ES2367648T3 - Producción simultánea de nanotubos de carbono y de hidrógeno molecular. - Google Patents
Producción simultánea de nanotubos de carbono y de hidrógeno molecular. Download PDFInfo
- Publication number
- ES2367648T3 ES2367648T3 ES05802229T ES05802229T ES2367648T3 ES 2367648 T3 ES2367648 T3 ES 2367648T3 ES 05802229 T ES05802229 T ES 05802229T ES 05802229 T ES05802229 T ES 05802229T ES 2367648 T3 ES2367648 T3 ES 2367648T3
- Authority
- ES
- Spain
- Prior art keywords
- catalyst
- methane
- reaction
- ndni5
- intermetallic compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/83—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/22—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
- C01B3/24—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
- C01B3/26—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/06—Multi-walled nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0266—Processes for making hydrogen or synthesis gas containing a decomposition step
- C01B2203/0277—Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1052—Nickel or cobalt catalysts
- C01B2203/1058—Nickel catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1088—Non-supported catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1241—Natural gas or methane
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Composite Materials (AREA)
- Catalysts (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Un proceso de descomposición térmica del metano caracterizado porque se utiliza un catalizador que comprende un compuesto intermetálico de fórmula NdNi5.
Description
La presente invención se refiere a un proceso de descomposición térmica del metano en presencia de un catalizador con la finalidad de proporcionar hidrógeno molecular puro y carbono en la especie alotrópica integral de nanotubos según la reacción heterogénea siguiente
CH4(g) = C(nano) + 2H2(g).
El catalizador identificado, sintetizado y caracterizado por los inventores comprende un polvo del compuesto intermetálico de fórmula NdNi5.
Dicho catalizador provoca:
a) que el carbono forme núcleos y crezca, no dentro de la especie del grafito y/o del carbono amorfo, sino
dentro de la especie del nanotubo. De esta manera se evita que el catalizador se envenene rápidamente, a
pesar de lo que suele suceder;
b) que no sea necesario un estado de nanoestructura para el catalizador, sino solamente un estado
pulverulento que no necesariamente se admite y cuya granulometría no es crucial;
c) que la temperatura de la reacción esté justo por encima de la temperatura a la que la reacción es
termodinámicamente favorable;
d) que el rendimiento de la reacción sea constante en el tiempo;
e) que los nanotubos se separen y purifiquen con facilidad a partir de los residuos del catalizador.
A partir de GAO X P ET AL, se conoce un método para la formación de nanotubos de carbono mediante la descomposición catalítica del metano, utilizando LaNi5 como partículas catalíticas. La temperatura de reacción es de 670ºC, y las partículas catalíticas se tratan antes de su uso para la reacción de descomposición del metano con una solución de KOH que las convierte en Ni metálico sobre una capa superficial de La2O3. Se considera que el Ni metálico es el responsable de catalizar el crecimiento de los nanotubos de carbono.
A partir del documento US2004/005269, también se conoce un método para la formación de nanoestructuras de carbono mediante la deposición química de vapor, en la que se utiliza un catalizador que comprende al menos un elemento del grupo Fe, Co, Ni y al menos un lantánido. Ciertamente, en los ejemplos adjuntos a la presente patente, los catalizadores utilizados están en forma de óxido, y su estequiometría no está definida. A partir de GAVILLET J ET AL, se conoce además un estudio sobre el papel del catalizador en la nucleación y el crecimiento de nanotubos de carbono de pared sencilla utilizando un catalizador que comprende Ni y Y, Ce o La.
El creciente interés por el hidrógeno como un futuro vector de energía promueve investigaciones en todos los eslabones de la cadena de producción: producción, purificación, almacenamiento, distribución y uso en motores de combustión interna y en pilas de combustible. Se conoce que, aunque la potencial disponibilidad de hidrógeno es prácticamente infinita, la molécula de H2 no está disponible directamente por lo que debe producirse artificialmente. Durante mucho tiempo, la industria química ha identificado procesos con los que se puede producir hidrógeno molecular de modo industrial (reformado con vapor del metano, oxidación parcial del metano, gas de agua, etc.) pero dichos procesos no muestran los requisitos necesarios para una producción de hidrógeno molecular de elevada pureza a menos que se añadan etapas de purificación. Concretamente, el proceso de reformado con vapor, mediante el cual se produce el 95% del hidrógeno mundial, adolece sin embargo del inconveniente de que produce una cantidad de dióxido de carbono correspondiente, estimada en 47.500 millones de toneladas al año. El proceso de la presente invención no produce dióxido de carbono ni monóxido de carbono.
