ES2343493A1 - Material for symmetrical electrode of solid oxides fuel batteries (Machine-translation by Google Translate, not legally binding) - Google Patents

Material for symmetrical electrode of solid oxides fuel batteries (Machine-translation by Google Translate, not legally binding) Download PDF

Info

Publication number
ES2343493A1
ES2343493A1 ES200701333A ES200701333A ES2343493A1 ES 2343493 A1 ES2343493 A1 ES 2343493A1 ES 200701333 A ES200701333 A ES 200701333A ES 200701333 A ES200701333 A ES 200701333A ES 2343493 A1 ES2343493 A1 ES 2343493A1
Authority
ES
Spain
Prior art keywords
materials
ysz
equals
anode
ceo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
ES200701333A
Other languages
Spanish (es)
Inventor
Juan Carlos Ruiz Morales
Pedro Nuñez Coello
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad de La Laguna
Original Assignee
Universidad de La Laguna
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad de La Laguna filed Critical Universidad de La Laguna
Priority to ES200701333A priority Critical patent/ES2343493A1/en
Publication of ES2343493A1 publication Critical patent/ES2343493A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

Mixture of materials (called composites) that can be used as symmetric electrodes, anode and cathode simultaneously, in solid oxide fuel cells (sofc). The idea is to use this new composite, which we can represent by m-ysz-ceo 2 , to replace the two materials that are used as standard in fuel cells: the ni-ysz cermet as anode and the la0.8sr0.2mno 3 - δ (lsm) as cathode. Where: - composite: combination of two or more materials to form a new material with special properties. - m = current collector, can be a noble metal such as platinum (pt), gold (au), silver (ag), etc ... Or else a chromite like la1-xsrxcro 3 - δ - ysz is stabilized zirconia. The fact of using only one material will make it possible to produce cheaper batteries, with less interaction between the different components, which can be prepared in a single thermal treatment and it would also be possible to avoid the problems of traditional batteries such as the formation of coal deposits ( when hydrocarbons are used as fuels) and poisoning by sulfur compounds (which usually accompany hydrocarbons). (Machine-translation by Google Translate, not legally binding)

Description

Material para electrodo simétrico de pilas de combustible de óxidos sólidos.Material for symmetric electrode of batteries solid oxides fuel.

Sector de la técnicaTechnical sector

Ciencia y tecnología de los materiales.Materials science and technology.

Materiales para pilas de combustible. Producción de energía eléctrica no contaminante.Materials for fuel cells. Production of non-polluting electrical energy.

Introducción Introduction

Una pila de combustible de óxidos sólidos (SOFC) es un dispositivo de conversión energética que produce electricidad directamente por oxidación de un combustible y reducción simultánea de un oxidante, encontrándose ambos generalmente en estado gaseoso. Cada pila consta de dos electrodos, un ánodo y un cátodo separados por un electrolito. El combustible se suministra al ánodo, donde ocurre la reacción de oxidación, y libera electrones al circuito externo. El oxidante se suministra al cátodo, donde llegan los electrones del circuito externo, y ocurre la reacción de reducción. El flujo de electrones, desde el ánodo al cátodo, produce corriente eléctrica. El electrolito es un aislante electrónico que permite el transporte de iones óxido o protones -u otras especies iónicas- entre los dos electrodos.A solid oxide fuel cell (SOFC) It is an energy conversion device that produces electricity directly by oxidation of a fuel and simultaneous reduction of an oxidant, both generally being in a gaseous state. Each battery consists of two electrodes, a separate anode and cathode for an electrolyte. The fuel is supplied to the anode, where the oxidation reaction occurs, and releases electrons to the circuit external. The oxidant is supplied to the cathode, where the electrons from the external circuit, and the reduction reaction occurs. The flow of electrons, from the anode to the cathode, produces current electric The electrolyte is an electronic insulator that allows the transport of oxide or proton ions -u other ionic species- between the two electrodes.

