ES2354537A1 - Tiorredoxinas plastidiales: sobreexpresión y aplicaciones biotecnológicas. - Google Patents
Tiorredoxinas plastidiales: sobreexpresión y aplicaciones biotecnológicas. Download PDFInfo
- Publication number
- ES2354537A1 ES2354537A1 ES200801935A ES200801935A ES2354537A1 ES 2354537 A1 ES2354537 A1 ES 2354537A1 ES 200801935 A ES200801935 A ES 200801935A ES 200801935 A ES200801935 A ES 200801935A ES 2354537 A1 ES2354537 A1 ES 2354537A1
- Authority
- ES
- Spain
- Prior art keywords
- sequence
- vector
- plastidial
- trx
- protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108060008226 thioredoxin Proteins 0.000 title claims abstract description 157
- 102000002933 Thioredoxin Human genes 0.000 title claims abstract description 27
- 230000002018 overexpression Effects 0.000 title abstract description 13
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 171
- 239000013598 vector Substances 0.000 claims abstract description 166
- 241000196324 Embryophyta Species 0.000 claims abstract description 136
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 131
- 238000000034 method Methods 0.000 claims abstract description 62
- 230000009261 transgenic effect Effects 0.000 claims abstract description 58
- 102000008100 Human Serum Albumin Human genes 0.000 claims abstract description 57
- 108091006905 Human Serum Albumin Proteins 0.000 claims abstract description 57
- 244000061176 Nicotiana tabacum Species 0.000 claims abstract description 56
- 241000588724 Escherichia coli Species 0.000 claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 claims abstract description 22
- 230000001965 increasing effect Effects 0.000 claims abstract description 15
- 101000916283 Homo sapiens Cardiotrophin-1 Proteins 0.000 claims description 57
- 102000056021 human CTF1 Human genes 0.000 claims description 55
- 235000002637 Nicotiana tabacum Nutrition 0.000 claims description 47
- 230000004927 fusion Effects 0.000 claims description 41
- 239000012634 fragment Substances 0.000 claims description 33
- 210000003763 chloroplast Anatomy 0.000 claims description 31
- 230000014616 translation Effects 0.000 claims description 29
- 101150075980 psbA gene Proteins 0.000 claims description 27
- 238000013519 translation Methods 0.000 claims description 26
- 108020004414 DNA Proteins 0.000 claims description 24
- 229940094937 thioredoxin Drugs 0.000 claims description 24
- 108020003589 5' Untranslated Regions Proteins 0.000 claims description 23
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 claims description 23
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 claims description 23
- 230000006801 homologous recombination Effects 0.000 claims description 23
- 238000002744 homologous recombination Methods 0.000 claims description 23
- 239000013612 plasmid Substances 0.000 claims description 20
- 239000013604 expression vector Substances 0.000 claims description 17
- 150000007523 nucleic acids Chemical class 0.000 claims description 17
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 14
- 229960000268 spectinomycin Drugs 0.000 claims description 14
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 claims description 14
- 230000010354 integration Effects 0.000 claims description 13
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 11
- 102000004190 Enzymes Human genes 0.000 claims description 10
- 108090000790 Enzymes Proteins 0.000 claims description 10
- 108091081024 Start codon Proteins 0.000 claims description 10
- 238000000338 in vitro Methods 0.000 claims description 10
- 241000701832 Enterobacteria phage T3 Species 0.000 claims description 9
- 230000001939 inductive effect Effects 0.000 claims description 9
- 229920001184 polypeptide Polymers 0.000 claims description 9
- 108091026890 Coding region Proteins 0.000 claims description 7
- 230000003115 biocidal effect Effects 0.000 claims description 7
- 238000003780 insertion Methods 0.000 claims description 7
- 230000037431 insertion Effects 0.000 claims description 7
- 108020004707 nucleic acids Proteins 0.000 claims description 7
- 102000039446 nucleic acids Human genes 0.000 claims description 7
- 108020005038 Terminator Codon Proteins 0.000 claims description 6
- 230000008929 regeneration Effects 0.000 claims description 6
- 238000011069 regeneration method Methods 0.000 claims description 6
- 102100029727 Enteropeptidase Human genes 0.000 claims description 5
- 108010013369 Enteropeptidase Proteins 0.000 claims description 5
- 244000061456 Solanum tuberosum Species 0.000 claims description 5
- 235000002595 Solanum tuberosum Nutrition 0.000 claims description 5
- 230000001580 bacterial effect Effects 0.000 claims description 4
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 claims description 4
- 108091005804 Peptidases Proteins 0.000 claims description 3
- 102000035195 Peptidases Human genes 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- 238000001042 affinity chromatography Methods 0.000 claims description 3
- 239000003242 anti bacterial agent Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000008194 pharmaceutical composition Substances 0.000 claims description 3
- 235000019833 protease Nutrition 0.000 claims description 3
- 230000001603 reducing effect Effects 0.000 claims description 3
- 239000006152 selective media Substances 0.000 claims description 3
- 230000012010 growth Effects 0.000 claims description 2
- 239000001963 growth medium Substances 0.000 claims description 2
- 238000005342 ion exchange Methods 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims description 2
- 239000002671 adjuvant Substances 0.000 claims 1
- 125000003275 alpha amino acid group Chemical group 0.000 claims 1
- 239000003937 drug carrier Substances 0.000 claims 1
- 102100036407 Thioredoxin Human genes 0.000 abstract description 142
- 230000014509 gene expression Effects 0.000 abstract description 48
- 210000002706 plastid Anatomy 0.000 abstract description 30
- 230000009466 transformation Effects 0.000 abstract description 23
- 108010007108 Chloroplast Thioredoxins Proteins 0.000 abstract description 22
- 238000010367 cloning Methods 0.000 abstract description 9
- 102100028892 Cardiotrophin-1 Human genes 0.000 abstract description 5
- 108010041776 cardiotrophin 1 Proteins 0.000 abstract description 5
- 229920002472 Starch Polymers 0.000 abstract description 4
- 239000008107 starch Substances 0.000 abstract description 4
- 235000019698 starch Nutrition 0.000 abstract description 4
- 230000002068 genetic effect Effects 0.000 abstract description 3
- 235000018102 proteins Nutrition 0.000 description 114
- 210000004027 cell Anatomy 0.000 description 21
- 239000000284 extract Substances 0.000 description 18
- 108700019146 Transgenes Proteins 0.000 description 17
- 230000000694 effects Effects 0.000 description 16
- 210000003000 inclusion body Anatomy 0.000 description 16
- 238000009825 accumulation Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 102000037865 fusion proteins Human genes 0.000 description 12
- 108020001507 fusion proteins Proteins 0.000 description 12
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 12
- 238000000746 purification Methods 0.000 description 12
- 230000029087 digestion Effects 0.000 description 11
- 239000000523 sample Substances 0.000 description 11
- 239000012528 membrane Substances 0.000 description 10
- 101150067314 aadA gene Proteins 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 229940088598 enzyme Drugs 0.000 description 9
- 239000000419 plant extract Substances 0.000 description 9
- 238000010276 construction Methods 0.000 description 8
- 108020004999 messenger RNA Proteins 0.000 description 8
- 239000013642 negative control Substances 0.000 description 8
- 239000000499 gel Substances 0.000 description 7
- 239000003550 marker Substances 0.000 description 7
- 230000026731 phosphorylation Effects 0.000 description 7
- 238000006366 phosphorylation reaction Methods 0.000 description 7
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- 102000002278 Ribosomal Proteins Human genes 0.000 description 6
- 108010000605 Ribosomal Proteins Proteins 0.000 description 6
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 6
- 238000002105 Southern blotting Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 238000005063 solubilization Methods 0.000 description 6
- 230000007928 solubilization Effects 0.000 description 6
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 6
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 description 5
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 101710138460 Leaf protein Proteins 0.000 description 4
- 108700026244 Open Reading Frames Proteins 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 241000209140 Triticum Species 0.000 description 4
- 235000021307 Triticum Nutrition 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 108020005345 3' Untranslated Regions Proteins 0.000 description 3
- 102000009027 Albumins Human genes 0.000 description 3
- 108010088751 Albumins Proteins 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 3
- 239000000020 Nitrocellulose Substances 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- 102000003992 Peroxidases Human genes 0.000 description 3
- 108010029485 Protein Isoforms Proteins 0.000 description 3
- 102000001708 Protein Isoforms Human genes 0.000 description 3
- 108020004566 Transfer RNA Proteins 0.000 description 3
- KRWTWSSMURUMDE-UHFFFAOYSA-N [1-(2-methoxynaphthalen-1-yl)naphthalen-2-yl]-diphenylphosphane Chemical compound COC1=CC=C2C=CC=CC2=C1C(C1=CC=CC=C1C=C1)=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 KRWTWSSMURUMDE-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 229960000074 biopharmaceutical Drugs 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 229920001220 nitrocellulos Polymers 0.000 description 3
- 102000042567 non-coding RNA Human genes 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- -1 pentose phosphate Chemical class 0.000 description 3
- 108040007629 peroxidase activity proteins Proteins 0.000 description 3
- 229920002704 polyhistidine Polymers 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- 230000017854 proteolysis Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000012021 retail method of payment Methods 0.000 description 3
- 229960005322 streptomycin Drugs 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 102000012195 Fructose-1,6-bisphosphatases Human genes 0.000 description 2
- 108010017464 Fructose-Bisphosphatase Proteins 0.000 description 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 101000852559 Homo sapiens Thioredoxin Proteins 0.000 description 2
- 240000005979 Hordeum vulgare Species 0.000 description 2
- 235000007340 Hordeum vulgare Nutrition 0.000 description 2
- 108091029795 Intergenic region Proteins 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- 108010042544 Malate Dehydrogenase (NADP+) Proteins 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 108020005120 Plant DNA Proteins 0.000 description 2
- 108010064851 Plant Proteins Proteins 0.000 description 2
- 108010091086 Recombinases Proteins 0.000 description 2
- 102000018120 Recombinases Human genes 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 108010006368 Thioredoxin h Proteins 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 238000000376 autoradiography Methods 0.000 description 2
- 238000004166 bioassay Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 230000004186 co-expression Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000027832 depurination Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000035784 germination Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000004009 herbicide Substances 0.000 description 2
- 235000014304 histidine Nutrition 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Substances N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000036542 oxidative stress Effects 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 235000021118 plant-derived protein Nutrition 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 108020004418 ribosomal RNA Proteins 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- 108020004465 16S ribosomal RNA Proteins 0.000 description 1
- UPMXNNIRAGDFEH-UHFFFAOYSA-N 3,5-dibromo-4-hydroxybenzonitrile Chemical compound OC1=C(Br)C=C(C#N)C=C1Br UPMXNNIRAGDFEH-UHFFFAOYSA-N 0.000 description 1
- CTRXDTYTAAKVSM-UHFFFAOYSA-N 3-{[ethyl({4-[(4-{ethyl[(3-sulfophenyl)methyl]amino}phenyl)(2-sulfophenyl)methylidene]cyclohexa-2,5-dien-1-ylidene})azaniumyl]methyl}benzene-1-sulfonate Chemical compound C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C(=CC=CC=2)S(O)(=O)=O)C=CC=1N(CC)CC1=CC=CC(S(O)(=O)=O)=C1 CTRXDTYTAAKVSM-UHFFFAOYSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 108010039224 Amidophosphoribosyltransferase Proteins 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 101001011741 Bos taurus Insulin Proteins 0.000 description 1
- 239000005489 Bromoxynil Substances 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- 241001450758 Ceroplastes Species 0.000 description 1
- 108010051219 Cre recombinase Proteins 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108010074122 Ferredoxins Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101000893669 Homo sapiens Fizzy-related protein homolog Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 240000004658 Medicago sativa Species 0.000 description 1
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 1
- 241001092142 Molina Species 0.000 description 1
- 101150109579 Mrps7 gene Proteins 0.000 description 1
- 101100363725 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) crp-15 gene Proteins 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 238000010222 PCR analysis Methods 0.000 description 1
- KQHKSGRIBYJYFX-UHFFFAOYSA-J Ponceau S Chemical compound [Na+].[Na+].[Na+].[Na+].Oc1c(cc2cc(ccc2c1N=Nc1ccc(cc1S([O-])(=O)=O)N=Nc1ccc(cc1)S([O-])(=O)=O)S([O-])(=O)=O)S([O-])(=O)=O KQHKSGRIBYJYFX-UHFFFAOYSA-J 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 101150020647 RPS7 gene Proteins 0.000 description 1
- 241000208292 Solanaceae Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- JZRWCGZRTZMZEH-UHFFFAOYSA-N Thiamine Natural products CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 235000010716 Vigna mungo Nutrition 0.000 description 1
- 240000001417 Vigna umbellata Species 0.000 description 1
- 235000011453 Vigna umbellata Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000009418 agronomic effect Effects 0.000 description 1
- 230000002009 allergenic effect Effects 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- IXIBAKNTJSCKJM-BUBXBXGNSA-N bovine insulin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H]1CSSC[C@H]2C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3NC=NC=3)NC(=O)[C@H](CO)NC(=O)CNC1=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O)=O)CSSC[C@@H](C(N2)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 IXIBAKNTJSCKJM-BUBXBXGNSA-N 0.000 description 1
- 230000006860 carbon metabolism Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 235000021186 dishes Nutrition 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 235000003869 genetically modified organism Nutrition 0.000 description 1
- 230000034659 glycolysis Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 150000002411 histidines Chemical class 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 102000050546 human FZR1 Human genes 0.000 description 1
- 102000056461 human TXN Human genes 0.000 description 1
- 244000052637 human pathogen Species 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000000774 hypoallergenic effect Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 210000000473 mesophyll cell Anatomy 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229940126578 oral vaccine Drugs 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 230000000243 photosynthetic effect Effects 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 108700022487 rRNA Genes Proteins 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 101150036132 rpsG gene Proteins 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000019157 thiamine Nutrition 0.000 description 1
- KYMBYSLLVAOCFI-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SCN1CC1=CN=C(C)N=C1N KYMBYSLLVAOCFI-UHFFFAOYSA-N 0.000 description 1
- 229960003495 thiamine Drugs 0.000 description 1
- 239000011721 thiamine Substances 0.000 description 1
- 230000034005 thiol-disulfide exchange Effects 0.000 description 1
- 210000002377 thylakoid Anatomy 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8214—Plastid transformation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8257—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pharmacology & Pharmacy (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
Abstract
Tiorredoxinas plastidiales: sobreexpresión y aplicaciones biotecnológicas. Se describe la secuencia genética de las tiorredoxina m cloroplástica de la especie N. tabacum, su método de clonación, expresión en plastidios y aplicaciones. Se proporcionan además los vectores de transformación plastidial que contienen moléculas de ADN que codifican Trx m, los hospedadores que los incorporan, especialmente E. coli y, particularmente, plantas transgénicas obtenidas con tales vectores, así como su método de obtención y su aplicación en la sobreexpresión de Trx m en forma soluble y activa en dichas plantas.Los citados vectores plastidiales se aplican a la producción plastidial incrementada de proteínas heterólogas recombinantes, fusionadas con las secuencias de Trx m, concretamente albúmina sérica (HSA) y cardiotrofina-1 (hCT1) humanas. Se describen también métodos de obtención de proteínas heterólogas coexpresadas con Trx m, biológicamente activas y en conformación nativa; así como la obtención de hCT1 recombinante en forma soluble y con bioactividad incrementada.
