DESCRIPCION 5 Dispositivo hiper-hipo sustentador para la region de la raiz de una pala de aerogenerador Campo de la invencion 10 La invencion se situa en el ambito de la mecanica de fluidos, y mas concretamente de la maquinaria para aprovechamiento de la energia del viento. La invencion es valida para cubrir todo el rango de potencias y preferentemente formard parte de un generador eOlico para generar energia electrica. La invencion se refiere a un dispositivo hiper-hipo sustentador para la regi6n de la raiz de una pala de aerogenerador. 15 Antecedentes Las palas de los aerogeneradores se conforman con perfiles aerodinamicos a to largo 20 de casi toda su longitud. En la regi6n denominada de raiz, que es la parte de la pala mas cercana al eje de rotacion del buje del aerogenerador, la pala parte de forma totalmente cilindrica para gradualmente ir pasando a un perfil aerodinamico muy grueso y avanzar con perfiles cada vez menos gruesos hasta llegar a la region intermedia que ya se realiza con perfil aerodinamico de anchura estandar. La parte 25 cilindrica depende del disello del aerogenerador, pero es normal que su longitud pueda llegar a ser de varios metros. La parte cilindrica no experimenta fuerza de sustentaciOn alguna, siendo el coeficiente de sustentacion CL nub, y solo aporta a la pala una misi6n estructural. En esta parte el 30 coeficiente de arrastre CD tiene poca importancia, ya que la componente proyectada de la FD (Fuerza de arrastre) sobre el plano perpendicular al eje de giro del rotor, en esta region, es muy pequelia, puesto que la velocidad periferica tambien lo es. En el estado de la tecnica se conocen algunas optimizaciones de palas de los 35 aerogeneradores para la region de la raiz. Se basan en elementos postizos, que fijados al cilindro, le dan forma de perfil aerodinamico, aliadiendo un horde de ataque y/o un horde de salida. Optimizaciones de palas como las citadas pueden observarse en los documentos: US 40 2004013512 Al; ES2330500; entre otros. Estas optimizaciones presentan una problematica que se centra fundamentalmente en los siguientes aspectos:
- Los elementos postizos encontrados en el estado de la tecnica solo consiguen un perfil aerodinamico de muy baja eficacia, presentando un bajo coeficiente de sustentaciOn CL. 5 _ Para velocidades de viento bajas, al ser baja la velocidad periferica en esta zona, la velocidad de viento incidente tambien lo es, lo que lleva en estos casos a un coeficiente de sustentacion CL casi nubo _ En los casos en los que el rotor esta parado, y se esta en espera de que se produzca 10 una velocidad de viento minima que permita el arranque, la situaci6n es aim peor, pues el coeficiente de sustentaciOn CL es casi nub. - Cuando el aerogenerador recibe vientos altos de valores nominales, no es necesaria la aportacion de los elementos postizos, ya que incluso hay que rebajar el coeficiente de 15 sustentacion CL del resto de la pala, para no sobrecargar al aerogenerador. - Cuando el aerogenerador recibe vientos muy altos de valores superiores a los nominales, o cuando se produce una desconexion del aerogenerador de la red, se hace necesario eliminar toda sustentaci6n modificando el Angulo de ataque para que el 20 borde de salida pase a recibir al viento, y combinado con la actuaci6n de un fi-eno mecanico, pasar a situar al aerogenerador a una posicion denominada de bandera. El perfil aerodinamico que la invencion preconiza resuelve de forma plenamente satisfactoria la problematica anteriormente expuesta, en todos y cada uno de los 25 diferentes aspectos comentados, segim se describe en el resto del documento. Fundamentos de la inveneion La invencion preconiza un dispositivo, que presenta un regulable y elevado coeficiente 30 de sustentaci6n CL, que puede ser positivo y negativo, mediante la disposici6n de un cilindro hueco rotatorio que abraza al cilindro que conforma a la pala en la zona de la raiz, y que se ha denominado rotor bicapa exterior. El rotor bicapa exterior esta unido mecanicamente a la pala, mediante dos pares cinematicos, (uno por cada extremo), disponiendo de un grado de libertad (rotacion sobre su eje de rotacion). En el rotor 35 bicapa exterior se producird un par de giro provocado por la induccion giratoria que genera el estator interior, formado por un nucleo ranurado a base de chapa magnetica y de dos bobinados trifasicos. El rotor bicapa exterior, dispone de una capa interna de metal conductor de la electricidad, para reconducir la corriente generada, y de una capa externa de acero magnetic°, para cerrar las lineas de campo magnetic°. 40 Un cilindro rotatorio experimenta, al girar sobre su eje de revolucion, una fuerza de sustentacion cuando esta inmerso en un fluido en movimiento. A este principio se le denomina efecto Magnus (1852). 45 Los modelos teoricos matematico-fisicos del efecto Magnus son altamente complejos, por lo que se tienen que emplear aproximaciones basadas en la teoria de flujo potencial
