ES2353704B1 - METHOD OF OBTAINING A NANO-STRUCTURED COMPOSITE MATERIAL OF CERAMIC AND MECHANIZABLE MATRIX BY ELECTROEROSION, AND OBTAINABLE PRODUCT PORDICHO METHOD - Google Patents

METHOD OF OBTAINING A NANO-STRUCTURED COMPOSITE MATERIAL OF CERAMIC AND MECHANIZABLE MATRIX BY ELECTROEROSION, AND OBTAINABLE PRODUCT PORDICHO METHOD Download PDF

Info

Publication number
ES2353704B1
ES2353704B1 ES200930551A ES200930551A ES2353704B1 ES 2353704 B1 ES2353704 B1 ES 2353704B1 ES 200930551 A ES200930551 A ES 200930551A ES 200930551 A ES200930551 A ES 200930551A ES 2353704 B1 ES2353704 B1 ES 2353704B1
Authority
ES
Spain
Prior art keywords
ceramic
metal
obtaining
composite material
edm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
ES200930551A
Other languages
Spanish (es)
Other versions
ES2353704A1 (en
Inventor
Carlos Pecharroman Garcia
Ramon Torrecillas San Millan
Jose Serafin Moya Corral
Luis Antonio Diaz Rodriguez
Gustavo Mata Osoro
Teresa Rodriguez Suarez
Carlos Fidel Gutierrez Gonzalez
Sonia Lopez-Esteban
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to ES200930551A priority Critical patent/ES2353704B1/en
Priority to PCT/ES2010/070535 priority patent/WO2011012765A2/en
Publication of ES2353704A1 publication Critical patent/ES2353704A1/en
Application granted granted Critical
Publication of ES2353704B1 publication Critical patent/ES2353704B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • C04B35/119Composites with zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/763Spinel structure AB2O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

Método de obtención de un material compuesto nanoestructurado de matriz cerámica y mecanizable por electroerosión, y producto obtenible por dicho método.#Permite obtener un material compuesto cerámica/semiconductor/metal nanoestructurado y mecanizable por electroerosión (EDM). Se utilizan como materiales de partida: un material cerámico de tamaño de partícula nanométrico, un material semiconductor de tamaño de partícula nanométrico, y una sal metálica, empleada como precursor del correspondiente metal. El método comprende las etapas de: a) preparación de un material en polvo de cerámica/óxido metálico mediante calcinación de un polvo seco obtenido a partir de una suspensión homogénea del material cerámico y la sal metálica precursora de metal; b) adición al polvo resultante de la etapa anterior del material semiconductor; c) molienda, homogeneización, secado y tamizado del polvo resultante de la etapa anterior; d) tratamiento térmico en atmósfera reductora del polvo resultante de la etapa anterior, y e) conformado y sinterizado del polvo de la etapa anterior.Method of obtaining a nanostructured composite material of ceramic matrix and machinable by EDM, and product obtainable by said method. # It allows to obtain a composite ceramic material / semiconductor / metal nanostructured and machinable by EDM. The starting materials are: a nanometric particle size ceramic material, a nanometric particle size semiconductor material, and a metal salt, used as a precursor to the corresponding metal. The method comprises the steps of: a) preparation of a ceramic powder / metal oxide material by calcining a dry powder obtained from a homogeneous suspension of the ceramic material and the metal precursor metal salt; b) addition to the powder resulting from the previous stage of the semiconductor material; c) grinding, homogenization, drying and sieving of the powder resulting from the previous stage; d) heat treatment in a reducing atmosphere of the powder resulting from the previous stage, and e) forming and sintering of the powder from the previous stage.

Description

Método de obtención de un material compuesto nanoestructurado de matriz cerámica y mecanizable por electroerosión, y producto obtenible por dicho método. Method of obtaining a nanostructured composite material of ceramic matrix and machinable by EDM, and product obtainable by said method.

Objeto de la invención Object of the invention

La presente invención se puede incluir dentro del campo técnico de los materiales compuestos de matriz cerámica, en concreto de los materiales de matriz cerámica nanoestructurados. The present invention can be included within the technical field of ceramic matrix composite materials, in particular nanostructured ceramic matrix materials.

El objeto de la invención trata de un procedimiento de obtención de un material compuesto nanoestructurado de matriz cerámica que es mecanizable por el método de electroerosión. La invención tiene asimismo por objeto el material compuesto obtenible por dicho método. The object of the invention is a process for obtaining a nanostructured composite material of ceramic matrix that is machinable by the EDM method. The object of the invention is also the composite material obtainable by said method.

La invención tiene su aplicación en diversos campos, entre los que se encuentran electrodos, herramientas (de corte, de extrusión, de prensado, de mecanizado de ultraprecisión, etc.), frenos de alta resistencia al desgaste, componentes electrónicos, piezas de relojería, etc. The invention has its application in various fields, among which are electrodes, tools (cutting, extrusion, pressing, ultra-precision machining, etc.), high wear resistance brakes, electronic components, watch parts, etc.

Antecedentes de la invención Background of the invention

Los materiales cerámicos encuentran en la actualidad aplicaciones técnicas en múltiples sectores gracias a sus particulares propiedades físicas y químicas, tales como dureza, tenacidad, resistencia al choque térmico, bajo coeficiente de expansión térmica, alta resistencia al desgaste, alta conductividad térmica, resistencia a ácidos, etc. Ceramic materials currently find technical applications in multiple sectors thanks to their particular physical and chemical properties, such as hardness, toughness, resistance to thermal shock, low coefficient of thermal expansion, high wear resistance, high thermal conductivity, acid resistance , etc.

Una estrategia común para obtener materiales con propiedades mecánicas superiores respecto a las matrices cerámicas monolíticas es la incorporación a las mismas de agentes reforzantes (partículas, fibras, etc.), dando lugar a materiales compuestos de matriz cerámica. Asimismo, en el caso de que las partículas posean propiedades funcionales (magnéticas, eléctricas, etc.), los correspondientes materiales compuestos pueden, además, adquirir estas nuevas propiedades funcionales, convirtiéndose en materiales multifuncionales. En concreto, la adición de partículas conductoras y/o semiconductoras (carburos, nitruros, boruros, etc.) a matrices cerámicas aislantes confiere, por un lado, alta conductividad eléctrica, lo que permite al material compuesto sustituir componentes metálicos en dispositivos electrónicos convencionales, y, por otro, puede reforzar la matriz cerámica por diferentes mecanismos (microagrietamiento, deflexión de grieta, tensiones residuales, puenteo de grieta, etc.), alcanzando valores de tenacidad muy superiores a los obtenidos para las cerámicas monolíticas [J.S. Moya, S. Lopez-Esteban, C. Pecharroman “The challenge of ceramic/metal microcomposites and nanocomposites”, Progress in Materials Science, 52 (2007) 1017-1090]. A common strategy to obtain materials with superior mechanical properties with respect to monolithic ceramic matrices is the incorporation of reinforcing agents (particles, fibers, etc.), giving rise to composite materials of ceramic matrix. Also, in the event that the particles possess functional properties (magnetic, electrical, etc.), the corresponding composite materials can also acquire these new functional properties, becoming multifunctional materials. Specifically, the addition of conductive and / or semiconductor particles (carbides, nitrides, borides, etc.) to insulating ceramic matrices confers, on the one hand, high electrical conductivity, which allows the composite material to replace metallic components in conventional electronic devices, and, on the other, it can reinforce the ceramic matrix by different mechanisms (micro-cracking, crack fl exion, residual tensions, crack bridging, etc.), reaching tenacity values much higher than those obtained for monolithic ceramics [JS Moya, S. Lopez-Esteban, C. Pecharroman "The challenge of ceramic / metal microcomposites and nanocomposites", Progress in Materials Science, 52 (2007) 1017-1090].

