre las intensidades relativas de dicho punto en los dos experimentos en comparación. La altura en el eje de ordenadas representa la intensidad (volumen) de cada spot analizado. Se observa que sólo algunos spots de muy baja intensidad presentan diferencias significativas, posiblemente debidos a diferencias de sensibilidad, mientras que la mayoría de los spots están centrados en un margen muy estrecho en torno al valor cero de logaritmo de los ratios de expresión. 50

Se han realizado ensayos de secuenciación masiva que muestran la producción de repertorios complejos de N moléculas recombinantes. Por último se ha ensayado la producción de repertorios complejos de anticuerpos recombinantes obtenidos a partir de animales hiper-inmunizados.

DESCRIPTION
Production method of complex repertoires of recombinant molecules.

SECTOR OF THE TECHNIQUE 5

The present invention falls within the "agricultural biotechnology" technology, being applicable in the production of sets of recombinant molecules in the chemical, pharmaceutical, veterinary and agricultural sectors.
10 STATE OF THE PREVIOUS TECHNIQUE

Currently there is a growing demand for recombinant molecules, for use in different sectors such as pharmaceutical, veterinary, energy, etc. Many of these proteins require eukaryotic systems for their production. In most cases, the ultimate goal of the technique is the production of a single protein of homogeneous composition, such as a growth factor or a monoclonal antibody, and therefore most current systems are adapted to this finish. However, there are no methodologies that allow to produce complex repertoires of different proteins so that the final composition of the mixture is highly reproducible.
twenty
Some examples of complex sets of proteins that the industry produces and / or uses are polyclonal antibodies, hyperimmune immunoglobulins, immunological sera for passive immunity or antivenoms based on antisera. In all the cases cited, the set comprises, in whole or in part, the repertoire of amino acid sequences that make up the immune response of one or more individuals. The mammalian immune response bases much of its efficacy on the fact that it comprises a broad repertoire (polyclonal) of different immunoglobulins (antibodies). In this way different immunoglobulins recognize different regions of the pathogen / antigen / toxin ensuring greater adaptability and neutralization capacity. Similarly, polyclonal antibodies are more effective than monoclonal antibodies in many therapeutic applications, such as neutralization of toxins and infectious agents, or diagnostic such as the detection of specimens of poorly defined composition (
Bregenholt et al., 2006;
Dunman 30
and Nesin, 2003;
Haurum, 2006;
Koefoed et al., 2006;
Sharon et al., 2000).

Despite the advantages inherent in polyclonality, the production of recombinantly complex protein repertoires has been poorly addressed due to its technical complexity. Proof of this is that currently commercial recombinant antibodies are monoclonal. In those applications where the use of complex repertoires is necessary, as in the case of polyclonal antibodies for diagnosis, antivenoms based on antisera, intravenous immunoglobulins for the treatment of immunodeficiencies or hyperimmune immunoglobulins for passive immunization therapies, recourse to Produce them in a traditional way (non-recombinant), by immunization and subsequent isolation and purification of polyclonal sera in animals (mouse, rabbit, goat or horse, among others) or humans. 40

Polyclonal antibodies, antivenoms based on antisera and other immunological products for passive immunity obtained from immunized animals present the following problems: (i) pose ethical problems in their manufacture; (ii) they have high variability between batches, due to differences in immunological response of different individuals (iii) they require a thorough de novo characterization in each batch (iv) 45 present risks of immunogenicity and inadvertent transmission of pathogens when their use is therapeutic.

On the other hand, intravenous immunoglobulins for the treatment of immunodeficiencies and hyperimmune immunoglobulins for passive immunization therapies are obtained from blood plasma from human donors and their supply is limited. There is no recombinant alternative at present. fifty

The problems of obtaining / producing / using polyclonal antibodies, antivenoms based on antisera, immunological sera for passive immunity obtained from immunized animals, or intravenous immunoglobulins for the treatment of immunodeficiencies and hyperimmune immunoglobulins for passive immunization therapies that obtained from blood plasma from human donors, they could be solved by recombinant production of complex repertoires of polyclonal antibodies. However, there are numerous technical problems that limit this possibility. Some strategies in this regard have been developed based on transgenic animals. Such is the case of transgenic mice that have been introduced with human immunoglobulin loci (US 6,111,166), which can produce human polyclonal antibodies by conventional immunization techniques. However, this system produces minimal amounts of antibodies due to the small size of the animals. Transgenic animals of larger size have also been obtained as cows (
Kuroiwa et al., 2002).

However, transgenic animals have certain drawbacks. First, the instability of the loci 65
of immunoglobulins compromises the production of antibodies in the long term. Secondly, it is difficult to eliminate the immunoglobulins of the animal itself. Third, transgenic animals are not exempt from the risk of inadvertent transmission of pathogens. Finally, the composition of the mixture is not entirely reproducible because it will depend on the immunophysiological conditions of the animal.
5
An alternative to transgenic animals is to produce recombinant polyclonal antibodies from variable sequences of immunoglobulins obtained from individuals with an established immune response, using mammalian cells as a production platform. This technology uses adapted mammalian cell lines to achieve a site-specific integration of each of the transgenes that constitute the sample (
Bregenholt et al., 2006;
Haurum, 2006;
Klitgaard et al., 2006;
Koefoed et al., 2011; 10
Koefoed et al., 2006;
Pedersen et al., 2010;
Wiberg et al., 2006). This eliminates the variability of expression due to the positional effect of the transgene and facilitates the production of reproducible mixtures of polyclonal antibodies with high consistency lot by lot on an industrial scale (WO 2004/061104).

More recently, a protocol has been developed that by individual selection of stable clones of 15 mammalian cells transformed by random insertions allows polyclonal mixtures to be produced with batch-to-batch reproducibility (WO 2008/145133). However, these methodologies require a laborious process of selecting stable individual clones, so it is poorly suited for highly complex polyclonal mixtures. In addition, systems based on mammalian cells have high costs of investment, production, and industrial scaling, which makes the use of alternative platforms that reduce costs attractive. twenty

A particularly interesting group of alternative platforms are those based on plants. Plants are used as biofactories of proteins of very different nature using, among other methodologies, recombinant viruses (
Orzaez et al., 2009). There are numerous examples of plant viruses that have been adapted to the production of recombinant proteins in plants (
Gleba et al., 2004). For this, the wild virus 25 undergoes a series of modifications aimed at converting it into a viral vector, that is, a nucleic acid, generally of a plasmidic nature capable of transferring to the cell autoreplicative units that house the sequence encoding the protein of interest. . One of the main advantages of the use of viral vectors is that their self-replication capacity allows amplifying the number of copies of the transgene in the cell, which favors obtaining high levels of recombinant production. There are currently numerous viral vectors 30 being operated by academic laboratories and biotechnology companies (for example WO 05/049839, WO 06/079546).