ajustadas con datos experimentales o emplear tecnicas computacionales de dinamica de fluidos (CFD). La fuerza de sustentaci6n generada es perpendicular al piano formado por la direcci6n 5 del viento o de traslacion del objeto y el eje de rotacion. Para una pala, la velocidad especifica o relacion de velocidad periferica TSR (Tip Speed Ratio) viene expresada por: TSR = Vca (m/s) Velocidad perif erica de la pala (m/ s) 10 Andlogamente, para un cilindro que carezca de movimiento de translacion o de rotaci6n respecto de otro eje distinto al suyo, se define el coeficiente de velocidades como: Velocidad perif erica del cilindro (ml s) = Voo (m/s) 15 En el caso de la invencion, trabajaremos con y gt; 1. En el caso de la invencion, tendremos velocidades de viento 14,„ que oscilan entre 5 y 25 m/s y longitudes caracteristicas Lc que en este caso corresponden como minimo al espesor maximo del perfil, entre 0,02 y 0,20 m. El numero de Reynolds Re, viene 20 expresado por: Vco (m/ s) • Lc (m) Re= v (m/ s2) Para una viscosidad cinematica v (m/s2) del aire de 1,5.10-5 m/s2 tendremos, un nOmero de Reynolds comprendido entre 6.666,6 y 333.333,3, por lo que 25 consideraremos aceptable la aproximaciOn Re gt; 104, pese a que en ciertos casos estemos ligeramente por debajo de ese valor. 30 Efecto Magnus para numeros de Reynolds altos (Re gt; 104) Para numeros de Reynolds altos, las fuerzas de inercia son mucho mas importantes que las debidas a la viscosidad. El comportamiento difiere para valores de y lt; 1 y 9 gt; 1. 35 Influencia de la velocidad especifica De acuerdo con las tecnicas CFD, se deduce que el comportamiento difiere para valores de cp lt; 1 y 9 gt; 1. El caso de y lt; 1 no es relevante para la invencion. Para 9 gt; 1,
la capa limite se vuelve totalmente turbulenta y los parametros CL y CD son practicamente independientes del ninnero de Reynolds. La relacion de CL/CD con cp es creciente, debido al aumento de la velocidad de rotacion. Segim se puede ver en la tabla siguiente, obtenida en reiteradas simulaciones, y en la que, 5 Vac, (m/s), es la velocidad de viento impuesta en la condicion de contorno como entrada. n (rpm), es la velocidad de giro del cilindro hueco rotatorio. o (rad/s), es la velocidad anterior expresada en unidades del S.I. 10 d (m), es el diametro exterior del cilindro hueco rotatorio. Vp (m/s), es la velocidad lineal periferica del cilindro hueco rotatorio. cp, es el coeficiente adimensional de velocidades. CD, es el coeficiente de arrastre o Cx. CL, es el coeficiente de sustentacion o C. 15 Cl/CD, es la relacion entre coeficientes. P (W/m), es la potencia por unidad de longitud necesaria para mantener el giro del cilindro hueco rotatorio. 20 V. (m/s) n (rpm) w (rad/0 d ) VP (m/s) CP CD CL CAD P (W/m) 5 0 0,0 0,50 0,00 0,0 0,62 0,06 0,10 0,00 5 -750 78,5 0,50 19,63 3,9 0,96 2,88 3,00 11,00 5 -1500 157,1 0,50 39,27 7,9 1,02 3,81 3,74 79,33 5 -3000 314,2 0,50 78,54 15,7 1,39 8,10 5,83 603,19 5 3000 314,2 0,50 78,54 15,7 1,39 -8,10 -5,83 -596,90 Podemos comprobar la tendencia de la relacion CL/CD con cp, y podemos comprobar los diferentes valores de CL y CD, en relacion con un cilindro estatico, que nos sirve de elemento de control, y cuyos valores se pueden ver en la primera fila de la tabla. En la 25 Altima Ilia de la tabla, se puede ver el caso de hipo-sustentaci6n al hacer que el cilindro gire a contracorriente. La velocidad incidente de viento, en un cilindro, cuando describe un movimiento de rotacion alrededor del eje, vendra expresada por: 30 ..\112c2,3 (0 rotor = t -rotor Lpata)2 y el coeficiente de velocidades por: = Vi (m/s) V elocidad peri f erica del cilindro (m/s)