Sin embargo, las propiedades mecánicas tan excepcionales de los materiales cerámicos en general, y de los materiales de matriz cerámica nanoestructurados en particular, pueden llegar a presentar serios inconvenientes que pueden incrementar notablemente sus costes de producción. Tal es el caso de los materiales con alta dureza, para los que la dificultad de mecanizado por los métodos tradicionales aumenta considerablemente y, por consiguiente, también se incrementa el coste del proceso y del producto final. Asimismo, el acabado con formas intrincadas en estos materiales requiere tolerancias que son, a menudo, difíciles de alcanzar con técnicas de mecanizado tradicionales. However, the exceptional mechanical properties of ceramic materials in general, and nanostructured ceramic matrix materials in particular, can present serious problems that can significantly increase their production costs. Such is the case of materials with high hardness, for which the difficulty of machining by traditional methods increases considerably and, consequently, also increases the cost of the process and the final product. Likewise, finishing with intricate shapes in these materials requires tolerances that are often difficult to achieve with traditional machining techniques.

Esta situación ha favorecido el desarrollo de métodos más sofisticados para el mecanizado de piezas con formas complejas que eviten el contacto mecánico herramienta/pieza, como es el caso del mecanizado por electroerosión o descarga eléctrica (Electrical Discharge Machining, EDM) [W. König, D.F. Dauw, G. Levy, U. Panten. “EDM-future steps towards the machining of ceramics”. Ann. CIRP 1988; 37:623]. Esta técnica supera con éxito la mayoría de las dificultades que plantean estos materiales, evitando los altos costes de las técnicas tradicionales. This situation has favored the development of more sophisticated methods for the machining of parts with complex shapes that avoid mechanical tool / part contact, as is the case of electro-erosion or electrical discharge machining (Electrical Discharge Machining, EDM) [W. König, D.F. Dauw, G. Levy, U. Panten. "EDM-future steps towards the machining of ceramics". Ann. CIRP 1988; 37: 623]. This technique successfully overcomes most of the difficulties posed by these materials, avoiding the high costs of traditional techniques.

El proceso de electroerosión consiste, básicamente, en el establecimiento de un arco de descarga entre el hilo conductor, que propicia el mecanizado propiamente dicho, y la pieza a mecanizar, por encima del voltaje de ruptura del dieléctrico en el que se sumerge la pieza (aceite o agua). Una vez iniciada la descarga, se forma un plasma en el frente de mecanizado que, al enfriarse, se deposita sobre la superficie fresca producida por el corte, formando un magma vítreo constituido por los óxidos correspondientes. En el caso particular de un material compuesto cerámica/semiconductor, el depósito formado está constituido por una fase vítrea oxídica caracterizada por poseer un voltaje de ruptura superior al inicial. Sin embargo, en el caso de los materiales compuestos cerámica/semiconductor/metal, el papel de las nanopartículas de metal consiste en inducir una bajada del voltaje de ruptura en la capa recién depositada durante la descarga, permitiendo que se desarrolle el proceso de electroerosión de forma continua. No se han encontrado referencias en la literatura de polvos nanoestructurados cerámico/metal con adición de nanopartículas electroconductivas semiconductoras. The EDM process basically consists in the establishment of a discharge arc between the conductive wire, which propitiates the machining itself, and the piece to be machined, above the breaking voltage of the dielectric in which the part is submerged ( oil or water) Once the discharge begins, a plasma is formed on the machining front which, when cooled, is deposited on the fresh surface produced by the cut, forming a vitreous magma consisting of the corresponding oxides. In the particular case of a ceramic / semiconductor composite material, the deposit formed is constituted by an oxidic glassy phase characterized by having a breaking voltage higher than the initial one. However, in the case of ceramic / semiconductor / metal composite materials, the role of the metal nanoparticles is to induce a drop in the breakdown voltage in the newly deposited layer during discharge, allowing the EDM process to develop. Continuous form. No references have been found in the literature of ceramic / metal nanostructured powders with the addition of semiconductor electroconductive nanoparticles.

La técnica EDM se puede aplicar con éxito a materiales cerámicos tanto oxídicos como no oxídicos, siempre que estos satisfagan una serie de requisitos, entre los cuales se encuentra, principalmente, que la resistividad eléctrica sea menor de 100-300 Ω·cm. Puede darse el caso de un material compuesto cerámica/semiconductor que no sea electromecanizable a pesar de cumplir con el mencionado requisito de baja resistividad. Esto es especialmente relevante en materiales compuestos de matriz cerámica con partículas semiconductoras que presentan baja resistencia eléctrica y muy altos valores de dureza. El problema técnico que se plantea consiste en conferir al material nanoestructurado The EDM technique can be successfully applied to both oxidic and non-oxidic ceramic materials, provided that they satisfy a series of requirements, among which it is mainly found that the electrical resistivity is less than 100-300 Ω · cm. It may be the case of a ceramic / semiconductor composite material that is not electromechanizable despite complying with the aforementioned low resistivity requirement. This is especially relevant in ceramic matrix composite materials with semiconductor particles that have low electrical resistance and very high hardness values. The technical problem that arises is to confer on the nanostructured material

cerámico/semiconductor que no es electromecanizable la propiedad de serlo sin perjuicio de sus elevadas propiedades mecánicas. ceramic / semiconductor that is not electromechanizable the property of being without prejudice to its high mechanical properties.

Descripción de la invención Description of the invention

La presente invención resuelve el problema técnico planteado mediante un procedimiento de obtención de un material nanoestructurado de matriz cerámica, de composición cerámica/semiconductor/metal, por sinterización, que es mecanizable por electroerosión. The present invention solves the technical problem posed by a method of obtaining a nanostructured ceramic matrix material, of ceramic / semiconductor / metal composition, by sintering, which is machinable by EDM.

Tal como se acaba de adelantar, un objeto de la invención lo constituye un procedimiento de elaboración de un material cerámico nanoestructurado cerámica/semiconductor/metal, que resulte ser mecanizable por electroerosión. As has just been advanced, an object of the invention is a process for manufacturing a ceramic / semiconductor / metal nanostructured ceramic material, which turns out to be machinable by EDM.

Un segundo objeto de la invención es el propio material compuesto obtenible por medio del procedimiento anterior. A second object of the invention is the composite material itself obtainable by means of the above procedure.