Se debe tener en cuenta que el suministro de pilas de combustible requiere:
- -
- un contenido de CO inferior a 30 ppm;
- -
- compatibilidad ecológica;
- -
- criterios de ahorro energético.
La descomposición del metano según la presente invención satisface en gran medida los requisitos anteriores ya que el único producto gaseoso de la reacción es hidrógeno molecular, y el único producto sólido es carbono, con el valor añadido de que los nanotubos de carbono son de un interés tecnológico considerable.
La presente invención se comprenderá mejor a partir de la descripción detallada a continuación, con referencia a los dibujos adjuntos que muestran una forma de realización preferida mediante un ejemplo no limitante. En los dibujos: La Figura 1A muestra los valores de la energía libre ∆dG de la descomposición del metano como una función de la temperatura absoluta en un reactor de flujo al que se suministra metano puro y produce hidrógeno como resultado;
5 La Figura 1B muestra los valores de la energía libre ∆dG de la descomposición del metano como una función de la temperatura absoluta en un reactor de flujo al que se suministra una mezcla de metano al 50%;
La Figura 2 representa el dispositivo utilizado para pruebas de laboratorio según la presente invención;
La Figura 3A muestra las concentraciones de H2 y CH4 como eje de ordenadas izquierdo (CH4) y eje de ordenadas opuesto (H2) en una prueba a 2 bar (absoluta), una temperatura de 500ºC, y un flujo de metano puro de 5 cm3min-1 PTN;
La Figura 3B muestra la proporción de conversión del metano a hidrógeno;
15 La Figura 4 es una imagen obtenida mediante MEB de nanotubos producidos con el proceso según la presente invención;
La Figura 5 muestra la sección transversal-longitudinal de algunos nanotubos obtenida mediante microscopía MET;
La Figura 6 muestra, detalladamente, la estructura multi-pared de un nanotubo;
La Figura 7 permite observar una muestra de nanotubos con nanopartículas de catalizador, vista mediante MET;
25 La Figura 8 muestra los resultados del análisis con difracción de rayos X del compuesto intermetálico obtenido mediante una mezcla polvos de Ni y Nd, y posteriormente una fusión en condiciones de vacío casi absoluto con una pistola de electrones.
Según la invención publicada, el proceso térmico de descomposición del metano, con la finalidad de producir hidrógeno molecular y carbono en la especie integral de nanotubos, se desarrolla en presencia de un catalizador que comprende polvos de un compuesto intermetálico de fórmula NdNi5.
En la bibliografía se pueden encontrar algunas publicaciones sobre dicho compuesto intermetálico, sobre todo en lo
35 referente a su estructura electrónica y propiedades magnéticas. El uso de dicho compuesto intermetálico como catalizador se menciona únicamente en las reacciones de hidrodesulfuración e hidrogenación ("Characteristics of intermetallic NdNi5 as an unsupported catalyst in thiophene hydrodesulphurisation." Moon, Young-Hwan; Ihm, Son-Ki, Catalysis Letters (1996), 42(1,2), 73-80), que son propósitos bastante diferentes a los de la presente aplicación de patente.
La termodinámica de la reacción de descomposición del metano en un reactor de flujo con suministro de metano y producción de hidrógeno como resultado, con exceso de metano, si hubiera, está representada por la siguiente
45 ecuación:
donde ∆dGθ , pt, pθ y
del metano puro, = 1. Los flujos se identifican como J.
Las Figuras 1A y 1B muestran los valores de la energía libre de la descomposición del metano, ∆dG, como una función de la temperatura absoluta según la ecuación anterior, asumiendo diferentes valores de γ.
Concretamente, la figura 1A muestra la situación en la que un reactor recibe un suministro de metano puro, mientras que en la Figura 1B se suministra el reactor con una mezcla de metano al 50%.
En ambas figuras, la línea discontinua horizontal muestra la condición de equilibrio. Los valores bajo dicha línea muestran situaciones en las que la termodinámica de la reacción de descomposición recibe ayuda. Además, debe tenerse en cuenta que, como función de la proporción Jin/JH2, es decir, flujo de mezcla con respecto al flujo de hidrógeno, la temperatura de reacción mínima aumenta a medida que dicha proporción disminuye. Bajo la misma temperatura mínima es de 718 K cuando imagen1
= 1, mientras que la temperatura mínima aumenta hasta 767 K cuando
= 0,5. El rango de temperaturas entre las dos líneas verticales discontinuas muestra el rango de temperaturas mínimas a las que puede tener lugar la reacción de descomposición con una proporción conocida de Jin/JH2.