Description
Tiorredoxinas plastidiales: sobreexpresión y
aplicaciones biotecnológicas.
La presente invención se refiere al campo de la
Biotecnología, y específicamente a la secuencias genética de la
tiorredoxina (Trx) ceroplástica m de la especie N.
tabacum, su método de clonación, expresión en plastidios y
aplicaciones. La invención proporciona además los vectores de
transformación plastidial que contienen moléculas de ADN que
codifican Trx m, los hospedadores que los incorporan y,
particularmente, plantas transgénicas obtenidas con tales vectores,
así como su método de obtención y su aplicación a la sobreexpresión
de Trx m en forma soluble y activa en dichas plantas.
La invención se aplica además a la producción
plastidial incrementada de proteínas heterólogas recombinantes,
fusionadas con las secuencias de Trx m, concretamente albúmina
sérica (HSA) y cardiotrofina-1 (hCT1) humanas. Se
describen también métodos de obtención de proteínas heterólogas
coexpresadas con Trx m, biológicamente activas y/o en su
conformación nativa; así como la obtención de hCT1 recombinante con
bioactividad incrementada.
\vskip1.000000\baselineskip
Las tiorredoxinas son pequeñas proteínas
termoestables (12 kDa) presentes en todos los organismos que
catalizan intercambios tiol-disulfuro y regulan el
ambiente redox de la célula, controlando un amplio rango de procesos
bioquímicos. Esta regulación depende, en la mayoría de los casos, de
la capacidad de las tiorredoxinas de reducir puentes disulfuro de
proteínas diana. En plantas, el sistema tiorredoxina es
particularmente complejo, ya que existen múltiples isoformas y
múltiples genes que codifican para cada tipo de tiorredoxina; siendo
todos estos genes codificados nuclearmente, independientemente de su
localización subcelular.
La multiplicidad de isoformas de tiorredoxinas
encontradas en cloroplastos de Arabidopsis thaliana, cuatro
isoformas de tiorredoxina m, dos f, una x, y
dos y hace que surjan dudas respecto a la especificidad y las
funciones de las mismas. Las tiorredoxinas más estudiadas hasta la
fecha han sido las tiorredoxinas m y f, por ser las
únicas asociadas a la regulación dependiente de la luz del
metabolismo del carbono, a través del ciclo de las pentosas fosfato
y del ciclo C_{4}.
Las tiorredoxinas cloroplásticas se denominaron
m y f en función de la enzima que son capaces de
activar, la NADP-malato deshidrogenasa
(NADP-MDH) y la
fructosa-1,6-bis-fosfatasa
(FBPasa) respectivamente. Estudios filogenéticos y comparaciones
estructurales han demostrado que las tiorredoxinas m tienen
un origen procariota, están codificadas nuclearmente y se encuentran
asociadas débilmente a las membranas externas del tilacoide. Las
tiorredoxinas f están también codificadas nuclearmente y
tienen un origen eucariota.
Las tiorredoxinas cloroplásticas pueden regular
procesos tan importantes como: el ciclo de Calvin; el ciclo C4; el
metabolismo del nitrógeno y del azufre; la biosíntesis de ácidos
grasos, isoprenoides, tetrapirroles y vitaminas; la traducción; el
ciclo de las pentosas fosfato; el estrés oxidativo; el
ensamblaje/plegado de proteínas y degradación de las mismas; la
degradación del almidón; la glicólisis; la división plastidial y la
replicación del DNA. Recientemente se ha descrito la existencia de
un completo sistema ferredoxina/tiorredoxina también en
amiloplastos, regulando la actividad de enzimas implicadas en
procesos tales como el metabolismo del almidón; la biosíntesis de
lípidos, aminoácidos y nucleótidos; el plegado de proteínas y otras
reacciones varias.
A pesar de la existencia de múltiples estudios
sobre la estructura de las tiorredoxinas cloroplásticas, sus
funciones y su regulación en la planta, es difícil conocer qué
tiorredoxina actúa en cada proceso in vivo, debido a la
pérdida de especificidad de las tiorredoxinas m y f
mutadas usadas en proteómica y cromatografía de afinidad.
\vskip1.000000\baselineskip
La información genética de las plantas se
encuentra distribuida en tres compartimentos celulares: el núcleo,
las mitocondrias y los plastidios. El genoma plastidial (plastoma)
es circular de doble hélice, y en plantas superiores difiere en
tamaño según la especie entre 120 y 160 kb. El número de copias del
plastoma en el plastidio es variable, dependiendo del tipo de
plastidio y del tipo de célula, pudiendo llegar a contener hasta
10.000 copias en una célula del mesófilo de la hoja.
En el proceso de transformación plastidial, la
integración del ADN en el genoma plastidial se produce por
recombinación homologa. Se han probado hasta 14 lugares distintos de
inserción en los que no ha habido efectos negativos, si bien los más
utilizados han sido la región intergénica del
trnI-trnA y la del
rrn16/trnV-rps7/12. El método más utilizado
para insertar los vectores en el ADN plastidial ha sido el bombardeo
con helio a alta presión (método biolístico). Para detectar la
regeneración de transformantes se suelen utilizar marcadores de
selección. El más eficiente hasta el momento ha sido el gen
aadA de bacterias, que codifica la enzima
3'-adenilil-transferasa, y es capaz
de inactivar antibióticos tipo aminoglicósidos, como la
espectinomicina y la estreptomicina.
Para lograr grandes niveles de acumulación de
proteína recombinante, los transgenes se expresan bajo promotores
constitutivos fuertes que aseguran altos niveles de ARNm. También se
suelen incluir regiones 5'UTR que promuevan una traducción activa y
estabilicen los transgenes. La elección de estos elementos resulta
crucial para determinar las cantidades finales de acumulación de
proteína, pues el inicio de la traducción es el paso limitante. En
cambio, la región 3'UTR es importante para estabilizar el ARNm y no
parece influir en el nivel de expresión de los transgenes.
La transformación plastidial presenta una serie
de ventajas, incluida la capacidad de obtener elevados niveles de
expresión de la proteína recombinante, pudiendo llegar a alcanzar
hasta el 46% de la proteína soluble total, debido probablemente al
elevado número de copias del transgén en la célula. Otras ventajas
destacables son: la ausencia de "efecto posición", permitiendo
una expresión uniforme y reproducible del gen; la baja probabilidad
en el flujo de transgenes a otros cultivos o especies salvajes
relacionadas, ya que en la mayoría de las especies cultivadas los
plastomas son heredados por vía materna; y la capacidad de
procesamiento policistrónico, que los capacita para procesar varios
transgenes bajo el control de un único promotor.
Las aplicaciones biotecnológicas de la
transformación plastidial son amplias (Bock et al, 2001,
Trends Biotech. 22, 311-318; Maliga, 2004,
Annu. Rev. Plant. Biol. 55, 289-313). Por una parte,
han sido numerosos los estudios para dotar de ventajas agronómicas a
los cultivos, como resistencia a insectos o a herbicidas y
fitorremediación. También se ha publicado la expresión de moléculas
de interés industrial como la xilanasa, trehalosa o el PHB. En una
revisión (Heifetz, 2000, Biochim. 82, 655-666), se
recogen además otros trabajos de expresión plastidial que ya han
sido patentados (E5 celulasa, aprotinina bovina y tolerancia a
herbicidas norflorazon y bromoxynil). La aplicación más extendida ha
sido la producción de compuestos biofarmacéutícos en plastidios,
probablemente porque las expectativas de mercado son altas y pueden
esperarse grandes beneficios (Bock, 2007 Curr. Opin. Biotechnol.
18, 100-106; Daniell, 2006, Biotech. J. 1,
1071-1079).
Existen muy pocos trabajos en los que se han
sobreexpresado tiorredoxinas en plantas. Cho et al (Cho et
al, 1999, Proc. Natl. Acad. Sci. USA 96,
14641-14646) sobreexpresaron una tiorredoxina
h de trigo en el endospermo de cebada transgénica, obteniendo
un incremento de hasta 4 veces en la actividad de la
"starch-debranching enzyme", enzima que rompe
de manera específica los enlaces alfa-1,6 en el
almidón, en el endospermo de granos transgénicos germinados. También
se ha visto que se aceleraba la emergencia de la radícula durante el
proceso de germinación (Wong et al, 2002, Proc. Natl. Acad.
Sci. USA 99, 16325-16330). Asimismo, se ha
descrito que la sobreexpresión de tiorredoxina h en cereales
(trigo y cebada) puede utilizarse para mejorar la calidad
harino-panadera del trigo, aumentando la fuerza de
la masa (Joudrier et al, 2005, Biotech. Adv. 23,
81-85) y para mitigar la respuesta alergénica a las
proteínas del trigo (Buchanan et al, 1997, Proc. Natl. Acad.
Sci. USA 94, 5372-5377) produciendo alimentos
hipoalergénicos más digestivos (Joudrier et al, citado
anteriormente).
Las proteínas recombinantes son un componente de
gran importancia en investigación, medicina e industria, siendo
necesarias para múltiples aplicaciones, incluyendo las terapéuticas,
vacunas, anticuerpos monoclonales, hormonas, proteínas de la sangre,
agentes de diagnóstico o enzimas, lo que representa una gran demanda
para la producción de proteínas recombinantes a escala
industrial.
La producción comercial de proteínas heterólogas
ha tenido lugar tradicionalmente en fermentadores microbianos (E.
coli y levaduras principalmente) y en cultivos de células de
mamífero. A continuación se detallan los documentos más próximos a
la invención:
EP1609867 describe una construcción y un vector
para expresión en E. coli y un método para incrementar la
producción de polipéptidos recombinantes con elevado rendimiento en
el cual una primera secuencia de ácido nucleico codifica una
tiorredoxina y una segunda secuencia de ácido nucleico codifica otra
proteína tal como hemoglobina o un enzima. Se clona en una célula
huésped para obtener el producto de interés evitando el estrés
oxidativo que se produce como consecuencia de la sobreexpresión
(resumen). La expresión de ambos genes está controlada por
promotores iguales o diferentes, constitutivos o inducibles y pueden
introducirse secuencias activadoras en los extremos 5' de los
promotores (párrafos (0044) a (0047)). Los genes se expresan como
proteína de fusión formada por tiorredoxina y otro polipéptido
(párrafo (0062)) que se pueden purificar por cromatografía o
cualquier otro método estándar (párrafo (0056)). También está
descrito que los genes se pueden coexpresar independientemente
(párrafo (0052)), siendo las proteínas obtenidas más solubles que
cuando no se expresan conjuntamente con TRX (ya sea en fusión o en
coexpresión). Sin embargo, la técnica no se realiza en plástidos
vegetales sino en E. coli.
Parecida es la enseñanza de la solicitud US
2002/0146793, en la que se sugiere la expresión conjunta de una
proteína capaz de catalizar la formación de enlaces disulfuro y una
proteína heteróloga, siendo el hospedador preferido las levaduras.
WO 92/13955, por su parte, se refiere específicamente a una proteína
de fusión obtenida a partir de una proteína similar a una Trx y la
parte codificante de una proteína heteróloga. El hospedador es, de
nuevo, una bacteria.
EP0768382: se refiere a 2 vectores que
cotransforman E. coli. Uno de ellos lleva una construcción
para la expresión de TRX y el otro para expresar una proteína de
interés.
WO9213955: se refiere a la expresión en E.
coli de proteínas de fusión que contienen TRX y una proteína de
interés en forma estable y soluble. Estas proteínas deben
posteriormente ser separadas y plegadas correctamente.
WO9741207: detalla un método para expresar una
proteína heteróloga soluble en una bacteria transformada con un
vector que contiene un gen que codifica la proteína heteróloga y un
gen que codifica una TRX, expresándose ambos separadamente.
US7655436: describe la coexpresión de TRX en
E. coli con otras proteínas heterólogas en forma de proteínas
de fusión. Se obtienen en forma soluble y activa. Menciona el
problema de la acumulación en cuerpos de inclusión, pero simplemente
con la construcción de fusión soluciona el problema (ver col. 2 ln
7). (La construcción de fusión en plastidios vegetales, descrita en
la presente solicitud, no evita la acumulación de la proteína de
interés en cuerpos de inclusión).
WO9837208 (EP1007698 y ES2286844): se refiere a
la expresión de proteínas heterólogas en un organismo huésped que se
transforma con un vector que lleva una construcción con un gen que
codifica una TRX y una construcción que lleva el gen de la proteína
heteróloga. Refiere el problema de la acumulación en cuerpos de
inclusión. El organismo transformado es una levadura.
Estos sistemas de producción en microorganismos
presentan ciertas desventajas en cuanto a coste, producción a escala
y seguridad biológica, lo que ha llevado a estudiar otras
alternativas. La producción de proteínas recombinantes en plantas ha
aparecido como una de las plataformas más prometedoras, ya que
permite reducir costes a la vez que eliminar riesgos de
contaminación con endotoxinas o patógenos humanos. Además, la
producción de proteínas recombinantes en plantas permite obtener
vacunas orales que pueden ser administradas en crudo después de un
dosificado previo. La producción de proteínas terapéuticas en
plantas comenzó hace más de una década, y las especies más
utilizadas han sido tabaco, maíz, patata, alfalfa, arroz y soja.
Hasta la fecha, la mayoría de las proteínas
recombinantes de interés biofarmacéutico han sido producidas por
transformación nuclear. Aunque esta técnica es bien conocida en
muchas especies, tiene algunas desventajas, como la producción en
gran escala a corto plazo, los bajos niveles de expresión
(normalmente menos del 1% de la proteína soluble total), los
problemas derivados de las modificaciones
post-traduccionales, el silenciamiento o los efectos
de posición (Bogorad, 2000, Trends Biotech. 18,
257-263). Actualmente, el punto más débil de la
producción de proteínas recombinantes en plantas es la falta de
información en lo referente a los procesos que engloban la
estabilidad, extracción, purificación y rendimiento final de la
misma, cuestiones de gran importancia para la viabilidad industrial
(Fischer et al, 2004, Curr. Op. Plant Biol. 7,
152-158; Menkhaus, 2004, Biotech. Prog. 20,
1001-
1014).
1014).
Una variante es la transformación plastidial,
con la que ya se ha conseguido expresar varias proteínas de interés
biofarmacéutico con niveles muy altos de acumulación. A continuación
se detallan diversos documentos que ilustran esta variante:
WO 00/03012: describe la expresión de péptidos
eucariotas en plastidios vegetales.
US 2006/0253935, US 2006/0117412, US
2006/0253935; Fernández San-Millán et
al, 2003, Plant Biotech. J. 1, 71-79;
Farran et al, 2008, Plant Biotech. J. 6(5):
516-27: describen la expresión de albúmina sérica
(HSA) y cardiotrofina-1 (hCT1) humanas en plastidios
vegetales.
