ES2387975B1 - PROCEDURE FOR OBTAINING MULTIFUNCTIONAL AND RENEWABLE MATERIALS FROM THE REJECTION OF PIPE FROM THE PRODUCTION OF SUNFLOWER OIL. - Google Patents

PROCEDURE FOR OBTAINING MULTIFUNCTIONAL AND RENEWABLE MATERIALS FROM THE REJECTION OF PIPE FROM THE PRODUCTION OF SUNFLOWER OIL. Download PDF

Info

Publication number
ES2387975B1
ES2387975B1 ES201130303A ES201130303A ES2387975B1 ES 2387975 B1 ES2387975 B1 ES 2387975B1 ES 201130303 A ES201130303 A ES 201130303A ES 201130303 A ES201130303 A ES 201130303A ES 2387975 B1 ES2387975 B1 ES 2387975B1
Authority
ES
Spain
Prior art keywords
application
renewable
art
multifunctional
document
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
ES201130303A
Other languages
Spanish (es)
Other versions
ES2387975A1 (en
Inventor
María Angeles Martín Luengo
Malcolm Yates Buxcey
María Milagros Ramos Gómez
Eduardo Saez Rojo
Lorena González Gil
Ana María Martínez Serrano
Rosa María Martín Aranda
Jesús López Sanz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Universidad Nacional de Educacion a Distancia UNED
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Universidad Nacional de Educacion a Distancia UNED
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC, Universidad Nacional de Educacion a Distancia UNED filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to ES201130303A priority Critical patent/ES2387975B1/en
Priority to PCT/ES2012/070079 priority patent/WO2012120166A1/en
Publication of ES2387975A1 publication Critical patent/ES2387975A1/en
Application granted granted Critical
Publication of ES2387975B1 publication Critical patent/ES2387975B1/en
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/127Sunlight; Visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1806Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with alkaline or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/182Phosphorus; Compounds thereof with silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/31Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/003Phosphorus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0877Liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cardiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

Procedimiento de obtención de materiales multifuncionales y renovables a partir del rechazo de pipa procedente de la producción de aceite de girasol.#La presente invención se refiere al procedimiento de obtención de materiales renovables, a partir de residuos precedentes de la fabricación de aceite de girasol, para su uso como matrices biocompatibles en ingeniería de tejidos, administración controlada de sustancias de interés biológico (drogas, proteínas, genes, etc.) y como catalizadores en procesos activados por centros básicos, utilizando tanto calentamiento dieléctrico, como activación solar, para aumentar la sostenibilidad del proceso.Procedure for obtaining multifunctional and renewable materials from the rejection of a pipe from the production of sunflower oil. # The present invention relates to the process of obtaining renewable materials, from previous waste from the manufacture of sunflower oil, for use as biocompatible matrices in tissue engineering, controlled administration of substances of biological interest (drugs, proteins, genes, etc.) and as catalysts in processes activated by basic centers, using both dielectric heating and solar activation, to increase the sustainability of the process

Description

Procedimiento de obtención de materiales multifuncionales y renovables a partir del rechazo de pipa procedente de la produccion de aceite de girasol Procedure for obtaining multifunctional and renewable materials from the rejection of a pipe from the production of sunflower oil

SECTOR DE LA TÉCNICA SECTOR OF THE TECHNIQUE

La presente invención se refiere a un procedimiento de obtención de materiales renovables, multifuncionales y acordes a un desarrollo sostenible, a partir del tratamiento controlado de rechazo de pipa, desecho de la producción de aceite de girasol, y su uso para crecimiento celular y como catalizador en procesos de obtención de sustancias de química fina con calentamiento dieléctrico o con activación solar. Desde el punto de vista del procedimiento, este invención esta en el sector de síntesis y preparación de nuevos materiales. En cuanto a sus aplicaciones o usos, la invención se encuadra dentro del sector de la preparación de sustancias de química fina, pues este material tiene centros básicos de gran actividad en su superficie, y de la salud, ya que es biocompatible y en él se puede desarrollar crecimiento celular, dada la composición y textura que se puede diseñar en el material final con los tratamientos adecuados. The present invention relates to a process for obtaining renewable, multifunctional and sustainable development materials, from the controlled treatment of pipe rejection, waste from sunflower oil production, and its use for cell growth and as a catalyst in processes of obtaining fine chemical substances with dielectric heating or with solar activation. From the point of view of the process, this invention is in the field of synthesis and preparation of new materials. As for its applications or uses, the invention falls within the sector of the preparation of substances of fine chemistry, since this material has basic centers of great activity on its surface, and health, since it is biocompatible and it It can develop cell growth, given the composition and texture that can be designed in the final material with the appropriate treatments.

ESTADO DE LA TÉCNICA STATE OF THE TECHNIQUE

La bio-ingeniería para reemplazar tejidos y órganos tiene gran importancia económica dado el aumento de la edad promedia de la población. Esta fuertemente basada en el diseño de la estructura y textura de matrices diseñadas para cada caso particular de regeneración tisular (Z. Yue, F. Wen, S. Gao, M. Yi Ang, P.K. Pallathadka, L. Liu, H. Yu.: Preparation of three-dimensional interconnected macroporous cellulosic hydrogels for soft tissue engineering. Biomaterials, 31 (32) (2010) 8141-8152). Bio-engineering to replace tissues and organs is of great economic importance given the increase in the average age of the population. It is strongly based on the design of the structure and texture of matrices designed for each particular case of tissue regeneration (Z. Yue, F. Wen, S. Gao, M. Yi Ang, PK Pallathadka, L. Liu, H. Yu. : Preparation of three-dimensional interconnected macroporous cellulosic hydrogels for soft tissue engineering Biomaterials, 31 (32) (2010) 8141-8152).

Los biomateriales utilizados deben ser matrices con las características adecuadas a cada uso de restauración de tejidos y ser capaces de soportar la regeneración de material, mediante la adecuada composición, estructura y textura, con sus correspondientes efectos sobre la velocidad de degradación en las soluciones biológicas adecuadas, intercambio de nutrientes y transporte de materia. Para conseguir estas propiedades se utilizan materiales tanto orgánicos (polímeros, proteínas…), como inorgánicos (óxidos (p.ej. alúmina, zirconia...), hidroxiapatito y una gran variedad de fosfatos, vidrios bioactivos etc…) (M. Kharaziha, M.H. Fathi.: Improvement of mechanical properties and biocompatibility of forsterite bioceramic addressed to bone tissue engineering materials. Journal of the Mechanical Behavior of Biomedical Materials, 3 (2010) 530-537; E. Leonardi, G. Ciapetti, N. Baldini, G. Novajra, E. Verné, F. Baino, C. Vitale-Brovarone.: Response of human bone marrow stromal cells to a resorbable P2O5-SiO2-CaO-MgO-Na2O-K2O phosphate glass ceramic for tissue engineering applications. Acta Biomaterialia, 6 (2010) 598-606). The biomaterials used must be matrices with the appropriate characteristics for each use of tissue restoration and be able to withstand the regeneration of material, through the appropriate composition, structure and texture, with their corresponding effects on the degradation rate in the appropriate biological solutions , nutrient exchange and matter transport. To achieve these properties, both organic materials (polymers, proteins ...), and inorganic materials (oxides (eg alumina, zirconia ...), hydroxyapatite and a variety of phosphates, bioactive glasses etc ...) (M. Kharaziha , MH Fathi .: Improvement of mechanical properties and biocompatibility of forsterite bioceramic addressed to bone tissue engineering materials. Journal of the Mechanical Behavior of Biomedical Materials, 3 (2010) 530-537; E. Leonardi, G. Ciapetti, N. Baldini, G. Novajra, E. Verné, F. Baino, C. Vitale-Brovarone .: Response of human bone marrow stromal cells to a resorbable P2O5-SiO2-CaO-MgO-Na2O-K2O phosphate glass ceramic for tissue engineering applications. Acta Biomaterialia , 6 (2010) 598-606).

