ES2383747A1 - Method for forming cellular pet from solid preforms - Google Patents

Method for forming cellular pet from solid preforms Download PDF

Info

Publication number
ES2383747A1
ES2383747A1 ES201031762A ES201031762A ES2383747A1 ES 2383747 A1 ES2383747 A1 ES 2383747A1 ES 201031762 A ES201031762 A ES 201031762A ES 201031762 A ES201031762 A ES 201031762A ES 2383747 A1 ES2383747 A1 ES 2383747A1
Authority
ES
Spain
Prior art keywords
pet
solid preform
solid
gas
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
ES201031762A
Other languages
Spanish (es)
Other versions
ES2383747B1 (en
Inventor
José Ignacio Velasco Perero
Marcelo De Sousa Pais Antunes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universitat Politecnica de Catalunya UPC
Original Assignee
Universitat Politecnica de Catalunya UPC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politecnica de Catalunya UPC filed Critical Universitat Politecnica de Catalunya UPC
Priority to ES201031762A priority Critical patent/ES2383747B1/en
Priority to PCT/ES2011/070830 priority patent/WO2012072848A1/en
Publication of ES2383747A1 publication Critical patent/ES2383747A1/en
Application granted granted Critical
Publication of ES2383747B1 publication Critical patent/ES2383747B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/032Impregnation of a formed object with a gas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Molding Of Porous Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

The method comprises the steps of: (a) conditioning a solid preform (1) made from PET (polyethyleneterephthalate), previously obtained by extrusion, moulding or heat-forming, adjusting the moisture concentration thereof to the concentration value thereof at equilibrium (b) dissolving, in said solid preform (1), an inert gas, at pressure and temperature, for a sufficient period to achieve saturation, and decompression at ambient temperature, thereby resulting in the gas-saturated solid preform (1) and (c) placing the gas-saturated solid preform (1) in a non-metallic forming mould and applying microwave radiation to the whole in order to produce softening, expansion and simultaneous forming of the solid preform (1), until a cellular product (6) is obtained.

Description

PROCEDIMIENTO PARA CONFORMAR PET CELULAR A PARTIR DE PREFORMAS PROCEDURE TO CONFORM CELL PET FROM PREFORMS

SÓLIDAS SOLIDS

Campo de la técnica La presente invención concierne a un procedimiento conformar PET (polietilentereftalato) celular a partir de preformas sólidas. Field of the art The present invention concerns a method of forming cellular PET (polyethylene terephthalate) from solid preforms.

Antecedentes de la invención Background of the invention

Se conocen procedimientos basados en disolver un gas inerte, comúnmente CO2 o N2 , en un componente plástico durante un tiempo a una temperatura y presión determinadas para después aplicar un calentamiento externo al producto y así generar su expansión por volatilización del gas disuelto. La espuma formada se refrigera en una etapa subsiguiente. Este procedimiento se conoce comúnmente en el estado de la técnica como espumación en estado sólido o espumación por lotes en dos etapas. Methods based on dissolving an inert gas, commonly CO2 or N2, are known in a plastic component for a time at a certain temperature and pressure to then apply external heating to the product and thus generate its expansion by volatilization of the dissolved gas. The formed foam is cooled in a subsequent stage. This process is commonly known in the state of the art as solid state foaming or two-stage batch foaming.

La patente US-A-4473665 [1] define los principales puntos de un método para producir espumas poliméricas celulares por lotes en dos etapas: una primera etapa comprende saturar a elevada presión una preforma polimérica sólida con un gas inerte empleado como espumante físico; y una segunda etapa comprende calentar la preforma polimérica saturada con el gas a una temperatura superior a su temperatura de transición vítrea y posteriormente estabilizar la espuma por enfriamiento. US-A-4473665 [1] defines the main points of a method for producing two-stage batch polymeric foams: a first stage comprises saturating a solid polymeric preform under high pressure with an inert gas used as a physical foaming agent; and a second stage comprises heating the polymer preform saturated with the gas to a temperature higher than its glass transition temperature and subsequently stabilizing the foam by cooling.

La patente US-A-4456571 [2] contempla un proceso y un aparato para obtener filamentos poliméricos espumados con tamaños de celda micrométricos. La principal diferencia respecto a la patente anterior está en que comprende un proceso de espumación química, esto es, por descomposición térmica de aditivos químicos designados como agentes espumantes químicos, por extrusión en estado fundido, y enfriamiento de dicho filamento espumado obtenido a la salida de la boquilla de la extrusora por contacto con rodillos enfriados. Dicho procedimiento presenta como principal inconveniente la necesidad de una elevada caída de presión a la salida de la boquilla de extrusión para generar una estructura celular de elevada densidad celular, con una consecuente reducción en la producción. Así, por ejemplo, en extrusoras convencionales, donde se pueden alcanzar presiones en el fundido de hasta 250 bar, se requieren boquillas de extrusión de 0,46 mm de diámetro y 12,75 mm de longitud, dando lugar a productividades extremadamente reducidas [3]. US-A-4456571 [2] contemplates a process and an apparatus for obtaining foamed polymeric filaments with micrometric cell sizes. The main difference with respect to the previous patent is that it comprises a chemical foaming process, that is, by thermal decomposition of chemical additives designated as chemical foaming agents, by melt extrusion, and cooling of said foamed filament obtained at the exit of the nozzle of the extruder by contact with cooled rollers. This procedure has as its main drawback the need for a high pressure drop at the exit of the extrusion nozzle to generate a cellular structure of high cellular density, with a consequent reduction in production. Thus, for example, in conventional extruders, where melt pressures of up to 250 bar can be reached, extrusion nozzles of 0.46 mm in diameter and 12.75 mm in length are required, resulting in extremely low productivity [3 ].

La patente ES-A-2236720 T3 [4] da a conocer un aparato y un procedimiento para obtener por métodos semicontinuos componentes espumados poliméricos. En particular, se refiere a componentes espumados con una estructura de celda cerrada celular con tamaños de celda típicos < 10 IJm (densidad celular> 108 celdas/cm 3 ). La patente contempla el procedimiento y el aparato para la producir láminas o tiras continuas de polímeros espumados celulares usando un procedimiento de espumación por lotes en dos etapas, con una etapa inicial de disolución de un gas inerte, comúnmente CO2 o N2 , a elevada presión en un polímero sólido, y posterior espumación por calentamiento a presión atmosférica a una temperatura superior a la temperatura de transición vítrea de la muestra polimérica saturada con gas. Una vez alcanzada la expansión deseada, que se consigue en función de la cantidad de gas disuelto en la primera etapa y del tiempo de espumación en la segunda, la espuma producida es enfriada para estabilizar su estructura celular. Patent ES-A-2236720 T3 [4] discloses an apparatus and a method for obtaining polymeric foamed components by semicontinuous methods. In particular, it refers to foamed components with a closed cell cell structure with typical cell sizes <10 IJm (cell density> 108 cells / cm 3). The patent contemplates the process and the apparatus for producing continuous sheets or strips of foamed cell polymers using a two-stage batch foaming process, with an initial stage of dissolving an inert gas, commonly CO2 or N2, at high pressure in a solid polymer, and subsequent foaming by heating at atmospheric pressure at a temperature higher than the glass transition temperature of the gas saturated polymer sample. Once the desired expansion is achieved, which is achieved based on the amount of gas dissolved in the first stage and the foaming time in the second, the foam produced is cooled to stabilize its cellular structure.