A continuación, se describe el procedimiento de la invención: Next, the process of the invention is described:

Los materiales de partida son: The starting materials are:

--
un material cerámico en polvo de tamaño de partícula nanométrico, denominado matriz cerámica; a powder ceramic material of nanometric particle size, called ceramic matrix;

--
un material semiconductor de tamaño de partícula nanométrico, y a semiconductor material of nanometric particle size, and

--
una sal metálica, empleada como precursor del metal correspondiente. a metal salt, used as a precursor of the corresponding metal.

Es teóricamente razonable asumir que los resultados de la invención son generalmente extrapolares con independencia de la matriz cerámica empleada. Sin embargo, como ejemplos preferentes de materiales cerámicos se seleccionan Al2O3 (alúmina), Al6Si2O13 (mullita), ZrO2 (circona), MgAl2O4 (espinela de alúmina y magnesia) y YAG (granate de aluminio e itrio). Esta selección preferente se justifica porque incluye diversos tipos distintos de cerámicas técnicas de altas prestaciones, de amplia difusión y variadas aplicaciones, y que presentan valores muy altos de dureza, por lo que son especialmente interesantes para los propósitos de la invención. It is theoretically reasonable to assume that the results of the invention are generally extrapolar regardless of the ceramic matrix employed. However, preferred examples of ceramic materials are Al2O3 (alumina), Al6Si2O13 (mullite), ZrO2 (zirconia), MgAl2O4 (alumina and magnesium spinel) and YAG (aluminum and yttrium garnet). This preferred selection is justified because it includes several different types of high performance technical ceramics, of wide diffusion and varied applications, and which have very high hardness values, so they are especially interesting for the purposes of the invention.

Asimismo, la invención resulta aplicable independientemente del material semiconductor empleado. No obstante, resultan preferentes los semiconductores tales como carburos, nitruros y boruros metálicos, puesto que confieren valores elevados de propiedades mecánicas (dureza, fundamentalmente). Como ejemplos particulares de semiconductores se seleccionan SiC, TiC, TiN, TiB2. Likewise, the invention is applicable independently of the semiconductor material used. However, semiconductors such as carbides, nitrides and metal borides are preferred, since they confer high values of mechanical properties (hardness, essentially). As particular examples of semiconductors, SiC, TiC, TiN, TiB2 are selected.

En cuanto a los metales, idénticas consideraciones son razonables. La invención es aplicable independientemente del metal empleado. Sin embargo, se seleccionan preferentemente metales con punto de fusión superior a 1400ºC, como son W, Ni, Mo, Co. As for metals, identical considerations are reasonable. The invention is applicable independently of the metal used. However, metals with a melting point greater than 1400 ° C are preferably selected, such as W, Ni, Mo, Co.

Aplicando conocimientos teóricos relativos al concepto de percolación, se puede considerar como valor máximo de proporción de metal un 16% en volumen, puesto que es el valor en el que el material compuesto adquiriría un carácter conductor. Sin embargo, por consideraciones prácticas se toma como valor máximo de proporción de metal el 10%, puesto que ciertas propiedades mecánicas -tales como la dureza-se ven afectadas de manera negativa por proporciones de metal superiores. La proporción mínima de metal empleado ha sido del 1.9% en volumen, si bien no existen razones para suponer que la invención no pueda arrojar resultados positivos para cualquier valor no nulo de presencia de metal. Por tanto, se pueden considerar válidas concentraciones de metal superiores al 0%, no siendo necesario que sean superiores al 16% en volumen. No obstante, aunque se presupone que la invención presenta efecto positivo para proporciones arbitrariamente pequeñas de metal, se precisa elegir un valor mínimo preferido de dichas proporciones a partir del 1% en volumen, puesto que para valores inferiores los conocimientos teóricos permiten suponer razonadamente que las propiedades mecánicas interesantes se verían negativamente afectadas. Applying theoretical knowledge related to the concept of percolation, a maximum value of 16% by volume of metal can be considered, since it is the value at which the composite material would acquire a conductive character. However, due to practical considerations, a maximum metal proportion value of 10% is taken, since certain mechanical properties - such as hardness - are negatively affected by higher metal proportions. The minimum proportion of metal used has been 1.9% by volume, although there are no reasons to assume that the invention cannot yield positive results for any non-zero value of metal presence. Therefore, metal concentrations higher than 0% can be considered valid, not being necessary to exceed 16% by volume. However, although it is assumed that the invention has a positive effect for arbitrarily small proportions of metal, it is necessary to choose a preferred minimum value of said proportions from 1% by volume, since for lower values the theoretical knowledge allows to reasonably assume that the Interesting mechanical properties would be negatively affected.

La primera etapa del procedimiento de la invención trata de la preparación de un material en polvo cerámica/óxido metálico. En primer lugar, la sal metálica se disuelve en medio líquido hasta alcanzar la homogeneización. Seguidamente, se añade el polvo cerámico, obteniéndose una suspensión de material cerámico y sal precursora de metal, manteniéndose en agitación hasta la homogeneización total. A continuación, la suspensión homogénea se seca, procediéndose después a su calcinación, con lo que se obtiene un material en polvo de cerámica/óxido metálico. The first stage of the process of the invention deals with the preparation of a ceramic powder / metal oxide material. First, the metal salt dissolves in liquid medium until homogenization is achieved. Then, the ceramic powder is added, obtaining a suspension of ceramic material and metal precursor salt, while stirring until total homogenization. Then, the homogeneous suspension is dried, then calcined, whereby a ceramic / metal oxide powder material is obtained.

Mediante la segunda y última etapa del procedimiento de la invención, se transforma el material de cerámica/óxido metálico en un material de cerámica/semiconductor/metal. Para ello, en primer lugar se añade el material semiconductor de tamaño de partícula nanométrico a la mezcla de polvo cerámica/óxido metálico y se muele y homogeneiza. A continuación, se deja secar y se tamiza, tras lo cual se somete el producto resultante a un tratamiento térmico en atmósfera reductora, obteniendo el compuesto final en polvo cerámica/semiconductor/metal. El metal y el semiconductor se encuentran en una proporción tal que se supera el punto de percolación del compuesto final. Through the second and final stage of the process of the invention, the ceramic / metal oxide material is transformed into a ceramic / semiconductor / metal material. To do this, the nanometric particle size semiconductor material is first added to the ceramic powder / metal oxide mixture and ground and homogenized. It is then allowed to dry and sieved, after which the resulting product is subjected to a heat treatment in a reducing atmosphere, obtaining the final ceramic / semiconductor / metal powder compound. The metal and the semiconductor are in such a proportion that the percolation point of the final compound is exceeded.

Preferentemente, la reducción se produce a una temperatura comprendida entre 300ºC y 1000ºC y durante un período comprendido entre 30 minutos y 2 horas. Preferably, the reduction occurs at a temperature between 300 ° C and 1000 ° C and for a period between 30 minutes and 2 hours.

El conformado y sinterizado se puede realizar por cualquiera de los métodos habituales en la industria cerámica avanzada, tales como sinterización sin presión, prensado isostático en caliente, prensado en caliente, spark plama sintering (SPS), etc. Forming and sintering can be performed by any of the usual methods in the advanced ceramic industry, such as pressureless sintering, hot isostatic pressing, hot pressing, spark plama sintering (SPS), etc.