WO2007053183: se refiere a un sistema para la
expresión multigénica en cloroplastos de tabaco. Se analizan
diversas líneas de cloroplastos transgénicos con construcciones
multigénicas que contienen las siguientes características: el gen
aadA que confiere resistencia a la espectinomicina aguas abajo del
promotor del gen del RNA 16S constitutivo del cloroplasto (Prr). Los
genes heterólogos de interés se disponen aguas abajo del gen aadA y
están flanqueados por la región psbA responsable de la estabilidad
en el cloroplasto. En algunos casos el gen heterólogo contiene el
promotor psbA y su secuencia reguladora 5'UTR. Las construcciones
multigénicas se integran mediante recombinación homologa en la
región trn del cromosoma plastidial (zona en la que se han integrado
con éxito más de 30 genes) (Daniell et al. 2004 a,b).
WO0250289: describe un procedimiento para
coexpresar en plastidios vegetales una tiorredoxina conjuntamente
con un segundo polipéptido (pág.14, líneas 11-15).
El sistema de expresión, que consiste en una construcción que
incluye el promotor psbA y una secuencia 5'UTR, se inserta en un
plásmido a través de zonas de recombinación homologa y se expresa en
una célula vegetal o en una planta transformada (ver pág. 56, líneas
20 en adelante y pág. 57, párrafo 1). Como activador de la
transcripción, utiliza la secuencia de la región G10L de
bacteriófago T7 (pág. 58, líneas 1-10). Los péptidos
de fusión obtenidos se separan por ruptura enzimática de una
secuencia de unión (página 8, párrafo 1).
En la presente invención se han coexpresado en
plastidios proteínas heterólogas con la Trx m cloroplástica
de la invención, observándose diversos efectos totalmente
inesperados, como los elevados niveles de expresión de la proteína
heteróloga fusionada con la Trx, muy superiores incluso a los
obtenidos en cloroplastos aisladamente, en ausencia de dicha
Trx.
La acumulación, por transformación pastidial, de
altos niveles de proteína recombinante puede acarrear la formación
de cuerpos de inclusión (Fernández-San Millán et
al, 2003). Aunque la formación de cuerpos de inclusión puede
suponer por un lado una disminución de la proteólisis en proteínas
recombinantes (Enfors, 1992), y puede facilitar la purificación de
las mismas; por otro lado requiere un replegamiento in vitro
que no siempre garantiza la conformación nativa de la proteína,
supone una disminución del rendimiento y un encarecimiento del
proceso. Estos procedimientos dificultan la producción práctica de
proteínas recombinantes para uso terapéutico, diagnóstico u otros.
Para solventar estos problemas, se han empleado ciertos péptidos o
proteínas fusionados a las proteínas heterólogas. Sin embargo, la
iniciación de la traducción es muy sensible a la secuencia
nucleotídica que rodea al codón de iniciación de la proteína
heteróloga, por esta razón, la fusión puede afectar a los niveles de
expresión de dicha
proteína.
proteína.
En bacterias, la fusión de la proteína de
interés con la tiorredoxina de E. coli (TrxA) ha demostrado
ser especialmente útil evitando la formación de cuerpos de inclusión
y aumentando la solubilidad de las proteínas heterólogas (LaVallie
et al, 1993). Otros trabajos han demostrado que la TrxA
bacteriana es capaz de aumentar la solubilidad de proteínas
heterólogas mediante coexpresión de ambas (Yuan et al,
2004).
Pese a los esfuerzos realizados en este campo,
todavía no se ha descrito ningún método que permita solubilizar
cuerpos de inclusión en sistemas de producción de proteínas
heterólogas en cloroplastos.
En la presente invención se describe por primera
vez la solubilización de los cuerpos de inclusión cuando se
coexpresa Trx m con proteínas heterólogas en cloroplastos de tabaco,
lo cual garantizaría la conservación de la conformación nativa de la
proteína coexpresada y, por tanto, evitaría la pérdida de actividad
funcional. El problema técnico resuelto por la invención en este
punto es cómo conseguir un plegamiento en forma activa y una
solubilización de la proteína heteróloga que no se acumule en
cuerpos de inclusión. Esta solución se encuentra recogida en
EP1609867 o en WO9837208. Sin embargo estos documentos se refieren a
E. coli o levaduras como organismos transformados. Ningún
documento del estado de la técnica induce al experto en la materia a
modificar el vector de fusión descrito en WO0250289 con una
construcción como la descrita en EP1609867 o en WO9837208 y
utilizarlo como vector de coexpresión en plastidios para obtener
proteínas heterólogas en conformación soluble y activa sin que se
acumulen en cuerpos de inclusión como hace la invención. De hecho en
EP1609867, tanto la fusión como la coexpresión provocan incremento
de la solubilidad, mientras que en plastidios, las construcciones de
fusión producen proteínas heterólogas que se acumulan en cuerpos de
inclusión, lo cual indica que plastidios y bacterias se comportan en
este caso de modo diferente como sistemas de expresión. Por otra
parte, la construcción descrita en WO9837208 es muy diferente a la
de la invención.
\vskip1.000000\baselineskip
La presente invención se refiere una nueva
molécula de ácido nucleico aislada, que codifica la tiorredoxina
plastidial, procedente de Nicotiana tabacum, (SEQ ID Nº:7), y
a los polipéptidos producidos a partir de dicha secuencia (SEQ ID
Nº: 6 y 8), así como a moléculas sustancialmente homologas a las
mismas (porcentaje de homología mínimo del 90%) o a sus variantes
alélicas.
La invención se refiere también a los vectores
de expresión recombinantes que incluyen las moléculas de ADN
descritas y a los organismos hospedadores que los incorporan,
particularmente plantas.
Un aspecto adicional de la invención describe el
método de obtención de las plantas transgénicas citadas, que
comprende la integración de uno de los vectores descritos, por
cualquier medio apropiado, en el plastoma de una planta.
Otra realización adicional se refiere a la Trx
m recombinante (SEQ ID Nº:8), obtenida a partir del
hospedador correspondiente en forma soluble, activa y con actividad
reductora. También se describe el uso de los hospedadores que
incorporan dicha Trx, para obtenerla en forma sobreexpresada.
Los citados vectores y hospedadores
recombinantes se han utilizado también para la expresión de
proteínas heterólogas recombinantes en cloroplastos cuyas secuencias
se han fusionado o coexpresado con las de la Trx m. Una
realización adicional de la invención se refiere al uso de las
plantas transplastómicas que llevan secuencias de proteínas
heterólogas fusionadas con las de las Trx m, para la
producción de tales proteínas en cantidades mayores. Otra
realización de la invención relacionada con este aspecto se refiere
a un método de producción de proteínas heterólogas biológicamente
activas y/o plegadas en su correcta conformación, a partir de
plantas transplastómicas que coexpresan las secuencias de dichas
proteínas junto con la de la Trx m.
En algunos casos, la coexpresión ha producido
proteínas heterólogas recombinantes con propiedades diferentes. Así,
la invención describe una composición farmacéutica que comprende la
proteína recombinante hCT1 obtenida a partir de la planta
transgénica que incorpora dicha proteína fusionada o coexpresada con
la Trx m de la invención. Esta proteína recombinante muestra una
mayor bioactividad que la proteína producida en cloroplastos cuando
la hCT1 se expresa sola.
\newpage
La presente invención hace referencia al
aislamiento de un fragmento de nucleótidos que codifica una
tiorredoxina. Concretamente, la presente invención hace referencia a
la secuencia genética de la tiorredoxina plastidial m (Trxm)
de Nicotiana tabacum, su método de clonaje, expresión a
diferentes niveles y su aplicación. El gen NtTrxm madura está
representado por SEQ ID Nº:7, detallada en el listado de secuencias
(véase también Fig. 1). También se contemplan moléculas
sustancialmente homologas a las mismas (porcentaje de homología
mínimo del 90%) o sus variantes alélicas. Sendas realizaciones de la
invención se refieren a las secuencias nucleotídicas homologas a Trx
m. Asimismo, se prefieren las moléculas prácticamente
idénticas a las citadas (porcentaje de homología mínimo del 90%).
Más preferida aún es la realización correspondiente a la molécula de
ADN idéntica a la representada por SEQ ID Nº:7.
En sucesivas realizaciones concretas de la
invención se describen las secuencias polipeptídicas
correspondientes a la proteína precursora de trx m, representada por
SEQ ID Nº:6 o a la trx m madura representada por SEQ ID Nº:8,
incluyéndose en la invención las secuencias prácticamente idénticas
o idénticas a las mismas, de forma análoga a las realizaciones
descritas para las moléculas de ADN.
La invención proporciona además vectores de
expresión que contienen las moléculas de ADN que codifican Trx m. La
integración en el genoma plastidial se realizó mediante secuencias
de recombinación homologa ZRI y ZRD (Fig. 4) por lo que una
realización adicional de la invención está constituida por los
vectores plastidiales que incluyen dichas secuencias. Se prefieren
los vectores plastidiales que incorporan la secuencia de ADN
idéntica a SEQ ID Nº:7, que lleva fusionada en su extremo 5' la
secuencia ATG GGT CAC CAT CAC CAT CAC CAT, correspondiente a
metionina, glicina y una cola de 6 histidinas, para facilitar la
posterior purificación de la proteína recombinante obtenida.
Para optimizar la síntesis de Trx en
cloroplastos es necesario considerar otros elementos. El nivel final
de síntesis proteica depende de varios factores como dosis génica,
fuerza del promotor, estabilidad del ARNm y eficiencia de la
traducción. Por tanto, en el diseño de los vectores de
transformación, la expresión de los transgenes en cloroplastos
transgénicos puede ser regulada a tres niveles: (a)
transcripcionalmente mediante la elección del promotor; (b)
postranscripcionalmente por la elección de la 5'UTR que regula la
estabilidad de los ARNm y (c) traduccionalmente, también mediante la
elección de la región 5'UTR que dirige el nivel traduccional. Aunque
la presencia de la 3'UTR es importante para conferir estabilidad al
ARNm, generalmente no hay diferencias traduccionales al cambiar unas
regiones 3'UTR por otras. Por ello, no se considera esta región como
una variable a modificar en los diferentes vectores. En
realizaciones preferidas de la invención se introducen promotores
endógenos constitutivos de plastidios para dirigir el gen de
interés en la transformación y secuencias inductoras de la
traducción (5'UTRs).
Los promotores plastidiales probados para la
expresión de proteínas heterólogas hasta el momento han sido varios,
pero los mejores niveles de expresión se han obtenido con los
promotores Prrn y PpsbA, ambos dos constitutivos. Se
sabe que el PpsbA es un promotor muy activo, produciendo uno
de los ARNms más abundantes en el cloroplasto (Yukawa et al,
2007). Los resultados de varios estudios en cuanto a la fuerza de
los promotores son ambiguos, decantándose unos hacia el Prrn
y otros hacia el PpsbA (Farran et al, 2008).
Para la elección de regiones 5'UTR se disponía
de varias opciones. Una de las regiones más interesantes era la
5'UTR del gen psbA de tabaco, que había sido utilizada
originalmente para estudios funcionales con GUS y se sabía que era,
entre varias, la que más inducía la traducción en condiciones de luz
y confería gran estabilidad a los tránscritos (Eibl et al,
1999). Se han alcanzado, en plastidios de tabaco, niveles de
expresión del 31,1% de proteína soluble total (Molina et al,
2004) utilizando dicha 5'UTR. Otro elemento de interés era el sitio
de unión al ribosoma (RBS) de la región líder del gen 10 del
bacteriófago T7 (G10L). Este RBS es complementario al
anti-RBS de la 16SrRNA, que proporciona señales de
traducción muy eficientes e independientes de la luz. Además, ya se
había comprobado que aumentaba la capacidad de traducción de genes
exógenos en E. coli (Olins et al, 1988) y plastidios
(Staub et al, 2000), llegando a alcanzar niveles de expresión
del 25% de proteína soluble total (Tregoning et al, 2003).
Como resultado del estudio de los promotores y regiones 5'UTR
disponibles, se decidió elegir los siguientes elementos: promotor
Prrn con su propia 5'UTR, promotor Prrn y RBS del gen 10 del
bacteriófago T7 (G10L), y promotor y 5'UTR del gen psbA. Por
todo ello, son realizaciones preferidas de la invención aquellos
vectores que incorporan el inserto unido operativamente al promotor
y el 5'UTR del gen psbA de N. tabacum, concretamente los que
incorporan la secuencia SEQ ID Nº:7. Asimismo, se prefieren las
realizaciones en las que el inserto se une al promotor Prrn y al
RBS de G10L. Concretamente, la que incorpora la secuencia SEQ ID
Nº:7.
El vector utilizado para la sobreexpresión de
Trx mediante transformación plastidial fue el pL3 que ha sido
probado para la expresión de cardiotrofina-1 humana,
hCT1 (Farran et al, 2008). Este vector integra los genes de
interés por recombinación homologa dentro de los marcos de lectura
abiertos (ORFs) 70 y 131 situados entre los genes rrn16/trnV
y rps7/12, en la zona repetida invertida del genoma
plastidial. La inserción en esta zona ya * ha sido usada
anteriormente (Maliga, 2004), y permite integrar los genes sin
interferir con regiones codificantes y sin consecuencias
fenotípicas. La integración de los genes de interés se produce
dentro de la región duplicada invertida, por lo que cada plastoma
contendrá dos copias de los genes de interés como resultado del
proceso de corrección de copia de los plastidios (Maliga, 2004),
resultando en un altísimo número de transgenes por célula (hasta
20.000). Consecuentemente, se prefieren las realizaciones de la
invención referidas a vectores derivados de pL3. Las construcciones
finalmente analizadas para estudiar la sobreexpresión de la Trx
m en plastidios de tabaco fueron: pL3psbATRXm, pL3PrrnTRXm y
pL3PrrnG10LTRXm (Fig. 2). De ellas, las que proporcionaron mejores
resultados para la sobreexpresión de Trx fueron la primera y la
última, que corresponden a realizaciones preferidas de la
invención.
La presente invención se aplica además a la
producción de proteínas heterólogas expresadas en un organismo
huésped no nativo. Los vectores de fusión constan de la Trx
m, sin el codón de terminación de la traducción (TAA),
fusionada a la proteína de interés, de forma que ambas se encuentran
bajo el control del mismo promotor constitutivo plastidial. Por
tanto, las siguientes realizaciones de la invención cubren vectores
de fusión de las secuencias precursoras y maduras de las Trx
plastidiales (codón de inicio ATG unido a SEQ ID Nº:7, sin el codón
de terminación TAA) con proteínas heterólogas. En realizaciones
preferidas, se ha clonado entre ambas secuencias una secuencia de
reconocimiento para una proteinasa que, en otra realización
preferida, es la enteroquinasa, con la finalidad de poder separar
ambas proteínas tras su purificación. Concretamente, una de las
proteínas heterólogas fusionadas fue la albúmina sérica humana
(HSA), que corresponde a una realización muy preferida de la
invención. Se prefieren aún más las realizaciones en las que el
vector es un derivado del plásmido pAF (integra los genes de interés
en la región intergénica trnI-trnA), y
aquéllas en las que la fusión está bajo el control transcripcional
del promotor y la 5'UTR del psbA
(pAFpsbATRXm-EK-HSA). Otra de las
proteínas fusionadas fue la cardiotrofina-1 humana
(hCT1), constituyendo su correspondiente vector de fusión otra
realización de la invención. Son especialmente preferidas aquéllas
realizaciones en las que el vector deriva del plásmido pL3,
concretamente, el vector
pL3psbATRXm-EK-hCT1.