sustituyendo y desarrollando la expresion anterior, tendremos. wcit • rcii vci (Wrotor Lpala)2 Lpaia, variable, es la longitud comprendida entre el eje de rotacion del rotor y la secciOn 5 de la pala objeto de estudio. Varia desde 0 hasta LpALA (siendo esta la longitud total de la pala). Sumario de la invencion 10 Un primer objetivo de la presente invenciOn es dotar a la tecnica de un dispositivo para optimizar la region de la raiz de una pala de aerogenerador, dotando a esta region de hipersustentacion (coeficiente de sustentacion CL gt; 0) o de hipo-sustentacion (coeficiente de sustentacion CL lt; 0), segim se desee. 15 Un segundo objetivo de la presente invencion es dotar a la tecnica de un dispositivo para optimizar la region de la raiz de una pala de aerogenerador, que permita que el aerogenerador pueda an-ancar a velocidades de viento inferiores a la velocidad de arranque (correspondiente al dispositivo sin esta invencion), y que permita que el aerogenerador pueda alcanzar su velocidad de rotacion nominal con el fin de poder 1 20 mantener el movimiento con velocidades de viento bajas. Un tercer objetivo de la presente invenciOn es dotar a la tecnica de un dispositivo para optimizar la region de la raiz de una pala de aerogenerador, que permita que el aerogenerador pueda mantener su rotacion a velocidades de viento baj as, permitiendo 25 estar en disposicion idonea de recibir vientos aprovechables. Un cuarto objetivo de la presente invencion es dotar a la tecnica de un dispositivo para - optimizar la regi6n de la raiz de una pala de aerogenerador, que permita generar una hipo-sustentacion con un coeficiente de sustentaci6n CL lt; 0, para poder seguir 30 funcionando el aerogenerador con velocidades de viento altas. Un quinto objetivo de la presente invenciOn, es dotar a la tecnica de un dispositivo para optimizar la regi6n de la raiz de una pala de aerogenerador, que permita generar una hipo-sustentacion con un coeficiente de sustentaci6n CL lt; 0, para poder ayudar a parar 35 el aerogenerador en caso de tener que realizar una parada de emergencia. Un Ultimo objetivo de la presente invenciOn, es dotar a la tecnica de un dispositivo para optimizar la region de la raiz de una pala de aerogenerador, que se puede utilizar en palas ya instaladas, sin tener que desmontarlas, facilitando las tareas de fabricacion y 40 transporte, ademas del montaje en palas existentes. Los objetivos citados y otros, los proporciona la presente invencion mediante un elemento hiper-hipo sustentador integrado en la superficie exterior cilindrica de la raiz de la pala, formado por:
- un rotor bicapa exterior con forma de cilindro hueco , que esta formado por dos mitades identicas que una vez unidas y atornilladas forman un imico 5 cuerpo, y que esta formado por dos capas rigidamente unidas, una capa interna de metal buen conductor de la electricidad como aluminio y otra capa externa de acero magnetic° - un estator interior con forma de cilindro hueco, que está formado por dos 10 mitades identicas que una vez unidas y atornilladas forman un imico cuerpo, y que se compone cada mitad de un nifcleo ranurado a base de chapa magnetica apilada y de un bobinado trifasico, y que su superficie interna abraza la superficie externa cilindrica de la raiz de la pala 15 - dos cojinetes anulares, cada uno de los cuales esta formado por dos mitades identicas, que una vez unidas y atornilladas forman un Arlie° cuerpo, que se ensamblan rigidamente sobre la superficie externa del estator interior, y que soportan el rotor bicapa extern° permitiendo a este que disponga de un grado de libertad de rotacion sobre su eje longitudinal. 20 Breve descripcion de las figuras La figura 1, muestra una vista esquematica en planta, de una realizacion preferente, 25 segim la presente invencion, de una pala de aerogenerador. 30 La figura 2, muestra una vista en perspectiva isometrica, de una realizacion preferente, segim la presente invencion, del dispositivo hiper-hipo sustentador ubicado en la zona cilindrica de la region de la raiz de la pala. La figura 3, muestra una vista en perspectiva isometrica de montaje, de una realizacion preferente, segtan la presente invencion, de los diferentes elementos que forman el dispositivo hiper-hipo sustentador. ` 35 La figura 4, muestra un esquema electric°, de una realizaciOn preferente, segim la presente invencion, del bobinado trifasico del estator interior y del conexionado del mismo. La figura 5, muestra una grafico de vectores de velocidad de viento obtenido mediante 40 un software de simulacion de CFD, al que se ha sometido el rotor bicapa exterior de la presente invencion con una entrada de viento de 5m/s y una rotacion de 0 rpm. La figura 6, muestra una grafico de vectores de velocidad de viento obtenido mediante un software de simulacion de CFD, al que se ha sometido el rotor bicapa exterior de la 45 presente invenciOn con una entrada de viento de 5m/s y una rotacion de 750 rpm.