Las pruebas se han realizado en un laboratorio utilizando un pequeño contenedor cilíndrico C representado en la Figura 2. Está fabricado con cerámica o acero inoxidable con una capacidad de algunos centímetros cúbicos, y se coloca verticalmente en el interior de un tubo de cuarzo Q que, a su vez, se encuentra dentro de un pequeño horno vertical (Figura 2). En la parte inferior del contenedor C existe una partición porosa S en la que se deposita una capa pulverulenta de catalizador CA, comprendiendo el compuesto intermetálico de fórmula NdNi5 con una granulometría comprendida entre 1 y 50 µm. La temperatura se controla mediante el termopar TC.
La fase gaseosa obtenida como resultado se analiza mediante un espectrómetro de masas cuadrupolo. El carbono producido en forma de nanotubo crece sobre el catalizador a medida que avanza la reacción de descomposición del metano.
La Figura 3A muestra las concentraciones de H2 y CH4 como eje de ordenadas izquierdo (CH4) y eje de ordenadas opuesto (H2) en una prueba realizada a 2 bar (absoluta), una temperatura de 500ºC, y un flujo de metano puro de 5 cm3min-1 PTN.
Al principio, la prueba se realiza introduciendo argón en el reactor, siendo dicho argón reemplazado total o parcialmente por metano a medida que la temperatura alcanza el valor programado.
La Figura 3B muestra la proporción de conversión, α, del metano en hidrógeno calculada según la expresión:
donde C es la concentración de metano, e in y out se refieren al metano que entra y sale del reactor, respectivamente.
Se ha demostrado de forma experimental que la temperatura óptima de la reacción está comprendida entre 500 y 550ºC. El carbono se produce cuantitativamente en la forma alotrópica de nanotubo, y tiene la estructura de una pared multi-pared.
La Figura 4 muestra una imagen de MEB de los nanotubos producidos, mientras que la Figura 5 muestra la sección transversal-longitudinal de algunos nanotubos obtenida mediante microscopía MET. La estructura multi-pared se define detalladamente en la Figura 6.
Tal y como se ha mencionado anteriormente, en varias ocasiones, el catalizador comprende polvos de compuesto intermetálico de fórmula NdNi5. Se ha preparado del siguiente modo: en un mortero de ágata, se mezclaron polvos de Ni (Aldrich, ~100 mesh, pureza del 99,99%) y polvos de Nd (Aldrich, ~40 mesh, pureza del 99%) añadiendo además algunos mililitros de disolvente inerte (p. ej., éter etílico); la mezcla resultante se comprimió en un molde y se derritió repetidamente con la pistola de electrones en condiciones de vacío casi absoluto (5 x 10-5 mbar). Tras cada proceso de derretido, se dio la vuelta al molde. El contenedor de la mezcla derretida estaba formado por material inerte refractario (concretamente, un compuesto de BN/TiB2). Inicialmente, el lingote resultante se molió en trozos grandes en un mortero de acero y una porción de los polvos se sometió a un análisis de difracción por rayos X (Figura 8) para comprobar si la reacción había finalizado. Una vez comprobada la ausencia de medios reactivos iniciales en el producto, los polvos se redujeron a un polvo negro y fino, mediante un molido durante toda la noche con un molino planetario de bolas de acero. El polvo negro obtenido se sometió a análisis adicionales con un difractómetro, que revelaron un considerable ensanchamiento de los picos de difracción, debido a una disminución en el tamaño de los granos (Figura 8). Entonces, dicho polvo negro se sometió a análisis BET mediante adsorción de nitrógeno, que mostró un área superficial de 0,683 ± 0,007 m2/g, y análisis MEB que mostró partículas con un tamaño comprendido entre aproximadamente 1 y 7 µm.
La presente invención se ha descrito según una forma de realización preferida de la misma, sin embargo, resulta evidente que cualquier experto en la materia puede realizar algunas modificaciones y variaciones sin alejarse del alcance definido en las reivindicaciones adjuntas.
Esta lista de referencias citadas por el solicitante se proporciona únicamente para la comodidad del lector. No forma parte del documento de patente Europea. Aunque las referencias se han recopilado cuidadosamente, no se pueden 5 excluir errores u omisiones y la OEP declina toda responsabilidad en este sentido.