So far, viral vectors have been used for the production of homogeneous products, such as monoclonal antibodies, some of which are in clinical trial phases. A precedent in 35 the attempt to move towards the production of polyclonal mixtures of antibodies based on viral systems of plants appears in a work developed by Julve et al., 2011 (Master thesis summary, Polytechnic University of Valencia). Specifically, reference is made to the production of a polyclonal mixture of Nanobodies (VHHs) using Nicotiana benthamiana leaves. However, the methodology summarized in Julve et al., 2011 is very laborious as it is based on the individualized expression of each antibody in separate and independent leaves and their subsequent mixing and purification resulting in a final polyclonal mixture. Therefore, it is a strategy based on mono-transgenic plants that are subsequently mixed. The Julve et al., 2011 approach does not provide any procedure to produce recombinant protein mixtures of high or very high complexity, since these are inaccessible to a method that does not involve simultaneous expression. Four. Five

Taken from this unique precedent, to date no viral vectors have been used for the simultaneous production of complex mixtures of recombinant proteins, among other reasons because it is considered that, according to the commonly accepted quasi-species model, the competition that takes place between the different Clones that co-infect a plant leads to the predominance of a few clones over others. It is expected 50, therefore, that the resulting mixture has a unique and non-reproducible composition, since the concept of "competition between clones" leads to the dominance of some variants over others and therefore to a very poor reproducibility between experiments. The reproducibility requirement would be very advantageous, since it would allow the production of therapeutic mixtures with constant batch-to-batch composition.
55
Therefore, there is currently a need to develop a method for the production of complex repertoires of recombinant molecules, based on plants and tissues that meet the requirements of “multi-transgenesis” (co-expression of the different transgenes simultaneously in the form of a somatic mosaic in the same tissue) and reproducibility of the expression system (production of highly reproducible mixtures between independent experiments). 60

BRIEF DESCRIPTION OF THE INVENTION

The present invention describes a method for obtaining polyclonal mixtures of recombinant molecules, in a consistent and reproducible manner, by temporarily generating plants.
multi-transgenic that give rise to somatic mosaics induced by viral replicons that exclude each other.

Current eukaryotic platforms do not offer the possibility of producing complex repertoires of proteins, since they are mostly based on the introduction into the recombinant organism of a single gene (or at most a small group of genes in the case of oligomeric proteins). The production of polyclonal mixtures 5 presents technical difficulties, which are different depending on the type of platform used.
(i) In the case of complete organisms, such as animals or transgenic plants, the technical problem is the difficulty of transforming the genome stably with a high number of similar sequences. To this we must add the difficulty of controlling the expression levels of each individual gene 10 integrated in the genome, which makes it difficult to obtain a defined mixture.
(ii) In the case of cell cultures, competition between clones during the growth phase of the crop leads to loss of diversity and therefore poor reproducibility. An alternative to obtain mixtures of defined composition is to separately produce the different components individually and to carry out the mixing afterwards. This implies maintaining parallel production and purification lines, which implies an increasing cost that is unfeasible when the complexity of the mixture reaches a certain threshold.

The present invention is based on a little studied aspect of viral infection in plants: the high spatial structuring of the clonal variants produced during the course of the infection (
Elena et al., 2011;
Sardanyes and Elena, 2011). This spatial distribution occurs as a consequence of the anatomical structure of the plants and is facilitated by a phenomenon known as "exclusion of superinfection" or "homologous interference." This phenomenon is that the presence of a "resident" viral clone in a cell or group of cells prevents their superinfection by a second "challenger" viral clone highly related to the first (Folimonova, 2012; Syller, 2012; Ziebell and Carr, 2010). This phenomenon is especially evident when experimentally infecting a plant with a complex mixture of viral variants. In this case, the different variants do not enter into competition among all of them as one would expect, which would lead to a homogeneous distribution led by the most suitable clone. On the contrary, each variant colonizes a region of the plant excluding the others and giving rise to a spatial distribution structured in 30 mosaic that allows coexistence in different cells of the same plant of the different clonal variants.

This invention describes the use of the natural phenomenon of "superinfection exclusion" or "homologous viral interference" for the production of spatially delimited sets of proteins (somatic mosaics) that can give rise to polyclonal mixtures of recombinant products of defined composition, reproducible and with high yields.

The invention makes use of viral vectors derived from a plant virus. Until now, the main advantage conferred by viral vectors is that they allow high yields of recombinant protein. This is due to its capacity for self-replication, which in turn leads to the amplification of the gene encoding the recombinant protein to be produced. There are many viral vectors described in the field literature that adapt to this description and are therefore usable to develop the method of the invention. Said viral vector can be formed either by a complete viral genome or by a viral genome from which superfluous parts have been removed, but which preserves the basic functions of the wild virus, and at least the self-replication function, the cell-to-cell movement function. cell and the ability to exert "homologous interference" between 45 related clones. Said viral vector must also be able to recombinantly incorporate a nucleotide sequence that encodes the gene (s) of interest and induce its translation into protein in the host cell. With the present invention that homologous interference property becomes as important as the high levels of production.
fifty
In the present invention, the production of a mixture formed by an N number of different recombinant proteins is performed by first cloning the N genes that encode the N proteins of interest at the same position within the viral vector. Cloning can be performed clone by clone separately, or performed together in a single cloning reaction in which all the gene variants of interest are included in the same solution. Once the N clonal variants of the viral vector have been generated, they are transferred jointly and simultaneously to the host plant using one of the different methodologies for transferring viral vectors accessible in the state of the art, in a dilution that favors the entry of an average number between zero and one of replicative entities per host cell.

In a preferred but non-limiting embodiment of the present invention, the transfer of the N clonal variants 60 of the viral vector to the plant cells is performed by transient genetic transformation mediated by Agrobacterium tumefaciens of an infectious clone of the virus, thus generating a plant. transiently multi-transgenic. Under these circumstances, one or none of the clonal variants of the viral vector is mostly replicated in each host cell. As a consequence of the cell-to-cell movement function, and eventually of the systemic movement function of the viral replicon, each viral clone moves from the 65
initially infected cell to adjacent and / or distant cells that have not been infected primarily by another viral clone, amplifying their genome there and accumulating the product of the recombinant gene. However, by virtue of the homologous interference function, each viral clone is excluded from those cells in which there is an infection already established by another resident clone. As a result, a structured mosaic distribution of the different viral clones is obtained where the relative abundance of each 5 clone is a function, among other parameters, of its ability to move from cell to cell. Homologous interference causes a structured mosaic distribution of clonal variability that minimizes the effect of competition between clones. After the time necessary for a stable mosaic to develop, the plant is homogenized and the extraction and / or purification processes are carried out, depending on the nature of the proteins to be produced, resulting in a mixture 10 complex of recombinant proteins whose composition is consistent and reproducible between experiments.