La principal novedad de esta patente ES-A-2236720 T3 [4] frente a, por ejemplo, la patente US-A-4761256 [5], la cual da a conocer un procedimiento para obtener de forma continua cintas poliméricas espumadas con pieles lisas sólidas (espumas integrales), donde dichas espumas se consiguen por calentamiento de cintas plásticas previamente impregnadas de gas por un proceso de extrusión en estado fundido o en autoclave a elevada presión en estado sólido, es que no requiere cámaras de elevada presión, muy costosas debido a la estanqueidad requerida, y permite la producción de láminas espumadas de espesor superior. The main novelty of this patent ES-A-2236720 T3 [4] against, for example, US-A-4761256 [5], which discloses a method for continuously obtaining foamed polymeric tapes with smooth skins solid (integral foams), where said foams are achieved by heating plastic belts previously impregnated with gas by an extrusion process in the molten state or in an autoclave at high pressure in the solid state, is that it does not require high-pressure chambers, very expensive due to to the required tightness, and allows the production of foamed sheets of superior thickness.

Para ello, la citada patente ES-A-2236720 T3 [4] describe un procedimiento que comprende, en una primera etapa, saturar una lámina enrollada de polímero sólido junto a láminas de un material permeable al gas dispuestas de forma intercalada, a elevada presión con un gas a temperatura ambiente (valores típicos para CO2 entre 5 y 70 bar, aunque se pueden alcanzar valores de hasta 100 bar, durante un tiempo comprendido entre 3 y 100 horas) y, posteriormente a la descompresión del mismo, desenrollar el material y separar la lámina de polímero saturada con gas de la lámina permeable, y finalmente aplicar calor a dicha lámina de polímero saturada con gas durante un tiempo considerado necesario para lograr una expansión deseada (temperatura de espumación comprendida entre 80 y 200 OC). Una de las diferencias aportadas es que se aplican medios de tensión sobre la lámina polimérica saturada con gas durante esta etapa de calentamiento para evitar la formación de arrugas durante la espumación de la misma. To do this, the aforementioned patent ES-A-2236720 T3 [4] describes a process that comprises, in a first stage, saturating a rolled sheet of solid polymer next to sheets of a gas permeable material arranged intercalated, at high pressure with a gas at room temperature (typical values for CO2 between 5 and 70 bar, although values of up to 100 bar can be reached, for a time between 3 and 100 hours) and, after decompressing it, unwind the material and separating the gas saturated polymer sheet from the permeable sheet, and finally applying heat to said gas saturated polymer sheet for a time deemed necessary to achieve a desired expansion (foaming temperature between 80 and 200 OC). One of the differences provided is that tension means are applied on the polymeric film saturated with gas during this heating stage to avoid the formation of wrinkles during foaming.

En la citada patente ES-A-2236720 T3 [4] la homogeneidad de la estructura celular se consigue por medio de una concentración uniforme de gas disuelto a través de toda la muestra a consecuencia de una optimización de las condiciones de disolución de gas, esto es, tiempo de disolución, temperatura y presión, con el fin de garantizar la disolución uniforme del gas en todo el espesor del precursor sólido. Sin embargo, sigue requiriendo de una etapa de calentamiento para generar la expansión del material, lo cual limita de forma considerable la producción de láminas espumadas de elevado espesor. En particular, la aplicación de calor, ya sea por contacto de placas calefactoras sobre las caras superior e inferior de la lámina de plástico saturada con gas, o por una fuente de calor radiante (p.e. infrarrojo), o por inmersión en un baño de fluido calefactado, genera un gradiente de temperatura entre dichas caras superior e inferior y el núcleo de la lámina debido al carácter aislante térmico de los plásticos, lo cual tiende a originar espumas con estructuras celulares poco homogéneas, con celdas más grandes en las zonas superior e inferior (más temperatura) e incluso, para espesores más grandes, espumas con zonas centrales prácticamente sólidas (véase Fig. 1, Estado de la técnica). Asimismo, los tiempos de saturación del gas en la lámina sólida son muy elevados. Por ejemplo, y para una lámina de PET (polietilentereftalato) de 0,51 mm de espesor, el tiempo para la saturación de dicha lámina con CO2 se encuentra entre 15 y 30 horas. In the aforementioned patent ES-A-2236720 T3 [4] the homogeneity of the cellular structure is achieved by means of a uniform concentration of dissolved gas throughout the entire sample as a result of an optimization of the gas dissolution conditions, this it is, dissolution time, temperature and pressure, in order to guarantee the uniform dissolution of the gas throughout the thickness of the solid precursor. However, it still requires a heating stage to generate the expansion of the material, which considerably limits the production of foamed sheets of high thickness. In particular, the application of heat, either by contact of heating plates on the upper and lower faces of the gas-saturated plastic sheet, or by a radiant heat source (eg infrared), or by immersion in a fluid bath heated, it generates a temperature gradient between said upper and lower faces and the core of the sheet due to the thermal insulating nature of plastics, which tends to cause foams with slightly homogeneous cellular structures, with larger cells in the upper and lower areas (more temperature) and even, for larger thicknesses, foams with almost solid central areas (see Fig. 1, State of the art). Also, the saturation times of the gas in the solid sheet are very high. For example, and for a 0.51 mm thick PET (polyethylene terephthalate) sheet, the time for saturation of said sheet with CO2 is between 15 and 30 hours.

Como se puede ver, existe la necesidad en la técnica de simplificar y optimizar procedimientos que permitan obtener láminas poliméricas espumadas de elevado espesor con una estructura celular homogénea a través del mismo y de pequeño tamaño celular. As can be seen, there is a need in the art to simplify and optimize procedures that allow to obtain foamed polymer sheets of high thickness with a homogeneous cellular structure therethrough and of small cell size.

Puesto que los materiales plásticos son buenos aislantes térmicos, estos procesos presentan el inconveniente de que el calentamiento externo aplicado no se transmite uniformemente a través del espesor del producto, sino de forma variable, creándose gradientes de temperatura de muchos grados desde la superficie hasta el núcleo. En consecuencia, la expansión que se produce tampoco es uniforme, ni lo es por tanto la estructura celular de la espuma que se forma. Es por ello que los procedimientos referidos no resultan satisfactorios ni recomendados para la obtención de espumas de elevado espesor. Así, cuando se pretende obtener una espuma partiendo de un producto de alto grosor (valores típicos> 1-6 mm), la expansión no resulta uniforme debido al gradiente local de temperatura que se crea a través del espesor en la etapa de calentamiento externo. Tanto si se aplica un calentamiento externo por contacto o por convección con un fluido, como si se realiza por radiación de calor, la temperatura que se alcanza en la superficie del material (piel), para que la misma sea la adecuada en la línea central (núcleo), resulta muy superior a la recomendada para crear una espuma. Ello trae como resultado una deficiente y no uniforme expansión del material, que se manifiesta en forma de valores altos de densidad (bajo grado de expansión y porosidad), grandes celdas formadas por coalescencia, y pieles con la misma densidad que el sólido, formadas por colapso celular. Además, el material de las pieles, en tal caso, sufre degradación térmica o termo-oxidativa por el excesivo calentamiento. Ello conlleva la necesidad de incorporar aditivos protectores en la formulación del material (estabilizantes y antioxidantes), que encarecen el producto. En el otro extremo, si se aplica el calentamiento externo de forma más moderada para no sobrecalentar la piel del producto, lo que se consigue es no trasmitir el suficiente calor al núcleo como para que se produzca su expansión, obteniéndose espumas con un gradiente de densidad y características celulares que va desde las pieles con mínima densidad hasta el núcleo con una densidad tan alta como la del material sólido (Fig. 1, Estado de la técnica). Since plastic materials are good thermal insulators, these processes have the disadvantage that the external heating applied is not transmitted uniformly through the thickness of the product, but in a variable way, creating temperature gradients of many degrees from the surface to the core . Consequently, the expansion that occurs is not uniform, nor is the cellular structure of the foam that is formed. That is why the aforementioned procedures are neither satisfactory nor recommended for obtaining high thickness foams. Thus, when it is intended to obtain a foam from a product of high thickness (typical values> 1-6 mm), the expansion is not uniform due to the local temperature gradient that is created through the thickness in the external heating stage. Whether an external heating is applied by contact or by convection with a fluid, as if it is carried out by heat radiation, the temperature reached on the surface of the material (skin), so that it is adequate in the central line (core), is much higher than recommended to create a foam. This results in a deficient and non-uniform expansion of the material, which manifests itself in the form of high density values (low degree of expansion and porosity), large cells formed by coalescence, and skins with the same density as the solid, formed by cell collapse In addition, the material of the skins, in this case, undergoes thermal or oxidative degradation due to excessive heating. This implies the need to incorporate protective additives in the formulation of the material (stabilizers and antioxidants), which make the product more expensive. At the other end, if external heating is applied more moderately so as not to overheat the skin of the product, what is achieved is not to transmit enough heat to the core so that its expansion occurs, obtaining foams with a density gradient and cellular characteristics ranging from skins with minimal density to the core with a density as high as that of solid material (Fig. 1, State of the art).