La figura 7, muestra una grafico de contornos de presion estatica obtenido mediante un software de simulacion de CFD, al que se ha sometido el rotor bicapa exterior de la presente invenciOn con una entrada de viento de 5m/s y una rotaci6n de 0 rpm. 5 La figura 8, muestra un grafico de contornos de presion estatica obtenido mediante un software de simulacion de CFD, al que se ha sometido el rotor bicapa exterior de la presente invencion con una entrada de viento de 5m/s y una rotacion de 750 rpm. La figura 9, muestra una grafico de vectores de velocidad de viento obtenido mediante 10 un software de simulacion de CFD, al que se ha sometido el rotor bicapa exterior de la presente invencion con una entrada de viento de 5m/s y una rotacion a contracorriente (sentido antihorario) de 3000 rpm. 15 Descripcion detallada de las realizaciones preferidas La figura 1, muestra una vista esquematica en planta de una realizacion preferente segun la presente invencion de una pala de aerogenerador (0). Consta de tres regiones 20 bien diferenciadas: a) region de raiz (1A), compuesta por subregi6n inferior (1A') y subregion superior (1Aquot;). b) region intermedia (1B). 25 c) region de punta (1C). El dispositivo hiper-hipo sustentador (1) que preconiza la invenciOn, se aplicard a la parte cilindrica de la regi6n de la raiz (1A'). Normalmente esta parte puede llegar a tener una longitud vista de varios metros, y el dispositivo cubrird la mayor parte de 30 dicha longitud pudiendose llegar al 99 %. La figura 2, muestra una vista en perspectiva isometrica, de una realizacion preferente, segun la presente invencion, del dispositivo hiper-hipo sustentador (1) ubicado en la zona cilindrica de la region de la raiz (1A') de la pala. Puede observarse el cableado 35 electric° (105, 106) proveniente del sendos bobinados trifasicos (102B, 102C) del estator interior (102), que mediante un orificio cualquiera realizado en la pala, permite llegar interiormente hasta el interior del aerogenerador d6nde se situard el equipo de alimentacion electrica y regulacion. 40 La figura 3, muestra una vista en perspectiva isometrica de montaje, de una realizacion preferente, segim la presente invencion, de los diferentes elementos que form an el dispositivo hiper-hipo sustentador (1): - un rotor bicapa exterior (100) con forma de cilindro hueco, que esta formado 45 por dos mitades identicas que una vez unidas y atomilladas forman un imico
5 10 cuerpo, y que esta formado por dos capas rigidamente unidas, una capa interna (100B) de metal buen conductor de la electricidad como aluminio y otra capa externa (100A) de acero magnetic°. - un estator interior (102) con forma de cilindro hueco, que esta formado por dos mitades identicas, que una vez unidas y atornilladas forman un Anico cuerpo, y que se compone cada mitad de un nude° ranurado (102A) a base de chapa magnetica apilada y de un bobinado trifasico (102B, 102C), y que su superficie interna abraza la superficie externa cilindrica de la raiz de la pala. - dos cojinetes anulares (1011, 101D), cada uno de los cuales esta formado por dos mitades identicas, que una vez unidas y atornilladas forman un Anico cuerpo, que se ensamblan rigidamente sobre la superficie externa del estator interior, y que soportan el rotor bicapa externo permitiendo a este que disponga 15 de un grado de libertad de rotaci6n sobre su eje longitudinal. La figura 4, muestra un esquema electric°, de una realizacion preferente, segim la presente invencion, de cada bobinado trifasico (102B, 102C), de 2 polos, 18 ranuras y 9 bobinas, del estator interior (102). Se puede apreciar en la parte derecha de la figura 20 la conexion preferente en estrella, tres bobinas por fase, y la indicacion de bobinas, y de principios (P) y finales (F). La figura 5, muestra un grafico de vectores de velocidad de viento obtenido mediante un software de simulacion de CFD, al que se ha sometido el rotor bicapa exterior (100) 25 de la presente invencion con una entrada de viento de 5m/s y una rotacion de 0 rpm. En estas condiciones de simulacion, que coincidiran con el estado de la pala sin la integracion de la invencion, el dispositivo presenta un CD de 0,62, un CL de 0,06, y un CL/CD de 0,097. 30 La figura 6, muestra una grafico de vectores de velocidad de viento obtenido mediante un software de simulacion de CFD, al que se ha sometido el rotor bicapa exterior (100) de la presente invencion con una entrada de viento de 5m/s y una rotacion de 750 rpm. En estas condiciones de simulacion, que llevan a funcionar con hiper-sustentacion, se tiene un CD de 0,96, un CL de 2,88, y un CL/CD de 3. 