The population of recombinant proteins produced changes during the early stages of infection, but given an incubation time long enough for all plant cells to have colonized, the relative abundance of each protein in the mixture (Ci) is a function of the following parameters: (Vi) the 15 cell-to-cell movement speed of each clone; (Pi) the specific protein production levels of each clone; (ODRi) the relative abundance of each clone in the initial inoculum.

In principle, the co-existence of two or more clones in the same cell makes it necessary to include a fourth factor (Iij) that reflects in its case the result of the interaction between two clones i and j when they compete for the biosynthetic resources of the same cell. Iij is a complex, different parameter for each pair ij. The complexity of the Iij parameter makes Ci highly variable and unpredictable in systems without homologous interference. However, in the methodology described in this invention, the existence of a homologous interference phenomenon minimizes the interaction between clones, allowing the Iij parameter to be neglected and thus facilitating the predictability and reproducibility of the expression of polyclonal mixtures. 25

Therefore the described system allows the production of mixtures of high or very high complexity and even of mixtures of indefinite composition with high yields. The theoretical limit of different components that said mixture can comprise is of the same order as the total number of cells used in the production process. Since the methodology is scalable simply by increasing the number of plants, the potential complexity of the mixture is virtually unlimited. Alternatively, this methodology can be used for the production of a defined polyclonal mixture comprising N clones previously selected.

The reproducibility requirement is very advantageous, since it would allow to produce therapeutic mixtures with constant composition batch to batch. The process of the invention results in mixtures whose composition is highly reproducible between experiments. The high reproducibility of the multitransgenic expression of the process of the invention is demonstrated in the examples, where experiments are described in which mixtures of very high complexity (> 100 elements) are tested. It is noted that the possible reason for this reproducibility is the implementation of a homologous interference phenomenon, although this criterion is different from that described in the state of the art (the connection between the 40 homologous interference phenomena has not been established and reproducibility) and therefore constitutes a valid alternative to previous methods of producing complex mixtures of recombinant proteins.

In addition to the aforementioned reproducibility, the method of the invention has an important application in the production of polyclonal multiprheoretic complexes, since homologous interference prevents the formation of multiproteral complexes other than those desired. Thus, when the clones to be expressed form homopolymers, such as homodimers or homotetramers, the co-expression of two or more clones in the same cell by traditional methods leads to the formation of an inconsistent mixture of heteropolymers. In contrast, the process of the invention favors the preferential formation of homodimers. Likewise, the method of the invention facilitates polyclonal expression of mixtures of heteropolymers of defined composition, as is the case of polyclonal antibodies.

In this particular case, each heavy chain has an accompanying light chain. When expressing polyclonal mixtures in systems without homologous interference, a phenomenon known as "chain shuffling" takes place, whereby each heavy chain can be joined with any light chain other than its companion, giving rise to an antibody of suboptimal activity. The method of the invention minimizes the effect of shuffling chains by minimizing interference between clones.

DETAILED DESCRIPTION OF THE INVENTION
60
The present invention refers to a method for the production of at least one complex repertoire of N recombinant molecules, characterized by comprising the following steps:

i) assemble a collection of N distinct nucleotide sequences in a viral target vector derived from a plant virus that in its infection mechanism presents the property known as “interference 65
homologous ”or“ superinfection exclusion ”, in such a way that a collection of viral clones is generated;

ii) transfer of the collection of viral clones jointly and simultaneously to a host plant or an organ or tissue of a host plant that is capable of harboring replication and movement of the viral vector. 5

iii) generation of a transiently multi-transgenic plant structured in the form of a somatic mosaic where more than 80%, preferably more than 90%, of the cells express exclusively one of the N recombinant molecules, or express it very largely, in a proportion molar representing at least 80%, preferably at least 90%, of the total of N recombinant molecules 10 produced in that same cell.

In a preferred embodiment of the present invention, the method described above is characterized in that the N recombinant molecules are N recombinant proteins. In this case, step i) is characterized by assembling a collection of N distinct nucleotide sequences that correspond to the coding sequences 15 of each of the different N proteins that are to be produced in polyclonal format, in a viral destination vector derived from a plant virus that in its infection mechanism presents the property known as "homologous interference" or "exclusion of superinfection", in a way that allows its translation into proteins, forming a collection of viral clones. Likewise, step ii) is characterized by the transfer of the collection of viral clones jointly and simultaneously to a host plant or an organ or tissue of a host plant that is capable of harboring replication and movement of the viral vector , as well as the translation of the N recombinant proteins.

In another preferred embodiment of the present invention, the method described above is characterized in that the viral vector of destination of step ii) is in the form of an infective clone inserted into a binary vector and uses the transient transformation based on Agrobacterium tumefaciens as mechanism of entry into the cells of the host plant thus generating a multi-transgenic plant that expresses the N recombinant molecules, preferably N recombinant proteins, in the form of a somatic mosaic. Preferably, the viral vector is devoid of its systemic movement function. More preferably, the viral vector is delivered to the host plant cells by a mechanical system. Even more preferably, the mechanical system 30 is selected from the following group: vacuum infiltration, overpressure infiltration and spray.

In another preferred embodiment of the present invention, the method described above is characterized in that the N nucleotide sequences of step i) encode at least one sequence variant of a family of proteins. Preferably, the family of proteins is selected from the following group: enzymes, immunoglobulins, membrane receptors, intracellular receptors, and lectins.

In another preferred embodiment of the present invention, the method described above is characterized in that it is combined with an expression system without homologous interference that allows the production of heteromultimeric proteins where some of the components of the multimer are variable and are produced by the system. with interference, while other components are constant and are produced by the non-interfering system.

In another preferred embodiment of the present invention, the method described above is characterized in that the N nucleotide sequences of step i) encode at least one variable sequence of at least one immunoglobulin. Preferably, the immunoglobulin is produced by lymphocytes obtained from animals immunized against an antigen.

In another preferred embodiment of the present invention, the method described above is characterized in that the N nucleotide sequences of step i) encode at least one variable sequence of at least one immunoglobulin or its fragment, selected by an in vitro selection technique of recombinant antibodies (phage display).

The present invention also refers to the use of the method described above, to recombinantly produce a complex mixture of homopolymers. 55

Likewise, the present invention also refers to the use of the method described above to recombinantly produce a complex mixture of heteropolymers where each cell produces a single type of heteropolymer, minimizing the "chain shuffling" effect.
60
The present invention also refers to a transiently multi-transgenic plant or a fragment thereof, characterized in that it is obtained in step iii) of the method described above, plant or plant fragment (organ, tissue) transfected with a collection of viral clones as described in step ii) of the method described in claim 1, and expressing a polyclonal mixture of proteins.
65
Preferably, the plant or fragment thereof expresses in whole or in part and recombinantly, at least one complex repertoire of polyclonal antibodies. More preferably, polyclonal antibodies are similar to those produced by an animal or a group of animals in response to an immunization process against an antigen, a group of antigens or a pathogen.
5
The present invention also refers to a crude extract obtained from a plant described above.