Una posible solución a este problema consiste en lograr la espumación del polímero saturado con gas empleando otros procedimientos. En particular, establecemos que la radiación de microondas es la solución alternativa al calentamiento externo por convección con un fluido o por contacto con placas calefactoras de cara a generar una estructura celular uniforme a través de todo el espesor de la misma (véase la Fig. 2). A possible solution to this problem is to achieve foaming of the gas-saturated polymer using other procedures. In particular, we establish that microwave radiation is the alternative solution to external heating by convection with a fluid or by contact with heating plates in order to generate a uniform cellular structure throughout its entire thickness (see Fig. 2 ).

En el estado de la técnica se conocen procedimientos que consideran la radiación de microondas en procesos de espumación de polímeros. En particular, la patente US-A-5118722 [6] contempla la preparación de espumas flexibles de poliuretano para aplicaciones de aislamiento acústico en el sector de la automoción empleando radiación de microondas durante la etapa de espumación. La principal diferencia respecto al procedimiento de la presente invención en cuanto al uso de radiación de microondas radica en que en, en la citada patente US-A-5118722 [6], la espumación se hace a partir de la mezcla líquida de los dos monómeros (isocianato y poliol) que por reacción de polimerización producen un polímero termoestable (poliuretano). Dicha reacción de polimerización genera gas como producto secundario en el seno de la reacción, que actúa espontáneamente como agente de espumación para el poliuretano que se forma, obteniéndose así una espuma polimérica termoestable. La radiación de microondas sirve aquí para estimular la vibración de las moléculas en sendos componentes reactivos y facilitar así la reacción química entre ambos. Una vez alcanzada la expansión deseada, la estabilización de la estructura celular se consigue por enfriamiento controlado. En el procedimiento de la presente invención no se parte de una mezcla de los monómeros líquidos para lograr una espuma de material termoestable, sino de un precursor sólido termoplástico previamente saturado con un gas inerte y, por lo tanto, la espumación por aplicación de radiación de microondas se hace en todo momento con el material en estado sólido, con ventajas inherentes. Entre ellas cabe referir la prevención de los problemas relacionados con una espumación no uniforme por mezclado inadecuado de los componentes de la formulación, que tiende a agravarse cuanto más elevado es el espesor final de la espuma. Methods that consider microwave radiation in polymer foaming processes are known in the state of the art. In particular, US-A-5118722 [6] contemplates the preparation of flexible polyurethane foams for acoustic insulation applications in the automotive sector using microwave radiation during the foaming stage. The main difference with respect to the process of the present invention regarding the use of microwave radiation is that in the said US-A-5118722 [6], the foaming is done from the liquid mixture of the two monomers (isocyanate and polyol) which by polymerization reaction produce a thermostable polymer (polyurethane). Said polymerization reaction generates gas as a secondary product within the reaction, which acts spontaneously as a foaming agent for the polyurethane that is formed, thus obtaining a thermosetting polymer foam. Microwave radiation serves here to stimulate the vibration of the molecules in two reactive components and thus facilitate the chemical reaction between them. Once the desired expansion is achieved, the stabilization of the cellular structure is achieved by controlled cooling. In the process of the present invention, a mixture of the liquid monomers is not used to achieve a foam of thermosetting material, but of a thermoplastic solid precursor previously saturated with an inert gas and, therefore, the foaming by radiation application of Microwave is made at all times with the solid state material, with inherent advantages. These include the prevention of problems related to non-uniform foaming by improper mixing of the components of the formulation, which tends to worsen the higher the final thickness of the foam.

En el estado de la técnica se conocen dos grandes procedimientos o métodos para conformar productos con polímeros termoplásticos celulares, en particular de PET. Por una parte el moldeo por inyección, en el que una masa fundida del polímero a elevada temperatura y con una concentración determinada de gas disuelto se introduce a elevada presión en el interior de un molde. La despresurización de la masa fundida en el interior del molde genera la liberación del gas disuelto en el polímero con la consiguiente expansión o espumación, al tiempo que la refrigeración del molde se encarga de la estabilización de la espuma con la forma deseada. Por otra parte el termoconformado, método en el cuál la espuma en forma de lámina o rollo es sometida en una primera etapa a calentamiento por contacto directo, calor radiante o convección con fluido para producir su reblandecimiento. En una etapa posterior, la espuma es conformada por acción de fuerzas sobre un molde abierto. Two great methods or methods for forming products with cellular thermoplastic polymers, in particular PET, are known in the state of the art. On the one hand, injection molding, in which a molten mass of the polymer at a high temperature and with a determined concentration of dissolved gas is introduced at high pressure into a mold. The depressurization of the melt inside the mold generates the release of the gas dissolved in the polymer with the consequent expansion or foaming, while the cooling of the mold is responsible for the stabilization of the foam with the desired shape. On the other hand the thermoforming, method in which the foam in the form of a sheet or roll is subjected to direct contact heating, radiant heat or convection with fluid in a first stage to produce its softening. At a later stage, the foam is formed by the action of forces on an open mold.

Existe pues la necesidad en la técnica de simplificar y optimizar procedimientos que permitan obtener productos de PET espumados de elevado espesor y una estructura celular homogénea, junto a procedimientos ventajosos para la producción de componentes poliméricos celulares con formas geométricas complejas por conformado simultáneo a la expansión de dicho material. There is therefore a need in the art to simplify and optimize procedures that allow obtaining high thickness foamed PET products and a homogeneous cellular structure, together with advantageous procedures for the production of cellular polymer components with complex geometric shapes by simultaneously conforming to the expansion of said material.