Descripción de los dibujos Description of the drawings

Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción un juego de dibujos en donde, con carácter ilustrativo y no limitativo, se ha representado lo siguiente: To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, according to a preferred example of practical realization thereof, a set of drawings is accompanied as an integral part of said description. where, for illustrative and non-limiting purposes, the following has been represented:

Figura 1.-Representa una micrografía obtenida por microscopía electrónica de barrido de superficie pulida de muestra 3Y-TZP/nTiC/nNi y difractograma de rayos x. Figure 1.- Represents a micrograph obtained by scanning electron microscopy of polished surface of sample 3Y-TZP / nTiC / nNi and x-ray diffractogram.

Figura 2.-Muestras de 3Y-TZP/nTiC/nNi sinterizadas por HP y mecanizadas por EDM en forma de prismas de sección rectangular (5 mm x 3 mm) y superficie de corte por EDM de dicho material. Figure 2.-Samples of 3Y-TZP / nTiC / nNi sintered by HP and machined by EDM in the form of prisms of rectangular section (5 mm x 3 mm) and cutting surface by EDM of said material.

Figura 3.-Representa una micrografía obtenida por microscopía óptica de superficie pulida de muestra Al2O3/nTiC/ nNi y difractograma de rayos x. Figure 3.- Represents a micrograph obtained by optical microscopy of polished surface of sample Al2O3 / nTiC / nNi and x-ray diffractogram.

Figura 4.-Representa una muestra de Al2O3/nTiC/nNi sinterizada por SPS y mecanizada por EDM (25 mm x 25 mmx 8 mm). Figure 4.- Represents a sample of Al2O3 / nTiC / nNi sintered by SPS and machined by EDM (25 mm x 25 mm x 8 mm).

Realizaciones preferentes de la invención Preferred embodiments of the invention

Primera realización First realization

Material compuesto nanoestructurado circona/carburo de titanio/níquel Nanostructured zirconia / titanium carbide / nickel composite

Las materias primas de partida han sido: Como material cerámico, circona tetragonal policristalina (3Y-TZP, 3% mol. Y2O3; TZ-3YE, Tosoh Corp., Japón), con tamaño de partícula medio d50 = 260 ± 50 nm; como sal precursora de metal, nitrato de níquel (II) hexahidratado (Ni(NO3)2 ·6H2O, Merck, Alemania, 99.0% pureza), en adelante nNi; y como semiconductor, carburo de titanio nanométrico (Hubei Minmetals, China) con tamaño de partícula medio por debajo de 50 nm, en adelante, nTiC. The starting raw materials have been: As a ceramic material, polygrystalline tetragonal zirconia (3Y-TZP, 3% mol. Y2O3; TZ-3YE, Tosoh Corp., Japan), with average particle size d50 = 260 ± 50 nm; as a metal precursor salt, nickel (II) nitrate hexahydrate (Ni (NO3) 2 · 6H2O, Merck, Germany, 99.0% purity), hereinafter nNi; and as a semiconductor, nanometric titanium carbide (Hubei Minmetals, China) with an average particle size below 50 nm, hereinafter, nTiC.

Se han preparado dos tipos de compuestos: Two types of compounds have been prepared:

--
(a) cerámica/semiconductor/metal, según unas proporciones de 72% vol. 3Y-TZP, 20% vol. nTiC y 8% vol. nNi, y (a) ceramic / semiconductor / metal, according to proportions of 72% vol. 3Y-TZP, 20% vol. nTiC and 8% vol. nNi, and

--
(b) cerámica/semiconductor, según las proporciones de 72% vol. 3Y-TZP y 28% vol. nTiC. (b) ceramic / semiconductor, according to the proportions of 72% vol. 3Y-TZP and 28% vol. nTiC.

Ambos compuestos se han conformado y sinterizado por prensado en caliente (Hot Press, HP, a 1400ºC, 10ºC/min, 25 MPa, durante 1 hora). Se obtuvieron discos de 50 mm de diámetro, con densidad 98% de la teórica, constituidos por una matriz continua de circona, una fase de nanopartículas de carburo de titanio y, en el caso de a), una fase dispersa de nanopartículas de níquel. La distribución de fases es homogénea con pequeños aglomerados de las segundas fases, no habiéndose producido reacciones químicas entre los componentes, tal como se aprecia en la figura 1. Both compounds have been formed and sintered by hot pressing (Hot Press, HP, at 1400 ° C, 10 ° C / min, 25 MPa, for 1 hour). 50 mm diameter discs were obtained, with a 98% density of the theoretical one, consisting of a continuous zirconia matrix, a titanium carbide nanoparticles phase and, in the case of a), a dispersed nickel nanoparticles phase. The phase distribution is homogeneous with small agglomerates of the second phases, with no chemical reactions occurring between the components, as shown in Figure 1.

Las propiedades mecánicas de los compuestos circona/nTiC/nNi han mejorado o, al menos, se mantienen respecto a la circona monolítica sinterizada bajo las mismas condiciones. Se mantienen los valores de dureza Vickers (11.5±0.2 GPa) respecto a la circona monolítica (11.0±0.2 GPa). Se mejoran los valores de resistencia a la flexión (804±32 MPa para el nuevo material y 752±16 MPa para la circona monolítica). La tenacidad aumenta notablemente respecto a la circona (6.0±0.2 MPa·m1/2 y 4.9±0.2 MPa·m1/2, respectivamente). The mechanical properties of the zirconia / nTiC / nNi compounds have improved or, at least, are maintained with respect to the sintered monolithic zirconia under the same conditions. Vickers hardness values (11.5 ± 0.2 GPa) with respect to monolithic zirconia (11.0 ± 0.2 GPa) are maintained. The resistance to flexion values are improved (804 ± 32 MPa for the new material and 752 ± 16 MPa for the monolithic zirconia). The toughness increases markedly with respect to zirconia (6.0 ± 0.2 MPa · m1 / 2 and 4.9 ± 0.2 MPa · m1 / 2, respectively).

El compuesto sin metal (circona/nTiC) presenta una resistividad de 14.0·10−4±1.0·10−4 Ω·cm, muy por debajo del límite máximo de 100-300 Ω·cm requerido para poder aplicar la técnica EDM, sin embargo, no fue posible realizar el mecanizado. El material compuesto con metal (circona/nTiC/nNi) presenta una resistividad eléctrica de 7.2·10−4±1.0·10−4 Ω·cm, también por debajo del máximo requerido, y sí pudo ser mecanizado por electroerosión. La adición, por tanto, de una pequeña cantidad de metal disminuye la resistividad del material alrededor de un 50% y permite que sea mecanizado por EDM. En la Figura 2 se muestra el material de 3Y-TZP/nTiC/nNi sinterizado por HP y posteriormente mecanizado por EDM en forma de prismas de sección rectangular (5x3 mm). The metal-free compound (zirconia / nTiC) has a resistivity of 14.0 · 10−4 ± 1.0 · 10−4 Ω · cm, well below the maximum limit of 100-300 Ω · cm required to apply the EDM technique, without However, it was not possible to perform the machining. The metal composite material (zirconia / nTiC / nNi) has an electrical resistivity of 7.2 · 10−4 ± 1.0 · 10−4 Ω · cm, also below the required maximum, and it could be machined by EDM. The addition, therefore, of a small amount of metal decreases the resistivity of the material by about 50% and allows it to be machined by EDM. Figure 2 shows the material of 3Y-TZP / nTiC / nNi sintered by HP and subsequently machined by EDM in the form of prisms of rectangular section (5x3 mm).