En los vectores de coexpresión las dos
proteínas, Trx y proteína heteróloga, se han expresado en forma
libre, dirigidas por un promotor diferente con el fin de evitar una
posible recombinación entre las secuencias de dichos promotores que
supusiera una deleción de uno de los transgenes. En realizaciones
sucesivas de la invención, se describen los vectores de coexpresión
que comprenden la secuencia de Trx (codón de inicio ATG unido a SEQ
ID Nº:7) unida a un promotor constitutivo endógeno plastidial y a
una secuencia inductora de la traducción independientes del promotor
y la secuencia inductora de la traducción unidos operativamente a la
proteína heteróloga. Las realizaciones preferidas son aquéllas en
las que la secuencia correspondiente a la Trx m madura está
controlada por el promotor Prrn y la secuencia RBS G10L, y la
proteína heteróloga está controlada por el promotor y la secuencia
5' UTR del gen psbA de N. tabacum. Los vectores que
coexpresan la albúmina sérica humana corresponden a una realización
preferida, y se prefiere especialmente la utilización del plásmido
pAF, siendo el vector preferido pAFpsbAHSA::PrrnG10LTRXm. La otra
proteína coexpresada con Trx fue la hCT1, constituyendo sus vectores
de coexpresión otra realización preferida, especialmente aquéllos
que incluyen como plásmido el pL3, en concreto el vectores más
preferido es pL3PrrnG10LTRXm::psbAhCT1.
Las siguientes realizaciones de la invención se
refieren a organismos hospedadores que incorporan los diferentes
vectores plastidiales de expresión, fusión y coexpresión detallados
anteriormente. Una realización preferida se refiere a los organismos
que incorporan los vectores de expresión plastidiales
pL3PrrnG10LTRXm ó pL3psbATRXm que son los más eficientes en cuanto a
la expresión de Trx m recombinante. Dichos hospedadores pueden ser
E. coli, en una realización, o plantas transgénicas, sus
semillas o material de propagación, que incorporan en sus plastidios
los vectores recombinantes descritos. En realizaciones preferidas,
se describen sucesivamente las plantas transgénicas que incluyen los
vectores de expresión, fusión y coexpresión descritos anteriormente,
preferiblemente dichas plantas pertenecen a las especies
Nicotiana tabacum o Solanum tuberosum.
Un aspecto adicional de la invención describe
métodos de obtención de las nuevas plantas transgénicas descritas,
que permiten integrar en su plastoma los vectores recombinantes
descritos anteriormente. Un método preferido, incluye las siguientes
etapas:
- a)
- bombardeo de hojas cultivadas in vitro con una pistola de genes cargada con uno cualquiera de los vectores de expresión plastidial descritos anteriormente;
- b)
- obtención de los primeros transformantes regenerados en medio de cultivo suplementado con un antibiótico frente al cual confiera resistencia el vector bombardeado;
- c)
- realización de, al menos, un segundo ciclo de regeneración en medio selectivo con el mismo antibiótico, para obtener plantas homoplásmicas;
- d)
- selección de las plantas homoplásmicas mediante cualquier método de selección de ADN por tamaños.
\vskip1.000000\baselineskip
Se prefieren aquellos métodos en los que las
hojas proceden de las especies Nicotiana tabacum o Solanum
tuberosum y el antibiótico utilizado es espectinomicina.
La invención describe también los diversos usos
y procedimientos en los que se emplearon los hospedadores y, sobre
todo, las plantas transgénicas descritas.
Según se observa en los ejs. 4, 8 y 9, los
vectores plastidiales descritos anteriormente producen la
sobreexpresión, tanto de la propia trx m, como de las proteínas
heterólogas fusionadas o coexpresadas con la misma.
Consecuentemente, un aspecto relevante de la invención se refiere a
un procedimiento para sobreexpresar la tiorredoxina m plastidial
recombinante representada mediante SEQ ID Nº:8, o proteínas
heterólogas fusionadas o coexpresadas con la misma, que comprende
las siguientes etapas:
- a)
- Obtener un vector de expresión plastidial recombinante que comprende el fragmento de ácido nucleico codificante representado por codón de inicio ATG unido a SEQ ID Nº:7 y, adicionalmente, secuencias de recombinación homologa que permiten dirigir la inserción en el genoma plastidial de los fragmentos comprendidos entre ellas, un promotor constitutivo endógeno plastidial y una secuencia inductora de la traducción;
- b)
- Transformar un organismo hospedador bacteriano o una planta con el vector de la etapa a).
\vskip1.000000\baselineskip
Una realización adicional de la invención se
refiere al procedimiento descrito, aplicado para sobreexpresar
tiorredoxina m plastidial recombinante, en el que el vector de la
etapa a) es un vector de expresión de trx m. Se prefieren
especialmente los casos, en los que el hospedador de la etapa b) es
la bacteria E. coli, o bien la planta transgénica que
incorpora los vectores pL3psbATRXm ó pL3PrrnG10LTRXm.
Debido a las ventajas que supone el aislamiento
en forma soluble y activa de la Trx m para poder usarla como
antioxidante, y a las nuevas propiedades de la trx recombinante
obtenida de plantas transgénicas, otro aspecto de la invención
contempla un producto enzimático constituido por dicha Trx m
recombinante sobreexpresada en forma soluble, activa y que conserva
su actividad reductora.
Otro aspecto de la invención radica en el
análisis de los efectos producidos en las plantas que incluyen las
proteínas HSA o hCT1, fusionadas o coexpresadas en sus cloroplastos
con la nueva Trx m. En primer lugar, se analizaron las cantidades de
HSA acumuladas en hojas de plantas adultas cultivadas en fitotrón,
de las que se extrajo la proteína total (Farran et al, 2002).
Mediante inmunodetección y utilizando como anticuerpo primario un
anti-HSA, se comprobó que las plantas que expresaban
la HSA fusionada a tiorredoxina m presentaba un patrón de bandas
(Fig. 14a, calles 2-4) similar al observado en las
muestras de plantas que expresan la HSA sola (Fig. 14a, calle 1;
Fernández-San Millán et al, 2003). Se puede
observar una gran cantidad de agregados de alto peso molecular, lo
que podría estar indicando la acumulación en el cloroplasto, de la
proteína de fusión en cuerpos de inclusión, tal y como ocurre cuando
la HSA se expresa sola (Fernández-San Millán et
al, 2003). Sin embargo, estos agregados desaparecen cuando la
albúmina es co-expresada con trx m (ó f) (Fig. 14a,
calles 5-7), sugiriendo un posible papel de las Trx
en la solubilización de los cuerpos de inclusión de HSA. Además,
parece que la expresión de la tiorredoxina en forma libre o
fusionada tiene diferente modo de acción sobre la solubilidad de las
proteínas recombinantes (Yuan et al, 2004), lo que explicaría
el hecho de que sólo se consiga la disolución de los agregados
cuando se coexpresan ambas proteínas. Aunque la formación de cuerpos
de inclusión puede suponer por un lado una disminución de la
proteolisis en proteínas recombinantes (Enfors, 1992), y puede
facilitar la purificación de las mismas, por otro lado requiere un
replegamiento in vitro que no siempre garantiza la
conformación nativa de la proteína, supone una disminución del
rendimiento y un encarecimiento del proceso. Por ello, en muchos
casos puede resultar interesante disponer de un sistema de
solubilización para la expresión de proteínas heterólogas en los
cloro-
plastos.
plastos.
Dada la gran cantidad de proteína recombinante
observada en la inmunodetección de las plantas que expresan la
fusión de la Trx m con la HSA, se analizaron las muestras mediante
SDS-PAGE (Fig. 14b). En los extractos de las hojas
que expresan la fusión de la Trx m con la HSA, además de la banda
correspondiente a la subunidad grande de la RuBisCo (aprox. 50 kDa),
se observa una intensa banda teñida con CBB (Coomassie Brillant
Blue) de un tamaño aproximado de 80 kDa (Fig. 14b, calles
1-4). Dicha banda no aparece en los extractos de
hoja de las plantas sin transformar (Fig. 14b, PH) ni en los de las
plantas que expresan la HSA sola (Fig. 14b, calle 5). En estos
últimos sin embargo, se puede visualizar una banda más tenue, de
unos 67 kDa, correspondiente a la HSA. Estos resultados indican que
se acumula una gran cantidad de proteína de fusión TrxmHSA en los
cloroplastos de tabaco, incluso a niveles superiores a los máximos
obtenidos en las plantas que expresan la HSA sola (\approx11% de
la proteína total; Fernández-San Millán et
al, 2003). Se sabe que la subunidad grande de la RuBisCo
representa aproximadamente el 50% de la proteína soluble total de la
hoja (Whitney et al, 1999). Si comparamos la intensidad de la
banda de 80 kDa, correspondiente a la proteína de fusión, con la de
la subunidad grande de la RuBisCo, podríamos estimar unos niveles de
expresión de la TrxmHSA entre un 15-20% de la
proteína soluble
total.
total.
También se analizaron las cantidades de hCT1
acumuladas en hojas completamente desarrolladas de plantas adultas
cultivadas en fitotrón, de las cuales se extrajo la proteína total
(Farran et al, 2002). Estudios preliminares sobre la
expresión de hCT1 en cloroplastos de tabaco demostraron que la rhCT1
(hCT1 recombinante) se acumulaba a altos niveles (\approx3% de la
proteína soluble total) en hojas jóvenes, y se conseguía duplicar
estos niveles sometiendo a las plantas a 30 horas de luz continua
(Farran et al, 2008). Mediante inmunodetección y utilizando
como anticuerpo primario un monoclonal frente a hCT1, se comprobó
que las plantas que expresaban la hCT1 fusionada a tiorredoxina m
(TrxmCT1) presentaban mayores niveles de rhCT1 que las plantas
control (CT1; Farran et al, 2008), independientemente de la
condición lumínica utilizada (Fig. 15). Por ello, podemos concluir
que la fusión de Trx m con la hCT1 proporciona una mayor estabilidad
a la proteína de interés, que se traduce en una mayor acumulación de
la misma incluso en hojas maduras y sin necesidad de someter a las
plantas a condiciones de luz continua. Sin embargo, cuando se
analizaron las plantas que coexpresan la Trxm/f con la hCT1
(Trxm/f+hCT1) se vio que los niveles de expresión de hCT1 fueron
similares a los obtenidos en las plantas control (Fig. 15). Además,
no se observaron incrementos de proteína en condiciones de luz
continua (30 h luz), sugiriendo algún efecto de la
coexpresión de las Trx sobre el estado redox del cloroplasto, que
afecta de algún modo a la traducción de la 5'UTR del
psbA.
psbA.
\newpage
\global\parskip0.890000\baselineskip
De acuerdo con los datos obtenidos, una
realización adicional de la invención se refiere a un procedimiento
para sobreexpresar proteínas heterólogas fusionadas con tiorredoxina
m recombinante, en el que:
- a)
- el vector es un vector de fusión en el que al fragmento de ácido nucleico codificante representado por codón de inicio ATG unido SEQ ID Nº: 7, se le ha suprimido el codón de terminación de la traducción y se ha fusionado en 3' con la secuencia codificante de una proteína heteróloga, de forma que ambas secuencias codificantes están bajo el control transcripcional del mismo promotor constitutivo plastidial;
- b)
- el organismo hospedador es una planta transgénica transformada con el vector de la etapa a).
\vskip1.000000\baselineskip
Una realización particular se refiere al
procedimiento descrito, en el que:
- a)
- el vector es un vector de fusión como los descritos anteriormente;
- b)
- la planta transgénica es la que incorpora dicho vector.
\vskip1.000000\baselineskip
Concretamente, se prefieren aquellas
realizaciones relativas a procedimientos para sobreexpresar albúmina
sérica humana o cardiotrofina-1 humana.
Otra realización particular se refiere al
procedimiento aplicado para sobreexpresar proteínas heterólogas
coexpresadas con tiorredoxinas plastidiales m, en el que:
- a)
- el vector es un vector de coexpresión como los descritos anteriormente;
- b)
- el organismo hospedador es la planta transgénica que incorpora dicho vector.
\vskip1.000000\baselineskip
Son especialmente preferidas aquellas
realizaciones destinadas a sobreexpresar albúmina sérica humana o
cardiotrofina-1 humana.
Adicionalmente, se describe el uso de las
plantas transgénicas descritas que coexpresan hCT1, para obtener una
proteína heteróloga cardiotrofina-1 humana
recombinante de bioactividad incrementada respecto a la proteína
hCT1 producida en cloroplastos cuando ésta se expresa sola.
La determinación de la actividad diferencial de
la hCT1 recombinante obtenida de las plantas transgénicas, respecto
a la comercial, se realizó mediante un método que incluía las
siguientes etapas:
- a)
- estimular hepatocitos con cardiotrofina-1 humana recombinante, procedente de la citada planta transgénica y con cardiotrofina-1 humana comercial;
- b)
- analizar los extractos celulares estimulados con cada tipo de hCT1 con anticuerpos específicos de la forma fosforilada de STAT-3;
- c)
- comparar los resultados de ambos tipos de extracto, utilizando como control negativo extracto proteico de tabaco sin transformar, y como control positivo hCT1 comercial, sola o añadida al extracto sin transformar.
\vskip1.000000\baselineskip
Para estudiar la funcionalidad de la rhCT1
producida en cloroplastos de tabaco, se estudió su capacidad para
inducir la fosforilación del factor de transcripción
STAT-3. El ensayo se llevó a cabo en la línea HepG2
de hepatocarcinoma humano. Los extractos de las células estimuladas
se analizaron mediante inmunodetección con anticuerpos específicos
de la forma fosforilada de STAT-3 (Fig. 16). Como
control negativo se utilizó extracto proteico de tabaco sin
transformar y como positivo se utilizó hCT1 comercial (PrepoTech)
sola o añadida al extracto crudo de tabaco sin transformar (Fig.
16a). Cuando el bioensayo se realizó con la rhCT1 obtenida a partir
de las distintas plantas transformadas, se vio que ésta era capaz de
inducir la fosforilación de STAT-3
independientemente del extracto de planta utilizado (Fig. 16b). Sin
embargo, dicha fosforilación fue mucho más intensa en el caso de las
células estimuladas con extracto de plantas que expresaban la CT1
fusionada o coexpresada con cualquiera de las tiorredoxinas
cloroplásticas probadas, sugiriendo que las tiorredoxinas pueden
jugar un papel importante en mejorar la bioactividad de la rhCT1
producida en cloroplastos de hojas de tabaco.
Dada la elevada actividad de la proteína hCT1
recombinante obtenida a partir de las plantas transgénicas que
incluyen los respectivos vectores de coexpresión, un aspecto
adicional de la invención se refiere a una composición farmacéutica
que incorpora dicha proteína recombinante.