Exposición de la invención Exhibition of the invention

La presente invención contribuye a paliar los inconvenientes y desventajas del estado de la técnica aportando un procedimiento para conformar PET (polietilentereftalato) celular a partir de preformas sólidas que comprende las etapas de: The present invention helps to alleviate the disadvantages and disadvantages of the state of the art by providing a method for forming cellular PET (polyethylene terephthalate) from solid preforms comprising the steps of:

(a) (to)
acondicionar una preforma sólida previamente obtenida por extrusión, moldeo o termoconformado, ajustando su concentración de humedad en equilibrio « 1% dependiendo de la temperatura y humedad relativa). conditioning a solid preform previously obtained by extrusion, molding or thermoforming, adjusting its equilibrium moisture concentration «1% depending on temperature and relative humidity).

(b) (b)
disolver en la preforma un gas inerte a presión y temperatura durante el tiempo suficiente hasta saturación, y descompresión a temperatura ambiente, con lo que se obtiene la preforma sólida saturada de gas; y dissolve in the preform an inert gas at pressure and temperature for sufficient time until saturation, and decompression at room temperature, whereby the saturated solid gas preform is obtained; Y

(c) (C)
colocar entre las placas de un molde de conformado no metálico la preforma saturada de gas y aplicar una radiación de m icroondas sobre el conjunto para producir el reblandecimiento, expansión y conformado simultáneo de la preforma. place the saturated gas preform between the plates of a non-metallic mold and apply a microwave radiation on the assembly to produce the softening, expansion and simultaneous forming of the preform.

La preforma puede ser una lámina, plancha, barra, tubo, perfil o forma previamente conformada o mecanizada, la cual presenta preferiblemente una microestructura fundamentalmente amorfa y un espesor comprendido entre 1 y 9 mm. The preform can be a sheet, plate, bar, tube, profile or previously formed or machined shape, which preferably has a fundamentally amorphous microstructure and a thickness between 1 and 9 mm.

En el procedimiento, la preforma de PET se somete preferiblemente a un acondicionamiento durante 72 horas a una temperatura entre 20° y 60°C Y una humedad relativa entre el 50% y 95%, por el que la preforma alcanza su concentración de humedad en el equilibrio. In the process, the PET preform is preferably subjected to conditioning for 72 hours at a temperature between 20 ° and 60 ° C and a relative humidity between 50% and 95%, whereby the preform reaches its moisture concentration in the Balance.

El gas inerte utilizado puede ser, por ejemplo, argón, nitrógeno, dióxido de carbono, o cualquiera de sus mezclas. The inert gas used can be, for example, argon, nitrogen, carbon dioxide, or any of its mixtures.

En un ejemplo de realización, la preforma sólida de PET se somete a dióxido de carbono a una presión comprendida entre 100 y 300 bar durante un periodo comprendido entre 20 y 120 min ya una temperatura comprendida entre 40 y 120 oC. In an exemplary embodiment, the solid PET preform is subjected to carbon dioxide at a pressure between 100 and 300 bar for a period between 20 and 120 min and at a temperature between 40 and 120 ° C.

El procedimiento contempla, en una realización, llevar a cabo la expansión de la preforma sólida saturada con gas aplicando una radiación de microondas, y más específicamente una radiación de microondas de frecuencia típica entre 1 GHz y 30 GHz durante un tiempo comprendido entre 1 y 30 mino The process contemplates, in one embodiment, the expansion of the solid preform saturated with gas by applying microwave radiation, and more specifically a microwave radiation of typical frequency between 1 GHz and 30 GHz for a time between 1 and 30 My no

Simultáneamente a la expansión de la preforma el procedimiento contempla opcionalmente conformar el producto celular entre unas placas de un molde, por acción de la fuerza expansiva del material de la preforma. Simultaneously with the expansion of the preform, the method optionally contemplates forming the cellular product between plates of a mold, by the action of the expansive force of the material of the preform.

Breve descripción de los dibujos Brief description of the drawings

Las anteriores y otras características y ventajas se comprenderán más plenamente a partir de la siguiente descripción detallada de unos ejemplos de realización con referencia a los dibujos adjuntos, en los que: The foregoing and other features and advantages will be more fully understood from the following detailed description of some embodiments with reference to the attached drawings, in which:

la Fig. 1 es un diagrama que ilustra un procedimiento del estado de la técnica que utiliza fuentes externas de calefacción; Fig. 1 is a diagram illustrating a prior art procedure using external heating sources;

la Fig. 2 es un diagrama que ilustra el procedimiento para conformar PET (polietilentereftalato) celular a partir de preformas sólidas de acuerdo con una realización de la presente invención; y Fig. 2 is a diagram illustrating the method of forming cellular PET (polyethylene terephthalate) from solid preforms according to an embodiment of the present invention; Y

la Fig. 3 es un diagrama que ilustra el resultado de utilizar radiación de microondas sobre una preforma sólida en el procedimiento de la presente invención. Fig. 3 is a diagram illustrating the result of using microwave radiation on a solid preform in the process of the present invention.

Descripción detallada de unos ejemplos de realización Detailed description of some embodiments

Haciendo en primer lugar referencia a la Fig. 1, en ella se ilustra un procedimiento conocido en el estado de la técnica, el cual comprende calentar un cuerpo 10 en forma de lámina, hecho de un polímero tal como PET (polietilentereftalato) y saturado con un gas inerte, mediante fuentes externas de calefacción para conseguir un material espumado por expansión del polímero. En el ejemplo de la parte superior izquierda de la Fig. 1 el cuerpo 10 es calentado mediante un par de placas calefactoras 12, 14 aplicadas a superficies opuestas 10a, 10b del mismo. En el ejemplo de la parte inferior izquierda de la Fig. 1 el cuerpo 10 es calentado por inducción mediante un baño de calentamiento 16 en un recipiente 18. Referring first to Fig. 1, there is illustrated a process known in the state of the art, which comprises heating a sheet-shaped body 10, made of a polymer such as PET (polyethylene terephthalate) and saturated with an inert gas, by means of external heating sources to achieve a foamed material by polymer expansion. In the example of the upper left part of Fig. 1 the body 10 is heated by a pair of heating plates 12, 14 applied to opposite surfaces 10a, 10b thereof. In the example of the lower left part of Fig. 1 the body 10 is heated by induction by means of a heating bath 16 in a container 18.

En ambos casos, tal como muestra la parte derecha de la Fig. 1, se obtiene el mismo resultado, esto es un cuerpo espumado con un tamaño de celda no uniforme, donde debido al gradiente de temperatura entre dichas superficies opuestas 10a, 10b Y un núcleo 10c del cuerpo 10 en forma de lámina producido por carácter aislante térmico de los plásticos, las celdas adyacentes a las superficies opuestas 10a, 10b son comparativamente más grandes por haber recibido más temperatura y las celdas más próximas al núcleo 10c son comparativamente más pequeñas o incluso, si el cuerpo 10 de gran espesor, las celdas están ausentes y la zona central es prácticamente sólida. In both cases, as shown in the right part of Fig. 1, the same result is obtained, this is a foamed body with a non-uniform cell size, where due to the temperature gradient between said opposite surfaces 10a, 10b and a core 10c of the sheet-shaped body 10 produced by thermal insulating nature of the plastics, the cells adjacent to the opposite surfaces 10a, 10b are comparatively larger because they have received more temperature and the cells closest to the core 10c are comparatively smaller or Even if the body 10 is very thick, the cells are absent and the central area is practically solid.

Con referencia ahora a las Figs. 2 y 3 se describe un procedimiento para producir piezas conformadas de PET (polietilentereftalato) con una estructura celular (espuma) a partir de preformas sólidas de acuerdo con una realización de la presente invención. With reference now to Figs. 2 and 3 a process for producing PET shaped parts (polyethylene terephthalate) with a cellular structure (foam) from solid preforms according to an embodiment of the present invention is described.

