ES2385167A1 - Method for anaerobic digestion of solid urban waste in temperature phases - Google Patents

Method for anaerobic digestion of solid urban waste in temperature phases Download PDF

Info

Publication number
ES2385167A1
ES2385167A1 ES201001630A ES201001630A ES2385167A1 ES 2385167 A1 ES2385167 A1 ES 2385167A1 ES 201001630 A ES201001630 A ES 201001630A ES 201001630 A ES201001630 A ES 201001630A ES 2385167 A1 ES2385167 A1 ES 2385167A1
Authority
ES
Spain
Prior art keywords
thermophilic
mesophilic
waste
degradation
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
ES201001630A
Other languages
Spanish (es)
Other versions
ES2385167B1 (en
Inventor
Juana Fernández Rodríguez
Luis Isidoro Romero García
Montserrat PÉREZ GARCÍA
Carlos José Álvarez Gallego
Diego Sales Márquez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad de Cadiz
Original Assignee
Universidad de Cadiz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad de Cadiz filed Critical Universidad de Cadiz
Priority to ES201001630A priority Critical patent/ES2385167B1/en
Priority to PCT/ES2011/000205 priority patent/WO2012085300A1/en
Publication of ES2385167A1 publication Critical patent/ES2385167A1/en
Application granted granted Critical
Publication of ES2385167B1 publication Critical patent/ES2385167B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/023Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

The invention relates to a method for anaerobic digestion of municipal solid waste in temperature phases. The invention consists of a method for anaerobic degradation in temperature phases (thermophilic-mesophilic sequential) of OF-MSW (organic fraction of municipal solid waste), by means of which it is possible to increase the stability of the process and the per-day capacity for treating organic waste, achieving greater efficiency in the production of biogas related to the amount of organic matter supplied to the system or consumed by same. The process consists in subjecting the waste to thermophilic pre-treatment for a certain length of time in order to efficiently achieve high hydrolysis and solubilization of organic waste. The second stage of the process consists in subjecting the waste pre-hydrolyzed during the thermophilic phase to mesophilic degradation, such that the solubilized matter is consumed during this second phase.

Description

PROCEDIMIENTO DE DIGESTIÓN ANAEROBIA EN FASES DE TEMPERATURA DE LOS RESIDUOS SÓLIDOS URBANOS. ANAEROBIA DIGESTION PROCEDURE IN TEMPERATURE PHASES OF URBAN SOLID WASTE.

SECTOR DE LA TÉCNICA. SECTOR OF THE TECHNIQUE.

La presente invención se encuadra en el sector técnico de procesos de tratamiento de residuos sólidos urbanos, concretamente en el relativo a tratamientos biológicos de residuos sólidos orgánicos mediante la tecnología de digestión anaerobia The present invention is part of the technical sector of urban solid waste treatment processes, specifically in relation to biological treatments of organic solid waste through anaerobic digestion technology

o biometanización. or biomethanization.

ESTADO DE LA TÉCNICA. STATE OF THE TECHNIQUE.

El incremento en la producción de Residuos Sólidos Urbanos (RSU) durante los últimos años requiere la adopción de medidas de gestión eficaces con el fin de 15 minimizar su impacto sobre el medio ambiente. En este sentido, el Plan Nacional Integrado de Residuos para el periodo 2008-2015 (pNIR 2008-2015), aprobado por el Consejo de Ministros el 26 de febrero de 2009, tiene como finalidad promover una política adecuada en la gestión de los residuos, disminuyendo su generación e impulsando un correcto tratamiento de los mismos: prevención, reutilización, reciclaje, 20 valorización y eliminación. Asimismo persigue la implicación de todas las Administraciones públicas, consumidores y usuarios, con objeto de que asuman sus respectivas cuotas de responsabilidad, impulsando la creación de infraestructuras que garanticen este correcto tratamiento y gestión de los residuos en los lugares más próximos a su generación. Además, incorpora la Estrategia de Reducción de The increase in the production of Urban Solid Waste (MSW) in recent years requires the adoption of effective management measures in order to minimize its impact on the environment. In this regard, the National Integrated Waste Plan for the period 2008-2015 (pNIR 2008-2015), approved by the Council of Ministers on February 26, 2009, aims to promote an appropriate waste management policy, reducing their generation and promoting their correct treatment: prevention, reuse, recycling, recovery and disposal. It also pursues the involvement of all public administrations, consumers and users, in order to assume their respective quotas of responsibility, promoting the creation of infrastructures that guarantee this correct treatment and management of waste in the places closest to its generation. In addition, it incorporates the Strategy for the Reduction of

25 Vertido de Residuos Biodegradables con el fin de disminuir su impacto sobre el entorno. En este sentido se plantea la oportunidad de tratamiento de los residuos municipales biodegradables, debido al elevado porcentaje de materia orgánica que presentan mediante las técnicas biológicas, entre las que se encuentra la digestión anaerobia o biometanización. 25 Discharge of Biodegradable Waste in order to reduce its impact on the environment. In this sense, the opportunity to treat biodegradable municipal waste is considered, due to the high percentage of organic matter presented by biological techniques, among which is anaerobic digestion or biomethanization.

La biometanización es una tecnología para el tratamiento de residuos orgánicos que posibilita la valorización energética ya que, como resultado del proceso global se obtiene un biogás con alto contenido en metano. Adicionalmente, el proceso anaerobio genera un residuo estabilizado biológicamente, con buenas características como Biomethanization is a technology for the treatment of organic waste that enables energy recovery because, as a result of the global process, a biogas with high methane content is obtained. Additionally, the anaerobic process generates a biologically stabilized residue, with good characteristics such as

5 mejorador del suelo y que puede ser utilizado con ftnes agrícolas. 5 soil improver and that can be used with agricultural fields.