Segunda realización Second embodiment

Material compuesto nanoestructurado alúmina/carburo de titanio/níquel Nanostructured alumina / titanium carbide / nickel composite

Las materias primas de partida han sido: Como material cerámico, alúmina (α-Al2O3, Taimei TM-DAR, con tamaño de partícula medio d50 = 150±50 nm; como sal precursora de metal, nitrato de níquel (II) hexahidratado (Ni(NO3)2 ·6H2O, Merck, Alemania, 99.0% pureza), en adelante nNi; y, como semiconductor, carburo de titanio nanométrico (Hubei Minmetals, China) con tamaño de partícula medio por debajo de 50 nm, en adelante, nTiC. The starting raw materials have been: As ceramic material, alumina (α-Al2O3, Taimei TM-DAR, with average particle size d50 = 150 ± 50 nm; as metal precursor salt, nickel nitrate (II) hexahydrate (Ni (NO3) 2 · 6H2O, Merck, Germany, 99.0% purity), hereinafter nNi; and, as a semiconductor, nanometric titanium carbide (Hubei Minmetals, China) with average particle size below 50 nm, hereinafter, nTiC .

Se prepararon dos tipos de compuestos: Two types of compounds were prepared:

--
(a) cerámica/semiconductor/metal según las proporciones 73.1% vol. Al2O3, 25% vol. nTiC y 1.9% vol. nNi; y (a) ceramic / semiconductor / metal according to the proportions 73.1% vol. Al2O3, 25% vol. nTiC and 1.9% vol. nNi; Y

--
(b) cerámica/semiconductor, según las proporciones 75% vol. Al2O3, 25% vol. nTiC. (b) ceramic / semiconductor, according to the proportions 75% vol. Al2O3, 25% vol. nTiC.

El material se ha sinterizado por Spark Plasma Sintering (SPS), a 1375ºC, 100 MPa durante 3 minutos en forma de discos de 40 mm de diámetro. De esta forma, se obtuvieron materiales densos (densidad 99.5% teórica) constituidos por una matriz continua de alúmina, una fase dispersa de nanopartículas de carburo de titanio y, en el caso a), otra de nanopartículas de níquel. A excepción de pequeños aglomerados de Al2O3/nNi, se trata de un compacto denso y homogéneo, no habiéndose producido reacciones químicas entre los componentes, tal como se observa en la figura 3. The material has been sintered by Spark Plasma Sintering (SPS), at 1375 ° C, 100 MPa for 3 minutes in the form of 40 mm diameter discs. In this way, dense materials (theoretical density 99.5%) consisting of a continuous alumina matrix, a dispersed phase of titanium carbide nanoparticles and, in case a), another of nickel nanoparticles were obtained. With the exception of small agglomerates of Al2O3 / nNi, it is a dense and homogeneous compact, with no chemical reactions occurring between the components, as shown in Figure 3.

Las propiedades mecánicas se han mejorado respecto a la alúmina monolítica sinterizada bajo las mismas condiciones. Se mejoran los valores de dureza Vickers (25.6±0.7 GPa) respecto a la alúmina monolítica (19.9±0.9 GPa). Se mejoran los valores de resistencia a la flexión (537±88 MPa para el nuevo material nanocompuesto y 395±36 MPa para la alúmina monolítica). Los valores de tenacidad obtenidos son muy similares para el material compuesto y la alúmina, siendo 3.7±0.1 MPa·m1/2 y 3.5±0.1 MPa·m1/2, respectivamente. The mechanical properties have been improved with respect to sintered monolithic alumina under the same conditions. Vickers hardness values (25.6 ± 0.7 GPa) with respect to monolithic alumina (19.9 ± 0.9 GPa) are improved. The values of resistance to flexion are improved (537 ± 88 MPa for the new nanocomposite material and 395 ± 36 MPa for monolithic alumina). The tenacity values obtained are very similar for the composite and alumina, being 3.7 ± 0.1 MPa · m1 / 2 and 3.5 ± 0.1 MPa · m1 / 2, respectively.

El valor de la resistividad eléctrica obtenido a temperatura ambiente para los materiales Al2O3/nTiC/nNi, ha sido de 31.5·10−4±1.0-10−4 Ω·cm, y para Al2O3/nTiC ha sido de 462.6·10−4±36.0·10−4 Ω·cm, suficiente para ser mecanizados por EDM. Se mecanizaron prismas de sección cuadrada de 25x25x8 mm, tal como se aprecia en la figura 4. The value of the electrical resistivity obtained at room temperature for Al2O3 / nTiC / nNi materials has been 31.5 · 10−4 ± 1.0-10−4 Ω · cm, and for Al2O3 / nTiC it has been 462.6 · 10−4 ± 36.0 · 10−4 Ω · cm, enough to be machined by EDM. Prisms of 25x25x8 mm square section were machined, as shown in Figure 4.

Claims (13)