Tal como muestra la Fig. 2, el procedimiento consta de varias etapas: (a) acondicionamiento de una preforma sólida 1 de PET; (b) disolución de un gas hasta saturación; y (c) conformado por aplicación de radiación de microondas. As shown in Fig. 2, the procedure consists of several stages: (a) conditioning of a solid PET preform 1; (b) dissolution of a gas until saturation; and (c) formed by microwave radiation application.

En la etapa (a) de acondicionamiento, la preforma sólida 1 o precursor sólido, la cual ha sido obtenida previamente por extrusión, moldeo o termoconformado de PET, tiene una microestructura totalmente amorfa debido a que ha sido enfriada rápidamente a partir del estado fundido, esto es, impidiendo la cristalización del polímero. La preforma sólida 1 tiene un espesor comprendido entre 1 y 9 mm, el cual se selecciona en función del espesor buscado para el componente espumado a obtener. La etapa (a) de acondicionamiento comprende mantener la preforma sólida 1 durante 72 horas en una cámara de una estufa 2 a una temperatura entre 20° y 60°C en una atmósfera de humedad relativa comprendida entre el 50% y el 95%, para asegurar que el grado de humedad de la preforma alcanza una concentración de equilibrio. In step (a) of conditioning, the solid preform 1 or solid precursor, which has been previously obtained by extrusion, molding or thermoforming of PET, has a totally amorphous microstructure because it has been rapidly cooled from the molten state, that is, preventing polymer crystallization. The solid preform 1 has a thickness between 1 and 9 mm, which is selected according to the thickness sought for the foamed component to be obtained. The conditioning step (a) comprises maintaining the solid preform 1 for 72 hours in a chamber of an oven 2 at a temperature between 20 ° and 60 ° C in an atmosphere of relative humidity between 50% and 95%, for ensure that the moisture content of the preform reaches an equilibrium concentration.

La etapa (b) de disolución del gas inerte (preferentemente CO2 ) en la preforma sólida 1 se efectúa en el interior de un autoclave 3, es decir, depósito estanco bajo presión elevada, y a una temperatura comprendida entre 40 y 120 oC durante un tiempo comprendido entre 20 y 120 minutos. Las condiciones se escogen en función del espesor de la preforma sólida 1 y naturaleza del polímero, así como de la concentración de gas a disolver en su interior. En lo que respecta a las presiones de saturación de gas, se consideran adecuadas presiones entre 100 Y 300 bar, usando para tal efecto bombas especiales compresoras para incrementar la presión del gas de alimentación de las bombonas. La presión de gas en el interior del autoclave 3 será seleccionada en función del espesor inicial de la preforma sólida 1 o precursor sólido, así como de la densidad final y estructura celular de la espuma a obtener. Generalmente, cuanto más elevado sea el espesor de la preforma sólida 1, más tiempo de disolución de gas será necesario. La temperatura, presión y tiempo de disolución de gas en el polímero son reguladas a propósito para obtener valores típicos de concentración de gas en el precursor entre 20-70 mg/g de PET. Transcurrido el tiempo de saturación con el gas inerte, se procede a una descompresión controlada y extracción de la preforma sólida 1 del autoclave 3. The step (b) of dissolving the inert gas (preferably CO2) in the solid preform 1 is carried out inside an autoclave 3, that is, a tight tank under high pressure, and at a temperature between 40 and 120 ° C for a time. between 20 and 120 minutes. The conditions are chosen based on the thickness of the solid preform 1 and the nature of the polymer, as well as the concentration of gas to be dissolved inside. As regards gas saturation pressures, pressures between 100 and 300 bar are considered adequate, using special compressor pumps for this purpose to increase the gas supply pressure of the cylinders. The gas pressure inside the autoclave 3 will be selected based on the initial thickness of the solid preform 1 or solid precursor, as well as the final density and cellular structure of the foam to be obtained. Generally, the higher the thickness of the solid preform 1, the more gas dissolution time will be necessary. The temperature, pressure and dissolution time of gas in the polymer are regulated on purpose to obtain typical values of gas concentration in the precursor between 20-70 mg / g of PET. After the saturation time with the inert gas, controlled decompression and extraction of the solid preform 1 of the autoclave 3.

La tercera etapa (c) de conformado por aplicación de radiación de microondas comprende aplicar sobre la preforma sólida 1 saturada de gas obtenida en la etapa anterior, la cual ha sido previamente dispuesta en un molde no metálico, una radiación de microondas con una potencia típica entre 400W y 800W durante un tiempo suficiente (típicamente de 1-30 min) para su reblandecimiento y expansión, conformándose así un producto celular 6 (cuerpo espumado), el cual al expandirse llenará todas las cavidades del molde y por consiguiente el producto celular 6 resultante tendrá la configuración prevista por la geometría del molde (Fig.3). Para facilitar el desmolde es conveniente que el molde esté configurado para proporcionar unas formas suaves, tales como por ejemplo una forma de placa plana, una forma de placa ondulada, o similares. The third stage (c) of forming by microwave radiation application comprises applying on the solid preform 1 saturated with gas obtained in the previous stage, which has previously been arranged in a non-metallic mold, a microwave radiation with a typical power between 400W and 800W for a sufficient time (typically 1-30 min) for its softening and expansion, thus forming a cellular product 6 (foamed body), which when expanded will fill all the cavities of the mold and therefore the cellular product 6 resulting will have the configuration provided by the mold geometry (Fig. 3). To facilitate the release, it is convenient that the mold is configured to provide smooth shapes, such as, for example, a flat plate shape, a wavy plate shape, or the like.

En la realización mostrada en la Fig. 2, el molde comprende dos placas 4, 5 situadas en lados opuestos de la preforma sólida 1 y configuradas para proporcionar un producto celular 6 en forma de placa ondulada. La mencionadas placas 4, 5 son no metálicas para no interferir con la radiación de microondas. In the embodiment shown in Fig. 2, the mold comprises two plates 4, 5 located on opposite sides of the solid preform 1 and configured to provide a cellular product 6 in the form of a corrugated plate. The mentioned plates 4, 5 are non-metallic so as not to interfere with microwave radiation.

Entre la etapa (b) de disolución del gas inerte y la etapa (c) de conformado es conveniente dejar transcurrir un tiempo suficiente para permitir una estabilización de la concentración del gas inerte a través de todo el espesor de la preforma sólida 1, con lo que se evita que la preforma sólida 1 experimente una expansión brusca al ser irradiada con microondas. También es importante mesurar bien la potencia de la radiación de microondas y el tiempo de exposición para evitar una radiación excesiva. Between the stage (b) of dissolution of the inert gas and the stage (c) of forming it is convenient to allow sufficient time to allow a stabilization of the concentration of the inert gas throughout the entire thickness of the solid preform 1, with that the solid preform 1 is prevented from experiencing a sharp expansion when irradiated with microwaves. It is also important to measure the microwave radiation power and exposure time well to avoid excessive radiation.

La Fig. 3 muestra el producto celular 6 resultante de la aplicación del procedimiento de la presente invención, en el que el polímero espumado tiene un tamaño de celda substancialmente uniforme a través de todo el espesor del cuerpo. Fig. 3 shows the cellular product 6 resulting from the application of the process of the present invention, in which the foamed polymer has a substantially uniform cell size throughout the entire thickness of the body.