Las pilas SOFC se basan, generalmente, en la capacidad de ciertos óxidos de permitir el transporte de iones óxido a temperaturas moderadamente altas (600-1000ºC), consiguiéndose eficiencias de hasta un 85% (con cogeneración). Además, no se necesitan combustibles de alta pureza debido a las altas temperaturas de operación e incluso se pueden emplear mezclas. Las altas temperaturas favorecen el reformado interno para extraer el hidrógeno de algunos combustibles, sin embargo, afectan negativamente a la durabilidad de los equipos y limita la elección de materiales como el acero inoxidable, lo que da lugar a un encarecimiento del producto.SOFC batteries are generally based on the ability of certain oxides to allow transport of oxide ions at moderately high temperatures (600-1000 ° C), achieving efficiencies of up to 85% (with cogeneration). In addition, high purity fuels are not required due to high operating temperatures and even mixtures can be used. High temperatures favor internal reforming to extract the hydrogen of some fuels, however, affect negatively to the durability of the equipment and limits the choice of materials such as stainless steel, which results in a product cost.

El electrolito en este caso es un óxido sólido no poroso, generalmente ZrO_{2} estabilizado con óxido de ytrio (YSZ) o de escandio (SSZ). Normalmente el ánodo es un material compuesto de NiO e YSZ que al reducirse in situ forma un cermet de Ni-YSZ. El cátodo es generalmente una manganita, por ejemplo LaMnO_{3} dopado con Sr.The electrolyte in this case is a non-porous solid oxide, generally ZrO2 stabilized with ytrium oxide (YSZ) or scandium oxide (SSZ). Normally the anode is a material composed of NiO and YSZ which, when reduced in situ, forms a Ni-YSZ cermet. The cathode is generally a manganite, for example LaMnO 3 doped with Mr.

Estado de la técnicaState of the art

Electrolito. Entre los materiales con potenciales propiedades para ser utilizados como electrolitos en SOFCs, destacan los óxidos con estructura tipo fluorita, entre los que hay que destacar los derivados de ZrO_{2} y CeO_{2}. El óxido de zirconio (ZrO_{2}) sin dopar no es un buen conductor iónico, sin embargo, la incorporación de iones tales como Y^{3+}, Sc^{3+} o Ca^{2+}, [1] lo convierte en uno de los mejores conductores iónicos a alta temperatura. Las denominadas zirconas estabilizadas son los materiales más empleados como electrolito en el diseño de dispositivos SOFCs, (especialmente la composición Zr_{0 . 84}Y_{0 . 16}O_{1 . 92} abreviada como YSZ), debido a su mayor estabilidad a alta temperatura (800-1000ºC) y durante tiempos de operación elevados. Sin embargo, el hecho de trabajar a altas temperaturas encarece notablemente estos dispositivos, ya que impone unas condiciones bastante restrictivas a los demás componentes, impidiendo, por ejemplo, el empleo de aceros como materiales interconectores.Electrolyte. Among the materials with potential properties to be used as electrolytes in SOFCs, highlight the oxides with fluorite type structure, among the The ZrO 2 and CeO 2 derivatives must be highlighted. He Zirconium oxide (ZrO2) without doping is not a good conductor ionic, however, the incorporation of ions such as Y3 +, Sc 3+ or Ca 2+, [1] makes it one of the best ionic conductors at high temperature. The so-called zircons stabilized are the most commonly used materials as electrolyte in the design of SOFC devices, (especially the composition Zr_ {0. 84} Y_ {0. 16} O_ {1. 92} abbreviated as YSZ), due to its greater stability at high temperature (800-1000ºC) and during high operating times. However, the fact of work at high temperatures remarkably expensive these devices, since it imposes quite restrictive conditions on the other components, preventing, for example, the use of steels as interconnecting materials.

A temperaturas más bajas se pueden emplear otros materiales como los derivados del CeO_{2}. [2] De modo similar a lo que ocurre en las zirconas no es un conductor iónico. Sin embargo, la introducción de otras especies como Gd^{3+}, Sm^{3+}, Y^{3+}, La^{3+}, Nd^{3+} o Ca^{2+}, da lugar a fases que presentan valores de conductividad iónica superiores a las zirconas a temperaturas moderadas (400-600ºC). El principal inconveniente de estas fases es la reducción del Ce(IV) a Ce(III) por encima de 600ºC y en condiciones reductoras, lo que trae consigo una caída de potencial que afecta a las prestaciones de la pila. Las composiciones óptimas parecen ser Ce_{1-x}Ln_{x}O_{2-x/2}, Ln = Sm^{3+}, Gd^{3+} (x=0.1-0.2), [2] generalmente la fase sustituida con Gd se representa por CGO y la de Sm por CSO.At lower temperatures other ones can be used materials such as those derived from CeO2. [2] Similar to What happens in zircons is not an ionic conductor. Without However, the introduction of other species such as Gd3 +, Sm 3+, Y 3+, La 3+, Nd 3+ or Ca 2+, results in phases that have ionic conductivity values higher than Zircons at moderate temperatures (400-600ºC). He main drawback of these phases is the reduction of Ce (IV) to Ce (III) above 600 ° C and in conditions reducing, which brings with it a potential drop that affects The performance of the battery. The optimal compositions seem to be Ce_ {1-x} Ln_ {x} O_ {2-x / 2}, Ln = Sm 3+, Gd 3+ (x = 0.1-0.2), [2] generally the phase substituted with Gd is represented by CGO and that of Sm by CSO