El proceso de digestión anaerobia de la materia orgánica permite considerar hasta cuatro etapas sucesivas (Gujer y cols., (1983) Conversion processes in anaerobic digestión. Water Science and Technology, 15(8-9), 127-67; Breure, (1986) Hydrolirys and acidogenesis firmentation ofprotein and carbof?ydrates in anaerobic waste water treatments. Off setduikkerij. The anaerobic digestion process of organic matter allows us to consider up to four successive stages (Gujer et al. (1983) Conversion processes in anaerobic digestion. Water Science and Technology, 15 (8-9), 127-67; Breure, (1986 ) Hydrolirys and acidogenesis firmentation ofprotein and carbof? Ydrates in anaerobic waste water treatments. Off setduikkerij.

10 Kanters B. v., Alblasserdam.): 10 Kanters B. v., Alblasserdam.):

• Hidrólisis: es el primer paso necesatlo para la degradación anaerobia de substratos orgánicos complejos, ya que la materia orgánica no puede ser utilizada directamente por los microorganismos a menos que se hidrolice en compuestos solubles, que puedan atravesar la membrana celular. La hidrólisis • Hydrolysis: it is the first necessary step for anaerobic degradation of complex organic substrates, since organic matter cannot be used directly by microorganisms unless it is hydrolyzed into soluble compounds, which can cross the cell membrane. Hydrolysis

15 de estas partículas orgánicas es llevada a cabo por enzimas extracelulares excretadas por las bacterias fermentativas. 15 of these organic particles is carried out by extracellular enzymes excreted by fermentative bacteria.

• Acidogénesis: las moléculas orgánicas solubles son fermentadas por vatlos • Acidogenesis: soluble organic molecules are fermented by watts

microorganismos formando compuestos que pueden ser utilizados microorganisms forming compounds that can be used

directamente por las bacterias metanogénicas (acético, fórmico, hidrógeno) y directly by methanogenic bacteria (acetic, formic, hydrogen) and

20 otros compuestos orgánicos muy reducidos (láctico, etanol, propiónico, butírico). 20 other very small organic compounds (lactic, ethanol, propionic, butyric).

• Acetogénesis: los compuestos orgánicos reducidos, formados en la anterior etapa, tienen que ser oxidados por las bacterias acetogénicas a sustratos que puedan ser utilizados por las archaeas metanogénicas. • Acetogenesis: the reduced organic compounds, formed in the previous stage, have to be oxidized by acetogenic bacteria to substrates that can be used by methanogenic archaea.

25 • Metanogénesis: las archaeas metanogénicas son las responsables de la formación de metano a partir de substratos monocarbonados o con dos átomos de carbono unidos por un enlace covalente, dando nombre al proceso general de biometanización. Los organismos metanogénicos se clasiftcan dentro del dominio Archaea, y morfológicamente, pueden ser bacilos cortos y largos. Todas 30 las archaeas metanogénicas que intervienen en el proceso poseen varias 25 • Methanogenesis: methanogenic archaea are responsible for the formation of methane from monocarbonated substrates or with two carbon atoms linked by a covalent bond, giving name to the general process of biomethanization. Methanogenic organisms are classified within the Archaea domain, and morphologically, they can be short and long bacilli. All 30 methanogenic archaeas involved in the process have several

coenzimas especiales, siendo la coenzima M, la que participa en el paso fmal de la formación de metano. special coenzymes, being coenzyme M, which participates in the final step of methane formation.

La temperatura es una variable fundamental en el proceso de biometanización. Clásicamente se han utilizado procesos monoetapa en rango mesofílico (30-3 TC) Y Temperature is a fundamental variable in the biomethanization process. Classically, single-stage processes in the mesophilic range have been used (30-3 CT) AND

5 procesos termofílicos (50-57°C), presentando cada uno de ellos ventajas e inconvenientes. Recientemente, con el objetivo de aunar las ventajas de ambos rangos de operación, se ha comenzado a utilizar, especialmente para el tratamiento de lodos de EDAR, la Digestión Anaerobia en Fases de Temperatura (DAFT). 5 thermophilic processes (50-57 ° C), each presenting advantages and disadvantages. Recently, in order to combine the advantages of both operating ranges, Anaerobic Digestion in Temperature Phases (DAFT) has begun to be used, especially for the treatment of WWTP sludge.

La invención que se detalla en este documento se centra en la aplicación del 10 proceso en fases de temperatura aplicada a la tecnología de biometanización de la FORSU industrial, sin que suponga la separación de etapas microbiológicas. The invention detailed in this document focuses on the application of the process in temperature phases applied to the biomethane technology of the industrial FORSU, without involving the separation of microbiological stages.

Actualmente se han desarrollado estudios sobre el proceso en fases de temperatura con distintos compuestos orgánicos, pero no hay estudios previos sobre dicha tecnología con este residuo debido a la dificultad en su manejo. Las principales Currently, studies have been carried out on the process in phases of temperature with different organic compounds, but there are no previous studies on this technology with this residue due to the difficulty in handling it. The main

15 variables de operación en este proceso son el tiempo de degradación en termofílico y la velocidad de carga orgánica alimentada al sistema. 15 operating variables in this process are the degradation time in thermophilic and the organic loading rate fed to the system.