Así, al contrario que en los procedimientos de espumación física de plásticos (por ejemplo, espumación microcelular en estado sólido), en los que la expansión del material saturado de gas se produce por aplicación directa de calor, ya sea en un baño de agua, glicerina o silicona, o por radiación térmica, en el procedimiento de la presente invención no se contempla el uso de una fuente de calor externa sino que el grado de reblandecimiento del material necesario y su expansión se alcanzan por aplicación de radiación de microondas de baja-media frecuencia (1-30 GHz). Thus, unlike in the procedures of physical foaming of plastics (for example, microcellular foaming in solid state), in which the expansion of the saturated gas material occurs by direct application of heat, either in a water bath, glycerin or silicone, or by thermal radiation, in the process of the present invention the use of an external heat source is not contemplated but rather the degree of softening of the necessary material and its expansion are achieved by application of low-level microwave radiation. medium frequency (1-30 GHz).

De acuerdo con el procedimiento de la presente invención, la obtención del producto celular 6 conformado se consigue con una particular combinación de de varios factores: (i) una concentración mínima de moléculas de agua disuelta en el polímero saturado de gas del 0,1% en peso; (ii) aplicación de microondas durante un tiempo ya una potencia adecuados y (iii) una geometría del molde utilizado. In accordance with the process of the present invention, obtaining the shaped cell product 6 is achieved with a particular combination of several factors: (i) a minimum concentration of dissolved water molecules in the saturated gas polymer of 0.1% in weigh; (ii) microwave application for a suitable time and power and (iii) a mold geometry used.

A un experto en la técnica se le ocurrirán modificaciones, variaciones y combinaciones a partir de los ejemplos de realización mostrados y descritos sin salirse del alcance de la presente invención según está definido en las reivindicaciones adjuntas. Modifications, variations and combinations will occur to one skilled in the art from the embodiments shown and described without departing from the scope of the present invention as defined in the appended claims.

Ejemplos particulares Ejemplo 1: En una aplicación particular, se dispone una preforma sólida circular de PET de densidad 1.31 g/cm3 y dimensiones: diámetro 64 mm y espesor 2 mm, obtenida a partir de una lámina plana obtenida previamente por un proceso de extrusión. La preforma se acondiciona en una estufa bajo una atmósfera controlada de humedad relativa 80% y temperatura 50 oC durante 72 horas, tras lo cual se introduce en un reactor con control de temperatura y presión donde se le somete a una presión de CO2 de 100 bar y una temperatura de 90 oC durante 120 minutos. Transcurrido este periodo se reduce la temperatura del reactor hasta los 25 oC mediante recirculación de agua y se realiza la descompresión necesaria para poder abrir el dispositivo y extraer la preforma, la cual se encuentra entonces saturada de CO2 , según indicación de la ganancia de peso con respecto a su valor inicial de referencia. Particular examples Example 1: In a particular application, a solid circular PET preform of density 1.31 g / cm3 and dimensions: diameter 64 mm and thickness 2 mm, obtained from a flat sheet obtained previously by an extrusion process is arranged. The preform is conditioned in an oven under a controlled atmosphere of relative humidity 80% and temperature 50 oC for 72 hours, after which it is introduced into a reactor with temperature and pressure control where it is subjected to a CO2 pressure of 100 bar and a temperature of 90 oC for 120 minutes. After this period, the reactor temperature is reduced to 25 ° C by means of water recirculation and the necessary decompression is carried out in order to open the device and extract the preform, which is then saturated with CO2, as indicated by the weight gain with regarding its initial reference value.

La preforma saturada se coloca entre las dos mitades de un molde formado por dos placas que configuran un espacio cilíndrico de 65 mm de diámetro por 13.2 mm de espesor, y se introduce el conjunto en el interior de un horno de microondas donde se produce la transformación, consistente en la expansión y conformado simultáneo, de la preforma saturada en un producto plano con estructura celular, debido a la interacción de una radiación de microondas de frecuencia 2.45 GHz y potencia 400 W durante un periodo de 10 minutos con la particular composición química de la preforma. La pieza así conformada presenta unas dimensiones de 64 mm de diámetro por 13.2 mm de espesor, y tiene una estructura de celda cerrada caracterizada por un tamaño promedio de celdas entre 0.1 y 0.2 mm, y un grado de orientación de las celdas en la dirección del crecimiento (vertical o en espesor) de 1.2, definido como el cociente entre el tamaño medio de las celdas en la dirección vertical y la horizontal. Su densidad es de 0.20 g/cm3, lo que representa que ha sufrido un grado de expansión de 6.2, definido como el cociente entre la densidad de la preforma sólida y la densidad del producto celular conformado. The saturated preform is placed between the two halves of a mold formed by two plates that make up a cylindrical space 65 mm in diameter by 13.2 mm thick, and the assembly is introduced inside a microwave oven where the transformation takes place , consisting of the simultaneous expansion and shaping of the saturated preform in a flat product with cellular structure, due to the interaction of a microwave radiation of frequency 2.45 GHz and power 400 W for a period of 10 minutes with the particular chemical composition of the preform. The piece thus formed has dimensions of 64 mm in diameter by 13.2 mm thick, and has a closed cell structure characterized by an average cell size between 0.1 and 0.2 mm, and a degree of orientation of the cells in the direction of the growth (vertical or in thickness) of 1.2, defined as the ratio between the average cell size in the vertical and horizontal direction. Its density is 0.20 g / cm3, which represents that it has undergone a degree of expansion of 6.2, defined as the ratio between the density of the solid preform and the density of the shaped cellular product.

Ejemplo 2: En otra aplicación particular, utilizando las mismas condiciones que las del ejemplo 1 pero aplicando en este caso una potencia de radiación microondas de 600 W (frecuencia de 2.45 GHz), se le provoca a la preforma saturada de CO 2 una expansión más rápida que le produce un grado de coalescencia celular y densificación de las pieles en contacto con las paredes internas del molde de conformado, resultando en una pieza conformada de PET celular estructural con pieles integrales de 0.6 mm de espesor, densidad 0.40 g/cm3 y estructura celular con tamaño promedio de celdas de 0.3-0.7 mm y un grado de orientación en la dirección vertical. Example 2: In another particular application, using the same conditions as in example 1 but applying in this case a microwave radiation power of 600 W (frequency of 2.45 GHz), the saturated preform of CO 2 is caused a further expansion fast that produces a degree of cellular coalescence and densification of the skins in contact with the internal walls of the forming mold, resulting in a shaped piece of structural cellular PET with integral skins 0.6 mm thick, density 0.40 g / cm3 and structure cell with average cell size of 0.3-0.7 mm and a degree of orientation in the vertical direction.

Ejemplo 3: En otra aplicación, una vez acondicionada la preforma de PET bajo idénticas condiciones que las indicadas en el ejemplo 1, se disuelve en ella CO 2 bajo una presión de 250 bar a una temperatura de 90 oC durante 60 minutos. A diferencia del ejemplo 1, la etapa de expansión y conformado simultáneo por aplicación de radiación de microondas se realiza con una potencia de 800 W durante 2 minutos, lo que resulta en un cuerpo hueco y totalmente cerrado de PET, en lugar de en una espuma, debido a la ocurrencia de una rápida expansión que provoca la completa coalescencia o rotura de la totalidad de las celdas inicialmente formadas. El producto así obtenido presenta unas pieles rígidas de espesor típico 0.7 mm y una densidad de 0.10 g/cm 3. Example 3: In another application, once the PET preform is conditioned under the same conditions as indicated in example 1, CO 2 is dissolved therein under a pressure of 250 bar at a temperature of 90 ° C for 60 minutes. Unlike example 1, the simultaneous expansion and shaping stage by microwave radiation application is performed with a power of 800 W for 2 minutes, resulting in a hollow and fully closed PET body, rather than a foam , due to the occurrence of a rapid expansion that causes complete coalescence or breakage of all initially formed cells. The product thus obtained has rigid skins of typical thickness 0.7 mm and a density of 0.10 g / cm 3.