Ánodo. En el ánodo se produce la oxidación electroquímica del combustible, que puede ser cualquier especie susceptible de ser oxidada, aunque generalmente se emplea hidrógeno o hidrocarburos ligeros. La lista de posibles materiales de ánodo que cumplan con todos los requisitos descritos anteriormente no es muy amplia [3], Una de las estrategias más empleadas para obtener materiales de ánodo es la de producir composites, es decir, nuevos materiales que resultan de la combinación de dos o más materiales con el fin de combinar sus propiedades.Anode. In the anode oxidation occurs electrochemical of the fuel, which can be any species liable to be oxidized, although hydrogen is generally used or light hydrocarbons. The list of possible anode materials that meet all the requirements described above is not very broad [3], One of the most used strategies to obtain anode materials is to produce composites, that is, new materials that result from the combination of two or more materials in order to combine its properties.

Las excelentes propiedades catalíticas del Pt hacen que pudiera ser considerado como un candidato componente del ánodo. Sin embargo, su elevadísimo coste ha derivado en la búsqueda de otros materiales. Así, los cermets (composites de cerámica y metal) de Ni-YSZ son los ánodos más utilizados en la tecnología SOFC, ya que presentan alta conductividad electrónica (debida al Ni), alta conductividad iónica (debido al soporte de YSZ) y excelente actividad catalítica para la oxidación electroquímica de combustibles. Entre los inconvenientes, hay que destacar la tendencia a formar depósitos de carbono al trabajar con hidrocarburos, que pueden provocar la fractura de la pila tras unas pocas horas de operación. Una posible solución a este problema es trabajar a menor temperatura y con un mayor grado de humedad, variando la relación combustible/vapor de agua que llega al ánodo. Por otra parte, estos cermets son muy sensibles al envenenamiento por azufre, lo que obliga a trabajar con combustibles de alta pureza encareciendo todo el proceso. Finalmente, hay que añadir que estos cermets tienden a sufrir problemas de sinterización de las partículas de Ni, efecto que es más grave cuando mayores son las temperaturas de trabajo y mayor es el tiempo de operación. A estos inconvenientes, hay que añadir que el Ni se genera a partir de NiO, siendo este último tóxico y potencialmente cancerígeno [4] por lo que habría que evitar su uso.The excellent catalytic properties of Pt do that could be considered as a component candidate of anode. However, its very high cost has resulted in the search of other materials. Thus, the cermets (ceramic composites and metal) of Ni-YSZ are the most used anodes in the SOFC technology, as they have high electronic conductivity (due to Ni), high ionic conductivity (due to YSZ support) and excellent catalytic activity for electrochemical oxidation of fuels Among the drawbacks, we must highlight the tendency to form carbon deposits when working with hydrocarbons, which can cause the battery to break after few hours of operation A possible solution to this problem is work at a lower temperature and with a higher degree of humidity, varying the fuel / water vapor ratio that reaches the anode. Moreover, these cermets are very sensitive to poisoning. by sulfur, which forces to work with high purity fuels making the whole process more expensive. Finally, we must add that these cermets tend to suffer from sintering problems Ni particles, an effect that is more serious when older are the Working temperatures and higher is the operating time. To these inconveniences, it should be added that Ni is generated from NiO, the latter being toxic and potentially carcinogenic [4] so that its use should be avoided.