Hasta el momento los sistemas de biometanización de residuos orgánicos con alto contenido en sólidos se han desarrollado en una sola fases de temperatura, normalmente en rango mesofílico (25-40°C) y ocasionalmente en rango termofílico So far the biomethanization systems of organic waste with high solids content have developed in a single temperature phase, usually in the mesophilic range (25-40 ° C) and occasionally in the thermophilic range

20 (45°C-60°C). Algunos autores (Cecchi y cols. Cecchi F., Pavan P., Mata-Álvarez J, Bassetti A., Cozzolino C. (1991) Anaerobic digestion rif municipal solid waste: thermophilic vs. mesophilic performance at high solids. Waste Management and Research 9, 305-315; ShuGuang y cols; Shu-Guang Lu, Tsuyoshi Imai, Masao Ukita And Masahiko Sekine. (2007). Start-up performances rif dry anaerobic mesophilic and thermophilic digestions rif organic solid 20 (45 ° C-60 ° C). Some authors (Cecchi et al. Cecchi F., Pavan P., Mata-Álvarez J, Bassetti A., Cozzolino C. (1991) Anaerobic digestion rif municipal solid waste: thermophilic vs. mesophilic performance at high solids. Waste Management and Research 9, 305-315; ShuGuang et al; Shu-Guang Lu, Tsuyoshi Imai, Masao Ukita And Masahiko Sekine. (2007). Start-up performances rif dry anaerobic mesophilic and thermophilic digestions rif organic solid

25 wastes. Joumal of Environmental Sciences Volume 19, Issue 4, 416-420 y Hedge y Pullammanappallil, (2007) Comparison rifthermophilic and mesophilic one-stage, batch, high-solids anaerobic digestion. Environmental Technology, 28(4), 361-369), entre otros han dedicado estudios a comparar las ventajas de un rango frente a otro. 25 wastes Joumal of Environmental Sciences Volume 19, Issue 4, 416-420 and Hedge and Pullammanappallil, (2007) Comparison rifthermophilic and mesophilic one-stage, batch, high-solids anaerobic digestion. Environmental Technology, 28 (4), 361-369), among others have dedicated studies to compare the advantages of one range against another.

Los sistemas en fases de temperatura desarrollados hasta ahora trataban residuos que presentan bajo contenido en sólidos (3-10%), denominados de degradación húmeda, como suero de leche o lodos activos de EDAR. Los trabajos desarrollados con estos residuos demuestran que la fase termofílica no sólo acelera la The systems in temperature phases developed so far treated residues that have low solids content (3-10%), called wet degradation, such as whey or active sludge from WWTP. The works carried out with these wastes show that the thermophilic phase not only accelerates the

5 etapa limitante de la digestión anaerobia, sino que también consigue la esterilización del residuo de organismos patógenos (Aitken MD, Sobsey MD, Van Abel NA, Blauth KE, Singleton DR, Crunk PL, Nichols C, Walters GW, Schneider M. (2007). Inactivation if Eschen·chia coli 0157: H7 during thermophilic anaerobic digestion if manure from dairy cattle. Water Research 41(8): 1659 ; Viau y Peccia, (2009) SUt7Jf!Y if wastewater indicators and 5 limiting stage of anaerobic digestion, but also achieves sterilization of the residue of pathogenic organisms (Aitken MD, Sobsey MD, Van Abel NA, Blauth KE, Singleton DR, Crunk PL, Nichols C, Walters GW, Schneider M. (2007 Inactivation if Eschen · chia coli 0157: H7 during thermophilic anaerobic digestion if manure from dairy cattle. Water Research 41 (8): 1659; Viau and Peccia, (2009) SUt7Jf! And if wastewater indicators and

10 human pathogen genomes in biosolids produced lry class A and class B stabilization treatments. Applied and Environmental Microbiology 75 (1), 164-174; Riau y cols., (2009); Riau y cols., (2010), lo que posibilita el uso posterior del efluente del proceso como aplicación agronómica. 10 human pathogen genomes in biosolids produced lry class A and class B stabilization treatments. Applied and Environmental Microbiology 75 (1), 164-174; Riau et al., (2009); Riau et al., (2010), which allows the subsequent use of the process effluent as an agronomic application.

Asimismo el sistema en fases de temperatura también puede mejorar la Also the system in phases of temperature can also improve the

15 deshidratación del lodo (Bivins y Novak, (2001). Changes in dewateringproperties between the thermophilic and mesophilic stages in temperature-phased anaerobic digestion {Ystems. Water Environment Research 73 (4), 444-449; Zhou y Mavinic, (2003) Pollution reduction at wastewater treatmentfacilities through thermophilic sludge digestion. Water Science & Technology Vol 48 No 3 pp 57-63.). 15 sludge dehydration (Bivins and Novak, (2001). Changes in dewateringproperties between the thermophilic and mesophilic stages in temperature-phased anaerobic digestion {Ystems. Water Environment Research 73 (4), 444-449; Zhou and Mavinic, (2003) Pollution reduction at wastewater treatmentfacilities through thermophilic sludge digestion. Water Science & Technology Vol 48 No 3 pp 57-63.).