REIVINDICACIONES
1. one.
Método de obtención de un material compuesto nanoestructurado de matriz cerámica y mecanizable por electroerosión, caracterizado porque comprende las etapas de: -preparación de un material en polvo de cerámica/óxido metálico, mediante calcinación de una suspensión homogénea seca de un polvo cerámico de tamaño de partícula nanométrico y una sal metálica precursora de metal; -adición al producto de la etapa anterior de un material semiconductor de tamaño de partícula nanométrico; -molido y homogeneización del producto resultante de la etapa anterior; -secado y tamizado del producto resultante de la etapa anterior; -tratamiento térmico en atmósfera reductora del producto resultante de la etapa anterior, obteniéndose un material en polvo cerámica/semiconductor/metal Method of obtaining a nanostructured composite material of ceramic matrix and machinable by EDM, characterized in that it comprises the steps of: -preparation of a ceramic / metal oxide powder material, by calcining a homogeneous dry suspension of a ceramic powder of size of nanometric particle and a metal precursor metal salt; -addition to the product of the previous stage of a semiconductor material of nanometric particle size; - grinding and homogenization of the product resulting from the previous stage; - drying and sieving of the product resulting from the previous stage; - heat treatment in a reducing atmosphere of the product resulting from the previous stage, obtaining a ceramic / semiconductor / metal powder
y -conformado y sinterizado del producto de la etapa anterior. Y -formed and sintered the product of the previous stage.
2. 2.
Método de obtención de un material compuesto, nanoestructurado, de matriz cerámica y mecanizable por electroerosión de acuerdo con la reivindicación 1, caracterizado porque el tratamiento térmico de reducción se produce a una temperatura comprendida entre 300ºC y 1000ºC. Method of obtaining a composite material, nanostructured, ceramic matrix and machinable by EDM according to claim 1, characterized in that the heat reduction treatment occurs at a temperature between 300 ° C and 1000 ° C.
3. 3.
Método de obtención de un material compuesto, nanoestructurado, de matriz cerámica y mecanizable por electroerosión de acuerdo con la reivindicación 1, caracterizado porque la matriz cerámica se selecciona entre: Method of obtaining a composite material, nanostructured, ceramic matrix and machinable by EDM according to claim 1, characterized in that the ceramic matrix is selected from:
--
Al2O3 (alúmina), Al2O3 (alumina),
-Al6Si2O13 (mullita), -ZrO2 (circona), -MgAl2O4 (espinela de alúmina y magnesia), -YAG (granate de aluminio e itrio). -Al6Si2O13 (mullita), -ZrO2 (zirconia), -MgAl2O4 (alumina and magnesia spinel), -YAG (aluminum garnet and yttrium).
4. Four.
Método de obtención de un material compuesto, nanoestructurado, de matriz cerámica y mecanizable por electroerosión de acuerdo con la reivindicación 1, caracterizado porque el semiconductor se selecciona entre carburos, nitruros y boruros. Method of obtaining a composite material, nanostructured, ceramic matrix and machinable by EDM according to claim 1, characterized in that the semiconductor is selected from carbides, nitrides and borides.
5. 5.
Método de obtención de un material compuesto, nanoestructurado, de matriz cerámica y mecanizable por electroerosión de acuerdo con la reivindicación 4, caracterizado porque el semiconductor se selecciona entre SiC, TiC, TiN, y TiB2. Method of obtaining a composite material, nanostructured, ceramic matrix and machinable by EDM according to claim 4, characterized in that the semiconductor is selected from SiC, TiC, TiN, and TiB2.
6. 6.
Método de obtención de un material compuesto, nanoestructurado, de matriz cerámica y mecanizable por electroerosión de acuerdo con la reivindicación 1, caracterizado porque el metal posee un punto de fusión superior a 1400ºC. Method of obtaining a composite material, nanostructured, ceramic matrix and machinable by EDM according to claim 1, characterized in that the metal has a melting point higher than 1400 ° C.
7. 7.
Método de obtención de un material compuesto, nanoestructurado, de matriz 5 cerámica y mecanizable por electroerosión de acuerdo con la reivindicación 6, caracterizado porque el metal es W, Ni, Mo o Co. Method of obtaining a composite material, nanostructured, ceramic matrix 5 and machinable by EDM according to claim 6, characterized in that the metal is W, Ni, Mo or Co.
8. Producto directamente obtenible por medio del método descrito en una cualquiera de las reivindicaciones 1 a 7. 8. Product directly obtainable by means of the method described in any one of claims 1 to 7.
9. 9.
Producto de acuerdo con la reivindicación 8, caracterizado porque el metal y el semiconductor se encuentran en una proporción tal que se supera el punto de percolación del compuesto final. Product according to claim 8, characterized in that the metal and the semiconductor are in a proportion such that the percolation point of the final compound is exceeded.
10. 10.
Producto de acuerdo con la reivindicación 9, caracterizado porque la proporción de metal es inferior al 16% en volumen. Product according to claim 9, characterized in that the proportion of metal is less than 16% by volume.
11. Producto de acuerdo con la reivindicación 10, caracterizado porque la proporción de metal es inferior al 10% 11. Product according to claim 10, characterized in that the proportion of metal is less than 10% 12. Producto de acuerdo con la reivindicación 8, caracterizado porque la proporción de metal está comprendida entre el 1% y el 16% en volumen. 12. Product according to claim 8, characterized in that the proportion of metal is between 1% and 16% by volume. 6 7 8 6 7 8 OFICINA ESPAÑOLA DE PATENTES Y MARCAS N.º solicitud: 200930551 ESPAÑA SPANISH PATENTS AND BRANDS OFFICE Application no .: 200930551 SPAIN Fecha de presentación de la solicitud: 31.07.2009 Date of submission of the application: 31.07.2009
INFORME SOBRE EL ESTADO DE LA TECNICA REPORT ON THE STATE OF THE TECHNIQUE
Fecha de prioridad: 00-00-0000 00-00-0000 00-00-0000 Priority Date: 00-00-0000 00-00-0000 00-00-0000
51 Int. Cl. : 51 Int. Cl.:
Ver hoja Adicional See additional sheet
DOCUMENTOS RELEVANTES  RELEVANT DOCUMENTS  
Categoría Category
56 Documentos citados Reivindicaciones afectadas 56 Documents cited Claims Affected
X X
TAICHIU LEE; JIANXIN DENG. "Mechanical surface treatments of electro-discharge machined (EDMed) ceramic composite for improved strength and reliability" Journal of the European Ceramic Society. 2002. Vol. 22 páginas 545-550; apartado 2.1, Tabla 1. 8-12 TAICHIU LEE; JIANXIN DENG. " Mechanical surface treatments of electro-discharge machined (EDMed) ceramic composite for improved strength and reliability " Journal of the European Ceramic Society. 2002. Vol. 22 pages 545-550; Section 2.1, Table 1. 8-12
X X
DENG, J. et al. "Wear of ceramic nozzles by dry sand blasting" Tribology International. 03.03.2005 [online] Vol. 39 páginas 274-280; apartado 2.1, Tabla 1. 8-12 DENG, J. et al. " Wear of ceramic nozzles by dry sand blasting " Tribology International 03.03.2005 [online] Vol. 39 pages 274-280; Section 2.1, Table 1. 8-12
A TO
BONNY, K. et al. "Influence of secondary electro-conductive phases on the electrical discharge machinability and frictional behavior of ZrO2-based ceramic composites" JOURNAL OF MATERIALS PROCESSING TECHNOLOGY. 21.01.2008. vol. 208, páginas 423-430; apartado 2.1. 1-12 BONNY, K. et al. " Influence of secondary electro-conductive phases on the electrical discharge machinability and frictional behavior of ZrO2-based ceramic composites " JOURNAL OF MATERIALS PROCESSING TECHNOLOGY. 21.01.2008. vol. 208, pages 423-430; section 2.1. 1-12
Categoría de los documentos citados X: de particular relevancia Y: de particular relevancia combinado con otro/s de la misma categoría A: refleja el estado de la técnica O: referido a divulgación no escrita P: publicado entre la fecha de prioridad y la de presentación de la solicitud E: documento anterior, pero publicado después de la fecha de presentación de la solicitud Category of the documents cited X: of particular relevance Y: of particular relevance combined with other / s of the same category A: reflects the state of the art O: refers to unwritten disclosure P: published between the priority date and the date of priority submission of the application E: previous document, but published after the date of submission of the application
El presente informe ha sido realizado • para todas las reivindicaciones • para las reivindicaciones nº: This report has been prepared • for all claims • for claims no:
Fecha de realización del informe 13.09.2010 Date of realization of the report 13.09.2010
Examinador V. Balmaseda Valencia Página 1/4 Examiner V. Balmaseda Valencia Page 1/4