Una de las soluciones adoptadas para superar estos problemas ha sido la incorporación de cermets alternativos [5] en los que el rol del Ni es llevado a cabo por Cu y CeO_{2} dentro de una matriz de YSZ, aunque todavía se encuentran en fase de investigación. Otra alternativa al uso de cermets es el empleo de óxidos mixtos. Entre los materiales con mejores prestaciones se encuentran (La,Sr)(Cr,Mn)O_{3} [6] con resultados comparables a los cermets de Ni-YSZ en pilas alimentadas con hidrógeno. Otros posibles materiales de ánodo son las fases derivadas del SrTiO_{3} substituido con diferentes elementos y de fórmula general (La,Sr)(Ti,M)O_{3} (M=Ga, Mn, Se). [7] Recientemente, se ha demostrado que operando en pilas alimentadas con metano, ofrecen un rendimiento extraordinario y generan voltajes de circuito abierto estables y superiores a 1.2 V, no favorecen la formación de depósitos de carbono y presentan una notable tolerancia a combustibles que contienen impurezas de azufre.One of the solutions adopted to overcome These problems have been the incorporation of alternative cermets [5] in which the role of Ni is carried out by Cu and CeO_ {2} within of a matrix of YSZ, although they are still in the phase of investigation. Another alternative to the use of cermets is the use of mixed oxides. Among the best performing materials are find (La, Sr) (Cr, Mn) O 3 [6] with results comparable to Ni-YSZ cermets in batteries fed with hydrogen. Other possible anode materials are the phases derived from SrTiO 3 substituted with different elements and of general formula (La, Sr) (Ti, M) O 3 (M = Ga, Mn, Se). [7] Recently, it has been shown that operating on batteries fueled with methane, they offer extraordinary performance and generate stable open circuit voltages and higher than 1.2 V, they do not favor the formation of carbon deposits and have a remarkable tolerance to fuels containing impurities of sulfur.

Cátodo. En el cátodo ocurre la reducción del oxígeno, proceso que consta de varias etapas que ocurren en el seno del material y en su superficie, y que depende fundamentalmente de la presión parcial del oxígeno, temperatura y características del electrodo. Las altas temperaturas de trabajo de las pilas SOFC (600-1000ºC) hacen que los candidatos a operar como cátodos sean compuestos con conductividad electrónica o mixta. Los metales nobles como Pt o Pd, aunque presentan propiedades adecuadas para ser utilizados como cátodos, tienen un coste demasiado elevado para fines prácticos. En la actualidad, los materiales de cátodo más empleados son las manganitas de lantano y estroncio (LSM), generalmente La_{1-x}Sr_{x}MnO_{3-\delta} (x=0.2-0.5) con altos valores de conductividad electrónica tipo-p del orden de 200 Scm^{-1} a 1000ºC [8]. Sin embargo, existen algunos inconvenientes derivados de su uso, por lo que se han buscado nuevos materiales como ferritas con fórmula general La_{1-x}Sr_{x}FeO_{3-\delta} y cobalto-ferritas La_{1-x}Sr_{x}Fe_{1-y}Co_{y}O_{3-\delta}. [9] Estos materiales son conductores mixtos (iónicos + electrónicos) y presentan una notable actividad catalítica hacia la reducción del oxígeno, aunque la compatibilidad química de estos materiales con la YSZ es aún cuestionable.Cathode. In the cathode the reduction of the oxygen, a process that consists of several stages that occur in the breast of the material and its surface, and that depends fundamentally on the partial pressure of oxygen, temperature and characteristics of the electrode. High working temperatures of SOFC batteries (600-1000 ° C) cause candidates to operate as cathodes are compounds with electronic or mixed conductivity. The noble metals such as Pt or Pd, although they have adequate properties to be used as cathodes, they are too expensive for practical purposes. Currently, more cathode materials employees are lanthanum and strontium manganites (LSM), generally La_ {1-x} Sr_ {x} MnO_ {3- \ delta} (x = 0.2-0.5) with high conductivity values p-type electronics of the order of 200 Scm -1 to 1000 ° C [8]. However, there are some drawbacks arising from its use, so new materials such as ferrites have been sought with general formula La_ {1-x} Sr_ {x} FeO_ {3- \ delta} and cobalt-ferrites La_ {1-x} Sr_ {x} Fe_ {1-y} Co_ {y} O_ {3- \ delta}. [9] These materials are mixed conductors (ionic + electronic) and present a remarkable catalytic activity towards the reduction of oxygen, although the chemical compatibility of these materials with the YSZ is still questionable.