35 La figura 7, muestra una grafico de contornos de presion estatica obtenido mediante un software de simulacion de CFD, al que se ha sometido el rotor bicapa exterior (100) de la presente invencion con una entrada de viento de 5m/s y una rotacion de 0 rpm. Este grafico de presiones es un indicativo del comportamiento aerodinamico de la 40 invencion en estado de parada. La figura 8, muestra un grafico de contornos de presion estatica obtenido mediante un software de simulacion de CFD, al que se ha sometido el rotor bicapa exterior de la presente invencion con una entrada de viento de 5 m/s y una rotaci6n de 750 rpm. Este 45 grafico de presiones es un indicativo del comportamiento aerodinamico de la invencion en estado de funcionamiento.
La figura 9, muestra una grafico de vectores de velocidad de viento obtenido mediante un software de simulacion de CFD, al que se ha sometido el rotor bicapa exterior (100) de la presente invencion con una entrada de viento de 5m/s y una rotaci6n a 5 contracorriente (sentido antihorario) de 3000 rpm. En estas condiciones de simulacion, que llevan a funcionar con hipo-sustentacion, se tiene un CD de 1,4 un CL de -8,1 y un CL/CD de -5,8.
DESCRIPTION 5 Hyper-hypo sustaining device for the root region of a wind turbine blade Field of the invention The invention is in the field of fluid mechanics, and more specifically of the machinery for harnessing wind energy. The invention is valid to cover the entire range of powers and preferably form part of an electric generator to generate electric power. The invention relates to a hyper-hypo-supporting device for the region of the root of a wind turbine blade. 15 Background The wind turbine blades are formed with aerodynamic profiles 20 along almost their entire length. In the region called root, which is the part of the blade closest to the axis of rotation of the hub of the wind turbine, the blade part of a completely cylindrical to gradually go to a very thick aerodynamic profile and advance with increasingly less thick profiles until reaching the intermediate region that is already done with aerodynamic profile of standard width. The cylindrical part 25 depends on the wind turbine's disello, but it is normal that its length can reach several meters. The cylindrical part does not undergo any supporting force, being the coefficient of support CL nub, and only contributes to the blade a structural mission. In this part the drag coefficient CD is of little importance, since the projected component of the FD (drag force) on the plane perpendicular to the axis of rotation of the rotor, in this region, is very small, since the peripheral velocity It is too. In the state of the art some optimizations of blades of the 35 wind turbines for the root region are known. They are based on false elements that, fixed to the cylinder, give it an aerodynamic profile, adding an attack horde and / or an exit horde. Pad optimizations such as those cited can be seen in the documents: US 40 2004013512 Al; ES2330500; among others. These optimizations present a problematic that fundamentally focuses on the following aspects:
- The artificial elements found in the state of the art only achieve an aerodynamic profile of very low efficiency, presenting a low coefficient of support CL. 5 _ For low wind speeds, since the peripheral velocity in this zone is low, the incident wind speed is also low, which in these cases leads to a CL lift coefficient almost cloud _ In the cases in which the rotor it is stopped, and it is waiting for a minimum wind speed to be produced that allows the start, the situation is even worse, because the coefficient of support CL is almost nub. - When the wind turbine receives high winds of nominal values, the contribution of the false elements is not necessary, since we must also reduce the CL 15 coefficient of the rest of the blade, in order not to overload the wind turbine. - When the wind turbine receives very high winds of values higher than the nominal ones, or when there is a disconnection of the wind turbine from the network, it is necessary to eliminate all support by modifying the angle of attack so that the exit edge 20 receives the wind , and combined with the performance of a mechanical fi gure, move the wind turbine to a so-called flag position. The aerodynamic profile that the invention advocates solves in a fully satisfactory manner the problem described above, in each and every one of the 25 different aspects discussed, as described in the rest of the document. Fundamentals of the Invention The invention advocates a device, which has an adjustable and high lift coefficient 30, which can be positive and