Nº de solicitud: 200930551 Application number: 200930551 INFORME SOBRE EL ESTADO DE LA TÉCNICA REPORT ON THE STATE OF THE TECHNIQUE CLASIFICACIÓN OBJETO DE LA SOLICITUD C04B 35/119 (2006.01) CLASSIFICATION OBJECT OF THE APPLICATION C04B 35/119 (2006.01) C04B 35/48 (2006.01) C04B 35/58 (2006.01) Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación) C04B 35/48 (2006.01) C04B 35/58 (2006.01) Minimum documentation sought (classification system followed by classification symbols) C04B C04B Bases de datos electrónicas consultadas durante la búsqueda (nombre de la base de datos y, si es posible, términos de búsqueda utilizados) INVENES, EPODOC,WPI,NPL,XPESP,HCAPLUS Electronic databases consulted during the search (name of the database and, if possible, search terms used) INVENES, EPODOC, WPI, NPL, XPESP, HCAPLUS OPINIÓN ESCRITA  WRITTEN OPINION Nº de solicitud: 200930551 Application number: 200930551 Fecha de Realización de la Opinión Escrita: 13.09.2010 Date of Completion of Written Opinion: 13.09.2010
Declaración Statement
Novedad (Art. 6.1 LP 11/1986) Novelty (Art. 6.1 LP 11/1986)
Reivindicaciones 1-7 Reivindicaciones 8-12 SÍ NO Claims 1-7 Claims 8-12 IF NOT
Actividad inventiva Inventive activity
Reivindicaciones 1-7 SÍ Claims 1-7 YES
(Art. 8.1 LP11/1986) (Art. 8.1 LP11 / 1986)
Reivindicaciones 8-12 NO Claims 8-12 NO
Se considera que la solicitud cumple con el requisito de aplicación industrial. Este requisito fue evaluado durante la fase de examen formal y técnico de la solicitud (Artículo 31.2 Ley 11/1986). The application is considered to comply with the industrial application requirement. This requirement was evaluated during the formal and technical examination phase of the application (Article 31.2 Law 11/1986). Base de la Opinión.-  Opinion Base.- La presente opinión se ha realizado sobre la base de la solicitud de patente tal y como ha sido publicada. This opinion has been made on the basis of the patent application as published. OPINIÓN ESCRITA  WRITTEN OPINION Nº de solicitud: 200930551 Application number: 200930551 1. Documentos considerados.-1. Documents considered.- A continuación se relacionan los documentos pertenecientes al estado de la técnica tomados en consideración para la realización de esta opinión. The documents belonging to the state of the art taken into consideration for the realization of this opinion are listed below.
Documento Document
Número Publicación o Identificación Fecha Publicación Publication or Identification Number publication date
D01 D01
Journal of the European Ceramic Society. Vol.22 páginas 545550 2002 Journal of the European Ceramic Society. Vol. 22 pages 545550 2002
D02 D02
Tribology International. Vol.39 páginas 274-280. 03.03.2005 Tribology International Vol. 39 pages 274-280. 03.03.2005
2. Declaración motivada según los artículos 29.6 y 29.7 del Reglamento de ejecución de la Ley 11/1986, de 20 de marzo, de Patentes sobre la novedad y la actividad inventiva; citas y explicaciones en apoyo de esta declaración 2. Statement motivated according to articles 29.6 and 29.7 of the Regulations for the execution of Law 11/1986, of March 20, on Patents on novelty and inventive activity; quotes and explanations in support of this statement El objeto de la presente invención es un método de obtención de un material compuesto nanoesturturado de matriz cerámica y mecanizable por electroerosión. Así como el material resultante de dicho método. The object of the present invention is a method of obtaining a nano-saturated composite material of ceramic matrix and machinable by EDM. As well as the material resulting from said method. En el documento D01 se describe un método de obtención de un material compuesto nanoesturturado de matriz cerámica y mecanizable por electroerosión (Al2O3/TiC/Mo/Ni) que comprende la mezcla de Al2O3 (tamaño medio de partícula 500 nm), un 55% de TiC (tamaño medio de partícula 800nm) y un 5% en volumen de Ni y Mo. Se realiza el molido y secado de la mezcla resultante y finalmente se conforma y se sinteriza por prensado en caliente en atmósfera de argon a 35MPa y temperaturas comprendidas entres 1600-1800ºC. El material resultante presenta una dureza de 20.5 GPa, una resistividad comprendida entre 2-6 ohm por cm y una tenacidad de 5.04 MPa m1/2 (apartado 2.1, Tabla 1). Document D01 describes a method of obtaining a nano-saturated composite material of ceramic matrix and machinable by EDM (Al2O3 / TiC / Mo / Ni) comprising the mixture of Al2O3 (average particle size 500 nm), 55% of TiC (average particle size 800nm) and 5% by volume of Ni and Mo. The resulting mixture is milled and dried and finally shaped and sintered by hot pressing under an argon atmosphere at 35MPa and temperatures between 1600-1800 ° C. The resulting material has a hardness of 20.5 GPa, a resistivity between 2-6 ohm per cm and a toughness of 5.04 MPa m1 / 2 (section 2.1, Table 1). En el documento D02 se describe un composite cerámico constituido por Al2O3/TiC/Mo/Ni que se obtiene a partir de la mezcla de Al2O3 con un 55% de TiC, 0.5% de Mo y 4.5% de Ni (siendo el tamaño de partícula inferior a 1 micrómetro), su molido secado y conformado y sinterizado por prensado a 1700º C, 36MPa durante 1 hora. El material resultante presenta una dureza de 20.5 GPa, una resistividad comprendida entre 2-6 ohm por cm, un valor de resistencia a la flexión de 950MPa y una tenacidad de 5.2 MPa m1/2 (apartado 2.1, Tabla 1). Document D02 describes a ceramic composite consisting of Al2O3 / TiC / Mo / Ni that is obtained from the mixture of Al2O3 with 55% TiC, 0.5% Mo and 4.5% Ni (the particle size being less than 1 micrometer), its ground dried and shaped and sintered by pressing at 1700º C, 36MPa for 1 hour. The resulting material has a hardness of 20.5 GPa, a resistivity comprised between 2-6 ohm per cm, a flexural strength value of 950MPa and a toughness of 5.2 MPa m1 / 2 (section 2.1, Table 1). Las reivindicaciones 8-12 se refieren a un producto definido en términos de su procedimiento de preparación. Se recuerda al solicitante que dichas reivindicaciones únicamente serían admisibles si el producto, como tal, cumple los requisitos de patentabilidad, esto es, es nuevo y tiene actividad inventiva. Sin embargo, tales requisitos no se cumplen en este caso ya que dicho producto ha sido divulgado idénticamente en los documentos D01-D02. En consecuencia, se considera que el objeto de dichas reivindicaciones carece de novedad a la vista del estado de la técnica (artículos 6.1 y 8.1 de la L.P.) Claims 8-12 refer to a product defined in terms of its preparation process. The applicant is reminded that such claims would only be admissible if the product, as such, meets the patentability requirements, that is, it is new and has inventive activity. However, such requirements are not met in this case since said product has been disclosed identically in documents D01-D02. Consequently, it is considered that the object of these claims is novel in view of the state of the art (articles 6.1 and 8.1 of the L.P.) La diferencia entre el objeto de las reivindicaciones 1-7 radica en que ninguno de los documentos D01-D02 describe un método de obtención de un material compuesto nanoestructurado de matriz cerámica, de composición cerámica/semiconductor/metal que comprenda la preparación de una mezcla polvo de cerámica/óxido metálico (mediante calcinación de una suspensión polvo/metálico y una sal precursora del metal óxido metálico) y que, posteriormente, la conversión del óxido al metal se realice en una etapa previa al conformado y sinterizado mediante un tratamiento térmico en atmósfera reductora del polvo cerámica/semiconductor/óxido metálico. Además, no sería obvio para un experto en la materia dicho método de obtención a partir de los documentos citados. En consecuencia se considera que el objeto de las reivindicaciones 1-7 es nuevo e implica actividad inventiva conforme a los Artículos 6.1 y 8.1 de la L.P. The difference between the object of claims 1-7 is that none of documents D01-D02 describes a method of obtaining a nanostructured ceramic matrix composite material, of ceramic / semiconductor / metal composition comprising the preparation of a powder mixture of ceramic / metal oxide (by calcining a powder / metal suspension and a precursor salt of metal metal oxide) and that, subsequently, the conversion of the oxide to the metal is carried out at a stage prior to forming and sintering by a heat treatment in atmosphere ceramic powder reduction / semiconductor / metal oxide. In addition, it would not be obvious to a person skilled in the art said method of obtaining from the cited documents. Consequently, the object of claims 1-7 is considered to be new and implies inventive activity in accordance with Articles 6.1 and 8.1 of the L.P. Informe sobre el Estado de la Técnica (Opinión escrita) Página 4/4 Report on the State of the Art (Written Opinion) Page 4/4
ES200930551A 2009-07-31 2009-07-31 METHOD OF OBTAINING A NANO-STRUCTURED COMPOSITE MATERIAL OF CERAMIC AND MECHANIZABLE MATRIX BY ELECTROEROSION, AND OBTAINABLE PRODUCT PORDICHO METHOD Expired - Fee Related ES2353704B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES200930551A ES2353704B1 (en) 2009-07-31 2009-07-31 METHOD OF OBTAINING A NANO-STRUCTURED COMPOSITE MATERIAL OF CERAMIC AND MECHANIZABLE MATRIX BY ELECTROEROSION, AND OBTAINABLE PRODUCT PORDICHO METHOD
PCT/ES2010/070535 WO2011012765A2 (en) 2009-07-31 2010-07-30 Method for obtaining a nanostructured composite material having a ceramic matrix, which can be machined by electroerosion, and resulting product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200930551A ES2353704B1 (en) 2009-07-31 2009-07-31 METHOD OF OBTAINING A NANO-STRUCTURED COMPOSITE MATERIAL OF CERAMIC AND MECHANIZABLE MATRIX BY ELECTROEROSION, AND OBTAINABLE PRODUCT PORDICHO METHOD