20 También existen publicaciones en las que las fases de temperatura suponen una separación de etapas microbiológicas, de forma que se opera en termofílico en el reactor hidrolitico-acidogénico y en mesofílico en el reactor metanogénico (Schmit K. H., Ellis T. G. (2001). "Comparison of temperature-phased and two-phase anaerobic co-digestion of primary sludge and municipal solid waste". Water Environment 20 There are also publications in which the temperature phases involve a separation of microbiological stages, so that they are operated in thermophilic in the hydrolytic-acidogenic reactor and in mesophilic in the methanogenic reactor (Schmit KH, Ellis TG (2001). "Comparison of temperature-phased and two-phase anaerobic co-digestion of primary sludge and municipal solid waste ". Water Environment

25 Research 73(3), 314-321). Existen también procesos en los que se propone la digestión anaerobia de lodos activos de EDAR en reactores termofílicos acidogénicos y el paso del efluente a reactores mesofílicos metanogénicos (Demirer, G., Othman, M. (2008) 25 Research 73 (3), 314-321). There are also processes in which anaerobic digestion of active sludges from WWTP in acidogenic thermophilic reactors and the passage of the effluent to methanogenic mesophilic reactors is proposed (Demirer, G., Othman, M. (2008)

Two-Phase Thermophilic Acidification and Mesophilic Methanogenesis Anaerobic Digestion if Waste-Activated Sludge. Environmental Engineering Science. Volume 25, Number 9. 30 1291-1300). No obstante, el hecho de separar etapas puede suponer problemas de inhibición en el sistema global, sobre todo trabajando a escalas industriales. Two-Phase Thermophilic Acidification and Mesophilic Methanogenesis Anaerobic Digestion if Waste-Activated Sludge. Environmental Engineering Science. Volume 25, Number 9. 30 1291-1300). However, the fact of separating stages can pose problems of inhibition in the global system, especially working at industrial scales.

Esta separación de etapas también se recoge en otros procedimientos, como la que aparece en ES2199022Al, donde se describe un procedimiento de fermentación anaerobia, con separación de dichas etapas microbiológicas, operandose en rango mesofilico, y en codigestión de residuos sólidos urbanos y lodos urbanos. This separation of stages is also included in other procedures, such as the one that appears in ES2199022Al, where an anaerobic fermentation procedure is described, with separation of said microbiological stages, operating in the mesophilic range, and in co-digestion of urban solid waste and urban sludge.

5 En resumen, a pesar de que en el estado de la técnica existen descripciones sobre reactores en fases de temperatura para el tratamiento de residuos orgánicos, pocos de ellos son sobre residuos con alto contenido en sólidos (20-30%) y de difícil tratamiento como es la FORSU, el residuo que se ha empleado en la presente invención. La dificultad de trabajar con este tipo de residuos, así como la dificultad en 5 In summary, despite the fact that in the state of the art there are descriptions of reactors in temperature phases for the treatment of organic waste, few of them are about residues with high solids content (20-30%) and difficult to treat such as FORSU, the residue that has been used in the present invention. The difficulty of working with this type of waste, as well as the difficulty in

10 la caracterización y seguimiento del proceso anaerobio, han impedido el desarrollo de este tipo de estudios. Por otra parte, la no separación de etapas microbiológicas en las distintas fases de temperatura incrementa la estabilidad del sistema, marcando una diferencia más a considerar frente a las tecnologías vigentes. 10 the characterization and monitoring of the anaerobic process have prevented the development of these types of studies. On the other hand, the non-separation of microbiological stages in the different temperature phases increases the stability of the system, making a difference to consider compared to current technologies.

EXPLICACIÓN DE LA INVENCIÓN. EXPLANATION OF THE INVENTION

La invención consiste en un procedimiento para la degradación anaeróbica en fases de temperatura (secuencial termofilico-mesofilico) de la FORSU a través del cual The invention consists of a process for anaerobic degradation in temperature phases (thermophilic-mesophilic sequential) of the FORSU through which

20 se consigue incrementar la estabilidad del proceso y la capacidad de tratamiento del residuo orgánico por día, presentando una mayor eficiencia en la producción de biogás referida a cantidad de materia orgánica alimentada al sistema o consumida por el ffilsmo. El proceso consiste en someter el residuo a un pretratamiento termofilico 20 it is possible to increase the stability of the process and the treatment capacity of the organic waste per day, presenting a greater efficiency in the production of biogas referred to the amount of organic matter fed to the system or consumed by the phylphysm. The process consists in subjecting the residue to a thermophilic pretreatment

25 durante un tiempo determinado para conseguir una alta hidrólisis y solubilización del residuo orgánico de manera eficaz. La segunda etapa del proceso consiste en someter el residuo prehidrolizado durante la fase termofilica a degradación mesofilica, de forma que la materia solubilizada se consuma durante esta segunda fase. 25 for a certain time to achieve high hydrolysis and solubilization of the organic residue efficiently. The second stage of the process consists in subjecting the prehydrolyzed residue during the thermophilic phase to mesophilic degradation, so that the solubilized matter is consumed during this second phase.

Cabe destacar que el contenido en sólidos del residuo a tratar en el proceso está 30 comprendido entre 20-30%, por lo que el procedimiento tiene lugar en condiciones que se denominan "secas" de degradación. El procedimiento que se detalla se realiza sin codigestión con otro residuo, únicamente se procede a degradar la FORSU como residuo orgánico. It should be noted that the solids content of the waste to be treated in the process is between 20-30%, so the procedure takes place under conditions that are called "dry" degradation. The procedure detailed is done without co-digestion with another residue, only the FORSU is degraded as an organic residue.

Asimismo, en el procedimiento propuesto no se produce la separación de Also, in the proposed procedure there is no separation of

5 etapas microbiológicas, sino que en ambas fases, tanto la termofilica como la mesofilica tienen lugar todas las etapas que se han indicado con anterioridad. Esto supone eliminar o disminuir problemas de inhibición en el sistema global, ya que el segundo reactor, donde tiene lugar la fase mesofilica, asume los posibles desequilibrios originados en la fase termofilica. 5 microbiological stages, but in both phases, both the thermophilic and mesophilic all the stages indicated above take place. This means eliminating or reducing inhibition problems in the global system, since the second reactor, where the mesophilic phase takes place, assumes the possible imbalances caused by the thermophilic phase.