Referencias References

[1] Martini-Vvedensky, J.E., Suh, N.P., Waldman, F.A. Microcellular closed cell foams and their method of manufacture, U.S. patent 4,473,665 (1984). [1] Martini-Vvedensky, J.E., Suh, N.P., Waldman, F.A. Microcellular closed cell foams and their method of manufacture, U.S. patent 4,473,665 (1984).

[2] [2]
Johnson, O.E. Process and apparatus for forming a composite foamed polymeric Johnson, O.E. Process and apparatus for forming a composite foamed polymeric

sheet structure having comparatively high density skin layers and a comparatively sheet structure having comparatively high density skin layers and a comparatively

low density core layer, U.S. patent 4,456,571 (1984). low density core layer, U.S. patent 4,456,571 (1984).

[3] [3]
Throne, J.L. Thermoplastic Foam Extrusion, Hanser Gardner Publications, Throne, J.L. Thermoplastic Foam Extrusion, Hanser Gardner Publications,

5 5
Cincinnati (2004). Cincinnati (2004).

[4] [4]
Kumar, V., Schirmer, H., HolI, M. Producción semicontinua de espumas polímeras Kumar, V., Schirmer, H., HolI, M. Semi-continuous production of polymeric foams

en estado sólido, patente ES 2236720T3 (2005). in solid state, patent ES 2236720T3 (2005).

[5] [5]
Hardenbrook, S.B., Harasta, L.P., Faulkenberry, S.T., Bomba, R.o. Method for Hardenbrook, S.B., Harasta, L.P., Faulkenberry, S.T., Bomba, R.o. Method for

producing microcellular foamed plastic material with smooth integral skin, U.S. producing microcellular foamed plastic material with smooth integral skin, U.S.

10 10
patent 4,761,256 (1988). patent 4,761,256 (1988).

[6] [6]
Wollmann, K., Ach, A., Frank, W. Method for producing elastic foams having a base Wollmann, K., Ach, A., Frank, W. Method for producing elastic foams having a base

of polyurethane by microwave foaming, U.S. patent 5,118,722 (1992). of polyurethane by microwave foaming, U.S. patent 5,118,722 (1992).

[7] [7]
Pip, W. Method for foaming synthetic resin bodies with microwave or high frequency Pip, W. Method for foaming synthetic resin bodies with microwave or high frequency

energy, U.S. patent 4,740,530 (1988). energy, U.S. patent 4,740,530 (1988).

15 fifteen

Claims (9)

REIVINDICACIONES 1.-Procedimiento para conformar PET celular a partir de preformas sólidas, que comprende las siguientes etapas: 1.-Procedure for forming cellular PET from solid preforms, comprising the following steps:
(a) (to)
acondicionar una preforma sólida (1) hecha de PET (polietilentereftalato) previamente obtenida por extrusión, moldeo o termoconformado, ajustando su concentración de humedad a su valor de concentración en el equilibrio; conditioning a solid preform (1) made of PET (polyethylene terephthalate) previously obtained by extrusion, molding or thermoforming, adjusting its moisture concentration to its equilibrium concentration value;
(b) (b)
disolver en dicha preforma sólida (1) un gas inerte a presión y temperatura durante un tiempo suficiente hasta saturación, y descompresión a temperatura ambiente, con lo que se obtiene la preforma sólida (1) saturada de gas; y dissolve in said solid preform (1) an inert gas at pressure and temperature for a sufficient time until saturation, and decompression at room temperature, whereby the solid preform (1) saturated with gas is obtained; Y
(c) (C)
colocar en un molde de conformado no metálico la preforma sólida (1) saturada de gas y aplicar una radiación de microondas sobre el conjunto para producir el reblandecimiento, expansión y conformado simultáneo de la preforma sólida (1) hasta obtener un producto celular (6). place the solid preform (1) saturated with gas in a non-metallic mold and apply a microwave radiation on the assembly to produce the softening, expansion and simultaneous shaping of the solid preform (1) until obtaining a cellular product (6) .
2.-Procedimiento según la reivindicación 1, caracterizado porque la preforma sólida (1) de PET (polietilentereftalato) presenta una microestructura fundamentalmente amorfa y un espesor comprendido entre 1 y 9 mm. 2. Method according to claim 1, characterized in that the solid preform (1) of PET (polyethylene terephthalate) has a fundamentally amorphous microstructure and a thickness between 1 and 9 mm. 3.-Procedimiento según la reivindicación 1 ó 2, caracterizado porque la preforma sólida (1) de PET (polietilentereftalato) es una lámina, plancha, barra, tubo, perfilo forma previamente conformada o mecanizada. 3. Method according to claim 1 or 2, characterized in that the solid preform (1) of PET (polyethylene terephthalate) is a sheet, plate, bar, tube, profile previously formed or machined. 4.-Procedimiento según la reivindicación 1, caracterizado porque la preforma sólida (1) de PET (polietilentereftalato) se somete a un acondicionamiento durante 72 horas a una temperatura entre 20° y 60°C Y una humedad relativa entre el 50% y 95% por el que alcanza su concentración de humedad en el equilibrio. 4. Method according to claim 1, characterized in that the solid preform (1) of PET (polyethylene terephthalate) is subjected to conditioning for 72 hours at a temperature between 20 ° and 60 ° C and a relative humidity between 50% and 95% by which reaches its concentration of moisture in the balance. 5.-Procedimiento según la reivindicación 1, caracterizado porque el gas inerte se selecciona de entre argón, nitrógeno, dióxido de carbono, o sus mezclas. 5. Method according to claim 1, characterized in that the inert gas is selected from argon, nitrogen, carbon dioxide, or mixtures thereof. 6.-Procedimiento según la reivindicación 1, caracterizado porque la preforma sólida (1) de PET (polietilentereftalato) se somete a gas dióxido de carbono a una presión com prendida entre 100 Y 300 bar. 6. Method according to claim 1, characterized in that the solid preform (1) of PET (polyethylene terephthalate) is subjected to carbon dioxide gas at a pressure between 100 and 300 bar. 7.-Procedimiento según la reivindicación 1, caracterizado porque la preforma sólida (1) de PET (polietilentereftalato) se somete a gas dióxido de carbono durante un periodo comprendido entre 20 y 120 mino 7. Method according to claim 1, characterized in that the solid preform (1) of PET (polyethylene terephthalate) is subjected to carbon dioxide gas for a period between 20 and 120 min. 8.-Procedimiento según la reivindicación 1, caracterizado porque la preforma sólida (1) de PET (polietilentereftalato) se somete a gas dióxido de carbono a una temperatura comprendida entre 40 y 120 oC. 8. Method according to claim 1, characterized in that the solid preform (1) of PET (polyethylene terephthalate) is subjected to carbon dioxide gas at a temperature between 40 and 120 oC. 9.-Procedimiento según la reivindicación 1, caracterizado porque la expansión de la preforma sólida (1) de PET (polietilentereftalato) se produce aplicando radiación de microondas de frecuencia típica entre 1 GHz y 30 GHz durante un tiempo comprendido entre 1 y 30 mino 9. Method according to claim 1, characterized in that the expansion of the solid preform (1) of PET (polyethylene terephthalate) is produced by applying microwave radiation of typical frequency between 1 GHz and 30 GHz for a time between 1 and 30 min. 5 10.-Procedimiento según la reivindicación 1 ó 9, caracterizado porque simultáneamente a la expansión de la preforma sólida (1) de PET (polietilentereftalato) se conforma el producto celular (6) entre unas placas (4, 5) de un molde, por acción de la fuerza expansiva. Method according to claim 1 or 9, characterized in that simultaneously with the expansion of the solid preform (1) of PET (polyethylene terephthalate) the cellular product (6) is formed between plates (4, 5) of a mold, by action of the expansive force. 12 lOa  12 lOa Placa. License plate. <~l.f~{tons <~ l.f ~ {tons B~ilod. B ~ ilod. <';¡.nhuni."t. <'; ¡Nhuni. "T. (a) (to) (}iPHnsl.;.n~~ '.j c(>n{.;::ntt:}(i·~ndt tbO ~nl¡) 1:IH:fórl;l~ (} iPHnsl.;. n ~~ '.j c (> n {.; :: ntt:} (i · ~ ndt tbO ~ nl¡) 1: IH: forl; l ~ 2 2 E!ipaM-a MI ulfonFlepar E! IpaM-a MI ulfonFlepar ¡¡nd!eAled. ",.., ....t>=. lOa Nd! EAled. ", .., .... t> =. lOa lOe lOe lOb lob Figura 1 Figure 1 (b) (e) (b) (e) l.!. Pr~$lI)!l y t'-nnro;¡ l.! Pr ~ $ lI)! L and t'-nnro; d.o:: ::-~I~n'l{j'~n do:: (02 d.o :: :: - ~ I ~ n'l {j '~ n do :: (02 ~(~f,-'{r:~iJ' :-¡:::tJlJ~iiJ (J'~ 8;0 Y ~ (~ f, - '{r: ~ iJ': -¡ ::: tJlJ ~ iiJ (J '~ 8; 0 Y (1): (one): 3 3 Figura 2 Figure 2 N1ic!eo <dolar(u'......h) N1ic! Eo <dollar (u '...... h) Figura 3 Figure 3
ES201031762A 2010-11-30 2010-11-30 PROCEDURE TO CONFORM CELL PET PET FROM SOLID PREFORMS Active ES2383747B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES201031762A ES2383747B1 (en) 2010-11-30 2010-11-30 PROCEDURE TO CONFORM CELL PET PET FROM SOLID PREFORMS
PCT/ES2011/070830 WO2012072848A1 (en) 2010-11-30 2011-11-30 Method for forming cellular pet from solid preforms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201031762A ES2383747B1 (en) 2010-11-30 2010-11-30 PROCEDURE TO CONFORM CELL PET PET FROM SOLID PREFORMS