· US 2004005269 A 10
· Moon, Young-Hwan; Ihm, Son-Ki. Characteristics of intermetallic NdNi5 as an unsupported catalyst in 15 thiophene hydrodesulphurisation. Catalysis Letters, 1996, vol. 42 (1,2), 73-80
Claims (11)
- 1.
- Un proceso de descomposición térmica del metano caracterizado porque se utiliza un catalizador que comprende un compuesto intermetálico de fórmula NdNi5.
- 2.
- El proceso de descomposición térmica del metano según la reivindicación 1, caracterizado porque la descomposición tiene lugar según la reacción heterogénea
CH4(g) = C(nano) + 2H2(g)
- 3.
- El proceso según la reivindicación 1, caracterizado porque el catalizador se utiliza en forma pulverulenta con una granulometría comprendida entre 1 y 50 µm.
- 4.
- El proceso según cualquiera de las reivindicaciones anteriores, caracterizado porque el catalizador se utiliza en forma pulverulenta con una granulometría comprendida entre 1 y 7 µm.
- 5.
- El proceso según cualquiera de las reivindicaciones anteriores, caracterizado porque la temperatura de la reacción está comprendida entre 500 y 550ºC.
- 6.
- El proceso según cualquiera de las reivindicaciones anteriores, caracterizado porque el carbono se produce en la forma alotrópica integral de un nanotubo de carbono multi-pared.
- 7.
- El proceso según cualquiera de las reivindicaciones anteriores, caracterizado porque el gas metano se transfiere al catalizador a una temperatura suficiente para ofrecer una conversión a nanotubos de carbono multi-pared e hidrógeno molecular puro, que es constante en el tiempo.
- 8.
- El uso del compuesto intermetálico de fórmula NdNi5 como catalizador para la reacción de descomposición térmica del metano.
- 9.
- El uso del compuesto intermetálico de fórmula NdNi5 como catalizador según la reivindicación 8, caracterizado porque la descomposición térmica del metano se realiza según la reacción heterogénea:
CH4(g) = C(nano) + 2H2(g) donde el carbono obtenido se produce en la forma alotrópica integral de nanotubo multi-pared.
- 10.
- El uso del compuesto intermetálico de fórmula NdNi5 según las reivindicaciones 8 o 9, caracterizado porque dicho catalizador puede utilizarse en forma pulverulenta con una granulometría comprendida entre 1 y 50 µm.
- 11.
- El uso del compuesto intermetálico de fórmula NdNi5 según las reivindicaciones 8 o 9 o 11, caracterizado porque dicho catalizador puede utilizarse en forma de polvos con una granulometría comprendida entre 1 y 7 µm.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT000502A ITRM20040502A1 (it) | 2004-10-13 | 2004-10-13 | Produzione simultanea di nanotubi di carbonio ed idrogeneo molecolare. |
ITRM04A0502 | 2004-10-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
ES2367648T3 true ES2367648T3 (es) | 2011-11-07 |
Family
ID=35478394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES05802229T Active ES2367648T3 (es) | 2004-10-13 | 2005-10-10 | Producción simultánea de nanotubos de carbono y de hidrógeno molecular. |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1807345B1 (es) |
AT (1) | ATE512116T1 (es) |
ES (1) | ES2367648T3 (es) |
IT (1) | ITRM20040502A1 (es) |
WO (1) | WO2006040788A1 (es) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5489004B2 (ja) | 2011-03-11 | 2014-05-14 | 株式会社日本製鋼所 | 合成ガスとナノカーボンの製造方法および製造システム |
US20130224106A1 (en) * | 2012-01-23 | 2013-08-29 | King Abdullah University Of Science And Technology | Hydrogen generation |
US10179326B2 (en) | 2012-01-23 | 2019-01-15 | King Abdullah University Of Science And Technology | Supported iron catalysts, methods of making, methods of hydrocarbon decomposition |
CN111372681A (zh) | 2017-09-18 | 2020-07-03 | 西弗吉尼亚大学 | 用于可调基底生长的多壁碳纳米管的催化剂和工艺 |
US11685651B2 (en) | 2019-10-25 | 2023-06-27 | Mark Kevin Robertson | Catalytic decomposition of hydrocarbons for the production of hydrogen and carbon |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040005269A1 (en) * | 2002-06-06 | 2004-01-08 | Houjin Huang | Method for selectively producing carbon nanostructures |
-
2004
- 2004-10-13 IT IT000502A patent/ITRM20040502A1/it unknown
-
2005
- 2005-10-10 AT AT05802229T patent/ATE512116T1/de not_active IP Right Cessation