Así mismo, otro aspecto de la invención se
refiere a un método de producción de proteínas heterólogas
biológicamente activas y/o en su conformación nativa, que
comprende:
- a)
- cultivar las plantas transgénicas que coexpresan la Trx m de la invención y proteínas heterólogas en condiciones apropiadas para su crecimiento;
\newpage
\global\parskip1.000000\baselineskip
- b)
- separar las partes verdes de la planta;
- c)
- purificar la proteína heteróloga utilizando técnicas de cromatografía de afinidad, de separación por tamaños con un patrón o de intercambio iónico.
\vskip1.000000\baselineskip
En una realización preferida, se describe la
aplicación de dicho método para la producción de HSA.
Fig. 1. Secuencia nucleotídica de la
tiorredoxina m cloroplástica de tabaco (a). En cursiva,
secuencia del precursor o péptido de tránsito; triplete subrayado
indica el inicio de la proteína madura. Secuencia proteica de la
tiorredoxina m cloroplástica (b) de tabaco: aminoácidos subrayados
indican la secuencia proteica correspondiente al precursor o péptido
de tránsito; *parada de la traducción.
Fig. 2. Vectores de sobreexpresión de Trx m
en plastidio. Se describen las zonas del vector que quedan
insertadas en el genoma plastidial. En los extremos aparecen las dos
zonas de recombinación homologa que incluye el vector (ZRI y ZRD).
Entre las zonas de recombinación homologa están esquematizados los
diferentes transgenes Trx m y aadA (gen de
adenilil-transferasa, para inactivación de
antibióticos). En la posición 5' del transgén se muestran los
promotores y regiones 5'UTR elegidas. Prrn: promotor de la
16SrARN de tabaco; PpsbA5'UTR: promotor y 5'UTR del gen
psbA de tabaco; PrrnG10L: promotor de la 16SrARN y región
líder del gen 10 del bacteriófago T7. En la región 3' de la
Trx m se encuentra el terminador Trps16 de la proteína
ribosómica 16. En la región 3' del aadA se encuentra el
terminador TpsbANt del gen psbA de Nicotiana tabacum.
Las flechas indican el sentido de la transcripción.
Fig. 3. Análisis por PCR de la correcta
integración de los transgenes en plantas regeneradas tras el
bombardeo con pistola de genes. El ADN genómico se extrajo a
partir de plántulas in vitro. La PCR se realizó con los
primeros L1 y L2 para comprobar la inserción en el genoma
plastidial. El fragmento obtenido en caso de integración es de 1.516
pb. Calles: M, Marcador de pesos moleculares; WT, ADN de planta
control sin transformar; (a) 1-6, ADN de plantas
regeneradas a partir del bombardeo con el vector pL3psbATRXf; (a)
7-10, ADN de plantas regeneradas a partir del
bombardeo con el vector pL3PrrnG10LTRXf; (b) 1-3,
ADN de plantas regeneradas a partir del bombardeo con el vector
pL3PrrnTRXf.
Fig. 4. Análisis de la integración de la Trx
m en el plastoma y selección de plantas homoplásmicas
mediante transferencia de Southern. Se digirieron 10 \mug de
ADN genómico obtenido a partir de plántulas in vitro con
BglII. Los fragmentos se separaron en un gel de agarosa al
0,7%. Tras su depurinación se transfirieron a membrana de nylon y se
hibridaron con sondas específicas. Esquema de la zona de inserción
de los transgenes en el genoma plastidial con los sitios de
restricción BglII. Las regiones de recombinación homologa
aparecen subrayadas y se indican como ZRD y ZRI. También se muestran
los diferentes transgenes que se integran con los vectores de
transformación y a su derecha el tamaño de los fragmentos generados
tras la digestión del ADN con BglII. SH: sonda homologa a las
zonas adyacentes a los transgenes insertados en el genoma
plastidial. ORF: marcos de lectura abiertos. LOX: secuencia de
reconocimiento de la recombinasa CRE del fago P1; rps: proteína
ribosómica; tmV: gen del ARN de transferencia de la valina. Fig. 4
(cont) Autorradiografía del Southern. Calles: PH, ADN de una línea
Petit Havana sin transformar como control negativo;
1-3, ADN de líneas transgénicas generadas por la
transformación con el vector pL3psbATRXm/f; 4-6,
pL3PrrnTRXm/f; 7-9, pL3PrrnG10LTRXm/f.
Fig. 5. Inmunodetección de proteínas de hojas
de plantas transgénicas de tabaco. Extractos de proteína total
se separaron en un gel SDS-PAGE al 13% y se
transfirieron a membrana de nitrocelulosa. La membrana se hibridó
con un anticuerpo monoclonal
anti-poliHistidina conjugado con peroxidasa.
Calles: M, marcador de pesos moleculares en kDa; PH, 2 \mul de
proteína de planta Petit Havana sin transformar; el resto de calles
son proteína de hojas de plantas transformadas con los vectores
1-3, pL3psbATRXf (2 \mul/pocillo);
4-7, pL3PrrnG10LTRXf (2 \mul/pocillo);
8-11, pL3PrrnTRXf (5 \mul/pocillo).
Fig. 6. Patrones transcripcionales de las
plantas transgénicas observados en transferencia de Northern. 20
\mug de ARN obtenidos a partir de hojas maduras de plantas adultas
en maceta se separaron en un gel de formaldehído y se transfirieron
a membrana de nylon. Se hibridaron con una sonda específica de la
Trx f. (a) Se muestra con flechas el tamaño esperado del tránscrito
en las líneas transgénicas generadas por los distintos vectores.
ORF: marcos de lectura abiertos. LOX: secuencia de reconocimiento de
la recombinasa CRE del fago P1; rps: proteína ribosómica; trnV: gen
del ARN de transferencia de la valina. (b) Autorradiografía
resultante de la hibridación con la sonda de la Trx f. A la derecha
se muestran los tamaños del marcador de pesos moleculares de ARN en
kb. (c) Control de carga: ARNr teñido con bromuro de etidio. Calles:
PH, ARN de planta Petit Havana sin transformar; el resto son ARNs de
plantas transformadas con 1, 2 y 3, pL3psbATRXf; 4 y 5, pL3PrrnTRXf;
6 y 7, pL3PrrnG10LTRXf.
Fig. 7. Expresión de Trx recombinante en
E. coli . Se cargaron cantidades iguales de proteína por
pocillo en un gel SDS-PAGE al 13% y se transfirieron
a membrana de nitrocelulosa. (a) La membrana se hibridó con un
anticuerpo monoclonal anti-poliHistidina
conjugado con peroxidasa, y (b) se tiñó con Ponceau S. Calles: M,
marcador de pesos moleculares; pL3, vector pL3 vacío como control
negativo; el resto de calles son proteína de E. coli
transformada con los siguientes vectores: 1 y 2, pL3 PrrnG10LTRX
m y f; 3 y 4, pL3 psbATRX m y f; 5 y 6, pL3PrrnTRX
f y m. Se indican los pesos moleculares en kDa.
Fig. 8. Purificación de Trx recombinante en
E. coli . Se cargaron cantidades iguales de cada fracción
obtenida en el proceso de purificación en un gel
SDS-PAGE al 15% que se tiñó con coomassie brilliant
blue (a) o se transfirió a membrana de nitrocelulosa (b). La
membrana se hibridó con un anticuerpo monoclonal
anti-poliHistidina conjugado con peroxidasa.
Calles: M, marcador de pesos moleculares; FT, fracción de proteínas
no retenida por la columna; W, lavado; E1 a E4, fracciones de 1 ml
eluídas. Se indican los pesos moleculares en kDa.
Fig. 9. Reducción
Trx-dependiente de la insulina por acción de
ditiotreitol. Las mezclas incubadas contenían en un volumen
final de 600 ul: 0,1M fosfato potásico (pH 7,0), 2 mM EDTA, 0,13 mM
insulina bovina y 0,33 mM DTT (ditiotreitol). Símbolos: \bullet, 5
mM de Trx de E. coli comercial, \circ, 5 mM de Trx f. Se
muestra la absorbancia a 650 nm frente al tiempo en minutos.
Fig. 10. Clonación de los vectores de fusión
y coexpresión de tiorredoxina m y albúmina sérica humana en el
plásmido pAF. (a-b) Casetes de expresión de la
fusión de la tiorredoxina m (TRX) a la albúmina sérica humana (HSA)
(a) o de coexpresión de la TRX m con la HSA (b) que se inserta en el
sitio de clonación múltiple (MCS) del vector pAF. 16S/trnI y
trnA/23S: zonas de recombinación homologa; aadA gen de
resistencia a espectinomicina y estreptomicina; 3'psbA: región 3' no
traducida terminadora del gen psbA de tabaco; Prrn: promotor del
operón 16SrARN; PpsbA5'UTR: promotor y región 5' no traducida
del gen psbA de tabaco; PrrnG10L: promotor del operón 16SrARN más la
secuencia del sitio de unión al ribosoma (rbs) de la región líder
del gen 10 del bacteriófago 17 (G10L). EK: Secuencia de
reconocimiento para corte con enteroquinasa. EcoRV, HindIII, SmaI,
NotI, EcoR1: sitios de corte de enzimas de restricción. Mediante
flechas se indica el sentido de la transcripción.
Fig. 11. Clonación de los vectores de fusión
y coexpresión de tiorredoxina m y cardiotrofina-1
humana en el plásmido pL3. (a-b) Casetes de
expresión de la fusión de la tiorredoxina m (TRX) a la
cardiotrofina-1 humana (hCT1) (a) o de coexpresión
de la TRX m con la hCT1 (b) que se inserta en el sitio de clonación
múltiple (MCS) del vector pL3. ZRD y ZRI: zonas de recombinación
homologa; aadA gen de resistencia a espectinomicina y
estreptomicina; TpsbANt: terminador del gen psbA de
Nicotiana tabacum; Trps16: terminador de la proteína
ribosómica 16; LOX: secuencia de reconocimiento de la recombinasa
CRE; Prrn: promotor del operón 16SrARN; PpsbA5'UTR:
promotor y región 5' no traducida del gen psbA de tabaco; PrrnG10L:
promotor del operón 16SrARN más la secuencia del sitio de unión al
ribosoma (rbs) de la región líder del gen 10 del bacteriófago 17
(G10L). EK: Secuencia de reconocimiento para corte con
enteroquinasa. EcoRV, HindIII, SmaI, NotI, EcoR1: sitios de corte de
enzimas de restricción. Mediante flechas se indica el sentido de la
transcripción.
Fig. 12. Análisis de la integración de las
fusiones y coexpresiones de Trx con proteínas heterólogas en el
plastoma y selección de plantas homoplásmicas mediante transferencia
de Southern. Se digirieron 10 \mug de ADN genómico obtenido a
partir de plántulas in vitro con BglII (pL3) o
HindIII (pAF). Los fragmentos se separaron en un gel de
agarosa al 0,7%. Tras su depurinación se transfirieron a membrana de
nylon y se hibridaron con sondas homologas a las zonas adyacentes a
los transgenes insertados en el genoma plastidial.
(a-d) Autorradiografías del Southern. PH, ADN de una
línea Petit Havana sin transformar como control negativo. Resto de
calles, ADN de líneas transgénicas generadas por la transformación
con el vector pAFTRXm/fHSA (a); pL3TRXm/fCT1 (b); pAFTRXm/f + HSA
(c); pL3TRXm/f + CT1 (d). TRXm/f: tiorredoxinas m ó f; HSA:
albúmina sérica humana; CT1: cardiotrofina-1.
Fig. 13. Producción de albúmina humana
recombinante en plantas de tabaco. (a) Inmunodetección de la
proteína total extraída a partir de hojas de plantas transgénicas de
tabaco. Se ha utilizado un anticuerpo policlonal frente a albúmina
sérica humana (HSA). Calles: 1, plantas que expresan la HSA sola
(Fernández-San Millán et al, 2003);
2-4, plantas que expresan la proteína de fusión
Trxm/fHSA; 5-7, plantas que coexpresan las proteínas
Trxm/f y HSA; PH, planta no transformada, (b) gel
SDS-PAGE teñido con Coomasie Brilliant Blue (CBB).
Calles: PH, planta no transformada; M, marcador de peso molecular en
kDa; 1-2, plantas que expresan la proteína de fusión
TrxmHSA; 3-4, plantas que expresan la proteína de
fusión TrxfHSA; 5, plantas que expresan la HSA sola
(Fernández-San Millán et al, 2003). Trx m/f:
tiorredoxina m ó f.
Fig. 14. Análisis de la acumulación de
cardiotrofina-1 humana recombinante tras distintos
períodos de iluminación. Inmunodetección de la proteína total
extraída a partir de hojas de plantas transgénicas de tabaco. Se ha
utilizado un anticuerpo monoclonal frente a
cardiotrofina-1 humana recombinante (rhCT1). Se han
utilizado hojas maduras cosechadas tras 15 horas de oscuridad o a
las 12 y 30 horas de luz continua. Calles: M, marcador de peso
molecular (kDa). CT-1: plantas que expresan la
cardiotrofina-1 humana sola (Farran et al,
2008). OSC: oscuridad; 12L: 12 h de luz continua; 30L: 30
h de luz continua.
Fig. 15. Ensayo de la actividad de la rhCT1 a
través del análisis de la activación de la fosforilación de
STAT-3. Inmunodetección con anticuerpo
específico para la forma fosforilada de STAT-3. (a y
b) Calles: hCT-1, control positivo de células
estimuladas con CT-1 humana comercial; C, control
negativo de células sin estimular, (a) Calles: extracto wt, control
negativo de células estimuladas con extracto de plantas no
transformadas; hCT-1 en extracto wt, control
positivo de células estimuladas con extracto de plantas no
transformadas al que se le ha añadido CT-1 humana
comercial, (b) Calles: CT1, células estimuladas con distintas
cantidades de extracto de plantas transformadas con la CT1 sola;
Trxm/fCT1, células estimuladas con distintas cantidades de extracto
de plantas transformadas con la fusión Trxm/fCT1; Trxm/f+CT1,
células estimuladas con distintas cantidades de extracto de plantas
transformadas con la CT1 coexpresada con la Trxm/f.
Ejemplo
1
Se obtuvo la secuencia de la Trx madura m
de Nicotiana tabacum aún no descrita, mediante amplificación
de sus extremos 5' y 3'. Para ello se utilizó el Kit
RLM-RACE (Ambion), siguiendo las
especificaciones del fabricante y diseñando cebadores internos a
partir de las regiones conservadas en Trx de solanáceas (TxfRACEup,
TxfRACEdown, TxmRACEup, TxmRACEdown; Tabla 1). Como molde se utilizó
cDNA de tabaco var. Petit Havana. Basándose en las secuencias
amplificadas mediante RACE se diseñaron los cebadores
NtTrxm-5' y NtTrxm-3' (Tabla 1) para
clonar la Trx m madura de tabaco (SEQ ID Nº 7; véase también Fig.
1). Estos cebadores incorporan en la región 5' la diana NcoI
para la fusión con el extremo 3' del promotor correspondiente
seguida de una cola de histidinas, y en la región 3' una diana
NotI.