10 Cuando el residuo sólido orgánico, como es la FORSU, se somete al proceso indicado anteriormente, se obtienen las siguientes ventajas desde el punto de vista del diseño de los reactores anaerobios y de la operación del proceso: 10 When the organic solid waste, such as FORSU, is subjected to the process indicated above, the following advantages are obtained from the point of view of anaerobic reactor design and process operation:

a) Se produce una importante solubilización de materia orgánica en el medio de reacción durante la primera de las fases, la etapa en rango termofilico. a) There is a significant solubilization of organic matter in the reaction medium during the first phase, the stage in thermophilic range.

15 b) A través de la solubilización de la materia orgánica que se consigue mediante la aplicación del pretratamiento, se consigue mayor la velocidad global del proceso comparada con los sistemas monoetapa. 15 b) Through the solubilization of organic matter that is achieved through the application of pretreatment, the overall speed of the process is achieved compared to single-stage systems.

c) Este incremento de la velocidad global de proceso lleva asociada varias ventajas: c) This increase in the overall process speed has several advantages associated with it:

1. Las plantas de biometanización industriales actualmente operativas podrían 1. The currently operating industrial biomethane plants could

20 trabajar con mayores velocidades de carga orgánica alimentadas al sistema, lo cuál conlleva beneficios económicos al incrementarse la capacidad de tratamiento y/o gestión de las instalaciones. 20 work with higher organic loading speeds fed to the system, which entails economic benefits by increasing the treatment and / or management capacity of the facilities.

11. Se produce una mejora significativa en la producción neta de metano y en la velocidad de biometanización. Cuando la FORSU es sometida al proceso 11. There is a significant improvement in the net production of methane and the speed of biomethanization. When the FORSU is submitted to the process

25 DAFT se han conseguido, mediante ensayos de laboratorio, mayores producciones de metano y mayores productividades referidas a materia orgánica consumida y alimentada al sistema que los sistemas monoetapa con una duración de tiempo similar. 25 DAFTs have achieved, through laboratory tests, higher methane productions and higher productivities referred to organic matter consumed and fed to the system than single-stage systems with a similar duration of time.

111. El incremento en la generación de metano conlleva beneficios desde el punto de vista económico en el sentido de que este vector energético, tras ser sometido a cogeneración para producir energía eléctrica, podría ser empleado para cubrir la demanda de la propia instalación e incluso podrían 111. The increase in methane generation entails benefits from the economic point of view in the sense that this energy vector, after being subjected to cogeneration to produce electricity, could be used to meet the demand of the facility itself and could even

5 ser vendidos los excedentes energéticos a las grandes compañías eléctricas. 5 energy surpluses be sold to large electricity companies.

BREVE DESCRIPCIÓN DE LA FIGURA. BRIEF DESCRIPTION OF THE FIGURE.

Figura 1.-Diagrama de flujo y esquema de la unidades implicadas en el proceso DAFT 10 (termofílico-mesofílico) de la FORSU industrial. Se muestran los siguientes elementos: Figure 1.-Flowchart and scheme of the units involved in the DAFT 10 (thermophilic-mesophilic) process of the industrial FORSU. The following elements are displayed:

• Reactor Termofílico: Lugar de reacción en el que se lleva a cabo el tratamiento termofílico del residuo. Este reactor es alimentado con la FORSU industrial. Se trata de un reactor semicontinuo tipo mezcla completa, provisto de agitación por palas y con calefacción por camisa • Thermophilic Reactor: Reaction site where the thermophilic treatment of the residue is carried out. This reactor is fed with the industrial FORSU. It is a semi-continuous complete mix type reactor, equipped with stirring by blades and with jacket heating

15 externa. 15 external.

• Reactor Mesofílico: Lugar de reacción para llevar a cabo el tratamiento mesofílico del efluente del reactor termofílico. Se trata de un reactor semicontinuo tipo mezcla completa, provisto de agitación por palas y con calefacción por camisa externa. • Mesophilic reactor: Reaction site to carry out the mesophilic treatment of the effluent from the thermophilic reactor. It is a semi-continuous complete mix type reactor, equipped with stirring by blades and with external jacket heating.

20 • Línea verde continua: Representa la recogida de biogás generado durante el proceso DAFT en ambos reactores de manera individual, termofílico y mesofílico. 20 • Continuous green line: Represents the collection of biogas generated during the DAFT process in both reactors individually, thermophilic and mesophilic.

• Línea roja discontinua: Indica el tratamiento de la FORSU en el proceso DAFT. • Red dashed line: Indicates the treatment of FORSU in the DAFT process.

25 Figura 2. Comparación entre los porcentajes de eliminación de COD en los sistemas monoetapa y en fases de temperatura. 25 Figure 2. Comparison between the percentages of COD elimination in single-stage systems and in temperature phases.

Figura 3. Comparación entre los porcentajes de eliminación de DQOs en los sistemas monoetapa y en fases de temperatura. 30 Figure 3. Comparison between the percentages of COD removal in single-stage systems and in temperature phases. 30

DESCRIPCIÓN DE UN EJEMPLO DE REALIZACIÓN DE LA INVENCIÓN. DESCRIPTION OF AN EXAMPLE OF EMBODIMENT OF THE INVENTION.