Un gran cantidad de los sólidos utilizados usualmente son sintéticos (S.I. Ranganathan, D.M. Yoon, A large amount of the solids usually used are synthetic (S.I. Ranganathan, D.M. Yoon,

A.M. Henslee, M.B. Nair, C. Smid, F.K. Kasper, E. Tasciotti, A.G. Mikos, P. Decuzzi, M. Ferrari.: Shaping the micromechanical behavior of multi-phase composites for bone tissue engineering. Acta Biomaterialia, 6 (2010) 3448-3456; R.E. Bauer.: Novel calcium phosphate cement based scaffolds for bone tissue engineering. Journal of Oral and Maxillofacial Surgery, 68 (2010) 49-50; D. Bellucci, V. Cannillo, G. Ciardelli, P. Gentile, A. Sola: Potassium based bioactive glass for bone tissue engineering. Ceramics International, 36 (2010) 2449-2453; Y. Lu, A. Zhu, W. Wang, H. Shi: New bioactive hybrid material of nano-hydroxyapatite based on Ncarboxyethylchitosan for bone tissue engineering. Applied Surface Science, 256 (23) (2010) 7228-7233; A.G. Dias, I.R. Gibson, J.D. Santos, M.A. Lopes: Physicochemical degradation studies of calcium phosphate glass ceramic in the CaO-P2O5-MgO-TiO2 system. Acta Biomaterialia, 3 (2007) 263-269), o de origen animal, aunque esta última opción esta actualmente siendo considerada con gran cuidado debido a la existencia de posibles enfermedades de transmisión en dicho procedimiento. A.M. Henslee, M.B. Nair, C. Smid, F.K. Kasper, E. Tasciotti, A.G. Mikos, P. Decuzzi, M. Ferrari .: Shaping the micromechanical behavior of multi-phase composites for bone tissue engineering. Acta Biomaterialia, 6 (2010) 3448-3456; RE. Bauer .: Novel calcium phosphate cement based scaffolds for bone tissue engineering. Journal of Oral and Maxillofacial Surgery, 68 (2010) 49-50; D. Bellucci, V. Cannillo, G. Ciardelli, P. Gentile, A. Sola: Potassium based bioactive glass for bone tissue engineering. Ceramics International, 36 (2010) 2449-2453; Y. Lu, A. Zhu, W. Wang, H. Shi: New bioactive hybrid material of nano-hydroxyapatite based on Ncarboxyethylchitosan for bone tissue engineering. Applied Surface Science, 256 (23) (2010) 7228-7233; A.G. Dias, I.R. Gibson, J.D. Santos, M.A. Lopes: Physicochemical degradation studies of calcium phosphate glass ceramic in the CaO-P2O5-MgO-TiO2 system. Acta Biomaterialia, 3 (2007) 263-269), or of animal origin, although this last option is currently being considered with great care due to the existence of possible transmission diseases in said procedure.

Materiales naturales basados en coral han sido utilizados con fines similares, aunque su sostenibilidad es dudosa, ya que no pueden ser considerados renovables (F.M. Chen, J. Zhang, M. Zhang, Y. An, F. Chen, Z.F. Wu: A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials 31 (31) (2010) 7892-7927). Natural coral-based materials have been used for similar purposes, although their sustainability is doubtful, since they cannot be considered renewable (FM Chen, J. Zhang, M. Zhang, Y. An, F. Chen, ZF Wu: A review on endogenous regenerative technology in periodontal regenerative medicine Biomaterials 31 (31) (2010) 7892-7927).

Los materiales sintéticos, suelen conllevar síntesis con varios pasos, reactivos a menudo no muy limpios y calcinaciones a temperaturas muy elevadas cercanas a 1500ºC, con una adición final de silicio, procedente de organosilicatos (p.ej. TEOS) y un último paso de sinterización a mas de 1100ºC (M.B. Nair, S.S. Babu, H.K. Varma, A. John.: A triphasic ceramic-coated porous hydroxyapatite for tissue engineering application. Acta Biomaterialia, 4 (2008) 173-181). Synthetic materials often involve synthesis with several steps, reagents often not very clean and calcinations at very high temperatures close to 1500 ° C, with a final addition of silicon, from organosilicates (eg TEOS) and a final sintering step at more than 1100 ° C (MB Nair, SS Babu, HK Varma, A. John .: A triphasic ceramic-coated porous hydroxyapatite for tissue engineering application. Acta Biomaterialia, 4 (2008) 173-181).

Se han utilizado materiales de composición similar a los de esta invención para administración controlada de drogas, proteínas, genes, etc., debido a su biocompatibilidad y similitud con los que constituyen los huesos y dientes humanos (D. Jiang, J. Zhang: Calcium phosphate with well controlled nanostructure for tissue engineering, Current Applied Physics, 9 (3) (2009) S252-S256; W.J.E.M. Habraken, J.G.C. Wolke, J.A. Jansen: Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering, Advanced Drug Delivery Reviews, 59 (4-5) (2007) 234-248). También materiales basados en fosfatos han sido usados como material soporte para el desarrollo del músculo cráneo-facial (R. Shah, A. C. M. Sinanan, J. C. Knowles, N. P. Hunt, M. P. Lewis: Craniofacial muscle engineering using a 3-dimensional phosphate glass fibre construct Biomaterials, 26 Materials of similar composition to those of this invention have been used for controlled administration of drugs, proteins, genes, etc., due to their biocompatibility and similarity with those constituting human bones and teeth (D. Jiang, J. Zhang: Calcium phosphate with well controlled nanostructure for tissue engineering, Current Applied Physics, 9 (3) (2009) S252-S256; WJEM Habraken, JGC Wolke, JA Jansen: Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering, Advanced Drug Delivery Reviews , 59 (4-5) (2007) 234-248). Also phosphate-based materials have been used as support material for cranio-facial muscle development (R. Shah, ACM Sinanan, JC Knowles, NP Hunt, MP Lewis: Craniofacial muscle engineering using a 3-dimensional phosphate glass fiber construct Biomaterials, 26

(13) (2005) 1497-1505). (13) (2005) 1497-1505).

ES 2 387 975 Al ES 2 387 975 Al

El presente trabajo se basa por un lado en la obtención de sólidos biocompatibles de valor añadido utilizando como materia prima subproductos de la producción de aceite de girasol y con métodos basados en la química sostenible, evitando al máximo la toxicidad en sustancias o procedimientos. The present work is based on the one hand in obtaining biocompatible solids of added value using as raw material by-products of sunflower oil production and with methods based on sustainable chemistry, avoiding toxicity in substances or procedures.

Los subproductos de la producción del aceite de girasol proceden del proceso de la extracción del aceite por prensado, con un contenido típico en peso de 19% de aceite, 25% de celulosa, 17% de hemicelulosa y 39% de proteína vegetal (H. F. Gerçel: Production and characterization of pyrolysis liquids from sunflower-pressed bagasse, Bioresource technology 85 (2) (2002) 113-117). The by-products of sunflower oil production come from the process of oil extraction by pressing, with a typical weight content of 19% oil, 25% cellulose, 17% hemicellulose and 39% vegetable protein (HF Gerçel : Production and characterization of pyrolysis liquids from sunflower-pressed bagasse, Bioresource technology 85 (2) (2002) 113-117).

Los materiales finales se diseñan para su funcionamiento como biomateriales, modificando sus estructuras y texturas para cada uso concreto. The final materials are designed for operation as biomaterials, modifying their structures and textures for each specific use.

Otro aspecto de la presente invención es el uso de los materiales de la invención como catalizadores para la preparación de sustancias de química fina, dada sus características de basicidad, medidas por adsorcióndescomposición de acido acético en los laboratorios de la invención, para obtener sustancias de química fina por condensación catalítica (Rousselot, C. Taviot-Guého, J.P. Besse: Synthesis and characterization of mixed Ga/Alcontaining layered double hydroxides: study of their basic properties through the Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate, and comparison to other LDHs. International Journal of Inorganic Materials, 1 (1999) 165-174; G. Postole, B. Chowdhury, B. Karmakar, K. Pinki, J. Banerji, A. Auroux. Knovenagel condensation reaction over acid-base bifunctional nanocrystalline CexZr1-xO2 solid solutions. Journal of Catalysis, 269 (2010) 110-121). Another aspect of the present invention is the use of the materials of the invention as catalysts for the preparation of fine chemical substances, given their basic characteristics, measured by adsorption of acetic acid decomposition in the laboratories of the invention, to obtain chemical substances. Fine by catalytic condensation (Rousselot, C. Taviot-Guého, JP Besse: Synthesis and characterization of mixed Ga / Alcontaining layered double hydroxides: study of their basic properties through the Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate, and comparison to other LDHs. International Journal of Inorganic Materials, 1 (1999) 165-174; G. Postole, B. Chowdhury, B. Karmakar, K. Pinki, J. Banerji, A. Auroux. Knovenagel condensation reaction over acid-base bifunctional nanocrystalline CexZr1-xO2 solid solutions Journal of Catalysis, 269 (2010) 110-121).