Ejemplo
2
pL3psbATRXm: la secuencia madura de la
Trx m se obtuvo por digestión
NcoI-NotI de los vectores pGEMTRXm,
resultando un fragmento de 366 pb. Estos fragmentos se clonaron en
el vector pBS-psbAHSA (Fernández-San
Millán et al, 2003), digerido con
NcoI-NotI, para incorporar el promotor y la
5'UTR del gen psbA de tabaco. El promotor y la 5'UTR del gen
psbA junto con la Trx m se subclonó, mediante
digestión EcoRI-NotI, en el vector pPCR2.1
(pPCR2.1psbATRXm). Finalmente, el fragmento
EcoRI-XhoI de dicho vector se insertó en el
vector de transformación plastidial pL3, para obtener así el vector
final pL3psbATRXm (véase Fig. 2).
pL3PrrnTRXm: el fragmento de 215 pb
perteneciente al promotor del operón del RNA ribosomal del plastidio
(Prrn) se obtuvo del vector pBS-PrrnaadA (del Río,
resultados no publicados). En este vector se clonó el fragmento
NcoI-NotI de la Trx m. Por digestión
EcoRI-NotI del vector intermedio obtenido
(pBS-KSPrrnTRXm) se obtuvo la fusión de la Trx
m con el promotor del operón rRNA, que se clonó en el vector
pPCR2.1 (pPCR2.1PrrnTRXm). Finalmente, el fragmento
EcoRI-XhoI de dicho vector se insertó en el
vector de transformación plastidial pL3, para obtener así el vector
final pL3PrmTRXm (véase Fig. 2).
pL3PrrnG10LTRXm: el fragmento
NcoI-NotI correspondiente a la secuencia
madura de la Trx m se introdujo en el vector
pBS-PrrnG10LCTF (Farran et al, 2008). De esta
forma se obtuvo el vector pBS-PrrnG10LTRXm, que por
digestión EcoRI-SaII liberó la fusión de la
Trx m con el fragmento de 150 pb que incluye el promotor
constitutivo del operón del RNA ribosomal del plastidio
(Prrn), al que se le ha sustituido la 5'UTR por la secuencia
del sitio de unión al ribosoma (RBS) de la región líder del gen
10 del bacteriófago T7 (G10L). Los fragmentos obtenidos se
ligaron con el vector pL3 para dar lugar al vector de transformación
plastidial pL3PrrnG10LTRXm (véase Fig. 2).
Ejemplo
3
La transformación plastidial se basó en el
protocolo de Daniell (1997) con ligeras modificaciones que se
comentan a continuación. Se partió de hojas de tabaco in
vitro obtenidas tras una micropropagación después de la
germinación. Una hora antes del bombardeo se cortaron las hojas de
tabaco, descartando las apicales y las basales. Se pusieron sobre un
papel de filtro estéril en medio RMOP (sales MS, 30 g/l sacarosa,
0,1 mg/l ANA, 1 mg/l BAP, 100 mg/l mio-inositol, 1
mg/l tiamina y 6 g/l Phytagar pH 5,8) en placas Petri con el envés
hacia arriba. Se utilizaron partículas de oro de 0,6 micras a razón
de 100 ng de oro y 300 ng de ADN por hoja bombardeada. La presión de
ruptura fue de 1.100 psi. Todo el material fungible utilizado fue de
Bio-Rad. Tras el bombardeo con la pistola de genes
Helios Gene Gun PDS-1000 (Bio-Rad),
se mantuvieron las hojas en oscuridad durante 48 h dentro de
las placas Petri selladas con parafilm. Tras este período, se
cortaron las hojas en trozos de unos 0,5 cm de lado descartando el
nervio central. Los trozos de hoja se pusieron con el envés (parte
bombardeada) en contacto con el medio RMOP suplementado con 500 mg/l
de espectinomicina en cajas Magenta selladas con parafilm. Los
primeros transformantes empezaron a emerger de los trozos de hoja a
las 3-4 semanas del bombardeo. Los brotes así
obtenidos se dejaron crecer hasta que tuvieron suficiente tamaño
para extraer el ADN y comprobar la integración de la Trx y el aadA
por PCR. Los cebadores utilizados L1
(5'-GGAAATACAAAAAGGGGG-3') y L2
(5-CCTCGTTCAATTCTTTCG-3') fueron
diseñados para eliminar posibles mutantes resistentes a
espectinomicina. El cebador L1 anilla en el Trps16, a unas
131 pb del final del mismo, y el cebador L2 anilla en el genoma
plastidial, a unas 223 pb tras la ZRD. De esta forma, si se ha
producido integración de los genes de interés, el producto esperado
debe ser de 1,5 kb (Fig. 3a, calles 4-9 y 3b, calles
1-3). La ausencia del producto de PCR indica que
esos regenerantes son mutantes espontáneos capaces de crecer en
espectinomicina sin presencia del gen aadA. Como se puede
observar en la Fig. 3, aparecieron mutantes entre los regenerantes
muestreados (calles 1-3 y 10). Una alta incidencia
de regenerantes resistentes a espectinomicina como resultado de una
mutación en el gen 16S rARN plastidial ha sido demostrada en varias
ocasiones.
La obtención de líneas transformadas estables
implica el cultivo de los transformantes en presencia de
espectinomicina durante el tiempo necesario para que las células se
dividan, al menos, entre 16 y 17 veces. Durante este tiempo los
plastidios transformados tienen ventaja selectiva sobre los no
transformados, aumentando en número gradualmente. Los primeros
regenerantes obtenidos suelen ser totalmente verdes pero quiméricos,
con sectores transformados y sin transformar debido al
enmascaramiento por el tejido transgénico. Por ello es necesario, al
menos, un segundo ciclo de regeneración en medio selectivo para
obtener plantas homoplásmicas. Así, las hojas de los brotes
transformados se cortaron en trozos de unos 3 mm de lado y se
sometieron a dos o tres nuevas rondas de regeneración en medio RMOP
con 500 mg/l de espectinomicina hasta conseguir la homoplasmia.
Cuando las nuevas plantas regeneradas estuvieron enraizadas, se
procedió al análisis mediante transferencia de Southern. Utilizando
una sonda a partir de un fragmento de las zonas de recombinación
homologa (sonda SH, ver Fig. 4a) se puede confirmar una integración
específica y estable de los transgenes dentro de las regiones
duplicadas invertidas del plastoma y seleccionar las plantas
homoplásmicas. El ADN de plantas transformadas digerido con
BglII e hibridado con la sonda SH debe producir fragmentos de
6,7 o 4,9 y 1,8 kb según el vector empleado (ver Fig. 4a). En el
caso de que el genoma esté sin transformar debe aparecer un
fragmento de 4,5 kb. La presencia de ambos tipos de bandas indica
heteroplasmia. Como se puede observar en la Fig. 4b, se obtuvieron
plantas homoplásmicas en todas las construcciones.
Ejemplo
4
En primer lugar se detectó la presencia de Trx
recombinante en plantas transgénicas de tabaco mediante
inmunodetección con un anticuerpo anti-histidina. Se
analizó la proteína total de hojas maduras de las plantas
transformadas. Como se aprecia en la Fig. 5, en las plantas
transformadas con los vectores pL3psbATRXf y pL3PrrnG10LTRXf se
detectó una banda de 12 kDa correspondiente a la Trx f,
siendo la expresión en las mismas de magnitud comparable. Sin
embargo, en las líneas obtenidas con el vector pL3PrrnTRXf no se
detectó Trx f mediante esta técnica, a pesar de que se cargó
en el gel más proteína total que en el resto. Resultados similares
se obtuvieron cuando se sobreexpresó la Trx m. Las bandas que
aparecen por encima de la Trx f, de aproximadamente 23, 27 y 40 kDa,
se corresponden con proteínas endógenas de la planta que reaccionan
con el anticuerpo anti-histidina utilizado, ya que
dichas bandas aparecen también en el extracto de planta sin
transformar (Fig. 5, calle PH).
Los factores que influyen en el rendimiento de
una proteína heteróloga pueden ser transcripcionales, como la
actividad del promotor; postranscripcionales, como la estabilidad
del ARN mensajero o la eficiencia de la traducción; y
postraduccionales, como la estabilidad de la proteína. Puesto que,
a priori, la estabilidad de la proteína debería ser
exactamente igual en todas las plantas obtenidas, se realizaron
estudios a nivel de ARN mensajero para elucidar las causas de las
diferencias de acumulación de Trx f entre líneas
transgénicas.
Se extrajo ARN de hojas maduras de las plantas
transformadas y se hibridó con una sonda específica de la Trx
f. Los niveles de tránscritos de Trx variaron entre las
distintas líneas transgénicas obtenidas (Fig. 6). Se puede observar
cómo la línea transformada con pL3PrrnTRXf (calles 4 y 5) tiene
similar número de tránscritos que la línea transformada con
pL3PrrnG10LTRXf (calles 6 y 7), lo cual era de esperar, ya que las
dos se encuentran bajo el control del mismo promotor Prrn.
Sin embargo, cuando la Trx está dirigida por el promotor del gen
psbA se produce mayor cantidad de tránscrito (calles 1, 2 y 3).
En resumen, los vectores que más eficientemente
han expresado Trx en cloroplastos transgénicos de tabaco han sido el
pL3psbATRXm/f y pL3PrrnG10LTRXm/f (Fig. 5). Se ha comprobado que el
promotor del gen psbA es muy activo en el plastidio, siendo mucho
más fuerte que el Prrn (Fig. 6). Por otra parte, el RBS de la
secuencia líder G10L del bacteriófago T7 es un elemento de gran
eficacia en la traducción de la Trx, puesto que presentando menos
tránscritos de Trx f que el promotor del psbA, los
niveles de proteína obtenida son similares (Figuras 5 y 6). Así, se
obtienen plantas que sobreexpresan Trx m o f a
diferentes niveles.
Ejemplo
5
Dado que existen grandes similitudes entre la
maquinaria de transcripción y traducción de bacterias y plastidios
(Brixey et al. 1997), se comprobó la funcionalidad de los
vectores diseñados para la transformación plastidial en E.
coli. Dichos vectores se usaron para transformar la cepa TOP
10F' de E. coli. Los transformantes se cultivaron en medio LB
Broth con 100 mg/l de espectinomicina durante 20 h a 37ºC en
agitador orbital, y se analizó la producción de Trx recombinante por
inmunodetección con anticuerpo anti-histidina (Fig.
8). Todos los vectores produjeron Trx inmunorreactiva, aunque el
vector que produjo más Trx en este modelo fue el pL3PrrnG10LTRXm/f,
lo cual parece deberse a la presencia del RBS del gen 10 del
bacteriófago T7, que es capaz de aumentar la traducción de genes
exógenos en E. coli (Olins et al. 1988). De este modo,
se seleccionaron las cepas con los vectores pL3PrrnG10LTRXm/f para
continuar con el proceso de purificación.
La purificación de las Trx se llevó a cabo
empleando el siguiente procedimiento. Los inóculos se cultivaron en
50 ml de medio TB Broth con 100 mg/l de espectinomicina durante 12
h a 37º y en agitación, para luego diluirlos en 1,5 l del
mismo medio y dejarlos a 37ºC y agitación hasta que la densidad
óptica a 600 nm (DO_{600}) alcanzó valores alrededor de 2. En ese
momento se centrifugaron los cultivos para recoger las células, que
se volvieron a suspender en tampón de sonicación (fosfato sódico 50
mM, cloruro sódico 300 mM, imidazol 25 mM, glicerol al 10%, tritón
X-100 al 0,5%, inhibidor de proteasas, pH 7,4) y se
guardaron congeladas. Las células se sometieron a ultrasonidos y se
centrifugaron a 9000 rpm durante 20 min a 4ºC. Se recogieron los
sobrenadantes y se filtraron a través de un filtro de 0,45 micras.
Los sobrenadantes clarificados se incubaron con la resina
Ni-NTA Agarose de Quiagen durante 2 h a 4ºC
en rotación. Al cabo de ese tiempo se pasó todo el volumen por una
columna de purificación y posteriormente se lavó con tampón de
lavado cuya composición fue idéntica al tampón de sonicación pero
con una concentración de imidazol 45 mM. La proteína se eluyó con el
mismo tampón que contenía imidazol 300 mM. Las fracciones que
contenían la proteína se sometieron directamente a diálisis para
eliminar cualquier traza de imidazol y se guardaron congeladas a
-20ºC. Las diferentes fracciones obtenidas en el proceso de
purificación se analizaron en un gel SDS-PAGE y por
inmunodetección con anticuerpo anti-histidinas (Fig.
9). La concentración de la proteína purificada se cuantificó por
Bradford utilizando el ensayo "Bio-Rad Protein
Assay", obteniéndose aproximadamente 7 mg/l
cultivo.
cultivo.
Para comprobar que las Trx recombinantes
producidas en E. coli mantenían su actividad oxidorreductasa,
se probó su capacidad para catalizar la reducción de los puentes
disulfuro de la insulina mediante adición de ditiotreitol (DTT) como
agente reductor (Holmgren, 1979) (Fig. 10). A la vista de los datos,
se confirmó la actividad oxidorreductasa de las Trx
recombinantes.
Ejemplo
6
Fusión con HSA
(pAFpsbATRXm-EK-HSA): A la
secuencia madura de la Trx m se le eliminó el codón TAA de
finalización de la traducción mediante PCR, utilizando los
cebadores SacII-TRXm-5' y
TRXm-SmaI-3' (Tabla 2) sobre el
molde pGEMTRXm y se clonó en un pGEMT (pGEMTRXm\DeltaTAA). Para
fusionar la Trx m al extremo 5' de la HSA, el fragmento
SacII-SmaI del vector pGEMTRXm\DeltaTAA se
introdujo en el vector
pGEM-GPGP-EK-HSA
(Del Río, resultados no publicados) digerido con dichas enzimas.
Este vector intermedio
pGEM-TRXm-EK-HSA se
abrió con la enzima HindIII y se ligó con el fragmento
HindIII correspondiente al promotor, la 5'UTR del gen psbA y
el inicio de la TRX m obtenido del vector
pBS-psbATRXm (descrito anteriormente). El fragmento
EcoRV-NotI de este vector
(pGEMpsbATRXm-EK-HSA) se introdujo
en el vector pAF para dar lugar al vector
pAFpsbATRXm-EK-HSA (Fig. 11a).
Coexpresión con HSA
(pAFpsbAHSA::PrrnG10LTRXm): Mediante digestión
EcoRI-SacI del vector pBS-
PrrnG10LTRXm se obtuvo un fragmento con el promotor PrrnG10L y la Trx m, que se introdujo en el vector pPCR2.1. Este vector intermedio pPCR2.1PrrnG10LTRXm se digirió con NotI para introducir la fusión en el vector pLDpsbAHSA (Fernández-San Millán et al, 2003), dando lugar al vector pAFpsbAHSA::PrrnG10LTRXm (Fig. 11c).
PrrnG10LTRXm se obtuvo un fragmento con el promotor PrrnG10L y la Trx m, que se introdujo en el vector pPCR2.1. Este vector intermedio pPCR2.1PrrnG10LTRXm se digirió con NotI para introducir la fusión en el vector pLDpsbAHSA (Fernández-San Millán et al, 2003), dando lugar al vector pAFpsbAHSA::PrrnG10LTRXm (Fig. 11c).