Actualmente se ha probado un material que funciona como ánodo y cátodo simultáneamente, verificándose dicho concepto [10] y la primera pila construida de este tipo, con fases derivadas de las cromitas (La,Sr)(Cr,Mn)O_{3-\delta}, -representado como (LSCM)- ha permitido generar hasta 500 mW/cm^{2} trabajando con hidrógeno y 300 mW/cm^{2} cuando se utiliza metano como combustible.Currently a material has been tested that works as anode and cathode simultaneously, verifying said concept [10] and the first stack constructed of this type, with phases derived from the chromites (La, Sr) (Cr, Mn) O_ {3- δ}, -represented as (LSCM) - has allowed to generate up to 500 mW / cm2 working with hydrogen and 300 mW / cm2 when Use methane as fuel.

El LSCM aunque funciona bien presenta el problema de que la conductividad eléctrica en condiciones reductoras no es muy elevada y hay que utilizar un colector de corriente para suplir dicha carencia, por ejemplo en el estudio de la referencia [10a] se utilizó platino.The LSCM although it works well presents the problem that the electrical conductivity under reducing conditions It is not very high and you have to use a current collector to replace this lack, for example in the study of the reference [10a] platinum was used.

Nosotros proponemos un nuevo material que suple las deficiencias del LSCM.We propose a new material that supplies LSCM deficiencies.

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    
Referencias References

[1] a) D. W. Strickler, W. G. Carlson, J. Am. Ceram. Soc. 1964, 47, 122-127; b) S. P. S. Badwal, Solid State Ionics 1992, 52, 23-32; c) O. Yamamoto, Y. Arati, Y. Takeda, N. Imanishi, Y. Mizutani, M. Kawai and Y. Nakamura, Solid State Ionics 1995, 79, 137-142; d) S. P. S. Badwal, F. T. Ciacchi and D. Milosevic, Solid State Ionics 2000, 136-137,91-99.[1] a) DW Strickler , WG Carlson , J. Am. Ceram. Soc . 1964 , 47, 122-127; b) SPS Badwal , Solid State Ionics 1992 , 52, 23-32; c) O. Yamamoto , Y. Arati , Y. Takeda , N. Imanishi , Y. Mizutani , M. Kawai and Y. Nakamura , Solid State Ionics 1995 , 79, 137-142; d) SPS Badwal , FT Ciacchi and D. Milosevic , Solid State Ionics 2000 , 136-137.91-99.

[2] a) B. C. H. Steele, "High Conductivity Solid Ionic Conductors", Ed. T. Takahashi, World Scientific, Singapore, 1989; b) R. Gerhardt-Anderson and A. S. Nowick, Solid State Ionics 1981, 5, 547-550; c) J. A. Kilner and R. J. Brook, Solid State Ionics 1982, 6(3), 237-252.[2] a) BCH Steele , "High Conductivity Solid Ionic Conductors", Ed. T. Takahashi, World Scientific, Singapore , 1989 ; b) R. Gerhardt-Anderson and AS Nowick , Solid State Ionics 1981 , 5, 547-550; c) JA Kilner and RJ Brook , Solid State Ionics 1982 , 6 (3), 237-252.

[3] A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine, A. J. McEvoy, M. Mogensen, S. C. Singhal, J. Vohs, Nat. Mater. 2004, 3,17-27.[3] A. Atkinson , S. Barnett , RJ Gorte , JTS Irvine , AJ McEvoy , M. Mogensen , SC Singhal , J. Vohs, Nat. Mater. 2004 , 3.17-27.

[4] a) A. D. Ottolenghi, J. K. Haseman, W. W. Payne, H. L. Falk and H. N. MacFarland, J. Natl. Cancer Inst. 1974, 54(5), 1165-1172; b) P. J. Haley, G. M. Shopp, J. M. Benson, Y. S. Cheng, D. E. Bice, M. I. Luster, J. K. Dunnick and C. H. Hobbs, Fundam. Appl. Toxicol. 1990, 15, 476-487.[4] a) AD Ottolenghi , JK Haseman , WW Payne , HL Falk and HN MacFarland , J. Natl. Cancer Inst . 1974 , 54 (5), 1165-1172; b) PJ Haley , GM Shopp , JM Benson , YS Cheng , DE Bice , MI Luster , JK Dunnick and CH Hobbs , Fundam. Appl. Toxicol 1990 , 15, 476-487.

[5] R. J. Gorte, H. Kim and J. M. Vohs, J. Power Sources 2002, 106(1-2), 10-15.[5] RJ Gorte , H. Kim and JM Vohs , J. Power Sources 2002 , 106 (1-2), 10-15.