Publications (2)

Publication Number Publication Date
ES2353704A1 ES2353704A1 (en) 2011-03-04
ES2353704B1 true ES2353704B1 (en) 2012-01-19

Family

ID=43529767

Family Applications (1)

Application Number Title Priority Date Filing Date
ES200930551A Expired - Fee Related ES2353704B1 (en) 2009-07-31 2009-07-31 METHOD OF OBTAINING A NANO-STRUCTURED COMPOSITE MATERIAL OF CERAMIC AND MECHANIZABLE MATRIX BY ELECTROEROSION, AND OBTAINABLE PRODUCT PORDICHO METHOD

Country Status (2)

Country Link
ES (1) ES2353704B1 (en)
WO (1) WO2011012765A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105314971B (en) * 2015-12-07 2019-01-08 哈尔滨工业大学 A kind of method that pulsed discharge plasma auxiliary remelting prepares the spontaneous composite ceramics of alumina base ternary eutectic
WO2018081109A1 (en) * 2016-10-24 2018-05-03 Thomas Blaszczykiewicz Cermet composition

Also Published As

Publication number Publication date
WO2011012765A2 (en) 2011-02-03
ES2353704A1 (en) 2011-03-04
WO2011012765A3 (en) 2011-03-24

Similar Documents

Publication Publication Date Title
Rejab et al. The effects of CeO2 addition on the physical, microstructural and mechanical properties of yttria stabilized zirconia toughened alumina (ZTA)
JP5881174B2 (en) Oriented MAX phase ceramic and method for producing the same
Hassan et al. Toughening and strengthening of Nb2O5 doped zirconia/alumina (ZTA) composites
Ni et al. Highly textured ZrB2-based ultrahigh temperature ceramics via strong magnetic field alignment
JP6637956B2 (en) Sintered ceramic material, powder composition for obtaining sintered ceramic material, method for producing the same, and ceramic component
Huang et al. Microstructure and mechanical properties of ZTA fabricated by liquid phase sintering
Petrovic et al. ZrO2‐Reinforced MoSi2 Matrix Composites
JP2015127294A (en) Machinable zirconia and method for producing the same
Kumar et al. Enhancement of thermal shock resistance of reaction sintered mullite–zirconia composites in the presence of lanthanum oxide
Wu et al. Low temperature degradation of Al2O3-doped 3Y-TZP sintered at various temperatures
CA2685455C (en) Ceramic material
Rendtorff et al. Dense mullite zirconia composites obtained from the reaction sintering of milled stoichiometric alumina zircon mixtures by SPS
Yang et al. Effects of ternary sintering aids and sintering parameters on properties of alumina ceramics based on orthogonal test method
Tripathi et al. Synthesis and densification behaviour of magnesium aluminate spinel: Effect of Dy2O3
Boussouf et al. Effect of amount and size of quartz on mechanical and dielectric properties of electrical porcelain
Jie et al. Effect of Sc2O3 addition on densification and microstructure of different spinelized magnesium aluminate spinels
Rejab et al. The capability of hibonite elongated grains to influence physical, microstructural, and mechanical properties of zirconia toughened alumina–CeO2–MgO ceramics
ES2353704B1 (en) METHOD OF OBTAINING A NANO-STRUCTURED COMPOSITE MATERIAL OF CERAMIC AND MECHANIZABLE MATRIX BY ELECTROEROSION, AND OBTAINABLE PRODUCT PORDICHO METHOD
Das et al. Mechanical properties and microstructures of reaction sintered mullite–zirconia composites in the presence of an additive—dysprosia
Dhar et al. Influences of sintering time on the structures and mechanical properties of zirconia toughened alumina nanocomposites
Xu et al. Mechanical properties of Nd2O3/Y2O3-coated zirconia ceramics
Volceanov et al. Assessment on mechanical properties controlling of alumina ceramics for harsh service conditions
JPH0553751B2 (en)
JP2007284314A (en) Corrosion resistant magnesia-based sintered compact, member for heat treatment formed from the same, and method for producing the sintered compact
Bregiroux et al. Effect of the sintering method on microstructure and thermal and mechanical properties of zirconium oxophosphate ceramics Zr2O (PO4) 2

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2353704

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20120119

FD2A Announcement of lapse in spain

Effective date: 20210915