La actividad catalítica en la condensación de Knoevenagel de los sólidos diseñados es comparable a la de sólidos recogidos en la bibliografía, con activación por calentamiento dieléctrico y también por activación solar The catalytic activity in Knoevenagel condensation of designed solids is comparable to that of solids collected in the literature, with activation by dielectric heating and also by solar activation

(R.A. Mekheimer, A.M. Abdel Hameed, S. A.A. Mansour, K.U. Sadek: Solar thermochemical reactions III: A convenient one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles catalyzed by high surface area SiO2 and induced by solar thermal energy. Chinese Chemical Letters 20 (2009) 812–814). (RA Mekheimer, AM Abdel Hameed, SAA Mansour, KU Sadek: Solar thermochemical reactions III: A convenient one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles catalyzed by high surface area SiO2 and induced by solar thermal energy. Chinese Chemical Letters 20 (2009) 812-814).

El procedimiento desarrollado tiene un doble interés, pues disminuye la contaminación producida por los desechos, además de convertirlos en sustancias de valor añadido. The procedure developed has a double interest, since it reduces the pollution produced by the waste, in addition to converting them into substances of added value.

Aunque se han utilizado desechos procedentes de la producción de cerveza como matrices para el crecimiento de osteoblastos (M. Yates Buxcey, M.A. Martin Luengo y M.B. Casal Piga, Preparación de materiales biocompatibles a partir de desechos del proceso de fabricación de cerveza y sus usos, WO2010/058049, (2010)), un inconveniente importante del uso del bagazo de cerveza como materia prima con respecto al uso del rechazo de pipa es la necesidad de un paso extra de secado rápido, para evitar la fermentación del material, que contiene gran cantidad de liquido (cercana al 80%), lo cual no ocurre con el rechazo de pipa, que es mucho más estable. Although wastes from beer production have been used as matrices for the growth of osteoblasts (M. Yates Buxcey, MA Martin Luengo and MB Casal Piga, Preparation of biocompatible materials from wastes from the beer manufacturing process and its uses, WO2010 / 058049, (2010)), a major drawback of the use of beer bagasse as a raw material with respect to the use of pipe rejection is the need for an extra fast drying step, to avoid fermentation of the material, which contains large amount of liquid (close to 80%), which does not happen with pipe rejection, which is much more stable.

Cuando se estudian las actividades de estos materiales en la reacción de condensación de Knoevenagel con activación solar o dieléctrica, se observa una mejor comportamiento, tanto en actividad como en selectividad al compuesto condensado, de los materiales preparados con el rechazo de pipa, comparados con los procedentes del bagazo de cerveza debido a las mejoradas características texturales y estructurales de los materiales procedentes de rechazo de pipa, con respecto a los procedentes del bagazo de cerveza (M. Yates Buxcey, M.A. Martin Luengo y M.B. Casal Piga, Preparación de materiales biocompatibles a partir de desechos del proceso de fabricación de cerveza y sus usos, PCT 1646-286, (2010)). When the activities of these materials in the condensation reaction of Knoevenagel with solar or dielectric activation are studied, a better performance is observed, both in activity and in selectivity to the condensed compound, of the materials prepared with pipe rejection, compared with the from the beer bagasse due to the improved textural and structural characteristics of the materials coming from pipe rejection, with respect to those coming from the beer bagasse (M. Yates Buxcey, MA Martin Luengo and MB Casal Piga, Preparation of biocompatible materials a from waste from the beer manufacturing process and its uses, PCT 1646-286, (2010)).

DESCRIPCIÓN BREVE DE LA INVENCIÓN BRIEF DESCRIPTION OF THE INVENTION

Esta invención se basa en: This invention is based on:

1) Preparar materiales multifuncionales y renovables con fosfato y silicato en su composición, por tratamiento térmico del residuo de la producción de aceite de girasol; 1) Prepare multifunctional and renewable materials with phosphate and silicate in its composition, by heat treatment of the sunflower oil production residue;

2) el material obtenido en el punto 1 se usa para ingeniería de tejidos óseos; 2) the material obtained in point 1 is used for bone tissue engineering;

3) el material obtenido en el punto 1 se usa como catalizador para obtención de sustancias de química fina, utilizando calentamiento dieléctrico o activación solar, lo cual hace que el proceso sea mas económico, debido a los bajos tiempos de reacción necesarios en el caso del calentamiento dieléctrico (inferiores a 5 minutos) y a la sostenibilidad intrínseca de la activación solar; y 3) the material obtained in point 1 is used as a catalyst for obtaining fine chemicals, using dielectric heating or solar activation, which makes the process more economical, due to the low reaction times necessary in the case of dielectric heating (less than 5 minutes) and the intrinsic sustainability of solar activation; Y

4) el material obtenido en el punto 1 se usa para administración controlada de drogas, proteínas, genes, etc., debido a su biocompatibilidad y composición. 4) the material obtained in point 1 is used for controlled administration of drugs, proteins, genes, etc., due to its biocompatibility and composition.

En la presente memoria, se entiende por material multifuncional aquel que puede desempeñar múltiples funciones, como son las funciones de biomaterial, de catalizador, etc. aquí referidas. Asimismo, se entiende que los materiales descritos en la presente memoria son renovables porque su preparación deriva de subproductos agroalimentarios que se producen anualmente en cada cosecha, en contraste con materias primas derivadas de petróleo. Herein, "multifunctional material" means one that can perform multiple functions, such as the functions of biomaterial, catalyst, etc. referred here. Likewise, it is understood that the materials described herein are renewable because their preparation derives from agri-food by-products that are produced annually in each harvest, in contrast to petroleum-derived raw materials.

ES 2 387 975 Al ES 2 387 975 Al

DESCRIPCIÓN DETALLADA DETAILED DESCRIPTION

Esta invención describe un procedimiento de preparación de materiales renovables, de valor añadido, que contienen fosfatos y silicatos, a partir de residuos de la preparación de aceite de girasol. Los materiales obtenidos, dada su textura y composición, son multifuncionales, ya que pueden ser usados en ingeniería ósea tisular y en producción de sustancias de química fina por condensación sobre los lugares básicos que contienen. Así, un aspecto de esta invención es el procedimiento de preparación de materiales que contienen fosfatos y silicatos, en adelante procedimiento de la invención. This invention describes a process for preparing renewable, value-added materials, which contain phosphates and silicates, from residues of sunflower oil preparation. The materials obtained, given their texture and composition, are multifunctional, since they can be used in tissue bone engineering and in the production of fine chemicals by condensation on the basic places they contain. Thus, one aspect of this invention is the process of preparing materials containing phosphates and silicates, hereinafter the process of the invention.

El análisis TG de la muestra original presenta pérdida de humedad de 30 a 100ºC del 5%, y de sustancias volátiles y combustión de carbón y alquitranes hasta la temperatura máxima utilizada (1000ºC). El 7% que queda es ceniza. (P.T. Williams, S. Besler.: The influence of temperature and heating rate on the slow pyrolysis of biomass. Renewable Energy, 7 (1996) 233-250; N. Worasuwannarak, T. Sonobe, W. Tanthapanichakoon. Pyrolysis behaviours of rice straw, rice husk, and corncob by TG-MS technique. Journal of Analytical and Applied Pyrolysis, 78 (2) (2007) 265-271). The TG analysis of the original sample shows moisture loss of 30 to 100 ° C of 5%, and volatile substances and combustion of coal and tars up to the maximum temperature used (1000 ° C). The remaining 7% is ash. (PT Williams, S. Besler .: The influence of temperature and heating rate on the slow pyrolysis of biomass. Renewable Energy, 7 (1996) 233-250; N. Worasuwannarak, T. Sonobe, W. Tanthapanichakoon. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique, Journal of Analytical and Applied Pyrolysis, 78 (2) (2007) 265-271).

La descomposición de biomasa está promovida por la presencia de sustancias inorgánicas naturales The decomposition of biomass is promoted by the presence of natural inorganic substances

(P.R.(P.R.
Patwardhan, J.A. Satrio, R.C. Brown, B.H. Shanks: Influence of inorganic salts on the primary pyrolysis product of cellulose, Bioresource Technology, 101 (12) (2010) 4646-4655; V. Kirubakaran, V. Sivaramakrishnan,  Patwardhan, J.A. Satrio, R.C. Brown, B.H. Shanks: Influence of inorganic salts on the primary pyrolysis product of cellulose, Bioresource Technology, 101 (12) (2010) 4646-4655; V. Kirubakaran, V. Sivaramakrishnan,

R.R.
Nalini, T. Sekar, M. Premalatha, P. Subramanian.: A review on gasification of biomass. Renewable and Sustainable Energy Reviews, 13 (2009) 179-186; T.P. Wampler. A selected bibliography of analytical pyrolysis applications 1980-1989. Journal of Analytical and Applied Pyrolysis, 16 (1989) 291-322).  Nalini, T. Sekar, M. Premalatha, P. Subramanian .: A review on gasification of biomass. Renewable and Sustainable Energy Reviews, 13 (2009) 179-186; T.P. Wampler A selected bibliography of analytical pyrolysis applications 1980-1989. Journal of Analytical and Applied Pyrolysis, 16 (1989) 291-322).