Likewise, the present invention also refers to a purified or partially purified mixture of antibodies obtained from a crude extract described above. 10

Finally, the present invention also refers to a complex repertoire of N recombinant molecules, characterized in that it is produced by the method described above. Preferably, the N recombinant molecules are N recombinant proteins. More preferably, the N recombinant proteins are selected from the following group: polyclonal antibodies, antivenoms based on antisera, immunological sera for passive immunity, and intravenous immunoglobulins.

The method of the invention begins with the cloning of DNA fragments encoding recombinant proteins into a viral vector derived from a plant virus such as TMV, PVX, CTV, CMV or any other virus that exhibits homologous interference property. twenty

In a particular embodiment of the technique, the vector is derived from a single stranded RNA virus. In another particular embodiment, the viral vector consists of a single-stranded RNA virus that maintains in its genome the functions of replication and cell-to-cell movement but has eliminated the function of systemic movement. The systemic movement, which takes place through the vascular bundles, can generate necks of 25 bottles in the extension of the viral clones throughout the plant, so that their suppression facilitates the reproducibility of the technique.

The transfer of DNA fragments to the viral vector can be performed by any of the techniques for assembling DNA fragments accessible to the state of the art, such as digestion / ligation with enzymes of type II restriction, digestion / cyclic ligation with restriction enzymes IIS type, site-specific recombination, independent ligase cloning, homologous recombination or PCR assembly techniques.

The DNA fragments can be incorporated, either one at a time, or in a group, generating a library of viral vectors, each comprising a different sequence. 35

In a particular embodiment of the technique, the different DNA fragments can encode different complete antibodies comprising different variable sequences from humans, mice, camelids or other mammals.
40
In another particular embodiment, the DNA fragments may encode scFv or VHH antibody fragments from humans, mice, camelids or other mammals.

In another particular embodiment, each viral vector can incorporate two or more DNA fragments at two different positions of its genome, encoding, for example, a heavy chain of an antibody and the corresponding light chain of the same antibody so that the co- Expression of both in the same cell results in a functional combination.

In all cases, the final result will be a collection of F clones of the viral vector containing fragments or combinations of recombinant DNA fragments that together represent N distinct sequences, where N is any value between 2 and F.

Next, the F viral clones comprising N different recombinant sequences are transferred together and simultaneously to the plant cells of the host plant using some of the state-of-the-art mechanisms to induce the formation of viral replicons. The host plant can be any plant species capable of harboring a viral replicon. It can be a complete plant or an explant of it as a leaf or other organ such as a fruit or a root. In a particular embodiment, the host plant is a plant of the Nicotiana genus. In another particular embodiment the host plant belongs to the Nicotiana benthamiana species.
60
In a particular embodiment, the joint transfer of the various viral clones to the cells of the host plant may be mediated by the bacterium Agrobacterium. Said bacterium is capable of transferring a DNA fragment (T-DNA) that comprises the gene or genes of interest to the plant cell, so that they are produced by the plant cell. The transfer is transient because it does not require integration of the T-DNA into the chromosome of the cell, so the T-DNA is not transferred to the germ line and its expression lasts a few days. In this 65
particular embodiment, viral replicons can be introduced entirely into the T-DNA to be transferred in the form of a copy DNA introduced into the bacterial T-DNA. In this way, Agrobacterium functions as a shuttle to transfer the viral replicon into the cell.

To obtain the polyclonal production of recombinant proteins using Agrobacterium tumefaciens as a shuttle, the viral vector library must preferably be integrated into a binary vector containing a T-DNA, so that the viral sequence is under the regulation of a promoter that operates in the host cell. Each of the clones of the binary vector collection is transferred, either one at a time, or together, to Agrobacterium tumefaciens cells, generating a polyclonal collection of Agrobacterium strains. This process can be done directly, either through an intermediate step in 10 Escherichia coli that facilitates the transformation process. In this second case, the library is first transferred to Escherichia coli cells, resulting in a collection of independent colonies. Subsequently, colonies are grown independently or together under conditions that minimize the loss of diversity, isolating from these colonies the collection of binary plasmids. From this last preparation, the competent cells of Agrobacterium tumefaciens are transformed to give rise to a "seed" collection of Agrobacterium.

The "seed" collection comprises one or more Agrobacterium cultures obtained from the initial transformation of the binary plasmid collection into a preparation of competent Agrobacterium cells. The collection can be maintained in the form of F Agrobacterium cultures, each housing one of the F 20 clones, kept separately and stored in freezing conditions. In this case F must be greater than or equal to N. This option is the usual one for a small and known N number, such as 5, 10, 20 or 100 different sequences, in which case F is usually equal to N. It is also the usual case for a small but unknown N number, such as 5, 10, 20 or 100 different sequences, in which case F is usually greater than N. Alternatively, when N is a large number, generally greater than 10 and usually greater than 25 than 50 and even greater than 1000, the "seed" collection can be conserved in a joint stock maintained under freezing or lyophilization conditions containing a number F of viable bacteria, where F is much greater, at least an order of magnitude greater than N.

To obtain a recombinant polyclonal mixture, the Agrobacterium seed culture is grown long enough to at least double and usually multiply by 5 or even 10 or more the initial number of cells contained in the initial aliquot. This culture is then transferred to a suitable buffer solution, it is conveniently diluted to obtain the infiltration mixture, which is subsequently inoculated at some discrete point of the host plant by means of some of the agroinoculation technologies available in the state of the art. 35

In a particular embodiment, viral clones are devoid of systemic movement capacity. In this case, the infiltration mixture is artificially delivered to the largest possible number of host cells. For this, the Agrobacterium cells present in the infiltration mixture are contacted with the host plant cells so that the former are competent to transfer their T-DNA at 40 seconds efficiently. This can be done through agroinfiltration, by vacuum immersion or by any other system available to the state of the art, such as spray techniques, use of abrasives, surfactants, etc.