Fusión con CT1
(pL3psbATRXm-EK-CT1): Mediante
digestión HindIII del vector PCR2.1 psbATRXm se obtuvo el
fragmento con el promotor, la 5'UTR del gen psbA y el inicio
de la Trx m, que se introdujo en el pGEMTRXm\DeltaTAA para
dar lugar al pGEMpsbATRXm\DeltaTAA. El sitio de reconocimiento
para corte por enteroquinasa se obtuvo mediante digestión
SmaI-SacII del vector
pGEMCTB-link (Farran, resultados no publicados), y
se introdujo en el extremo 3' de la Trx m del vector
pGEMpsbATRXm\DeltaTAA, dando lugar al vector
pGEMpsbATRXm-EK. La secuencia madura de la hCT1 se
obtuvo por digestión XbaI-NotI del vector
pGEMCT1 (Farran et al, 2008), y se introdujo en el vector
anterior para dar lugar al vector
pGEMpsbATRXm-EK-CT1. Por restricción
EcoRI de este último vector se extrajo el fragmento completo
de fusión de la Trx m a la hCT1 y se introdujo en el vector
pL3 para dar lugar al vector
pL3psbATRXm-EK-CT1 (Fig. 12a).
Coexpresión con CT1
(pL3PrrnG10LTRXm::psbACT1): El fragmento correspondiente al
promotor PrrnG10L
y la Trx m se obtuvo por digestión EcoRI-SacI del vector pBS-PrrnG10LTRXm, y se introdujo en el vector
pPCR2.1 (pPCR2.1PrrnG10LTRXm). El fragmento NotI de este vector se clonó en el vector pL3psbACT1 (Farran et al, 2008) que expresa la hCT1 bajo el promotor y la 5'UTR del gen psbA, para finalmente obtener el vector
pL3PrrnG10LTRXm::psbACT1 (Fig. 12c).
y la Trx m se obtuvo por digestión EcoRI-SacI del vector pBS-PrrnG10LTRXm, y se introdujo en el vector
pPCR2.1 (pPCR2.1PrrnG10LTRXm). El fragmento NotI de este vector se clonó en el vector pL3psbACT1 (Farran et al, 2008) que expresa la hCT1 bajo el promotor y la 5'UTR del gen psbA, para finalmente obtener el vector
pL3PrrnG10LTRXm::psbACT1 (Fig. 12c).
Ejemplo
7
La transformación plastidial se basó en el
protocolo de Daniell (1997) descrito anteriormente. Partiendo de las
plántulas in vitro obtenidas tras 2 o 3 ciclos de
regeneración, se realizó una primera selección de clones
transgénicos por PCR con los cebadores L1 y L2 en el caso de haber
usado pL3 como vector de transformación y F1
(5'-AAAACCCGTCCTCAGTTCGGATTGC-3') y
F2
(5'-CCGCGTTGTTTCATCAAGCCTTACG-3')
para el caso de haber usado pAF (resultados no mostrados). Se
extrajo ADN genómico y se utilizó como molde 1 \mug de ADN en una
PCR de 30 ciclos. Finalmente, se seleccionaron plantas homoplásmicas
de todas las construcciones mediante transferencia de Southern (Fig.
13). En la Tabla 3 aparecen los distintos fragmentos generados por
digestión BglII (en el caso de los vectores pL3) o
HindIII (para los vectores pAF), y que hibridarán con cada
una de las sondas utilizadas en la transferencia de Southern.
Ejemplo
8
En primer lugar se analizaron las cantidades de
HSA acumuladas en hojas de plantas adultas cultivadas en fitotrón,
de las que se extrajo la proteína total (Farran et al, 2002).
Mediante inmunodetección y utilizando como anticuerpo primario un
anti-HSA, se comprobó que las plantas que expresaban
la HSA fusionada a cualquiera de las dos tiorredoxinas presentaba un
patrón de bandas (Fig. 14a, calles 2-4) similar al
observado en la muestras de plantas que expresan la HSA sola (Fig.
14a, calle 1). Se puede observar una gran cantidad de agregados de
alto peso molecular, lo que podría estar indicando la acumulación,
en el cloroplasto, de la proteína de fusión en cuerpos de inclusión,
tal y como ocurre cuando la HSA se expresa sola
(Fernández-San Millán et al, 2003). Dada la
gran cantidad de proteína recombinante observada en la
inmunodetección de las plantas que expresan la fusión de las Trx's
con la HSA, se analizaron las muestras mediante
SDS-PAGE (Fig. 14b). En los extractos de las hojas
que expresan la fusión de las Trx's con la HSA, además de la banda
correspondiente a la subunidad grande de la RuBisCo (aprox. 50 kDa),
se observa una intensa banda teñida con CBB (Coomassie Brillant
Blue) de un tamaño aproximado de 80 kDa (Fig. 14b, calles
1-4). Dicha banda no aparece en los extractos de
hoja de las plantas sin transformar (Fig. 14b, PH) ni en el de las
plantas que expresan la HSA sola (Fig. 14b, calle 5). En estas
últimas sin embargo, se puede visualizar una banda más tenue, de
unos 67 kDa, correspondiente a la HSA. Estos resultados indican que
se acumula una gran cantidad de proteína de fusión TrxHSA en los
cloroplastos de tabaco, incluso a niveles superiores a los máximos
obtenidos en las plantas que expresan la HSA sola (\approx11% de
la proteína total; Fernández-San Millán et
al, 2003). Se sabe que la subunidad grande de la RuBisCo
representa aproximadamente el 50% de la proteína soluble total de la
hoja (Whitney et al, 1999). Si comparamos la intensidad de la
banda de 80 kDa, correspondiente a la proteína de fusión TrxHSA, con
la de la subunidad grande de la RuBisCo, podríamos estimar unos
niveles de expresión de la Trxm/fHSA entre un 15-20%
de la proteína soluble total.
Algo similar ocurre cuando analizamos la fusión
de las Trx con la cardiotrofina-1 humana. Estudios
preliminares sobre la expresión de hCT1 en cloroplastos de tabaco
demostraron que la rhCT1 se acumulaba a altos niveles (\approx3%
de la proteína soluble total) en hojas jóvenes, y se conseguía
duplicar estos niveles sometiendo a las plantas a 32 horas de luz
continua (Farran et al, 2008). Mediante inmunodetección y
utilizando como anticuerpo primario un monoclonal frente a hCT1, se
comprobó que las plantas que expresaban la hCT1 fusionada a
cualquiera de las dos tiorredoxinas (Trxm/fCT1) presentaba mayores
niveles de rhCT1 que las plantas control (CT1), independientemente
de la condición lumínica utilizada (Fig. 15).
Por lo que podemos concluir que la fusión de
cualquiera de las Trx con una proteína heteróloga cualquiera,
proporciona una mayor estabilidad a la proteína de interés, que se
traduce en una mayor acumulación de la misma incluso en hojas
maduras y sin necesidad de someter a las plantas a condiciones de
luz continua.
Ejemplo
9
Los agregados que forman la HSA sola
(Fernández-San Millán et al, 2003) o
fusionada a Trx (ejemplo 8) expresadas en cloroplastos de tabaco,
desaparecen cuando la albúmina es co-expresada con
alguna de las tiorredoxinas (Fig. 14a, calles 5-7),
sugiriendo un posible papel de las Trx en la solubilización de los
cuerpos de inclusión de HSA. Resultados similares han sido descritos
por otros autores utilizando la TrxA bacteriana y en sistemas de
expresión unicelulares (Yuan et al, 2004). Además, parece que
la expresión de la tiorredoxina en forma libre o fusionada tiene
diferente modo de acción sobre la solubilidad de las proteínas
recombinantes, lo que explicaría el hecho de que sólo se consiga la
disolución de los agregados cuando se coexpresan ambas proteínas.
Aunque la formación de cuerpos de inclusión puede suponer por un
lado una disminución de la proteolisis en proteínas recombinantes
(Enfors, 1992), y puede facilitar la purificación de las mismas; por
otro lado requiere un replegamiento in vitro que no siempre
garantiza la conformación nativa de la proteína, supone una
disminución del rendimiento y un encarecimiento del proceso. Por lo
que en muchos casos puede resultar interesante disponer de un
sistema de solubilización para la expresión de proteínas heterólogas
en los cloroplastos de cualquier organismo fotosintético.
Ejemplo
10
Para estudiar la funcionalidad de la rhCT1
producida en cloroplastos de tabaco, se estudió su capacidad para
inducir la fosforilación del factor de transcripción
STAT-3. El ensayo se llevó a cabo en la línea HepG2
de hepatocarcinoma humano. Los extractos de las células estimuladas
se analizaron mediante inmunodetección con anticuerpos específicos
de la forma fosforilada de STAT-3 (Figura 16). Como
control negativo se utilizó extracto proteico de tabaco sin
transformar y como positivo se utilizó hCT1 comercial (PrepoTech)
sola o añadida al extracto crudo de tabaco sin transformar (Fig.
16a). Cuando el bioensayo se realizó con la rhCT1 obtenida a partir
de las distintas plantas transformadas, se vio que ésta era capaz de
inducir la fosforilación de STAT-3
independientemente del extracto de planta utilizado (Fig. 16b). Sin
embargo, dicha fosforilación fue mucho más intensa en el caso de las
células estimuladas con extracto de plantas que expresaban la CT1
fusionada o coexpresada con cualquiera de las tiorredoxinas
cloroplásticas probadas, sugiriendo que las tiorredoxinas pueden
jugar un papel importante en mejorar la bioactividad de la rhCT1
producida en cloroplastos de hojas de tabaco.
Claims (61)
1. Una molécula de ácido nucleico aislada que
codifica una tiorredoxina, seleccionada del grupo que consiste
en:
- a)
- una molécula de ácido nucleico que comprende una secuencia que es idéntica, al menos en un 90%, a la secuencia SEQ ID Nº:7;
- b)
- una molécula de ácido nucleico que comprende una secuencia que codifica un polipéptido cuya secuencia de aminoácidos es idéntica, al menos en un 90%, a la secuencia, SEQ ID Nº: 6 o SEQ ID Nº:8.
2. Molécula de ácido nucleico según la
reivindicación 1, que comprende la secuencia SEQ ID Nº: 7.
3. Polipéptido purificado, codificado por una
molécula de ácido nucleico según la reivindicación 1, cuya secuencia
comprende una secuencia idéntica, al menos en un 90%, a SEQ ID Nº:6
o SEQ ID Nº: 8.
4. Polipéptido según la reivindicación 3, que
comprende la secuencia SEQ ID Nº: 6.
5. Polipéptido según la reivindicación 3, que
comprende la secuencia SEQ ID Nº: 8.
6. Un vector de expresión que comprende una
molécula de ácido nucleico según una cualquiera de las
reivindicaciones 1 ó 2.
7. Vector de expresión según la reivindicación
6, que comprende adicionalmente secuencias de recombinación homologa
que permiten dirigir la inserción en el genoma plastidial de los
fragmentos de ADN comprendidos entre ellas.
8. Vector de expresión según la reivindicación
7, que comprende el fragmento de ácido nucleico codificante
representado por codón de inicio ATG unido a SEQ ID Nº:7.
9. Vector de expresión según la reivindicación
8, en el que el fragmento de ácido nucleico codificante está unido
operativamente a un promotor constitutivo endógeno plastidial y a
una secuencia inductora de la traducción.
10. Vector de expresión según la reivindicación
9, en el que el fragmento de ácido nucleico codificante está unido
operativamente a la secuencia promotora y a la secuencia 5'UTR del
gen psbA plastidial de Nicotiana tabacum.
11. Vector de expresión según la reivindicación
9, en el que el fragmento de ácido nucleico codificante está unido
operativamente al promotor Prrn y a la secuencia del sitio de
unión al ribosoma (RBS) de la región líder del gen 10 del
bacteriófago T7 (G10L).
12. Vector de expresión según una cualquiera de
las reivindicaciones 7 a 11, que es un derivado del plásmido
pL3.
13. Vector de expresión según la reivindicación
12, que es el plásmido pL3psbATRXm.
14. Vector de expresión según la reivindicación
12, que es el plásmido pL3PrmG10LTRXm.
15. Vector según una cualquiera de las
reivindicaciones 8 a 14, en el que al fragmento de ácido nucleico
codificante representado por SEQ ID Nº:7, se le ha suprimido el
codón de terminación de la traducción y se ha fusionado en 3' con la
secuencia codificante de una proteína heteróloga, de forma que ambas
secuencias codificantes están bajo el control transcripcional del
mismo promotor constitutivo plastidial.
16. Vector según la reivindicación 15, que
comprende adicionalmente una secuencia de reconocimiento de una
proteinasa entre el fragmento de ácido nucleico codificante
representado por SEQ ID Nº:7, y la secuencia codificante de la
proteína heteróloga.
17. Vector según la reivindicación 16, en el que
la proteinasa es la enteroquinasa.
18. Vector según una cualquiera de las
reivindicaciones 15-17, en el que la secuencia
codificante adicional codifica la albúmina sérica humana (HSA).
19. Vector según la reivindicación 18, que es un
derivado del plásmido pAF.
20. Vector según la reivindicación 19, que es el
plásmido pAFpsbATRXm-EK-HSA.
21. Vector según una cualquiera de las
reivindicaciones 15-17, en el que la secuencia
codificante de la proteína heteróloga codifica la
cardiotrofina-1 humana (hCT1).
22. Vector según la reivindicación 21, que es un
derivado del plásmido pL3.
23. Vector según la reivindicación 22, que es el
plásmido pL3psbATRXm-EK-hCT1.
24. Vector según una cualquiera de las
reivindicaciones 8 a 14, que comprende la secuencia codificante de
una proteína heteróloga adicional unida operativamente a un promotor
constitutivo endógeno plastidial y a una secuencia inductora de la
traducción, independientes del promotor y la secuencia inductora de
la traducción unidos operativamente a un fragmento representado por
codón de inicio ATG unido a SEQ ID Nº:7.
25. Vector según la reivindicación 24, que
comprende el codón de inicio ATG unido SEQ ID Nº 7 que está unida
operativamente al promotor Prrn y a la secuencia del sitio de
unión al ribosoma (RBS) de la región líder del gen 10 del
bacteriófago T7 (G10L), y una secuencia codificante de una proteína
heteróloga, unida operativamente al promotor PpsbA de N.
tabacum.
26. Vector según una cualquiera de las
reivindicaciones 24 ó 25, en el que la secuencia codificante de la
proteína heteróloga codifica la albúmina sérica humana (HSA).
27. Vector según la reivindicación 26, que es un
derivado del plásmido pAF.
28. Vector según la reivindicación 27 que es el
plásmido pAFpsbAHSA::PrrnG10LTRXm.
29. Vector según una cualquiera de las
reivindicaciones 24 ó 25, en el que la secuencia de la proteína
heteróloga codifica cardiotrofina-1 humana
(hCT1).
30. Vector según la reivindicación 29, que es un
derivado del plásmido pL3.
31. Vector según la reivindicación 30, que es el
plásmido pL3PrrnG10LTRXm::psbAhCT1.
32. Un organismo hospedador transformado con un
vector plastidial según una cualquiera de las reivindicaciones
7-31.
33. Organismo hospedador según la reivindicación
32, siendo dicho organismo la bacteria E. coli.
34. Organismo hospedador según la reivindicación
33, en el que el vector es el descrito en las reivindicaciones 13 ó
14.