[6] a) J. Liu, B. D. Madsen, Z. Ji and S. A. Barnett, Electrochem. Solid-State Lett. 2002, 5(6), A122-A124; b) S. Tao and John T. S. Irvine, Nat. Mater. 2003, 2, 320-323.[6] a) J. Liu , BD Madsen , Z. Ji and SA Barnett , Electrochem. Solid-State Lett . 2002 , 5 (6), A122-A124; b) S. Tao and John TS Irvine , Nat. Mater . 2003 , 2, 320-323.

[7] a) J. C. Ruiz-Morales, J. Canales-Vázquez, C. D. Savaniu, D. Marrero-López, W. Zhou and J. T. S. Irvine, Nature 2006, 439, 568-571; b) J. Canales-Vázquez, J. C. Ruiz-Morales, J. T. S. Irvine and W. Zhou, J. Electrochem. Soc. 2005, 152, A1458-A1465; c) J. Canales-Vázquez, S. W. Tao and J. T. S. Irvine, Solid State Ionics 2003, 159, 159-165; d) A. Ovalle, J. C. Ruiz-Morales, J. Canales-Vázquez, D. Marrero-López and J. T. S. Irvine, Solid State Ionics 2006, 117(19-25), 1997-2003; e) J. C. Ruiz-Morales, J. Canales-Vázquez, C. D. Savaniu, D. Marrero-López, P. Núflez, W. Zhou and J. T. S. Irvine, Phys. Chem. Chem. Phys. 2007, 9, 1821-1830.[7] a) JC Ruiz-Morales , J. Canales-Vázquez , CD Savaniu , D. Marrero-López , W. Zhou and JTS Irvine , Nature 2006 , 439, 568-571; b) J. Canales-Vázquez , JC Ruiz-Morales , JTS Irvine and W. Zhou , J. Electrochem. Soc . 2005 , 152, A1458-A1465; c) J. Canales-Vázquez , SW Tao and JTS Irvine , Solid State Ionics 2003 , 159, 159-165; d) A. Ovalle , JC Ruiz-Morales , J. Canales-Vázquez , D. Marrero-López and JTS Irvine , Solid State Ionics 2006 , 117 (19-25), 1997-2003; e) JC Ruiz-Morales , J. Canales-Vázquez , CD Savaniu , D. Marrero-López , P. Núflez , W. Zhou and JTS Irvine , Phys. Chem. Chem. Phys . 2007 , 9, 1821-1830.

[8] S. C. Singhal and K. Kendall, "High Temperature Solid Oxide Fuel Cells: Fundamentáis, Design and Applications", Elsevier, Oxford, 2004.[8] SC Singhal and K. Kendall , "High Temperature Solid Oxide Fuel Cells: Fundamental, Design and Applications", Elsevier , Oxford, 2004 .

[9] a) S. P. Simner, J. F. Bonnett, N. L. Canfield, K. D. Meinhardt, V. L. Sprenkle, and J. W. Stevenson, Electrochem. Solid-State Lett. 2002, 5(7), A173-A175; b) K. Huang, H. Y. Lee and J. B. Goodenough, J. Electrochem. Soc. 1998, 149(9) 3220-3227; c) B. C. H. Steele, Solid State Ionics 1996, 86-88, 1223-1234; d) S. P. Jiang, Solid State Ionics 2002, 146(1-2), 1-22; e) L. Qiu, T. Ichikawa, A. Hirano, N. Imanishi and Y. Takeda, Solid State Ionics 2003, 158(1-2), 55-65; f) S. Carter, A. Selcuk, R. J. Charter, J. Kajda, J. A. Kilner and B. C. H. Steele, Solid State Ionics 1992, 53-56, 597-605.[9] a) SP Simner , JF Bonnett , NL Canfield , KD Meinhardt , VL Sprenkle , and JW Stevenson , Electrochem. Solid-State Lett . 2002 , 5 (7), A173-A175; b) K. Huang , HY Lee and JB Goodenough , J. Electrochem. Soc . 1998 , 149 (9) 3220-3227; c) BCH Steele , Solid State Ionics 1996 , 86-88, 1223-1234; d) SP Jiang , Solid State Ionics 2002 , 146 (1-2), 1-22; e) L. Qiu , T. Ichikawa , A. Hirano , N. Imanishi and Y. Takeda , Solid State Ionics 2003 , 158 (1-2), 55-65; f) S. Carter , A. Selcuk , RJ Charter , J. Kajda , JA Kilner and BCH Steele , Solid State Ionics 1992 , 53-56, 597-605.