Once the T-DNA reaches the nucleus of some cells, the replicon is transcribed, giving rise to an active viral genome that replicates in the initial cell and is transferred to neighboring cells. Then the plant infected by the polyclonal mixture of replicons is maintained in favorable conditions of light and humidity for a variable period of time that includes between 4 days minimum and the complete cycle of growth of the plant maximum; During this time the viral clones replicate, move cell to cell until they find a cell occupied by another replicon, and translate the protein of interest whose information they house in their genome. In a whole, the final result is a mosaic distribution of the different clones across the surface of the plant. In said mosaic, each tile is formed by a variable number of cells. The inner cells of the tile express exclusively one of the recombinant proteins of the mixture, or at least express it in a very large molar proportion, where the range of contamination with other proteins in the mixture is less than the limit of detection of fluorescent proteins in a confocal microscope and in any case less than 10% in molar ratio. Exceptionally, some cells located on the border between two adjacent tiles can express more than one recombinant protein in molar proportions close to 50%. The total number of these border cells capable of simultaneously expressing more than one recombinant protein is a function of the average size of the tiles. The average size of the tiles depends on the concentration of Agrobacterium cells in the infiltration mixture, and by extension of the total optical density of the culture (ODT), this parameter being experimentally modulable. Together, the maximum number of cells susceptible to co-expressing detectably more than one fluorescent protein can be experimentally adjusted to be less than 10%, or less than 5% and possibly less than 1%.
65
After the incubation time, the plant material is harvested and the set of proteins of interest is purified using a purification method that is common to all components of the mixture, obtaining a polyclonal mixture of proteins of defined composition.

The present invention allows modulating the size and number of tiles of the expression mosaic by manipulating the optical density of the infiltration mixture. Thus, infiltration mixtures of N clones with ODT of 0.1 result in larger tiles than infiltration mixtures containing the same N clones at an ODT of 0.033. In turn, infiltration mixtures of N clones with ODT of 0.033 give rise to larger tiles than infiltration mixtures containing the same N clones at an ODT of 0.01. Large tiles containing on average several tens or even hundreds of cells need lower concentrations of 10 Agrobacterium, which facilitates the elimination of possible toxins associated with this bacterium. In addition, the use of large tiles minimizes the residual interaction between clones, since this takes place primarily in the border zone between adjacent tiles. On the other hand, the use of small tiles, comprising a few cells or tens of cells on average, facilitates the expression of a greater number of clones per plant, favoring polyclonal diversity. Likewise, the use of small tiles formed by a few 15 cells or dozens of cells minimizes the influence of the speed of movement (Vi) on the final composition of the mixture.

In the present invention reference is made to a "seed" collection, which comprises a number N of distinct and known clones, conserved separately in the form of N cryopreserved cultures. Likewise, the present invention allows modulating the final composition of the polyclonal mixture by manipulating the composition of the infiltration mixture. Given a sufficiently long incubation time for all plant cells to have colonized, the relative abundance of each protein in the mixture (Ci) will be a function of the following parameters: (Vi) the cell-to-cell movement speed of each clone; (Pi) the specific protein production levels of each clone; (ODRi) the relative abundance of each clone in the initial inoculum. Being Pi and Vi constant and specific values for each clone, it is possible to manipulate the composition of the mixture by modifying the ODRi values for each clone. For this, the N seed clones are grown separately long enough to at least double and usually multiply by 5 or even 10 or more the initial number of cells contained in the initial aliquot. The optical density of each crop is then determined and the different cultures are mixed in defined proportions to give rise to the final infiltration mixture. The manipulation of the relative ODs of each clone allows the final composition of the mixture to be modulated significantly and reproducibly, since this parameter determines the relative abundance of the initial foci that infect the plant for each clone.

In a particular embodiment of the technique, polyclonal expression based on viral vectors with homologous interference is combined with another expression system that does not exhibit the phenomenon of homologous interference. In a particular embodiment, the second "non-interfering" system consists of the Agrobacterium-mediated transfer of a T-DNA that does not comprise any self-replicative structure. This particular embodiment makes it possible to produce recombinant multiprheoretic complexes in which one or more of the components of the mixture are variable and are expressed through the use of a platform with homologous interference, and the rest of the components are constant for all clones and are co-express through a system without homologous interference. In another particular embodiment of the mixed process, the variable part of the multiproteic complex is constituted by a polyclonal mixture of antibodies or antibody fragments, while the constant part is formed by a constant peptide that mediates the formation of polymeric antibody structures such as the chain. J, or by a structure that protects antibodies against proteolytic degradation as the Secretory Component.

In the present invention, the term "complex repertoire of N recombinant molecules" refers to N recombinant DNA or RNA molecules, N recombinant proteins encoded by said DNA or RNA molecules, or the metabolites resulting from the activity of said N recombinant proteins . Preferably, this term refers to a set of more than 10 DNA or RNA molecules that differ from each other in at least one nucleotide of their nucleotide sequence or a set of more than 10 different proteins that differ from each other in at least one amino -Acid of its peptide sequence and that are produced in an organism other than those that are original by recombinant DNA strategies.
55
In the present invention, the term "N recombinant proteins" refers to N enzymes, N immunoglobulins, N membrane receptors, N intracellular receptors, N lectins N polyclonal antibodies, N antivenoms based on antisera, N immunological sera for passive immunity, and No intravenous immunoglobulins.

In the present invention, the term "collection of N distinct nucleotide sequences" refers to a set 60 consisting of an indeterminate number of DNA or RNA fragments that differ from each other at least in a nucleotide position within their sequence.

In the present invention, the term "target viral vector" refers to a nucleic acid derived from a virus that encodes the functions necessary for reproduction in the host cell and into which they are integrated
recombinant those nucleic acid fragments that are intended to express recombinantly.

In the present invention, the term "viral clone collection" refers to a set of nucleic acids derived from a virus that differ in sequence in at least one nucleotide.
5
In the present invention, the term "host plant" refers to any plant organism in whose cells replication of a virus or a viral vector can take place.

In the present invention, the term "transiently multi-transgenic plant structured in the form of a somatic mosaic or a fragment thereof" refers to a complete plant or a fragment of a plant comprising a set of more than two cells, in which has been introduced through genetic transformation techniques a set of transgenes in such a way that each individual cell receives and expresses zero, one or more of a transgene, which transgenes are not necessarily identical to those received and expressed by the rest of the cells of the set, and in which the packet of zero one or more received genes may or may not be stably integrated into the genome and therefore may or may not be transmitted to the progeny and stop expressing themselves in said cells after a certain time.

In the present invention, the term "infective clone inserted in a binary vector" refers to a DNA sequence derived from a plant virus that is inserted into a binary vector and which, when transferred to the nucleus of a cell, is capable of inducing its own transcription giving rise to an RNA molecule with the ability to infect the host cell.

In the present invention, the term "transient transformation based on Agrobacterium tumefaciens" refers to a transfer of one or more DNA molecules from the cytoplasm of the Agrobaterium bacteria to the nucleus of the plant cell, which occurs transiently without occurrence. necessarily the stable integration of said DNA molecules or part thereof into the chromosomal DNA of the host cell.

In the present invention, the term "systemic movement function" refers to the ability of a plant virus to move long distances within the host plant traveling through its vascular system.
30
In the present invention, the term "mechanical system" refers to any method that involves the application of a force, an external pressure or an electric current or any other membrane permeabilization mechanism to favor the entry of a DNA into the host cell. .