Los principales constituyentes inorgánicos de la biomasa en forma de iones u óxidos son sodio, potasio, magnesio, calcio y silicio. (K. Raveendran, A. Ganesh and K.C. Khilar.: Influence of mineral matter on biomass pyrolysis characteristics. Fuel 74 (1995) 1812-1822). El rechazo de pipa, usado como material de partida en la presente invención es el subproducto de la industria de preparación de aceite de girasol, resultante del prensado de la pipa para extraer el aceite y está formado por la cascara, pieles y partes carnosas de la pipa desechadas físicamente en el proceso. Debido a este origen contiene elevadas cantidades de fósforo y magnesio, cationes de gran importancia y biocompatibles. La cáscara de la pipa de girasol tiene un poder calorífico de 17500 kJ/kg, considerado como un poder calorífico medio. Dicho sólido se modifica por tratamiento en diferentes condiciones para variar la estructura y textura de los materiales finales obtenidos a partir de este desecho, según los usos para los que se diseña. The main inorganic constituents of biomass in the form of ions or oxides are sodium, potassium, magnesium, calcium and silicon. (K. Raveendran, A. Ganesh and K.C. Khilar .: Influence of mineral matter on biomass pyrolysis characteristics. Fuel 74 (1995) 1812-1822). Pipe rejection, used as a starting material in the present invention is the by-product of the sunflower oil preparation industry, resulting from the pressing of the pipe to extract the oil and is formed by the shell, skins and fleshy parts of the pipe physically discarded in the process. Due to this origin it contains high amounts of phosphorus and magnesium, cations of great importance and biocompatibles. The sunflower pipe shell has a calorific value of 17500 kJ / kg, considered as an average calorific value. Said solid is modified by treatment under different conditions to vary the structure and texture of the final materials obtained from this waste, according to the uses for which it is designed.

La presente invención que se dirige a un procedimiento de obtención de materiales multifuncionales y renovables a partir del rechazo de pipa procedente de la producción de aceite de girasol, que comprende al menos las siguientes etapas: The present invention is directed to a process for obtaining multifunctional and renewable materials from the rejection of a pipe from the production of sunflower oil, which comprises at least the following steps:

--
calentar el rechazo de pipa desde temperatura ambiente hasta una temperatura igual o inferior a 1000ºC, con una rampa de calentamiento comprendida entre 1 y 10 ºC/min, incluidos ambos límites; y heating the pipe rejection from room temperature to a temperature equal to or less than 1000 ° C, with a heating ramp between 1 and 10 ° C / min, including both limits; Y

--
mantener la temperatura alcanzada durante al menos una hora. keep the temperature reached for at least one hour.

Preferiblemente, el rechazo de pipa se calienta a una temperatura comprendida entre 350ºc y 1000ºC, incluidos ambos límites. Preferably, the pipe rejection is heated to a temperature between 350 ° C and 1000 ° C, including both limits.

Un aspecto más preferente de la presente invención es el procedimiento de la invención en el que la temperatura final de la etapa de calentamiento es de 850ºC, dando lugar a un material que comprende fósforo, magnesio, silicio, calcio y cantidades inferiores de sodio y potasio. Caracterizando estos sólidos (ver Ejemplo 1) se afirma que el material obtenido mediante el procedimiento de la invención, utilizando una temperatura de calentamiento comprendida entre 700ºC y 1000ºC, incluidos ambos límites, se puede utilizar en ingeniería de tejidos óseos. A more preferred aspect of the present invention is the process of the invention in which the final temperature of the heating stage is 850 ° C, resulting in a material comprising phosphorus, magnesium, silicon, calcium and lower amounts of sodium and potassium. . Characterizing these solids (see Example 1) it is stated that the material obtained by the process of the invention, using a heating temperature between 700 ° C and 1000 ° C, including both limits, can be used in bone tissue engineering.

Además, los sólidos preparados tienen características básicas, con basicidades similares a las de sólidos de síntesis utilizados en reacciones de condensación de Knoevenagel, para preparar sustancias de química fina. Se ha medido la basicidad de estos sólidos por adsorción-descomposición de acido acético sobre los centros básicos. (H.A. Prescott, Z.J. Li, E. Kemnitz, A. Trunschke, J. Deutsh, H. Lieske, A. Auroux.: Application of calcined Mg-Al hydrotalcites for Michael additions: an investigation of catalytic activity and acidbase properties. Journal of Catalysis, 234 (2005) 119-130). In addition, prepared solids have basic characteristics, with basicities similar to those of synthetic solids used in condensation reactions of Knoevenagel, to prepare fine chemicals. The basicity of these solids has been measured by adsorption-decomposition of acetic acid on the basic centers. (HA Prescott, ZJ Li, E. Kemnitz, A. Trunschke, J. Deutsh, H. Lieske, A. Auroux .: Application of calcined Mg-Al hydrotalcites for Michael additions: an investigation of catalytic activity and acidbase properties. Journal of Catalysis, 234 (2005) 119-130).

La condensación de Knoevenagel es una reacción de gran interés en la preparación de sustancias de química fina, mediante la formación de enlaces carbono-carbono, utilizándose para ella normalmente reactivos básicos, en un principio siguiendo los parámetros de la catálisis homogénea. Heterogeneizando estos catalizadores se consiguen simplicidad de operación, reusabilidad, mayor selectividad, economía y consecuentemente procesos en general más acordes a un desarrollo sostenible. Knoevenagel condensation is a reaction of great interest in the preparation of fine chemical substances, through the formation of carbon-carbon bonds, normally using basic reagents, initially following the parameters of homogeneous catalysis. Heterogeneizing these catalysts achieve simplicity of operation, reusability, greater selectivity, economy and consequently processes in general more in line with sustainable development.

Los sólidos preparados aquí se han estudiado con éxito en esta reacción, obteniéndose con ellos actividades y selectividades en la condensación Knoevenagel de benzaldehído con cianoacetato de etilo, similares a las de sólidos utilizados en la bibliografía de basicidades similares, en su mayoría preparados a través de síntesis, no renovables y de mayor impacto medioambiental que los diseñados en la presente The solids prepared here have been studied successfully in this reaction, obtaining with them activities and selectivities in Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate, similar to those of solids used in the literature of similar basicities, mostly prepared through synthesis, non-renewable and of greater environmental impact than those designed herein

ES 2 387 975 Al ES 2 387 975 Al

invención. Es importante destacar que en esta invención se ha usado calentamiento dieléctrico o activación solar para llevar a cabo estas reacciones, disminuyendo el tiempo de reacción (<5 minutos en activación dieléctrica), o abaratando de forma radical los costes con el uso de activación solar, alcanzando conversiones cercanas al 100% y elevadas selectividades al producto de condensación, en algunos de los sólidos diseñados. invention. It is important to note that in this invention dielectric heating or solar activation has been used to carry out these reactions, decreasing the reaction time (<5 minutes in dielectric activation), or dramatically lowering costs with the use of solar activation, reaching conversions close to 100% and high selectivities to the condensation product, in some of the designed solids.

Otro aspecto más preferente de la presente invención es el procedimiento de la invención en que la rampa de calentamiento utilizada en la etapa de calentamiento es de de 5ºC/min. Another more preferred aspect of the present invention is the process of the invention in which the heating ramp used in the heating stage is 5 ° C / min.

Otro aspecto más preferente de la presente invención es el procedimiento de la invención en que la temperatura final en la etapa de calentamiento se mantiene durante 4 horas. Another more preferred aspect of the present invention is the process of the invention in which the final temperature in the heating stage is maintained for 4 hours.

Otro aspecto más preferente de la presente invención es el procedimiento de la invención en que la temperatura final en la etapa de calentamiento se mantiene durante 2 horas. Another more preferred aspect of the present invention is the process of the invention in which the final temperature in the heating stage is maintained for 2 hours.

Otro aspecto más preferente de la presente invención es el procedimiento de la invención en el que la temperatura final de la etapa de calentamiento es 700ºC, dando lugar a un material que comprende fósforo, silicio, calcio y magnesio, además de cantidades inferiores de sodio y potasio. La caracterización de estos sólidos (ver ejemplo 2) indica que el material obtenido mediante el procedimiento de la invención, utilizando ésta temperatura final de 700ºC, se puede utilizar como catalizador en reacciones de obtención de sustancias de química fina, con activación dieléctrica o solar. Another more preferred aspect of the present invention is the process of the invention in which the final temperature of the heating stage is 700 ° C, resulting in a material comprising phosphorus, silicon, calcium and magnesium, in addition to lower amounts of sodium and potassium. The characterization of these solids (see example 2) indicates that the material obtained by the process of the invention, using this final temperature of 700 ° C, can be used as a catalyst in reactions for obtaining fine chemical substances, with dielectric or solar activation.