negative, by means of the provision of a rotating hollow cylinder that embraces the cylinder forming the blade in the region of the root, and that has been called external bilayer rotor. The external bilayer rotor is mechanically connected to the blade, by means of two kinematic pairs, (one for each end), having a degree of freedom (rotation on its axis of rotation). In the outer bilayer rotor 35, a torque generated by the rotating induction generated by the inner stator will be produced, formed by a grooved core based on magnetic plate and two three-phase windings. The external bilayer rotor has an internal layer of electrically conductive metal, to redirect the generated current, and an external layer of magnetic steel, to close the magnetic field lines. 40 A rotating cylinder experiences a force of support when it is immersed in a fluid in motion when it rotates on its axis of revolution. This principle is called the Magnus effect (1852). 45 The mathematical-physical theoretical models of the Magnus effect are highly complex, so approximations based on the potential flow theory have to be used
adjusted with experimental data or computational techniques of fluid dynamics (CFD). The force of support generated is perpendicular to the plane formed by the direction 5 of the wind or of translation of the object and the axis of rotation. For a blade, the specific speed or ratio of peripheral velocity TSR (Tip Speed Ratio) is expressed by: TSR = Vca (m / s) Peripheral velocity of the blade (m / s) 10 Andlogamente, for a cylinder that lacks translational or rotational movement with respect to another axis other than yours, the coefficient of velocities is defined as: peripheral velocity of the cylinder (ml s) = Voo (m / s) 15 In the case of the invention, we will work with and gt ; 1. In the case of the invention, we will have wind speeds 14, "which oscillate between 5 and 25 m / s and characteristic lengths Lc which in this case correspond at least to the maximum thickness of the profile, between 0.02 and 0.20 m . The number of Reynolds Re, comes 20 expressed by: Vco (m / s) • Lc (m) Re = v (m / s2) For a kinematic viscosity v (m / s2) of the air of 1.5.10-5 m / s2 we will have a Reynolds number between 6,666.6 and 333,333.3, so we will consider the Regt approach acceptable; 104, although in certain cases we are slightly below that value. 30 Magnus effect for high Reynolds numbers (Re> 104) For high Reynolds numbers, inertial forces are much more important than those due to viscosity. The behavior differs for values of y lt; 1 and 9 gt; 1. 35 Influence of the specific velocity According to the CFD techniques, it follows that the behavior differs for values of cp lt; 1 and 9 gt; 1. The case of and lt; 1 is not relevant to the invention. For 9 gt; one,
the boundary layer becomes totally turbulent and the CL and CD parameters are virtually independent of the Reynolds nymph. The relationship of CL / CD with cp is increasing, due to the increase in the speed of rotation. Segim can be seen in the following table, obtained in repeated simulations, and in which, 5 Vac, (m / s), is the wind speed imposed in the contour condition as input. n (rpm), is the rotational speed of the rotating hollow cylinder. or (rad / s), is the previous speed expressed in units of S.I. 10 d (m), is the outer diameter of the rotating hollow cylinder. Vp (m / s) is the linear linear velocity of the rotating hollow cylinder. cp, is the dimensionless coefficient of velocities. CD, is the drag coefficient or Cx. CL, is the coefficient of sustentation or C. 15 Cl / CD, is the relationship between coefficients. P (W / m), is the power per unit length necessary to maintain the rotation of the rotating hollow cylinder. 20 V. (m / s) n (rpm) w (rad / 0 d) VP (m / s) CP CD CL CAD P (W / m) 5 0 0.0 0.50 0.00 0.0 0 , 62 0.06 0.10 0.00 5 -750 78.5 0.50 19.63 3.9 0.96 2.88 3.00 11.00 5 -1500 157.1 0.50 39.27 7.9 1.02 3.81 3.74 79.33 5 -3000 314.2 0.50 78.54 15.7 1.39 8.10 5.83 603.19 5 3000 314.2 0.50 78,54 15,7 1,39 -8,10 -5,83 -596,90 We can check the trend of the CL / CD relationship with cp, and we can check the different values of CL and CD, in relation to a cylinder static, which serves as an element of control, and whose values can be seen in the first row of the table. In the Altima Ilia of the table, one can see the case of hypo-sustentation by making the cylinder turn countercurrent. The incident wind speed, in a cylinder, when describing a rotation movement around the axis, will be expressed by: 30 .. \ 112c2,3 (0 rotor = t -rotor Lpata) 2 and the speed coefficient by: = Vi (m / s) V erical frequency of the cylinder (m / s)