- 2005-10-10 ES ES05802229T patent/ES2367648T3/es active Active
- 2005-10-10 EP EP05802229A patent/EP1807345B1/en not_active Not-in-force
- 2005-10-10 WO PCT/IT2005/000587 patent/WO2006040788A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
EP1807345A1 (en) | 2007-07-18 |
ITRM20040502A1 (it) | 2005-01-13 |
ATE512116T1 (de) | 2011-06-15 |
EP1807345B1 (en) | 2011-06-08 |
WO2006040788A1 (en) | 2006-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gálvez et al. | Enhanced catalytic stability through non-conventional synthesis of Ni/SBA-15 for methane dry reforming at low temperatures | |
Zhang et al. | A facile synthesis for cauliflower like CeO2 catalysts from Ce-BTC precursor and their catalytic performance for CO oxidation | |
Ren et al. | Nonprecious catalytic honeycombs structured with three dimensional hierarchical Co 3 O 4 nano-arrays for high performance nitric oxide oxidation | |
Rastegarpanah et al. | Thermocatalytic decomposition of methane over mesoporous nanocrystalline promoted Ni/MgO· Al2O3 catalysts | |
Ren et al. | Low temperature propane oxidation over Co3O4 based nano-array catalysts: Ni dopant effect, reaction mechanism and structural stability | |
Lee et al. | Stabilization of Ni/Al2O3 catalyst by Cu addition for CO2 reforming of methane | |
Pudukudy et al. | Methane decomposition over Ni, Co and Fe based monometallic catalysts supported on sol gel derived SiO2 microflakes | |
Gosavi et al. | Pure phase LaFeO3 perovskite with improved surface area synthesized using different routes and its characterization | |
Xu et al. | Ordered mesoporous MgO–Al2O3 composite oxides supported Ni based catalysts for CO2 reforming of CH4: Effects of basic modifier and mesopore structure | |
US9796591B2 (en) | Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products | |
Teng et al. | High combustion activity of CH4 and catalluminescence properties of CO oxidation over porous Co3O4 nanorods | |
Li et al. | Synthesis of hierarchical flower-like Co3O4 superstructure and its excellent catalytic property for ammonium perchlorate decomposition | |
Zhang et al. | Morphology-controlled fabrication of Co3O4 nanostructures and their comparative catalytic activity for oxygen evolution reaction | |
Suelves et al. | Effects of reaction conditions on hydrogen production and carbon nanofiber properties generated by methane decomposition in a fixed bed reactor using a NiCuAl catalyst | |
ES2367648T3 (es) | Producción simultánea de nanotubos de carbono y de hidrógeno molecular. | |
Chen et al. | Solution combustion synthesis of nanosized WO x: characterization, mechanism and excellent photocatalytic properties | |
Zhang et al. | Octahedral core–shell bimetallic catalysts M@ UIO-67 (M= Pt–Pd nanoparticles, Pt–Pd nanocages): metallic nanocages that enhanced CO2 conversion | |
EP2838842A1 (en) | Methods and reactors for producing solid carbon nanotubes, solid carbon clusters, and forests | |
Wang et al. | Geometric design of a Ni@ silica nano-capsule catalyst with superb methane dry reforming stability: enhanced confinement effect over the nickel site anchoring inside a capsule shell with an appropriate inner cavity | |
Corthals et al. | The beneficial effect of CO2 in the low temperature synthesis of high quality carbon nanofibers and thin multiwalled carbon nanotubes from CH4 over Ni catalysts | |
Makhlouf et al. | Effect of fuel/oxidizer ratio and the calcination temperature on the preparation of microporous-nanostructured tricobalt tetraoxide | |
Xu et al. | Significant roles of mesostructure and basic modifier for ordered mesoporous Ni/CaO–Al 2 O 3 catalyst towards CO 2 reforming of CH 4 | |
Park et al. | Effect of reduction conditions of Mo-Fe/MgO on the formation of carbon nanotube in catalytic methane decomposition | |
Hikima et al. | Carbon-dioxide activation by methane with iron-doped barium zirconate in chemical looping cracking system | |
Cheng et al. | Synthesis of flower-like and dendritic platinum nanostructures with excellent catalytic activities on thermal decomposition of ammonium perchlorate |