La observación de los materiales de la invención con difracción de rayos X determina estructuras cristalinas que corresponden a fosfatos y silicatos de calcio y magnesio. El análisis textural de los materiales de la invención indica la presencia de macroporos por encima de 65 micras. Los resultados de análisis químico confirman la presencia de fósforo en un intervalo comprendido entre 7% y 12% incluidos ambos límites; silicio en un intervalo comprendido entre 4% y 9% incluidos ambos límites; potasio en un intervalo comprendido entre 8% y 18% incluidos ambos límites; calcio en un intervalo comprendido entre 7% y 11% incluidos ambos límites; y magnesio en un intervalo comprendido entre 5% y 14% incluidos ambos límites, como elementos principales del material de la invención, además de cantidades de aluminio, hierro, sodio, zinc, azufre y cloro comprendidas entre 0,1% y 2% incluidos ambos límites. Más preferentemente, el material obtenido presenta 9,5% de fósforo, 6,6% de silicio, 16,4% de potasio, 9,8% de calcio, 7,0% de magnesio, además de cantidades inferiores a 1% de aluminio, hierro, sodio, zinc, azufre y cloro. Dada su similitud con la fase mineral del hueso, y sus características texturales con diámetros de poro de varios cientos de micras este material se ha usado para la ingeniería de tejidos óseos. Además su contenido autógeno en iones presentes en el medio fisiológico (sodio, calcio, magnesio, potasio) lo hace altamente biocompatible. Su contenido en fosfato y silicio es beneficioso, pues los materiales que contienen estos elementos tienen características interesantes de reabsorción en los medios biológicos. The observation of the materials of the invention with X-ray diffraction determines crystalline structures corresponding to calcium and magnesium phosphates and silicates. Textural analysis of the materials of the invention indicates the presence of macropores above 65 microns. The results of chemical analysis confirm the presence of phosphorus in a range between 7% and 12% including both limits; silicon in a range between 4% and 9% including both limits; potassium in a range between 8% and 18% including both limits; calcium in a range between 7% and 11% including both limits; and magnesium in a range between 5% and 14% including both limits, as main elements of the material of the invention, in addition to amounts of aluminum, iron, sodium, zinc, sulfur and chlorine comprised between 0.1% and 2% included both limits. More preferably, the material obtained has 9.5% phosphorus, 6.6% silicon, 16.4% potassium, 9.8% calcium, 7.0% magnesium, in addition to amounts less than 1% of aluminum, iron, sodium, zinc, sulfur and chlorine. Given its similarity with the mineral phase of the bone, and its textural characteristics with pore diameters of several hundred microns, this material has been used for bone tissue engineering. In addition its autogenous content in ions present in the physiological medium (sodium, calcium, magnesium, potassium) makes it highly biocompatible. Its phosphate and silicon content is beneficial, since the materials containing these elements have interesting characteristics of reabsorption in biological media.

Normalmente el material multifuncional y renovable obtenido a partir del presente método en cualquiera de sus variantes puede someterse a tratamientos químicos para modificar sus propiedades estructurales y texturales en función del uso que se les va a dar, al igual que otros materiales similares conocidos en el estado de la técnica. Esta modificación química del material puede ser con ácido, con base y/o con oxidantes del material. Normally the multifunctional and renewable material obtained from the present method in any of its variants can be subjected to chemical treatments to modify its structural and textural properties depending on the use that will be given, as well as other similar materials known in the state of technique This chemical modification of the material can be with acid, with base and / or with oxidants of the material.

Otro aspecto de la presente invención es la posibilidad de utilizar estos materiales para administración controlada de drogas, proteínas, genes, etc., debido a su biocompatibilidad y composición. Another aspect of the present invention is the possibility of using these materials for controlled administration of drugs, proteins, genes, etc., due to their biocompatibility and composition.

Otro aspecto de la presente invención es su posible utilidad como material de soporte para regeneración tisular. Para su aplicación en este campo, el material se esteriliza y se moldea tras su obtención para adecuarlo al caso requerido. Another aspect of the present invention is its possible utility as a support material for tissue regeneration. For its application in this field, the material is sterilized and molded after obtaining it to adapt it to the required case.

Otro aspecto de la presente invención es su posible utilidad como catalizador para reacciones activadas sobre centros básicos. Para esta aplicación, el material se tamiza tras su obtención hasta un tamaño de partícula adecuado para cada reacción. Another aspect of the present invention is its possible utility as a catalyst for activated reactions on basic centers. For this application, the material is screened after obtaining up to a particle size suitable for each reaction.

EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓN EXAMPLES OF EMBODIMENT OF THE INVENTION

EJEMPLO 1. Preparación de material biocompatible a partir de rechazo de pipa y caracterización para comprobar su aplicación en ingeniería de tejidos óseos. EXAMPLE 1. Preparation of biocompatible material from pipe rejection and characterization to verify its application in bone tissue engineering.

El rechazo de pipa obtenido de una fábrica de aceite de girasol se calienta desde temperatura ambiente hasta una temperatura de 700ºC, manteniendo la temperatura final cuatro horas. The pipe rejection obtained from a sunflower oil factory is heated from room temperature to a temperature of 700 ° C, maintaining the final temperature four hours.

El material obtenido comprende en peso mayoritariamente 9,5% de fósforo, 6,6 % de silicio, 16,4% de potasio, 9,8 de calcio y 7% de magnesio como elementos principales, además de cantidades inferiores al 1% de aluminio, sodio y potasio. Se analiza la influencia de sus características estructurales, superficiales, texturales y su biocompatibilidad sobre el crecimiento de osteoblastos. The material obtained mostly comprises 9.5% phosphorus, 6.6% silicon, 16.4% potassium, 9.8 calcium and 7% magnesium as the main elements, in addition to amounts less than 1% of aluminum, sodium and potassium. The influence of its structural, surface, textural and biocompatibility characteristics on the growth of osteoblasts is analyzed.

Para la caracterización de las fases cristalinas del material objeto de la patente, se utilizó difracción de rayos X de polvo con un difractómetro Policristal X´Pert 15 Pro PANalytical, usando radiación Ka de Cu. Se realizaron los diagramas de difracción de rayos X, encontrándose picos correspondientes a fosfato de calcio y de potasio y silicatos de calcio y magnesio, similares a los encontrados en la bibliografía para matrices utilizadas en For the characterization of the crystalline phases of the material object of the patent, X-ray powder diffraction was used with a X'Pert 15 Pro PANalytical Polycrystalline diffractometer, using Cu Ka radiation. X-ray diffraction diagrams were made, peaks corresponding to calcium and potassium phosphate and calcium and magnesium silicates, similar to those found in the literature for matrices used in

ES 2 387 975 Al ES 2 387 975 Al

crecimiento de tejido óseo (D. Tadic and M. Epple.: A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials 25 (2004) 987-994). bone tissue growth (D. Tadic and M. Epple .: A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials 25 (2004) 987-994).

Las distribuciones de tamaño de partícula, meso y macroporos se determinaron por porosimetría de mercurio, en un equipo Fisons Pascal 140/240, aplicando la ecuación de Washburn, con ángulo de contacto de The particle size, meso and macropore distributions were determined by mercury porosimetry, in a Fisons Pascal 140/240 equipment, applying the Washburn equation, with contact angle of

5 mercurio de 141º y una tensión superficial de 484 mNm-1 según recomendaciones de la IUPAC, sobre muestras previamente secadas a 150 ºC durante 16 horas. (J. Blanco, A.L. Petre, M. Yates, M.P. Martin, J.A. Martin, M.A. Martin-Luengo.: Tailor-made high porosity VOC oxidation catalysts prepared by a single-step procedure. Applied Catalysis B: Environmental 73 (2007) 128-134). 5 mercury of 141 ° and a surface tension of 484 mNm-1 according to IUPAC recommendations, on samples previously dried at 150 ° C for 16 hours. (J. Blanco, AL Petre, M. Yates, MP Martin, JA Martin, MA Martin-Luengo .: Tailor-made high porosity VOC oxidation catalysts prepared by a single-step procedure. Applied Catalysis B: Environmental 73 (2007) 128 -134).