Publications (2)

Publication Number Publication Date
ES2383747A1 true ES2383747A1 (en) 2012-06-26
ES2383747B1 ES2383747B1 (en) 2013-05-06

Family

ID=46171225

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201031762A Active ES2383747B1 (en) 2010-11-30 2010-11-30 PROCEDURE TO CONFORM CELL PET PET FROM SOLID PREFORMS

Country Status (2)

Country Link
ES (1) ES2383747B1 (en)
WO (1) WO2012072848A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7137228B2 (en) * 2019-04-26 2022-09-14 株式会社micro-AMS Resin molding method
CN113573865B (en) * 2019-04-26 2024-05-14 株式会社micro-AMS Resin molding method
JP7137229B2 (en) * 2019-04-26 2022-09-14 株式会社micro-AMS Resin molding method
EP3936299A4 (en) * 2019-04-26 2022-06-15 micro-AMS Inc. Resin molding method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4473665A (en) * 1982-07-30 1984-09-25 Massachusetts Institute Of Technology Microcellular closed cell foams and their method of manufacture
US5223545A (en) * 1992-02-03 1993-06-29 The Board Of Regents Of The University Of Washington Polyethylene terephthalate foams with integral crystalline skins
WO1996018486A2 (en) * 1994-12-13 1996-06-20 University Of Washington Semi-continuous production of solid state polymeric foams
EP1186392A1 (en) * 2000-08-30 2002-03-13 Nitto Denko Corporation Microporous soundproofing material
EP1508588A1 (en) * 2003-08-22 2005-02-23 Nitto Denko Corporation Foamed dustproof material and dustproof structure containing said material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4473665A (en) * 1982-07-30 1984-09-25 Massachusetts Institute Of Technology Microcellular closed cell foams and their method of manufacture
US5223545A (en) * 1992-02-03 1993-06-29 The Board Of Regents Of The University Of Washington Polyethylene terephthalate foams with integral crystalline skins
WO1996018486A2 (en) * 1994-12-13 1996-06-20 University Of Washington Semi-continuous production of solid state polymeric foams
EP1186392A1 (en) * 2000-08-30 2002-03-13 Nitto Denko Corporation Microporous soundproofing material
EP1508588A1 (en) * 2003-08-22 2005-02-23 Nitto Denko Corporation Foamed dustproof material and dustproof structure containing said material

Also Published As

Publication number Publication date
ES2383747B1 (en) 2013-05-06
WO2012072848A1 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
US11286364B2 (en) Method for preparing polymer mould-free stereostructure foamed product from supercritical fluid
US5334356A (en) Supermicrocellular foamed materials
CA2197499C (en) Procedure for the manufacture of a foamed plastic product
US20090142563A1 (en) Foam Material Product
US20100052201A1 (en) Foamed cellular panels and related methods
WO2012072848A1 (en) Method for forming cellular pet from solid preforms
US10220549B2 (en) Sub-ambient pressure morphology control process for use in molding extruded polymer foams, and parts produced therefrom
JP7342178B2 (en) Microcell foam sheet and fabrication process and use
CN113246363B (en) Method for producing a foam part
KR20150139114A (en) Polylactic acid-based resin foam and method of producing the same
CN115093691B (en) Polymer foam material with strip-shaped cell structure and preparation method thereof
Gandhi et al. Surface quenching induced microstructure transformations in extrusion foaming of porous sheets
ES2301388B1 (en) PROCEDURE AND MEANS FOR THE MANUFACTURE OF MOLDED PIPES WITH MICROCELULAR CRANIAL STRUCTURE.
US20180250891A1 (en) Sub-ambient pressure morphology control process for use in molding extruded polymer foams, and parts produced therefrom
JP2017122184A (en) Styrenic resin foam sheet and method for producing the same, and food packaging container
ES2546218B1 (en) Manufacturing process of open cell crosslinked polyolefins foams and foams obtained
WO2014009579A1 (en) Method for producing cellular materials having a thermoplastic matrix
JP3149144B2 (en) Pre-expanded particles for in-mold fusion molding and method for producing the same
US20160229973A1 (en) A method for generating a microstructure in a material that includes thermoplastic polymer molecules, and related systems
JP2023160451A (en) Method for producing gradient foamed molding
JP2024516426A (en) Method for producing expanded plastic particles
CN118240260A (en) Microporous foam with double-peak pore structure and preparation method thereof
JP3824660B2 (en) Method for producing thermoplastic polyester resin foam molded article
JPH0428739B2 (en)
JP2625576C (en)

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2383747

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20130506