In the present invention, the term "sequence variant of a family of proteins" refers to each of the individual variants that can be presented in a set of proteins of the same family.

In the present invention, the term "expression system without homologous interference" refers to any recombinant protein production system that is based on a vector that naturally does not exhibit the phenomenon of homologous interference, that is, in the case If two or more clones of said vector colonic the same cell, they do not necessarily exclude each other so that none of them necessarily prevails over the others.

In the present invention, the term "variable immunoglobulin sequences" refers to regions of immunoglobulin proteins that exhibit high sequence variability and where their ability to bind to the antigen resides.

In the present invention, the term "variable sequences of immunoglobulins or their fragments selected by an in vitro selection technique of recombinant antibodies such as phage display" refers to all or part of one or several variable regions of immunoglobulins selected for their binding ability at a certain antigen or set of antigens by in vitro selection procedures.

In the present invention, the term "complex repertoire of polyclonal antibodies" refers to a set consisting of a greater number of ten different immunoglobulin proteins, where the difference between them lies, at least partially, in the amino acid sequence of their variable regions. 55

In the present invention, the term "crude extract" refers to a complex mixture of compounds, obtained from a plant or plant tissue and obtained by an extraction process that includes the breakdown of plant tissue cells from from which it is obtained and the solubilization of the cellular compounds released in a suitable solvent. 60

In the present invention, the term "purified or partially purified mixture of antibodies obtained from a crude extract" refers to a set of N distinct antibodies, which differ from each other at least in one amino acid of their peptide sequence, isolated from of a crude extract of the plant material where they are produced recombinantly under conditions that allow the total or partial elimination of the rest of the 65
cellular compounds present in the extract.

In the present invention, the term "complex repertoire of antivenoms based on antisera" refers to a set of immunoglobulins obtained from sera from animals immunized with a toxic substance.
5
In the present invention, the term "complex repertoire of immunological sera for passive immunity" refers to a set of immunoglobulins obtained from sera of animals immunized against a pathogen or a toxic substance and which are effective in protecting a receiving organism against said pathogen or said substance, without the need to activate an immune response in the receiving organism. 10

In the present invention, the term "complex repertoire of intravenous immunoglobulins" refers to a set consisting of an indeterminate number of different immunoglobulins that can be delivered to an animal or a human being intravenously to produce some kind of benefit.
fifteen
Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention. twenty

DESCRIPTION OF THE FIGURES

Figure 1. Individualized production of VHHs. (A) Alignment of amino acid sequences of the 9 VHHs produced in N. benthamiana plants: SEQ. ID. No. 1, SEQ. ID. No. 2, SEQ. ID. No. 3, SEQ. ID. No. 4, SEQ. 25 ID. No. 5, SEQ. ID. No. 6, SEQ. ID. No. 7, SEQ. ID. No. 8, SEQ. ID. No. and SEQ. ID. No. 9. (B) Western Blot analysis of the different VHHs produced individually.

Figure 2. Production of an oligoclonal repertoire of VHHs in a transiently oligo-transgenic plant. (A) SDS-PAGE analysis of purified fractions (E1 and E2) and final washing (F) of a repertoire of 9 VHHs 30 produced in a transiently oligo-transgenic plant of the invention. Discreet protein banding is revealed with Coomassie blue. (B) 2D electrophoresis with development of silver nitrate of fraction E2.

Figure 3. Production of a polyclonal repertoire of VHHs in a transiently multi-transgenic plant. (A) SDS-PAGE analysis of purified fractions (E1 and E2) and the last wash (F) of a repertoire formed by an indefinite number of VHHs (F> 104) produced in a transiently multi-transgenic plant of the invention. Continuous protein banding is revealed with Coomassie blue. (B) 2D electrophoresis with development by differential fluorescent labeling (DIGE) of three E2 fractions corresponding to three independent experiments producing polyclonal VHHs. The three experiments were carried out from the same seed crop of Agrobacterium tumefaciens that houses a library of VHHs obtained from sera from 40 non-hyper-immunized camels.

Figure 4. Scatter plots of purified polyclonal VHH fractions produced in three independent experiments. The axis of abscissa represents the intensity ratio between two experiments for each spot. The ordinate axis represents the absolute intensity (volume) of each spot in the 45 DIGE experiment.

EXAMPLES

The invention will now be illustrated by tests carried out by the inventors, which show the effectiveness of the invention in producing multi-transgenic plants as well as the reproducibility of the method for the production of complex repertoires of recombinant molecules, preferably recombinant proteins, object of the present invention. Specifically, the tests carried out show the production of complex repertoires of N recombinant proteins. The existence of N recombinant proteins necessarily implies the presence of N recombinant DNA and RNA molecules precursors thereof. These specific examples provided serve to illustrate the nature of the present invention and are included for illustrative purposes only, and therefore should not be construed as limitations to the invention claimed herein. Therefore, the examples described below illustrate the invention without limiting its scope of application.
60
EXAMPLE 1. Production of an oligoclonal mixture of camel nano-antibodies (VHHs) in transiently oligo-transgenic N. benthamiana plants

To demonstrate the possibilities of polyclonal expression based on homologous interference for the production of mixtures of recombinant molecules, preferably recombinant proteins of industrial interest or
Pharmaceutically, a small collection of clones of single-chain camelid antibody fragments (also called nanobodies or VHHs) was used preferentially and non-limitingly.

In this example, the possibility of simultaneously producing a discrete number (N <10) of recombinant proteins giving rise to a mixture of defined composition (oligoclonal) where the identity of each and every one of the proteins in the mixture is known. For this, a population of VHHs was amplified from a cDNA preparation obtained from a fraction of nucleated camel blood cells using oligonucleotides VHHF (SEQ. ID. No. 10) and VHHR (SEQ. ID. No. 11) . From said amplification, the VHHs were transferred to the pGTMV vector (SEQ. ID. No. 12) using a GoldenGate reaction of a single fragment (
Engler et al., 2009;
Engler et al., 2008;
Sarrion-Perdigones et al., 2011) 10 mediated by T4 ligase and BsaI restriction enzyme in a 35-cycle incubation. In this way, the nine different clones (pGTMV_VHH1 to pGTMV_VHH9) that were used in the oligoclonal expression were isolated. All constructs contained a fusion to a tail of six histidines incorporated by the pGTMV vector. Nucleotide sequences of the coding regions of each of the 9 cloned VHHs are shown as SEQ. ID. No. 1, SEQ. ID. No. 2, SEQ. ID. No. 3, SEQ. ID. No. 4, SEQ. ID. No. 5, SEQ. ID. No. 15 6, SEQ. ID. No. 7, SEQ. ID. No. 8, SEQ. ID. No. and SEQ. ID. No. 9. An amino acid alignment of the VHH sequences involved in the experiment is shown in FIGURE 1A.