Los materiales tienen una estructura porosa, con más de 90% de sus poros por encima de 65 micras de The materials have a porous structure, with more than 90% of their pores above 65 microns of

10 diámetro. Las densidades de los materiales son superiores a 2,34g/cc. Los sólidos utilizados para crecimiento de osteoblastos suelen tener poros en el rango de 50 a 500 micras y dependiendo de estos, pueden servir o no como biomateriales para crecimiento celular. Se ha estudiado la biocompatibilidad de estos sólidos y realizado cultivos de osteoblastos, comprobando como dichas células crecen en su superficie de forma similar a la de un hidroxiapatito, utilizado como control en este tipo de procesos. 10 diameter The densities of the materials are greater than 2.34g / cc. The solids used for osteoblast growth usually have pores in the range of 50 to 500 microns and depending on these, they may or may not serve as biomaterials for cell growth. The biocompatibility of these solids and osteoblast cultures have been studied, verifying how these cells grow on their surface similar to that of a hydroxyapatite, used as a control in this type of process.

15 EJEMPLO 2. Preparación de catalizadores básicos a partir de desechos de producción de aceite de girasol y su uso en reacciones de obtención de sustancias de química fina, debido a su basicidad intrínseca. Se ha utilizado para estas reacciones activación dieléctrica o activación solar. EXAMPLE 2. Preparation of basic catalysts from sunflower oil production wastes and their use in reactions for obtaining fine chemicals, due to their intrinsic basicity. Dielectric activation or solar activation has been used for these reactions.

El rechazo de pipa procedente de la preparación de aceite de girasol se trata en aire desde temperatura ambiente hasta una temperatura comprendida entre 350 ºC y 1000 ºC, manteniendo esta temperatura final 20 durante al menos 1 hora. Pipe rejection from sunflower oil preparation is treated in air from room temperature to a temperature between 350 ° C and 1000 ° C, maintaining this final temperature 20 for at least 1 hour.

Los reactivos utilizados han sido benzaldehído y cianoacetato de etilo en una relación molar de 1:1.3, con 0,15g de catalizador. La adsorción descomposición de acido acético muestra centros básicos en cantidades y fuerzas similares a las encontradas en sólidos sintéticos utilizados para reacciones de condensación (Rousselot, C. Taviot-Guého, J.P. Besse: Synthesis and characterization of mixed Ga/Al-containing layered The reagents used have been benzaldehyde and ethyl cyanoacetate in a molar ratio of 1: 1.3, with 0.15g of catalyst. Acetic acid decomposition adsorption shows basic centers in amounts and forces similar to those found in synthetic solids used for condensation reactions (Rousselot, C. Taviot-Guého, J.P. Besse: Synthesis and characterization of mixed Ga / Al-containing layered

25 double hydroxides: study of their basic properties through the Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate, and comparison to other LDHs. International Journal of Inorganic Materials, 1 (1999) 165174) (G. Postole, B. Chowdhury, B. Karmakar, K. Pinki, J. Banerji, A. Auroux. Knovenagel condensation reaction over acid-base bifunctional nanocrystalline CexZr1-xO2 solid solutions. Journal of Catalysis, 269 (2010) 110-121). Las actividades catalíticas con calentamiento dieléctrico indican que con los materiales derivados de rechazo de 25 double hydroxides: study of their basic properties through the Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate, and comparison to other LDHs. International Journal of Inorganic Materials, 1 (1999) 165174) (G. Postole, B. Chowdhury, B. Karmakar, K. Pinki, J. Banerji, A. Auroux. Knovenagel condensation reaction over acid-base bifunctional nanocrystalline CexZr1-xO2 solid solutions Journal of Catalysis, 269 (2010) 110-121). Catalytic activities with dielectric heating indicate that with materials derived from rejection of

30 pipa se pueden alcanzar conversiones del 100% al producto condensado en un minuto, mientras que con los derivados del bagazo del cerveza solo se alcanzan conversiones de alrededor del 60% en siete minutos de reacción. 30 pipes conversions of 100% can be achieved to the condensed product in one minute, while with the derivatives of beer bagasse only conversions of around 60% are achieved in seven minutes of reaction.

En el caso de la reacción con activación solar, durante cuatro horas y con una radiación cercana a 1000 W/m2, los materiales basados en rechazo de pipa permiten obtener conversiones cercanas a 90% y35 selectividades al compuesto condensado, mientras que los derivados del bagazo de cerveza solo permiten In the case of the reaction with solar activation, for four hours and with a radiation close to 1000 W / m2, the materials based on pipe rejection allow conversions close to 90% and 35 selectivities to the condensed compound, while those derived from bagasse of beer only allow

obtener conversiones inferiores al 5%. get conversions less than 5%.

Tabla 1-. Reacción de condensación de Knoevenagel con rechazo de pipa (RP) o bagazo de cerveza (BBM) y activación solar (4h, 1000 W/m2) Table 1-. Knoevenagel condensation reaction with pipe rejection (RP) or beer bagasse (BBM) and solar activation (4h, 1000 W / m2)

RP47 RP47
RP48 RP410 BBM47 RP48 RP410 BBM47

Conversión Conversion
88 85 19 4 88 85 19 4

Selectividad condensado Condensed selectivity
100 99 62 82 100 99 62 82

ES 2 387 975 Al ES 2 387 975 Al

Claims (21)