substituting and developing the previous expression, we will have. wcit • rcii vci (Wrotor Lpala) 2 Lpaia, variable, is the length between the axis of rotation of the rotor and section 5 of the blade under study. It varies from 0 to LpALA (this being the total length of the blade). SUMMARY OF THE INVENTION A first objective of the present invention is to provide the technician with a device to optimize the root region of a wind turbine blade, endowing this region with hyper-support (coefficient of support CL gt; 0) or hipo-sustentacion (coefficient of support CL lt; 0), as desired. A second objective of the present invention is to provide the technician with a device for optimizing the root region of a wind turbine blade, which allows the wind turbine to fly at wind speeds lower than the starting speed (corresponding to the device without this invention), and that allows the wind turbine to reach its nominal rotational speed in order to be able to maintain movement at low wind speeds. A third objective of the present invention is to provide the technician with a device for optimizing the root region of a wind turbine blade, which allows the wind turbine to maintain its rotation at low wind speeds, allowing it to be in an ideal disposition. to receive usable winds. A fourth objective of the present invention is to provide the technique with a device for optimizing the region of the root of a wind turbine blade, which allows generating a hypo-lift with a support coefficient CL lt; 0, to be able to continue running the wind turbine with high wind speeds. A fifth objective of the present invention is to provide the technique with a device for optimizing the region of the root of a wind turbine blade, which makes it possible to generate a hypo-lift with a support coefficient CL lt; 0, to be able to help stop the wind turbine in case of having to make an emergency stop. A final objective of the present invention is to provide the technician with a device for optimizing the root region of a wind turbine blade, which can be used on already installed blades, without having to disassemble them, facilitating the manufacturing tasks and making them easier to manufacture. transport, in addition to mounting on existing shovels. The aforementioned and other objects are provided by the present invention by means of a hyper-hypo-supporting element integrated in the cylindrical outer surface of the blade root, formed by:
- an outer two-layer rotor with hollow cylinder shape, which is formed by two identical halves that once joined and screwed together form a single body, and that is formed by two rigidly joined layers, an inner layer of metal, good conductor of electricity like aluminum and another external magnetic steel layer - an internal stator with a hollow cylinder shape, which is formed by two identical halves that, once joined and screwed together, form a single body, and each half of a grooved core is composed of base of stacked magnetic sheet and of a three-phase winding, and that its internal surface embraces the cylindrical external surface of the blade root 15 - two annular bearings, each of which is formed by two identical halves, which once joined and screwed form an Arlie ° body, which are assembled rigidly on the outer surface of the inner stator, and which support the extern ° bilayer rotor allowing it to have a degree of freedom of rotation on its longitudinal axis. BRIEF DESCRIPTION OF THE FIGURES Figure 1 shows a schematic plan view of a preferred embodiment, according to the present invention, of a wind turbine blade. Figure 2 shows an isometric perspective view, of a preferred embodiment, according to the present invention, of the hyper-hypo-supporting device located in the cylindrical zone of the root region of the blade. Figure 3 shows an isometric perspective view of assembly, of a preferred embodiment, according to the present invention, of the different elements that form the hyper-hypo sustaining device. Figure 4 shows an electric diagram, of a preferred embodiment, according to the present invention, of the three-phase winding of the inner stator and the connection thereof. Figure 5 shows a graph of wind speed vectors obtained by means of a CFD simulation software, to which the outer bilayer rotor of the present invention has been subjected with a wind input of 5m / s and a rotation of 0 rpm . Figure 6 shows a graph of wind speed vectors obtained by means of a CFD simulation software, to which the external bilayer rotor of the present invention has been subjected with a wind input of 5m / s and a rotation of 750 rpm .