35. Organismo hospedador según la reivindicación
32, que consiste en una planta transgénica, sus semillas o material
de propagación, caracterizada por que su genoma plastidial
lleva integrada la secuencia comprendida entre las secuencias de
recombinación homologa de los vectores según una cualquiera de las
reivindicaciones 7-31.
36. Planta transgénica según la reivindicación
35, cuyo genoma plastidial lleva integrada la secuencia comprendida
entre las secuencias de recombinación homologa de los vectores de
una cualquiera de las reivindicaciones 7-14.
37. Planta transgénica según la reivindicación
36, cuyo genoma plastidial lleva integrada la secuencia comprendida
entre las secuencias de recombinación homologa de los vectores de
una cualquiera de las reivindicaciones 13 ó 14.
38. Planta transgénica según la reivindicación
35, cuyo genoma plastidial lleva integrada la secuencia comprendida
entre las secuencias de recombinación homologa de los vectores de
una cualquiera de las reivindicaciones 15 a 23.
39. Planta transgénica según la reivindicación
38, cuyo genoma plastidial lleva integrada la secuencia comprendida
entre las secuencias de recombinación homologa de los vectores de
una cualquiera de las reivindicaciones 18 a 20.
40. Planta transgénica según la reivindicación
38, cuyo genoma plastidial lleva integrada la secuencia comprendida
entre las secuencias de recombinación homologa de los vectores de
una cualquiera de las reivindicaciones 21 a 23.
41. Planta transgénica según la reivindicación
35, cuyo genoma plastidial lleva integrada la secuencia comprendida
entre las secuencias de recombinación homologa de los vectores de
una cualquiera de las reivindicaciones 24 a 31.
42. Planta transgénica según la reivindicación
41, cuyo genoma plastidial lleva integrada la secuencia comprendida
entre las secuencias de recombinación homologa de los vectores de
una cualquiera de las reivindicaciones 26 a 28.
43. Planta transgénica según la reivindicación
41, cuyo genoma plastidial lleva integrada la secuencia comprendida
entre las secuencias de recombinación homologa de los vectores de
una cualquiera de las reivindicaciones 29 a 31.
44. Planta transgénica según una cualquiera de
las reivindicaciones 35 a 43, perteneciente a las especies
Nicotiana tabacum o Solanum tuberosum.
45. Método de obtención de las plantas
transgénicas de las reivindicaciones 35 a 44, que comprende la
integración de un vector de una cualquiera de las reivindicaciones
7-31, por cualquier medio apropiado, en el plastoma
de una planta.
46. Método según la reivindicación 45, que
comprende las siguientes etapas:
- a)
- bombardeo de hojas cultivadas in vitro con una pistola de genes cargada con el vector de una cualquiera de las reivindicaciones 7 a 31;
- b)
- obtención de los primeros transformantes regenerados en medio de cultivo suplementado con un antibiótico frente al cual confiera resistencia el vector bombardeado;
- c)
- realización de, al menos, un segundo ciclo de regeneración en medio selectivo con el mismo antibiótico, para obtener plantas homoplásmicas;
- d)
- selección de las plantas homoplásmicas mediante cualquier método de selección de ADN por tamaños.
47. Método según una cualquiera de las
reivindicaciones 45 ó 46, en el que, las hojas proceden de las
especies Nicotiana tabacum o Solanum tuberosum y el
antibiótico utilizado es espectinomicina.
48. Procedimiento para sobreexpresar la
tiorredoxina m plastidial recombinante representada mediante SEQ ID
Nº:8, o proteínas heterólogas fusionadas o coexpresadas con la
misma, que comprende las siguientes etapas:
- a)
- Obtener un vector de expresión plastidial recombinante que comprende el fragmento de ácido nucleico codificante representado por codón de inicio ATG unido a SEQ ID Nº:7 y, adicionalmente, secuencias de recombinación homologa que permiten dirigir la inserción en el genoma plastidial de los fragmentos comprendidos entre ellas, un promotor constitutivo endógeno plastidial y una secuencia inductora de la traducción;
- b)
- Transformar un organismo hospedador bacteriano o una planta con el vector de la etapa a).
49. Procedimiento según la reivindicación 48,
para sobreexpresar tiorredoxina m plastidial recombinante, en el que
el vector de la etapa a) es el vector de expresión descrito en las
reivindicaciones 8-14.
50. Procedimiento según la reivindicación 49, en
el que el hospedador de la etapa b) es la bacteria E. coli
descrita en la reivindicación 34.
51. Procedimiento según la reivindicación 49, en
el que el hospedador de la etapa b) es la planta transgénica de la
reivindicación 37.
52. Producto enzimático recombinante cuya
secuencia está representada por SEQ ID Nº:8, obtenido a partir del
hospedador de una cualquiera de las reivindicaciones 34 ó 37,
caracterizado por que se obtiene en forma soluble y activa y
tiene actividad reductora.
53. Procedimiento según la reivindicación 48,
para sobreexpresar proteínas heterólogas fusionadas con tiorredoxina
m recombinante, en el que:
- a)
- el vector es un vector de fusión en el que al fragmento de ácido nucleico codificante representado por codón de inicio ATG unido SEQ ID Nº: 7, se le ha suprimido el codón de terminación de la traducción y se ha fusionado en 3' con la secuencia codificante de una proteína heteróloga, de forma que ambas secuencias codificantes están bajo el control transcripcional del mismo promotor constitutivo plastidial;
- b)
- el organismo hospedador es una planta transgénica transformada con el vector de la etapa a).
54. Procedimiento según la reivindicación 53, en
el que:
- a)
- el vector es el que se describe en las reivindicaciones 15-23;
- b)
- la planta transgénica es la que se describe en las reivindicaciones 38-40.
55. Procedimiento según la reivindicación 54,
para sobreexpresar albúmina sérica humana o
cardiotrofina-1 humana, en el que la planta
transgénica es la que se describe en las reivindicaciones 39 ó
40.
56. Procedimiento según la reivindicación 48,
para sobreexpresar proteínas heterólogas coexpresadas con
tiorredoxinas plastidiales m, en el que:
- a)
- el vector es el que se describe en las reivindicaciones 24-31;
- b)
- el organismo hospedador es la planta transgénica de las reivindicaciones 41-43.
57. Procedimiento según la reivindicación 56,
para sobreexpresar albúmina sérica humana o
cardiotrofina-1 humana, en el que la planta
transgénica es la que se describe en las reivindicaciones 42 ó
43.
58. Uso de la planta transgénica de una
cualquiera de las reivindicaciones 40 ó 43, para la producción de
proteína cardiotrofina-1 humana recombinante de
bioactividad incrementada en al menos el doble respecto a la
proteína cardiotrofina-1 humana expresada sola en
cloroplastos.
59. Composición farmacéutica que comprende la
proteína recombinante obtenida a partir de la planta transgénica de
una cualquiera de las reivindicaciones 40 ó 43, junto con un
adyuvante y/o un vehículo farmacéuticamente aceptable.
60. Método de producción de proteínas
heterólogas biológicamente activas y/o en su conformación nativa,
que comprende:
- a)
- cultivar las plantas transgénicas de una cualquiera de las reivindicaciones 41-43 en condiciones apropiadas para su crecimiento;
- b)
- separar las partes verdes de la planta;
- c)
- purificar la proteína heteróloga utilizando técnicas de cromatografía de afinidad, de separación por tamaños con un patrón o de intercambio iónico.
61. Método según la reivindicación 60, en el que
la planta transgénica es la de la reivindicación 42, para producir
albúmina sérica humana recombinante en forma soluble y conformación
nativa.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES200801935A ES2354537B1 (es) | 2008-06-27 | 2008-06-27 | Tiorredoxinas plastidiales: sobreexpresión y aplicaciones biotecnológicas. |
PCT/ES2009/070253 WO2009156545A1 (es) | 2008-06-27 | 2009-06-25 | Tiorredoxinas plastidiales: sobreexpresión y aplicaciones biotecnológicas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES200801935A ES2354537B1 (es) | 2008-06-27 | 2008-06-27 | Tiorredoxinas plastidiales: sobreexpresión y aplicaciones biotecnológicas. |
Publications (2)
Publication Number | Publication Date |
---|---|
ES2354537A1 true ES2354537A1 (es) | 2011-03-16 |
ES2354537B1 ES2354537B1 (es) | 2012-01-23 |
Family
ID=41444064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES200801935A Expired - Fee Related ES2354537B1 (es) | 2008-06-27 | 2008-06-27 | Tiorredoxinas plastidiales: sobreexpresión y aplicaciones biotecnológicas. |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2354537B1 (es) |
WO (1) | WO2009156545A1 (es) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109563519A (zh) * | 2016-06-29 | 2019-04-02 | 本森希尔生物系统股份有限公司 | 使用硫氧还蛋白序列增加植物生长和产量 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002050289A1 (en) * | 2000-12-19 | 2002-06-27 | Sembiosys Genetics, Inc. | Methods for the production of multimeric proteins, and related compositions |
WO2005011367A1 (en) * | 2003-07-03 | 2005-02-10 | University Of Central Florida | A chloroplast transgenic approach to express and purify human serum albumin, a protein highly susceptible to proteolytic degradation |
EP1609867A1 (en) * | 2004-06-25 | 2005-12-28 | Feng Chia University | Nucleic acid construct, expression vector and method for enhancing the production of recombinant protein |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3092904B2 (ja) * | 1995-10-13 | 2000-09-25 | 株式会社エイチ・エス・ピー研究所 | 細菌により可溶性蛋白質を生産する方法 |
EP1109910A2 (en) * | 1998-09-08 | 2001-06-27 | E.I. Du Pont De Nemours And Company | Thioredoxin h homologs |
US20080274143A1 (en) * | 2005-05-27 | 2008-11-06 | Henry Daniell | Chloroplasts Engineering to Express Pharmaceutical Proteins |
-
2008
- 2008-06-27 ES ES200801935A patent/ES2354537B1/es not_active Expired - Fee Related
-
2009
- 2009-06-25 WO PCT/ES2009/070253 patent/WO2009156545A1/es active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002050289A1 (en) * | 2000-12-19 | 2002-06-27 | Sembiosys Genetics, Inc. | Methods for the production of multimeric proteins, and related compositions |
WO2005011367A1 (en) * | 2003-07-03 | 2005-02-10 | University Of Central Florida | A chloroplast transgenic approach to express and purify human serum albumin, a protein highly susceptible to proteolytic degradation |
EP1609867A1 (en) * | 2004-06-25 | 2005-12-28 | Feng Chia University | Nucleic acid construct, expression vector and method for enhancing the production of recombinant protein |
Non-Patent Citations (3)
Title |
---|
BASE DE DATOS EMBL (En línea) , Opperman, C.H. et al. "Tobacco Genome Initiative (TGI) Nicotiana benthamiana ESTs". Recuperada de EBI, No. de acceso CN745656, en http://srs.ebi.ac. uk/srsbin/cgi-bin/wgetz?-e+([emblidacc- id:CN745656]>embl)|[embl-acc:CN745656]+-vn+2+- noSession. 21.05.2004 * |
BASE DE DATOS UNIPROT (En línea), Wang, Y.C. et al. "Cloning of thioredoxin gene (TRX) from Limonium bicolor and sequencing analysis". Recuperada de EBI, No. de acceso A7LNX7_9CARY, en http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[UNIPROT-acc:A7LNX7]+-vn+2. 11.09.2007 * |
Farran, I. et al. "High-density seedling expresión system for the production of bioactive human cardiotrophin-1, a potencial therapeutic cytokine, in transgenic tobacco chloroplasts". Plant Biotechnol. J. Volume 6 Issue 5, Pages 516 - 527. DOI 10.1111/j.1467-7652.2008.00334.x. Disponible en Wiley InterScience. http://www.blackwell-synergy.com/. doi/abs/10.1111/j.1467-7652.2008.00334.x. 01.04.2008 Todo el documento * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109563519A (zh) * | 2016-06-29 | 2019-04-02 | 本森希尔生物系统股份有限公司 | 使用硫氧还蛋白序列增加植物生长和产量 |
Also Published As
Publication number | Publication date |
---|---|
ES2354537B1 (es) | 2012-01-23 |
WO2009156545A1 (es) | 2009-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5360727B2 (ja) | 細菌毒素ワクチン | |
JPS63500425A (ja) | 分子ファ−ミング | |
Lim et al. | Production of biologically active human thioredoxin 1 protein in lettuce chloroplasts | |
JP5279089B2 (ja) | ブタ浮腫病ワクチン | |
JP5519192B2 (ja) | 種子のタンパク質含量を増産させる遺伝子及びその利用方法 | |
Sanz‐Barrio et al. | Tobacco plastidial thioredoxins as modulators of recombinant protein production in transgenic chloroplasts | |
US20160160228A1 (en) | Transgenic aloe plants for production of proteins and related methods | |
Farran et al. | High‐density seedling expression system for the production of bioactive human cardiotrophin‐1, a potential therapeutic cytokine, in transgenic tobacco chloroplasts | |
US11773399B2 (en) | Methods and compositions for enhancing polypeptide production | |
US20070150976A1 (en) | High-level expression of fusion polypeptides in plant seeds utilizing seed-storage proteins as fusion carriers | |
ES2354537B1 (es) | Tiorredoxinas plastidiales: sobreexpresión y aplicaciones biotecnológicas. | |
US7554006B2 (en) | Commercial production of insulin and insulin-like protein in plants | |
US20070067862A1 (en) | Chloroplast transgenic approach to express and purify human serum albumin, a protein highly susceptible to proteolytic degradation | |
EP1551985A2 (en) | Commercial use of arabidopsis for production of human and animal therapeutic and diagnostic proteins | |
ES2311116T3 (es) | Transformacion de plastidios utilizando vectores modulares. | |
EP1527184B1 (en) | Method of plastid transformation in asteraceae, vector for use therein and plants thus obtained | |
ES2384777B1 (es) | Tiorredoxinas plastidiales: sobreexpresión y aplicaciones biotecnológicas. | |
Bagheri et al. | Expression of human interferon gamma in Brassica napus seeds | |
Góra-Sochacka et al. | Recombinant mouse granulocyte–macrophage colony-stimulating factor is glycosylated in transgenic tobacco and maintains its biological activity | |
US10041080B2 (en) | Modified promoter sequence and application thereof | |
LaManna | Plastid Transformation Biotechnology: Increasing Efficiency and Expanding Application | |
Shekhawat et al. | Sucrose-inducible expression of hepatitis B surface antigen using potato granule-bound starch synthase promoter | |
Farrán Blanch et al. | High-density seedling expression system for the production of bioactive human cardiotrophin-1, a potential therapeutic cytokine, in transgenic tobacco chloroplasts | |
Ancín Rípodas et al. | Functional improvement of human cardiotrophin 1 produced in tobacco chloroplasts by co-expression with plastid thioredoxin m | |
Tamás | Molecular farming, using the cereal endosperm as bioreactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FG2A | Definitive protection |
Ref document number: 2354537 Country of ref document: ES Kind code of ref document: B1 Effective date: 20120123 |
|
FD2A | Announcement of lapse in spain |
Effective date: 20210929 |