REIVINDICACIONES 1. Procedimiento de obtención de materiales multifuncionales y renovables a partir del rechazo de pipa procedente de la producción de aceite de girasol, caracterizado por que comprende al menos: 1. Procedure for obtaining multifunctional and renewable materials from the rejection of a pipe from the production of sunflower oil, characterized in that it comprises at least:
--
calentar el rechazo de pipa desde temperatura ambiente hasta una temperatura igual o inferior a 1000ºC, incluidos ambos límites, con una rampa de calentamiento comprendida entre 1 y 10 ºC/min, incluidos ambos límites, hasta alcanzar su calcinación; y heating the pipe rejection from room temperature to a temperature equal to or less than 1000 ° C, including both limits, with a heating ramp between 1 and 10 ° C / min, including both limits, until it reaches calcination; Y
--
mantener la temperatura alcanzada durante al menos una hora. keep the temperature reached for at least one hour.
2. 2.
Procedimiento según la reivindicación 1 caracterizado por que la temperatura final alcanzada en la etapa de calentamiento está comprendida entre 350ºC y 1000 ºC, incluidos ambos límites. Method according to claim 1 characterized in that the final temperature reached in the heating stage is between 350 ° C and 1000 ° C, including both limits.
3. 3.
Procedimiento según la reivindicación 2, caracterizado por que la temperatura final alcanzada en la etapa de calentamiento está comprendida entre 700ºC y 1000 ºC, incluidos ambos límites. Method according to claim 2, characterized in that the final temperature reached in the heating stage is between 700 ° C and 1000 ° C, including both limits.
4. Four.
Procedimiento según la reivindicación 3, caracterizado por que la temperatura final alcanzada en la etapa de calentamiento es de 850ºC. Process according to claim 3, characterized in that the final temperature reached in the heating stage is 850 ° C.
5. 5.
Procedimiento según la reivindicación 3, caracterizado por que la temperatura final alcanzada en la etapa de calentamiento es de 700ºC. Method according to claim 3, characterized in that the final temperature reached in the heating stage is 700 ° C.
6. 6.
Procedimiento según una cualquiera de las reivindicaciones 1 a 5, caracterizado por que la rampa de calentamiento es de 5 ºC/min. Process according to any one of claims 1 to 5, characterized in that the heating ramp is 5 ° C / min.
7. 7.
Procedimiento según una cualquiera de las reivindicaciones 1 a 6, caracterizado por que la temperatura final alcanzada se mantiene durante 2 horas. Method according to any one of claims 1 to 6, characterized in that the final temperature reached is maintained for 2 hours.
8. 8.
Procedimiento según la reivindicación 7, caracterizado por que la temperatura final alcanzada se mantiene durante 4 horas. Method according to claim 7, characterized in that the final temperature reached is maintained for 4 hours.
9. 9.
Procedimiento según una cualquiera de las reivindicaciones 1 a 8, caracterizado por que el rechazo de pipa comprende cáscaras, pieles y partes carnosas de la pipa desechada en el proceso de producción de aceite de girasol. Method according to any one of claims 1 to 8, characterized in that the rejection of the pipe comprises shells, skins and fleshy parts of the pipe discarded in the sunflower oil production process.
10. 10.
Material multifuncional y renovable obtenible a partir del procedimiento descrito en una cualquiera de las reivindicaciones anteriores. Multifunctional and renewable material obtainable from the method described in any one of the preceding claims.
11. eleven.
Material según la reivindicación anterior, caracterizado por que al menos comprende en su composición fósforo, magnesio, silicio, calcio, sodio y potasio. Material according to the preceding claim, characterized in that at least it comprises in its composition phosphorus, magnesium, silicon, calcium, sodium and potassium.
12. 12.
Material según la reivindicación anterior, caracterizado por que comprende también uno de los elementos seleccionados entre aluminio, hierro, zinc, azufre, cloro y cualquier combinación de los mismos. Material according to the preceding claim, characterized in that it also comprises one of the elements selected from aluminum, iron, zinc, sulfur, chlorine and any combination thereof.
13. 13.
Biomaterial caracterizado porque comprende en su composición el material multifuncional y renovable descrito en una cualquiera de las reivindicaciones 10 a 12. Biomaterial characterized in that it comprises in its composition the multifunctional and renewable material described in any one of claims 10 to 12.
14. 14.
Catalizador renovable en procesos activados por centros básicos caracterizado por que comprende en su composición el material multifuncional y renovable descrito en una cualquiera de las reivindicaciones 10 a 12. Renewable catalyst in processes activated by basic centers characterized in that it comprises in its composition the multifunctional and renewable material described in any one of claims 10 to 12.
15.fifteen.
Uso del material descrito en una cualquiera de las reivindicaciones 10 a 12 como material de soporte en ingeniería de tejidos y crecimiento celular.  Use of the material described in any one of claims 10 to 12 as a support material in tissue engineering and cell growth.
16. 16.
Uso del material descrito en una cualquiera de las reivindicaciones 10 a 12 en administración controlada de sustancias de interés biológico. Use of the material described in any one of claims 10 to 12 in controlled administration of substances of biological interest.
17. 17.
Uso según la reivindicación 16, caracterizado por que las sustancias de interés biológico son seleccionadas dentro del grupo compuesto por: drogas, proteínas y genes. Use according to claim 16, characterized in that the substances of biological interest are selected from the group consisting of: drugs, proteins and genes.
18. 18.
Uso del material descrito en una cualquiera de las reivindicaciones 10 a 12 como catalizador renovable en procesos activados por centros básicos. Use of the material described in any one of claims 10 to 12 as a renewable catalyst in processes activated by basic centers.
19. 19.
Uso según la reivindicación anterior, caracterizado por que se aplica activación dieléctrica o solar de la reacción. Use according to the preceding claim, characterized in that dielectric or solar activation of the reaction is applied.
OFICINA ESPAÑOLA DE PATENTES Y MARCAS SPANISH OFFICE OF THE PATENTS AND BRAND N.º solicitud: 201130303 Application no .: 201130303 ESPAÑA SPAIN Fecha de presentación de la solicitud: 07.03.2011 Date of submission of the application: 07.03.2011 Fecha de prioridad: Priority Date: INFORME SOBRE EL ESTADO DE LA TECNICA REPORT ON THE STATE OF THE TECHNIQUE 51 Int. Cl. : Ver Hoja Adicional 51 Int. Cl.: See Additional Sheet DOCUMENTOS RELEVANTES RELEVANT DOCUMENTS
Categoría Category
56 Documentos citados Reivindicaciones afectadas 56 Documents cited Claims Affected
A A A A A A
US 2009/0148578 A1 (KONDOH ET AL.) 11.06.2009, Todo el documento. DE 202006014651 U1 (NOPPER HERBERT GEORG) 28.12.2006, Todo el documento. ES 2214821 T3 (OULOUSAINE DE RECHERCHE ET DE DEVELOPPMENT EN ABRÉGÉ) 22.03.2000, Todo el documento. 1-19 1-19 1-19 US 2009/0148578 A1 (KONDOH ET AL.) 06.11.2009, Entire document. DE 202006014651 U1 (NOPPER HERBERT GEORG) 28.12.2006, Entire document. EN 2214821 T3 (OULOUSAINE DE RECHERCHE ET DE DEVELOPPMENT IN ABRÉGÉ) 22.03.2000, Entire document. 1-19 1-19 1-19
Categoría de los documentos citados X: de particular relevancia Y: de particular relevancia combinado con otro/s de la misma categoría A: refleja el estado de la técnica O: referido a divulgación no escrita P: publicado entre la fecha de prioridad y la de presentación de la solicitud E: documento anterior, pero publicado después de la fecha de presentación de la solicitud Category of the documents cited X: of particular relevance Y: of particular relevance combined with other / s of the same category A: reflects the state of the art O: refers to unwritten disclosure P: published between the priority date and the date of priority submission of the application E: previous document, but published after the date of submission of the application
El presente informe ha sido realizado • para todas las reivindicaciones • para las reivindicaciones nº: This report has been prepared • for all claims • for claims no:
Fecha de realización del informe 05.06.2012 Date of realization of the report 05.06.2012
Examinador M. J. García Bueno Página 1/4 Examiner M. J. García Bueno Page 1/4
INFORME DEL ESTADO DE LA TÉCNICA REPORT OF THE STATE OF THE TECHNIQUE Nº de solicitud: 201130303 Application number: 201130303 CLASIFICACIÓN OBJETO DE LA SOLICITUD CLASSIFICATION OBJECT OF THE APPLICATION A61F2/02 (2006.01) B01J21/08 (2006.01) B01J6/00 (2006.01) C01B33/00 (2006.01) C01B25/00 (2006.01) A61F2 / 02 (2006.01) B01J21 / 08 (2006.01) B01J6 / 00 (2006.01) C01B33 / 00 (2006.01) C01B25 / 00 (2006.01) Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación) Minimum documentation sought (classification system followed by classification symbols) A61F, B01J, C01B A61F, B01J, C01B Bases de datos electrónicas consultadas durante la búsqueda (nombre de la base de datos y, si es posible, términos de búsqueda utilizados) Electronic databases consulted during the search (name of the database and, if possible, search terms used) INVENES, EPODOC, WPI, TXTE, NPL, XPESP, GOOGLE INVENES, EPODOC, WPI, TXTE, NPL, XPESP, GOOGLE Informe del Estado de la Técnica Página 2/4 State of the Art Report Page 2/4 OPINIÓN ESCRITA  WRITTEN OPINION Nº de solicitud: 201130303 Application number: 201130303 Fecha de Realización de la Opinión Escrita: 05.06.2012 Date of Written Opinion: 05.06.2012 Declaración Statement
Novedad (Art. 6.1 LP 11/1986) Novelty (Art. 6.1 LP 11/1986)
Reivindicaciones Reivindicaciones 1-19 SI NO Claims Claims 1-19 IF NOT
Actividad inventiva (Art. 8.1 LP11/1986) Inventive activity (Art. 8.1 LP11 / 1986)
Reivindicaciones Reivindicaciones 1-19 SI NO Claims Claims 1-19 IF NOT
Se considera que la solicitud cumple con el requisito de aplicación industrial. Este requisito fue evaluado durante la fase de examen formal y técnico de la solicitud (Artículo 31.2 Ley 11/1986). The application is considered to comply with the industrial application requirement. This requirement was evaluated during the formal and technical examination phase of the application (Article 31.2 Law 11/1986). Base de la Opinión.-  Opinion Base.- La presente opinión se ha realizado sobre la base de la solicitud de patente tal y como se publica. This opinion has been made on the basis of the patent application as published. Informe del Estado de la Técnica Página 3/4 State of the Art Report Page 3/4 OPINIÓN ESCRITA  WRITTEN OPINION Nº de solicitud: 201130303 Application number: 201130303 1. Documentos considerados.-  1. Documents considered.- A continuación se relacionan los documentos pertenecientes al estado de la técnica tomados en consideración para la realización de esta opinión. The documents belonging to the state of the art taken into consideration for the realization of this opinion are listed below.
Documento Document
Número Publicación o Identificación Fecha Publicación Publication or Identification Number publication date
D01 D01
US 2009/0148578 A1 (KONDOH et al.) 11.06.2009 US 2009/0148578 A1 (KONDOH et al.) 06.11.2009
D02 D02
DE 202006014651 U1 (NOPPER HERBERT GEORG) 28.12.2006 DE 202006014651 U1 (NOPPER HERBERT GEORG) 12.28.2006
D03 D03
ES 2214821 T3 (OULOUSAINE DE RECHERCHE ET DE DEVELOPPMENT EN ABRÉGÉ) 22.03.2000 EN 2214821 T3 (OULOUSAINE DE RECHERCHE ET DE DEVELOPPMENT IN ABRÉGÉ) 22.03.2000
2. Declaración motivada según los artículos 29.6 y 29.7 del Reglamento de ejecución de la Ley 11/1986, de 20 de marzo, de Patentes sobre la novedad y la actividad inventiva; citas y explicaciones en apoyo de esta declaración  2. Statement motivated according to articles 29.6 and 29.7 of the Regulations for the execution of Law 11/1986, of March 20, on Patents on novelty and inventive activity; quotes and explanations in support of this statement La presente solicitud de invención consiste en un método de obtención de materiales multifuncionales y renovables a partir del rechazo de pipa procedente de la producción de aceite de girasol (reivindicaciones 1-9). La presente solicitud de invención también consiste en el material multifuncional y renovable obtenible mediante el procedimiento mencionado anteriormente (reivindicaciones 10-12), el biomaterial y el catalizador que comprenden dicho material multifuncional (reivindicación 13 y 14), y el uso de dicho material como material de soporte de ingeniería de tejido y crecimiento celular, en la administración controlada de sustancias de interés biológico y como catalizador (reivindicaciones 15-19). The present invention application consists of a method of obtaining multifunctional and renewable materials from the rejection of a pipe from the production of sunflower oil (claims 1-9). The present invention application also consists of the multifunctional and renewable material obtainable by the aforementioned method (claims 10-12), the biomaterial and the catalyst comprising said multifunctional material (claims 13 and 14), and the use of said material as tissue and cell growth engineering support material, in the controlled administration of substances of biological interest and as a catalyst (claims 15-19). 1.-NOVEDAD (Art. 6.1 Ley 11/1986) Y ACTIVIDAD INVENTIVA (Art. 8.1 Ley 11/1986).  1.-NEW (Art. 6.1 Law 11/1986) AND INVENTIVE ACTIVITY (Art. 8.1 Law 11/1986). 1.1 Reivindicaciones 1-19  1.1 Claims 1-19 El documento D01 divulga un método de producción de óxido de silicio en polvo que comprende una etapa de preparación de cultivos agrícolas, una etapa de hidrólisis y una etapa de calentamiento del residuo producido en la etapa de hidrólisis a una temperatura de 400ºC a 1200ºC (ver todo el documento). Document D01 discloses a production method of silicon oxide powder comprising a stage of preparation of agricultural crops, a stage of hydrolysis and a stage of heating the residue produced in the stage of hydrolysis at a temperature of 400 ° C to 1200 ° C (see whole document). El documento D02 divulga un combustible formado a partir de materiales orgánicos renovables o residuos agrarios (ver todo el documento). Document D02 discloses a fuel formed from renewable organic materials or agricultural waste (see the whole document). El documento D03 divulga un procedimiento de fabricación de un objeto biodegradable, convertible en compost y reciclable que utiliza una torta de girasol con un contenido de aceite menor al 20%, que es conformada mediante prensado (ver todo el documento). Document D03 discloses a process for manufacturing a biodegradable object, convertible into compost and recyclable that uses a sunflower cake with an oil content of less than 20%, which is shaped by pressing (see the whole document). La invención reivindicada no es obvia para un experto en la materia, ya que no hay información en los documentos citados que puedan dirigir al experto en la materia al método reivindicado. Por lo tanto, los documentos D01-D03 son solo documentos que reflejan el estado de la técnica. En consecuencia la invención es nueva y se considera que implica actividad inventiva según los artículos The claimed invention is not obvious to a person skilled in the art, since there is no information in the cited documents that can direct the person skilled in the art to the claimed method. Therefore, documents D01-D03 are only documents that reflect the state of the art. Consequently the invention is new and is considered to imply inventive activity according to the articles. 6.1 y 8.1 de la Ley 11/1986.  6.1 and 8.1 of Law 11/1986. Informe del Estado de la Técnica Página 4/4 State of the Art Report Page 4/4
ES201130303A 2011-03-07 2011-03-07 PROCEDURE FOR OBTAINING MULTIFUNCTIONAL AND RENEWABLE MATERIALS FROM THE REJECTION OF PIPE FROM THE PRODUCTION OF SUNFLOWER OIL. Withdrawn - After Issue ES2387975B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES201130303A ES2387975B1 (en) 2011-03-07 2011-03-07 PROCEDURE FOR OBTAINING MULTIFUNCTIONAL AND RENEWABLE MATERIALS FROM THE REJECTION OF PIPE FROM THE PRODUCTION OF SUNFLOWER OIL.
PCT/ES2012/070079 WO2012120166A1 (en) 2011-03-07 2012-02-08 Method for producing renewable and multifunctional materials using sunflower seed rejects from sunflower oil production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201130303A ES2387975B1 (en) 2011-03-07 2011-03-07 PROCEDURE FOR OBTAINING MULTIFUNCTIONAL AND RENEWABLE MATERIALS FROM THE REJECTION OF PIPE FROM THE PRODUCTION OF SUNFLOWER OIL.