Figure 7 shows a graph of static pressure contours obtained by means of a CFD simulation software, to which the outer bilayer rotor of the present invention has been subjected with a wind input of 5m / s and a rotation of 0 rpm. Figure 8 shows a graph of static pressure contours obtained by means of a CFD simulation software, to which the external bilayer rotor of the present invention has been subjected with a wind input of 5m / s and a rotation of 750 rpm. Figure 9 shows a graph of wind speed vectors obtained by means of a CFD simulation software, to which the external two-layer rotor of the present invention has been subjected with a wind input of 5m / s and a countercurrent rotation (FIG. anti-clockwise) of 3000 rpm. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Figure 1 shows a schematic plan view of a preferred embodiment according to the present invention of a wind turbine blade (0). It consists of three well-differentiated regions: a) root region (1A), composed of lower sub-region (1A ') and upper sub-region (1Aquot;). b) intermediate region (1B). 25 c) tip region (1C). The hyper-hypo-supporting device (1) that the invention advocates will be applied to the cylindrical part of the root region (1A '). Normally this part can have a visible length of several meters, and the device will cover most of said length, reaching 99%. Figure 2 shows an isometric perspective view, of a preferred embodiment, according to the present invention, of the hyper-hypo-supporting device (1) located in the cylindrical zone of the root region (1A ') of the blade. The electrical wiring (105, 106) from the three-phase windings (102B, 102C) of the inner stator (102) can be seen, which through any hole made in the blade, allows to reach inside the wind turbine where it is located. the equipment of electrical feeding and regulation. Figure 3 shows an isometric assembly perspective view, of a preferred embodiment, according to the present invention, of the different elements forming the hyper-hypo-sustaining device (1): - an outer two-layer rotor (100) with hollow cylinder shape, which is formed by two identical halves that once joined and atomized form an imico
5 10 body, and that is formed by two rigidly joined layers, an inner layer (100B) of metal good conductor of electricity such as aluminum and another outer layer (100A) of magnetic steel. an interior stator (102) in the shape of a hollow cylinder, which is formed by two identical halves, which once joined and screwed form a single body, and which is made up each half of a slotted nude ° (102A) based on sheet metal magnetic stacked and of a three-phase winding (102B, 102C), and that its internal surface embraces the external cylindrical surface of the blade root. - two annular bearings (1011, 101D), each of which is formed by two identical halves, which once joined and screwed form a single body, which are assembled rigidly on the outer surface of the inner stator, and which support the rotor external bilayer allowing it to have 15 degrees of freedom of rotation on its longitudinal axis. Figure 4 shows an electric diagram, of a preferred embodiment, according to the present invention, of each three-phase winding (102B, 102C), with 2 poles, 18 slots and 9 coils, of the inner stator (102). It can be seen in the right part of figure 20 the preferential connection in star, three coils per phase, and the indication of coils, and of principles (P) and ends (F). Figure 5 shows a graph of wind velocity vectors obtained by means of a CFD simulation software, to which the external bilayer rotor (100) of the present invention has been subjected with a wind input of 5m / s and a rotation of 0 rpm. In these simulation conditions, which will coincide with the state of the blade without the integration of the invention, the device has a CD of 0.62, a CL of 0.06, and a CL / CD of 0.097. Figure 6 shows a graph of wind speed vectors obtained by means of a CFD simulation software, to which the outer two-layer rotor (100) of the present invention has been subjected with a wind input of 5m / s and a rotation of 750 rpm. Under these simulation conditions, which lead to hyper-lift operation, there is a CD of 0.96, a CL of 2.88, and a CL / CD of 3. 35 Figure 7 shows a graph of contours of static pressure obtained by means of a CFD simulation software, to which the external bilayer rotor (100) of the present invention has been subjected with a wind input of 5m / s and a rotation of 0 rpm. This pressure graph is indicative of the aerodynamic behavior of the invention in the stop state. Figure 8 shows a graph of static pressure contours obtained by means of a CFD simulation software, to which the outer bilayer rotor of the present invention has been subjected with a wind input of 5 m / s and a rotation of 750 rpm. This pressure graph is indicative of the aerodynamic behavior of the invention in the operating state.
Figure 9 shows a graph of wind speed vectors obtained by means of a CFD simulation software, to which the outer two-layer rotor (100) of the present invention has been subjected with a wind input of 5m / s and a rotation to 5 countercurrent (counterclockwise) of 3000 rpm. In these conditions of simulation, which lead to work with hypo-sustentation, we have a CD of 1.4 a CL of -8.1 and a CL / CD of -5.8.