[10] a) J. C. Ruiz-Morales, J. Canales-Vázquez, J. Peña Martínez, D. Marrero-López and P. Núñez, Electrochimica Acta 2006, 52(1), 278-284; b) J. C. Ruiz-Morales, J. Canales-Vázquez, B. Ballesteros, J. Peña-Martínez, D. Marrero-López, J. T. S. Irvine and P. Núñez, J. Eur. Ceram. Soc. 2006, doi: 10.1016/j.jeurcerarasoc.2007.02.117; c) J. C. Ruiz-Morales, H. Lincke, D. Marrero-López, J. Canales-Vázquez and P. Núñez, Bol. Soc. Esp. Ceram. V. 2007 (in press); d) D. Bastidas, S. Tao and J.T.S. Irvine, J. Mater. Chem. 2006, 16, 1603-1605[10] a) JC Ruiz-Morales , J. Canales-Vázquez , J. Peña Martínez , D. Marrero-López and P. Núñez , Electrochimica Acta 2006 , 52 (1), 278-284; b) JC Ruiz-Morales , J. Canales-Vázquez , B. Ballesteros , J. Peña-Martínez , D. Marrero-López , JTS Irvine and P. Núñez , J. Eur. Ceram. Soc . 2006 , doi: 10.1016 / j.jeurcerarasoc.2007.02.117; c) JC Ruiz-Morales , H. Lincke , D. Marrero-López , J. Canales-Vázquez and P. Núñez , Bol. Soc. Esp. Ceram . V. 2007 (in press); d) D. Bastidas , S. Tao and JTS Irvine , J. Mater. Chem 2006 , 16, 1603-1605

Descripción de la invenciónDescription of the invention

La invención consiste en utilizar una mezcla de materiales, un colector de corriente (generalmente metálico) junto con componentes cerámicos, para producir un nuevo material, como electrodo simétrico que funciona, simultáneamente, como ánodo y cátodo de una pila de combustible.The invention consists in using a mixture of materials, a current collector (usually metallic) together with ceramic components, to produce a new material, such as symmetric electrode that works simultaneously as an anode and cathode of a fuel cell.

Los materiales cerámicos están constituidos fundamentalmente por un lado, por polvo de electrolito, lo que asegura conductividad iónica, permitiendo que se fije relativamente bien el polvo del composite a la pastilla densa del electrolito, y que no haya diferencias significativas del coeficiente de expansión térmica entre los diferentes materiales que forman el electrodo, evitando así delaminaciones de los mismos con el tiempo. Además se beneficia de la llamada extensión del Límite de la Triple Fase (del inglés Triple Phase Boundary), a lo largo de todo el material de electrodo, aumentando así la superficie activa electroquímica.Ceramic materials consist primarily of electrolyte dust on the one hand, which ensures ionic conductivity, allowing the composite powder to be fixed relatively well to the dense pellet of the electrolyte, and that there are no significant differences in the coefficient of thermal expansion between the different materials that form the electrode, thus avoiding delaminations of them over time. It also benefits from the so-called extension of the Triple Phase Boundary (throughout the English Triple Phase Boundary ), along the entire electrode material, thus increasing the electrochemical active surface.

Otro de los componentes cerámicos es el polvo de óxido de cerio, CeO_{2}, que aunque no tiene conductividad iónica, si que tiene electrónica en condiciones reductoras.Another of the ceramic components is the dust of cerium oxide, CeO2, which although has no ionic conductivity, If you have electronics in reducing conditions.

El colector de corriente lo constituyen, generalmente, metales nobles como platino (Pt), oro (Au) para temperaturas 950-800ºC y plata (Ag) para temperaturas más bajas. Adicionalmente otro colector de corriente que podría utilizarse serían las cromitas utilizadas como interconectores, pero en este caso no se trata de un metal sino de otro material cerámico.The current collector is constituted, Generally, noble metals such as platinum (Pt), gold (Au) for temperatures 950-800ºC and silver (Ag) for lower temperatures Additionally another current collector that could be used would be the chromites used as interconnectors, but in this case it is not a metal but of Other ceramic material.