Para estudiar la degradación anaerobia seca de la FORSU en fases de temperatura se han utilizado dos reactores de tanque agitado, a escala laboratorio 5 operando en régimen de alimentación semicontinuo. Cada reactor de dispone de sistema para la recogida del biogás, para la agitación del medio y para su termostatización. En el primero de los reactores se han impuesto condiciones de operación termofílicas (55-57°C) y en el otro mesofílicas (35-37°C). Con objeto de considerar un proceso integral, se ha elaborado un esquema representativo del mismo 10 (Figura 1) en el que se ha considerado que las unidades del sistema DAFT deben tener diferentes volúmenes en función de los Tiempos de Retención de Sólidos (TRS) empleados. Como puede observarse en este esquema, la FORSU es alimentada al reactor termofílico y todo el efluente de esta unidad constituye la alimentación del reactor mesofílico. La producción de biogás se recoge individualmente de cada uno de To study the dry anaerobic degradation of the FORSU in temperature phases, two agitated tank reactors have been used, at laboratory scale 5 operating in a semi-continuous feeding regime. Each reactor has a system for collecting biogas, for stirring the medium and for its thermostatization. Thermophilic operating conditions (55-57 ° C) have been imposed in the first of the reactors and in the other mesophilic (35-37 ° C). In order to consider an integral process, a representative scheme of the same has been developed 10 (Figure 1) in which it has been considered that the units of the DAFT system must have different volumes depending on the Solid Retention Times (TRS) used . As can be seen in this scheme, FORSU is fed to the thermophilic reactor and all the effluent from this unit constitutes the mesophilic reactor feed. Biogas production is collected individually from each of

15 los reactores, termofílico y mesofílico. 15 reactors, thermophilic and mesophilic.

A continuación se detallan cada uno de los elementos que conforman el proceso representado en la Figura 1, así como el diagrama de flujo del residuo y de los productos generados. Each of the elements that make up the process represented in Figure 1, as well as the flow diagram of the waste and the products generated are detailed below.

• Reactor Termofílico: Lugar de reacción en el que se lleva a cabo el • Thermophilic Reactor: Reaction site where the

20 tratamiento termofílico del residuo. Este reactor es alimentado con la FORSU industrial. Se trata de un reactor semicontinuo tipo mezcla completa, provisto de agitación por palas y con calefacción por camisa externa. 20 thermophilic treatment of the residue. This reactor is fed with the industrial FORSU. It is a semi-continuous complete mix type reactor, equipped with stirring by blades and with external jacket heating.

• Reactor Mesofílico: Lugar de reacción para llevar a cabo el tratamiento • Mesophilic reactor: Reaction site to carry out the treatment

25 mesofílico del efluente del reactor termofílico. Se trata de un reactor semicontinuo tipo mezcla completa, provisto de agitación por palas y con calefacción por camisa externa. Mesophilic 25 effluent from the thermophilic reactor. It is a semi-continuous complete mix type reactor, equipped with stirring by blades and with external jacket heating.

• Línea verde continua: Representa la recogida de biogás generado • Continuous green line: Represents the collection of generated biogas

durante el proceso DAFT en ambos reactores de manera individual, 30 termofílico y mesofílico. during the DAFT process in both reactors individually, thermophilic and mesophilic.

• Línea roja discontinua: Indica el tratamiento de la FORSU en el proceso DAFT. • Red dashed line: Indicates the treatment of FORSU in the DAFT process.

Seguidamente se representa un ejemplo operativo en el que se detalla como 5 llevar a cabo el proceso DAFT con FORSU industrial procedente de un trómmel industrial (15 mm de luz de paso). An operative example is shown below, detailing how to carry out the DAFT process with industrial FORSU from an industrial tombstone (15 mm of passing light).

CONDICIONES DE OPERACIÓN OPERATING CONDITIONS

Régimen de operación Operating regime
Semicontinuo Semicontinuo Semi-continuous Semi-continuous

% Sólidos Totales % Total Solids
20-25% 20-25% 20-25% 20-25%

Temperatura de operación Operating temperature
T ermofílico-Mesofílico Termofílico-Mes o fílico Ermophilic-Mesophilic T Thermophilic-Month or philic

TRS en termofílico (días) TRS in thermophilic (days)
4 3 4 3

TRS en mesofílico (días) TRS in mesophilic (days)
10 6 10 6

Presión de trabajo Work pressure
Presión atmosférica Presión atmosférica Atmospheric pressure Atmospheric pressure

Agitación (rpm) Stirring (rpm)
25 25 25 25

10 A continuación se muestran algunos de los principales resultados obtenidos en los ensayos de laboratorio. Fundamentalmente se pretende comparar el proceso en fases de temperatura que se presenta en esta patente frente a los procesos en fases, referidos a: 10 Some of the main results obtained in laboratory tests are shown below. Fundamentally it is intended to compare the process in phases of temperature presented in this patent against the processes in phases, referring to:

a) Porcentaje de eliminación de Carbono Orgánico Disuelto (COD) (Figura 2) 15 b) Porcentaje de eliminación de Demanda Química de Oxígeno soluble (DQOs) (Figura3) c) Productividad de biogás (Tabla 1) a) Percentage of elimination of dissolved organic carbon (COD) (Figure 2) 15 b) Percentage of elimination of chemical demand for soluble oxygen (COD) (Figure 3) c) Biogas productivity (Table 1)

Las nomenclaturas utilizadas en cada uno de los ensayos son: The nomenclatures used in each of the trials are:

Nomenclatura Nomenclature
Ensayo Test

T15 T15
Termofílico monoetapa TRS 15 días Thermophilic single-stage TRS 15 days

Tl0 Tl0
Termofílico monoetapa TRS 10 días Thermophilic single-stage TRS 10 days

T5 T5
T ermofílico monoetapa TRS 5 días Ermophilic single-stage TRS T 5 days

M20 M20
Mesofílico monoetapa TRS 20 días Mesophilic single-stage TRS 20 days

M15 M15
Mesofílico monoetapa TRS 15 días Mesophilic single-stage TRS 15 days

FT 4:10 FT 4:10
Fases de temperatura: Termofílico TRS 4 días y Mesofílico TRS 10 días Temperature phases: Thermophilic TRS 4 days and Mesophilic TRS 10 days

FT 3:6 FT 3: 6
Fases de temperatura: Termofílico TRS 3 días y Mesofílico TRS 6 días Temperature phases: Thermophilic TRS 3 days and Mesophilic TRS 6 days

Tabla 1.-En la siguiente tabla se muestra una comparativa de la productividad de gas Table 1.-The following table shows a comparison of gas productivity

en las diferentes condiciones, en fases de temperatura y sus correspondientes tiempos in the different conditions, in phases of temperature and their corresponding times

en una sola fase. In a single phase.

Productividad metano Methane Productivity

Metano (L/Lreacto./día) Methane (L / Lreacto. / Day)
LCH4/g CODalim LCH4/g CODcons L CH4/g DQOSalim LCH4/g DQOscons LCH4 / g CODalim LCH4 / g CODcons L CH4 / g DQOSalim LCH4 / g CODscons

T15d T15d
1,40 30,70 59,62 -- -- 1.40 30.70 59.62 - -

T10d T10d
1,95 35,73 65,94 8,79 25,61 1.95 35.73 65.94 8.79 25.61

T5d T5d
4,20 38,92 77,02 13,18 25,77 4.20 38.92 77.02 13.18 25.77

M20d M20d
1,03 35,56 51,62 9,24 15,01 1.03 35.56 51.62 9.24 15.01

M15d M15d
1,07 29,75 51,73 10,07 15,15 1.07 29.75 51.73 10.07 15.15

FT 4:10 FT 4:10
2,17 56,29 81,73 19,06 26,60 2.17 56.29 81.73 19.06 26.60

FT 3:6 FT 3: 6
2,45 41,00 76,80 13,01 19,85 2.45 41.00 76.80 13.01 19.85

Claims (1)

REIVINDICACIONES 1) Procedimiento para la degradación de la Fracción Orgánica de Residuos Sólidos Urbanos en reactores tipo tanque agitado caracterizado porque transcurre 5 régimen semicontinuo, en dos fases de temperaturas diferenciadas: 1) Procedure for the degradation of the Organic Fraction of Urban Solid Waste in stirred tank type reactors characterized in that 5 semi-continuous regime takes place, in two phases of differentiated temperatures: -Una primera fase de pretratamiento en régimen termofílico. -Una segunda fase de tratamiento en régimen mesofílico, del residuo prehidrolizado y solubilizado procedente del pretratamiento anterior. -A first phase of pretreatment in thermophilic regime. -A second phase of mesophilic treatment of the residue prehydrolyzed and solubilized from the previous pretreatment. 10 2) Procedimiento para la degradación de la Fracción Orgánica de Residuos Sólidos Urbanos según reivindicación 1, caracterizado porque todas las etapas microbiológicas ocurren tanto en régimen termofílico como en mesofílico, sin separación de fases microbiológicas. 10 2) Procedure for the degradation of the Organic Fraction of Urban Solid Waste according to claim 1, characterized in that all microbiological stages occur both in thermophilic and mesophilic regime, without separation of microbiological phases. 15 3) Procedimiento para la degradación de la Fracción Orgánica de Residuos Sólidos Urbanos según reivindicación 1 y 2, caracterizado porque el proceso se lleva a cabo sin que se produzca codigestión con ningún otro tipo de residuo. 3 3) Procedure for the degradation of the Organic Fraction of Urban Solid Waste according to claims 1 and 2, characterized in that the process is carried out without co-digestion with any other type of residue. 4) Procedimiento para la degradación de la Fracción Orgánica de Residuos Sólidos 20 Urbanos según reivindicación 3, caracterizado porque se lleva a cabo sin que se produczca codigestión con lodos de depuradora. 4) Procedure for the degradation of the Organic Fraction of Urban Solid Waste according to claim 3, characterized in that it is carried out without co-digestion with sewage sludge. 5) Procedimiento para la degradación de la Fracción orgánica de Residuos sólidos Urbanos según reivindicaciones 1 a 3, caracterizado porque el contenido en 25 sólidos de los residuos está comprendido entre el 20-30 %. 5) Procedure for the degradation of the Organic Fraction of Urban Solid Waste according to claims 1 to 3, characterized in that the solid content of the waste is between 20-30%.
ES201001630A 2010-12-23 2010-12-23 ANAEROBIA DIGESTION PROCEDURE IN TEMPERATURE PHASES OF URBAN SOLID WASTE. Active ES2385167B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES201001630A ES2385167B1 (en) 2010-12-23 2010-12-23 ANAEROBIA DIGESTION PROCEDURE IN TEMPERATURE PHASES OF URBAN SOLID WASTE.
PCT/ES2011/000205 WO2012085300A1 (en) 2010-12-23 2011-06-20 Method for anaerobic digestion of solid urban waste in temperature phases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201001630A ES2385167B1 (en) 2010-12-23 2010-12-23 ANAEROBIA DIGESTION PROCEDURE IN TEMPERATURE PHASES OF URBAN SOLID WASTE.