First, the individualized expression of the different VHH was tested. All clones derived from pGTMV were transferred to Agrobacterium tumefaciens and preserved as seed crops. 20 Subsequently, a 10 L aliquot of each of the seed cultures was thawed and grown at 28 ° C under agitation (200 rpm) for 18h in 1 mL of LB with 12g / mL of Carbencillin and 50 g / mL of Rifampicin. Next, 100 µL of each culture was transferred to 5 mL of LB with 12 µg / mL of Carbencillin and 50 µg / mL of Rifampicin and grown for 18h at 28 ° C under agitation (200 rpm). The resulting cultures were centrifuged at 500 g for 15 minutes and the cell precipitate was resuspended in 10 mL of infiltration buffer (10MM 25 month pH 5.6, 10mM calcium chloride, 2M acetosyringone).

Similarly, we proceeded with Agrobacterium cultures that house the 5'de deconstructed TMV module (pICH17388) and the integrase module (PICH14011) necessary for the establishment of the viral replicon (
Marillonnet et al., 2004a). The optical density (OD) of each Agrobacterium culture was measured and the relevant dilutions were made in infiltration buffer to bring each culture to an OD = 0.1 measured in a spectrometer. Nine mixtures were subsequently made, one for each VHH (pGTMV_VHHi: pICH17388: PICH14011 in a 1: 1: 1 ratio), and each mixture was infiltrated separately in the intercellular spaces of Nicotiana benthamiana leaves by means of a needleless 2 mL syringe. 3 leaves per sample were infiltrated, using different plants. During the days following the infiltration, the appearance of a necrosis phenomenon similar to the hypersensitive response (HR) was observed in some clones, so it was decided to advance the collection process prior to the appearance of symptoms (6 dpi) and collect all the plants in that phase. After collection the samples (whole leaves) were weighed and frozen in liquid nitrogen and stored in a freezer at -80 ° C. To extract the plant material, the plant material was crushed in a mortar in the presence of liquid nitrogen with PBS buffer in a 1: 3 ratio (tissue weight: buffer volume). Subsequently, the crude extract was centrifuged at 10 krpm for 15 min at 4 ° C and the supernatant was filtered twice with filter paper and once more in steriCup filters. The resulting extract was passed through a Ni Agarose affinity column and the purified proteins were eluted in 50 mM phosphate buffer at pH4.0 and the elution fraction was immediately neutralized with 1/5 volume of PBS. An aliquot of 6 µl of each elution was resolved in a PAGE electrophoresis and revealed by Western blot using a murine anti-histidine primary antibody followed by a secondary anti-mouse antibody conjugated to horseradish peroxidase. The result of said Western blot can be seen in FIGURE 1B. All tested VHHs were expressed and purified in N. benthamiana, although with different yields. Thus, VHH4, VHH5, VHH6, VHH7, VHH8 and VHH9 were produced at levels between 80 and 120 g of purified protein per gram of fresh weight, while for the remaining three VHHs levels were obtained between 2 and 10 g of protein per gram of fresh weight. fifty

The oligoclonal expression of the nine VHHs was then tested. For this, the seed crops were grown individually as described in the previous experiment, but in this case all the crops were combined in a single mixture of infiltration formed by the crops (pGTMV_VHH1: pGTMV_VHH2: pGTMV_VHH3: ...: pGTMV_VHH9 .pICH17388: PICH14011) in proportion (1: 1: 1:…: 1: 9: 9). A single infiltration was made in three leaves of three different plants of N. benthamiana. After 6 dpi, the plant material was collected and the recombinant proteins were purified following the procedure described above. As a result, a mixture of VHHs was obtained with a yield of 80 µg of purified protein per gram of fresh weight. The mixture was resolved by PAGE electrophoresis as shown in FIGURE 2A. This figure shows the runs corresponding to the last wash (F) and two successive elutions (E1 and E2) of the purification process 60. In said electrophoresis, revealed with Coomassie blue, a discrete pattern of bands is observed compatible with the simultaneous expression of several VHHs. Since the different VHHs have similar sizes, they were then resolved based on isoelectric point differences by two-dimensional electrophoresis. Thus, 25 deg of the affinity purified recombinant polyclonal mixture was resolved in 2D gels with a pH range between 4.0 and 9.0, and subsequently 65
by staining with silver. FIGURE 2B shows the result of 2D electrophoresis, in which it is possible to identify a minimum of 9 differentiable spots in the band of molecular weights corresponding to VHH type proteins, which demonstrates the oligoclonal composition of the sample.

EXAMPLE 2. Production of a polyclonal mixture of VHH 5 antibodies

This example demonstrates the possibility of producing complex or very complex repertoires (N> 100) of recombinant proteins of unknown composition in reproducible form. For this, a Goldengate reaction was performed with the VHHs amplified with the SEQ oligos. ID. No. 1, and SEQ. ID. No. 2 from cDNA obtained from a fraction of nucleated camel blood cells and said reaction mixture was directly transformed into competent Agrobacterium GV2011 cells subsequently seeded in LBAgar plates supplemented with 50 µg / mL kanamycin. The resulting 2x104 clones were collected directly from the plates in 0.5 mL aliquots of LB medium and frozen at -80 ° C in the presence of 15% glycerol. Subsequently, one of the aliquots was thawed and subcultured in 5 mL of LB for 2 hours. The resulting culture (pGTMV_VHHp culture) was centrifuged at 500 g for 15 minutes and the cell pellet was resuspended in 10 mL of infiltration buffer (10mM MES pH 5.6, 10mM calcium chloride, 2M acetosyringone). Similarly, we proceeded with Agrobacterium cultures that house the 5'de deconstructed TMV module (pICH17388) and the integrase module (PICH14011) necessary for the establishment of the viral replicon (
Marillonnet et al., 2004b). The OD of each Agrobacterium culture was measured and the relevant dilutions were made in infiltration buffer to bring each culture to an OD = 0.1 measured in a spectrometer. Subsequently, the cultures were combined in the appropriate ratio (1: 1: 1) (pGTMV_ VHHp: pICH17388: PICH14011) and the mixtures were infiltrated in N. benthamiana leaves. To check the reproducibility of the polyclonal expression, the same experiment was repeated on two other occasions with a different group of plants based on two new cryopreserved aliquots of pGTMV_VHHp. In total, three independent experiments (EXP1, EXP2 and EXP3) were performed. In all cases, they were allowed six days after infiltration and 25 collection. After 6 dpi in each case, the plant material was collected separately and the recombinant proteins were purified following the procedure described in the previous experiment. A PAGE analysis of the purified VHHs revealed no differences in the size pattern of the mixture (FIGURE 3A). This figure shows the runs corresponding to the last wash (F) and two successive elutions (E1 and E2) of the purification process of one of the experiments. In said electrophoresis, revealed with Coomassie blue, a continuous pattern of bands is observed compatible with the simultaneous expression of multiple VHHs.