Publications (2)

Publication Number Publication Date
ES2387975A1 ES2387975A1 (en) 2012-10-04
ES2387975B1 true ES2387975B1 (en) 2013-10-30

Family

ID=46797526

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201130303A Withdrawn - After Issue ES2387975B1 (en) 2011-03-07 2011-03-07 PROCEDURE FOR OBTAINING MULTIFUNCTIONAL AND RENEWABLE MATERIALS FROM THE REJECTION OF PIPE FROM THE PRODUCTION OF SUNFLOWER OIL.

Country Status (2)

Country Link
ES (1) ES2387975B1 (en)
WO (1) WO2012120166A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2784047B1 (en) * 1998-09-16 2001-01-05 Toulousaine De Rech Et De Dev METHOD FOR MANUFACTURING OBJECTS FROM PLANT RAW MATERIAL BY FORMING OR THERMOFORMING
JP5100385B2 (en) * 2005-08-31 2012-12-19 勝義 近藤 Method for producing amorphous silicon oxide powder
DE202006014651U1 (en) * 2006-09-22 2006-12-28 Nopper, Herbert Georg Fuel based on compressed renewable organic raw materials and/or agricultural waste for producing energy, especially thermal energy, industrially and in private sector contains natural oil and/or fat and sodium perborate

Also Published As

Publication number Publication date
ES2387975A1 (en) 2012-10-04
WO2012120166A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
Waheed et al. Channelling eggshell waste to valuable and utilizable products: a comprehensive review
Sharma et al. Biomass as a sustainable resource for value‐added modern materials: a review
Panda et al. Extraction and characterization of biocompatible hydroxyapatite from fresh water fish scales for tissue engineering scaffold
Guru et al. Sorption on eggshell waste—a review on ultrastructure, biomineralization and other applications
Mondal et al. Processing of natural resourced hydroxyapatite ceramics from fish scale
Sarin et al. Porous biphasic calcium phosphate scaffolds from cuttlefish bone
CN101352583B (en) Stephanoporate calcium polyphosphate biological ceramic and preparation method thereof
CN101987208A (en) Multi-phase large-aperture bone regeneration bracket material transformed from cuttlebone and preparation method thereof
CN102764450B (en) Cuttlebone transformation series porous composite bio-ceramic, its preparation method and application
Ahmad Fara et al. Preparation and characterization of biological hydroxyapatite (HAp) obtained from Tilapia fish bone
Sahu et al. Al grafted natural hydroxyapatite for neem oil transesterification: kinetic study at optimal point
Martin-Luengo et al. Biomaterials from beer manufacture waste for bone growth scaffolds
ES2387975B1 (en) PROCEDURE FOR OBTAINING MULTIFUNCTIONAL AND RENEWABLE MATERIALS FROM THE REJECTION OF PIPE FROM THE PRODUCTION OF SUNFLOWER OIL.
CN107456605A (en) A kind of biphasic calcium phosphate porous bio-ceramic bone holder material and preparation method and application
Horta et al. Hydroxyapatite from biowaste for biomedical applications: obtainment, characterization and in vitro assays
Haberko et al. Behaviour of bone origin hydroxyapatite at elevated temperatures and in O2 and CO2 atmospheres
Aragón et al. Development and characterization of a novel bioresorbable and bioactive biomaterial based on polyvinyl acetate, calcium carbonate and coralline hydroxyapatite
Razak et al. Review on eggshell waste in tissue engineering application
Yadav et al. A low-cost approach to develop silica doped Tricalcium Phosphate (TCP) scaffold by valorizing animal bone waste and rice husk for tissue engineering applications
CN103539478B (en) A kind of preparation method of calcium metaphosphate porous bio-ceramic
Essien et al. Sol-gel bioceramic material from bentonite clay
Agbeboh et al. Comparing the effects of two wet precipitation methods on the yield of chicken eggshell-derived hydroxyapatite
CN105999397A (en) Application of mineralized three-dimensional porous graphene material in bone defect filler
Kumar et al. Phase assemblage study and cytocompatibility property of heat treated potassium magnesium phosphate–silicate ceramics
JP2009537437A (en) Method for producing hydroxylapatite

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2387975

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20131030

FA2A Application withdrawn

Effective date: 20140227