Publications (2)

Publication Number Publication Date
ES2385167A1 true ES2385167A1 (en) 2012-07-19
ES2385167B1 ES2385167B1 (en) 2013-06-06

Family

ID=46313207

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201001630A Active ES2385167B1 (en) 2010-12-23 2010-12-23 ANAEROBIA DIGESTION PROCEDURE IN TEMPERATURE PHASES OF URBAN SOLID WASTE.

Country Status (2)

Country Link
ES (1) ES2385167B1 (en)
WO (1) WO2012085300A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2199022A1 (en) * 2001-06-08 2004-02-01 Munoz Aurelio Hernandez Combined anaerobic fermentation of urban sludge and solid waste consists of controlled mixing for acid and alkaline fermentation yielding farm compost

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2199022A1 (en) * 2001-06-08 2004-02-01 Munoz Aurelio Hernandez Combined anaerobic fermentation of urban sludge and solid waste consists of controlled mixing for acid and alkaline fermentation yielding farm compost

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GE HUOQING et al. Pre-treatment mechanismsduring thermophilic-mesophilic temperaturephased anaerobic digestion of primary sludge.Water Research JAN 2010. Vol. 44 , No. 1 ,Páginas: 123-130. Isbn: ISSN 0043-1354, todoel documento, en particular, resumen y pág.124, 2ª columna, párrafos 1º y 2º. *
RIAU, V et al.: "Temperature-phased anaerobicdigestion (TPAD) to obtain class A biosolids:A semi-continuous study", Bioresource Technology(2010) (disponible en la web a partirdel 29/12/2009), vol.101, pp.: 2706¿2712,todo el documento, en particular pág. 2707,1ª columna, 2º párrafo y figura 1. *
SCHMIT, K H et al.: "Comparison ofTemperature Phased and other State of theArt Processes for Anaerobic Digestion of MunicipalSolid Waste", Iowa State University PublicHomepage Web Server -User and Locker ServedHTML Document Service- [on line] publicadoantes del 13 de febrero de 2005. [Recuperadoel 23/09/2011] Recuperado de internet: todo el documento, en particular "abstract"y ¿methods" *
SUNG SHIHWU et al. Performance of temperature-phasedanaerobic digestion (TPAD) system treatingdairy cattle wastes.. Water Research April2003. Vol. 37, No. 7, Páginas: 1628-1636.ISBN: ISSN 0043-1354, todo el documento *
WEN, L et al.: "Putting microbes to work insequence: Recent advancesin temperature-phasedanaerobic digestion processes", BioresourceTechnology (2010) (disponible en la web en29/07/2010) vol. 101, pp.: 9409-9414, todoel documento, en particular resumen y pág.9411, 1ª columna, 2º párrafo a 2ª columna,último párrafo. *

Also Published As

Publication number Publication date
WO2012085300A1 (en) 2012-06-28
ES2385167B1 (en) 2013-06-06

Similar Documents

Publication Publication Date Title
Mahmudul et al. A comprehensive review of the recent development and challenges of a solar-assisted biodigester system
Zhang et al. Co-digestion of blackwater with kitchen organic waste: Effects of mixing ratios and insights into microbial community
Sompong et al. Two-stage thermophilic fermentation and mesophilic methanogenic process for biohythane production from palm oil mill effluent with methanogenic effluent recirculation for pH control
Paudel et al. Effect of volumetric organic loading rate (OLR) on H2 and CH4 production by two-stage anaerobic co-digestion of food waste and brown water
Kiyasudeen S et al. An introduction to anaerobic digestion of organic wastes
Lim et al. Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste
Chu et al. A pH-and temperature-phased two-stage process for hydrogen and methane production from food waste
Liao et al. Biogas production from low-organic-content sludge using a high-solids anaerobic digester with improved agitation
Qiao et al. Biogas production from supernatant of hydrothermally treated municipal sludge by upflow anaerobic sludge blanket reactor
Elmitwalli et al. Anaerobic biodegradability and treatment of grey water in upflow anaerobic sludge blanket (UASB) reactor
Lavagnolo et al. Two-stage anaerobic digestion of the organic fraction of municipal solid waste–Effects of process conditions during batch tests
US9567611B2 (en) Two-stage anaerobic digestion systems wherein one of the stages comprises a two-phase system
Kotsopoulos et al. Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70 C)
Chen et al. Long solid retention time (SRT) has minor role in promoting methane production in a 65 C single-stage anaerobic sludge digester
Leite et al. Feasibility of thermophilic anaerobic processes for treating waste activated sludge under low HRT and intermittent mixing
González-González et al. Biogas production coupled to repeat microalgae cultivation using a closed nutrient loop
Wang et al. Effects of intermittent mixing mode on solid state anaerobic digestion of agricultural wastes
Zhang et al. Continuous liquid fermentation of pretreated waste activated sludge for high rate volatile fatty acids production and online nutrients recovery
Kinnunen et al. The effect of low-temperature pretreatment on the solubilization and biomethane potential of microalgae biomass grown in synthetic and wastewater media
Zhang et al. Hydrolysis rate constants at 10–25° C can be more than doubled by a short anaerobic pre-hydrolysis at 35° C
Wid et al. Anaerobic digestion of screenings for biogas recovery
Paranjpe et al. Biogas yield using single and two stage anaerobic digestion: An experimental approach
Campuzano et al. Start-up of dry semi-continuous OFMSW fermentation for methane production
Zahedi Energy efficiency: importance of indigenous microorganisms contained in the municipal solid wastes
Sun et al. The hydrolysis and reduction of mixing primary sludge and secondary sludge with thermophilic bacteria pretreatment

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2385167

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20130606