Subsequently, the three polyclonal mixtures of VHHs were solved together in response to isoelectric point differences by two-dimensional electrophoresis. Thus, 10 µg of each affinity-purified recombinant polyclonal mixture 35 were each labeled with a different fluorophore and subjected to a DIGE analysis resolving on a 2D gel with a pH range between 4.0 and 9.0. Subsequent scanning shows the 2D footprint of each of the recombinant mixtures labeled with a different fluorophore. The distribution pattern of the spots was very similar in the three experiments (FIGURE 3B), which demonstrates the reproducibility of the technique. 2D gels were analyzed with the Decyder software package. 40 A minimum number of 216 major spots were detected. All major spots turned out to be coincident in all three experiments. From the volume data of each spot, a dispersion analysis of the data between the different experiments taken two by two was performed. The narrow distribution of the dispersion between experiments is shown graphically in FIGURE 4A, indicating high reproducibility between independent experiments. The scatter plot shown in FIGURE 4 represents for every 45 points the logarithm of the ratio between the relative intensities of that point in the two experiments in comparison. The height on the ordinate axis represents the intensity (volume) of each spot analyzed. It is observed that only some spots of very low intensity have significant differences, possibly due to differences in sensitivity, while most of the spots are centered on a very narrow margin around the zero logarithm value of the expression ratios. fifty

Mass sequencing assays have been performed that show the production of complex repertoires of N recombinant molecules. Finally, the production of complex repertoires of recombinant antibodies obtained from hyper-immunized animals has been tested.

ES201231466A 2012-09-21 2012-09-21 PRODUCTION METHOD OF COMPLEX REPERTORIES OF RECOMBINANT MOLECULES Active ES2456823B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES201231466A ES2456823B1 (en) 2012-09-21 2012-09-21 PRODUCTION METHOD OF COMPLEX REPERTORIES OF RECOMBINANT MOLECULES
PCT/ES2013/070653 WO2014044892A1 (en) 2012-09-21 2013-09-19 Method for the production of complex repertoires of recombinant molecules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201231466A ES2456823B1 (en) 2012-09-21 2012-09-21 PRODUCTION METHOD OF COMPLEX REPERTORIES OF RECOMBINANT MOLECULES

Publications (2)

Publication Number Publication Date
ES2456823A1 ES2456823A1 (en) 2014-04-23
ES2456823B1 true ES2456823B1 (en) 2015-01-27

Family

ID=50340615

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201231466A Active ES2456823B1 (en) 2012-09-21 2012-09-21 PRODUCTION METHOD OF COMPLEX REPERTORIES OF RECOMBINANT MOLECULES

Country Status (2)

Country Link
ES (1) ES2456823B1 (en)
WO (1) WO2014044892A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050241023A1 (en) * 1989-10-27 2005-10-27 The Scripps Research Institute Transgenic plants expressing assembled secretory antibodies
US7005560B1 (en) * 1989-10-27 2006-02-28 The Scripps Research Institute Transgenic plants expressing assembled secretory antibodies
EP1118669A3 (en) * 1999-12-17 2001-08-29 Unilever Plc Production of camelid antibodies in plants
CA2872136C (en) * 2002-07-18 2017-06-20 Merus B.V. Recombinant production of mixtures of antibodies
US20120034207A1 (en) * 2010-06-16 2012-02-09 Mclean Michael D Production of her receptor antibodies in plant

Also Published As

Publication number Publication date
ES2456823A1 (en) 2014-04-23
WO2014044892A1 (en) 2014-03-27

Similar Documents

Publication Publication Date Title
Klimyuk et al. Production of recombinant antigens and antibodies in Nicotiana benthamiana using ‘magnifection’technology: GMP-compliant facilities for small-and large-scale manufacturing
Hennacy et al. Prospects for engineering biophysical CO2 concentrating mechanisms into land plants to enhance yields
Buyel et al. Predictive models for transient protein expression in tobacco (Nicotiana tabacum L.) can optimize process time, yield, and downstream costs
Gleba et al. Magnifection—a new platform for expressing recombinant vaccines in plants
Sarrion-Perdigones et al. GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules
Whitney et al. Isoleucine 309 acts as a C4 catalytic switch that increases ribulose-1, 5-bisphosphate carboxylase/oxygenase (rubisco) carboxylation rate in Flaveria
Lai et al. Bioprocessing of plant-derived virus-like particles of Norwalk virus capsid protein under current Good Manufacture Practice regulations
Chen et al. Transient protein expression by agroinfiltration in lettuce
Berndt et al. Recombinant production of a functional SARS-CoV-2 spike receptor binding domain in the green algae Chlamydomonas reinhardtii
Rigano et al. Production of pharmaceutical proteins in solanaceae food crops
Pinnola et al. Heterologous expression of moss light-harvesting complex stress-related 1 (LHCSR1), the chlorophyll a-xanthophyll pigment-protein complex catalyzing non-photochemical quenching, in Nicotiana sp.
Gisbert et al. Overexpression of BvHb2, a class 2 non-symbiotic hemoglobin from sugar beet, confers drought-induced withering resistance and alters iron content in tomato
ES2365602T3 (en) CHAPERONA TYPE OLIGOMERIC PROTEINS, STABLE TO DENATURALIZERS AND / OR PROTEASA RESISTANT, POLINUCLEOTIDES CODING THE SAME AND ITS USES.
Shang et al. Effects of CO 2 enrichment, LED inter-lighting, and high plant density on growth of Nicotiana benthamiana used as a host to express influenza virus hemagglutinin H1
Fujiuchi et al. Effects of plant density on recombinant hemagglutinin yields in an Agrobacterium‐mediated transient gene expression system using Nicotiana benthamiana plants
CN105131098A (en) HPE109 protein related to plant photosynthesis activity as well as encoding gene and application thereof
ES2456823B1 (en) PRODUCTION METHOD OF COMPLEX REPERTORIES OF RECOMBINANT MOLECULES
ES2644262T3 (en) Method for the generation and cultivation of a block of plant cells
Rosales-Mendoza et al. Transplastomic plants yield a multicomponent vaccine against cysticercosis
CN108570469A (en) Sedum lineare resistant gene of salt SLTATS and its application
Mejima et al. Determination of genomic location and structure of the transgenes in marker-free rice-based cholera vaccine by using whole genome resequencing approach
Bolaños-Martínez et al. Carrot cells expressing the VP1 and VP2 poliovirus proteins effectively elicited mucosal immunity
ES2452641T3 (en) Protein with the activity of the pyrethrin biosynthetic enzyme, protein coding gene and gene carrier vector
CN109402135A (en) Sedum lineare resistant gene of salt SLBHLH and its application
CN104651373B (en) The albumen and application of sweet wormwood AaGTD1 genes and its coding

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2456823

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20150127