Los polvos de los dos materiales cerámicos (electrolito + CeO_{2}) se pesan en la proporción adecuada, que oscila en torno al 50% de cada compuesto. Se mezclan en mortero de ágata con acetona y se deja secar. A continuación se adiciona un compuesto orgánico aglomerante y fijador, llamado binder, al menos en una proporción 1:1 con respecto a la mezcla anterior. Esta nueva mezcla viscosa, llamada slurry, se utiliza para pintar los electrodos a ambos lados de una pastilla densa de electrolito y formar así una pila simétrica. Se pretende que el grosor del electrodo sea del orden de 5-10 micras como máximo. La celda con los electrodos pintados se deja secar en una estufa, entre 50ºC y 80ºC. Finalmente la muestra se quema a altas temperaturas para fijar los electrodos al electrolito, suelen ser necesarias temperaturas superiores a 1100ºC y hasta un máximo de 1300ºC, durante 1-3 horas. Finalmente quedaría pintar una capa delgada del colector de corriente. Posteriormente se quema la materia orgánica que contiene la pintura de colector de corriente, en un horno a 800-950ºC, durante 30 min-2 horas. A veces se pueden impregnar previamente los electrodos con una disolución diluida, alcohólica, del colector de corriente; lo cual asegura una mayor actividad electroquímica a través de todo el material.The powders of the two ceramic materials (electrolyte + CeO2) are weighed in the proper proportion, which It ranges around 50% of each compound. They are mixed in mortar Agate with acetone and let dry. Next a organic compound binder and fixative, called binder, at least in a 1: 1 ratio with respect to the previous mixture. This new viscous mixture, called slurry, is used to paint the electrodes on both sides of a dense electrolyte tablet and thus form a symmetrical stack. It is intended that the thickness of the electrode is of the order of 5-10 microns maximum. The cell with the painted electrodes is allowed to dry in an oven, between 50ºC and 80ºC. Finally the sample burns at high temperatures to fix the electrodes to the electrolyte, usually necessary temperatures above 1100ºC and up to a maximum of 1300 ° C, for 1-3 hours. Finally it would be paint a thin layer of the current collector. Subsequently burns the organic matter that contains the collector paint of current, in an oven at 800-950 ° C, for 30 min-2 hours Sometimes they can be impregnated previously electrodes with a diluted, alcoholic solution of the collector of current; which ensures greater electrochemical activity at Through all the material.

En el caso de utilizar cromitas como colector de corriente, lo que se hace es que el polvo de cromitas se adiciona en la primera etapa en donde se mezclan electrolito junto con CeO_{2}. De nuevo en una proporción del orden del 30-70% con respecto a la mezcla (electrolito + CeO_{2}) y se repiten todos los pasos anteriormente descritos.In the case of using chromites as a collector of current, what is done is that chromite dust is added in the first stage where electrolyte is mixed together with CeO 2. Again in a proportion of the order of 30-70% with respect to the mixture (electrolyte + CeO 2) and all the steps described above are repeated.

Modos de realización de la invenciónEmbodiments of the invention Preparación de una pila con electrodos simétricos de Pt-YSZ-CeO_{2}Preparation of a battery with symmetric electrodes of Pt-YSZ-CeO_ {2}

1) Se pesan 0.15 gramos de YSZ y 0.15 gramos de CeO_{2}. Se vierten en un mortero de ágata y se adiciona acetona de manera que cubra los polvos, a continuación, se mezclan homogéneamente los polvos y, se deja que se evapore la acetona.1) Weigh 0.15 grams of YSZ and 0.15 grams of CeO 2. They are poured into an agate mortar and acetone is added so that it covers the powders, then they mix homogeneously the powders and, the acetone is allowed to evaporate.

2) Se vierten los polvos obtenidos en 1), en un bote de cristal pequeño, en el cual se vierten 0.2 gramos de binder, en nuestro caso DECOFLUX (WB41, Zschimmer and Schwartz). Se mezclan hasta formar una especie de pintura homogénea y viscosa, conocida como slurry.2) The powders obtained in 1) are poured into a small glass canister, in which 0.2 grams of binder are poured, in our case DECOFLUX (WB41, Zschimmer and Schwartz). They mix to form a kind of homogeneous and viscous paint, known as slurry

3) Mediante serigrafía se pintan electrodos simétricos, con el slurry del punto 2), a ambos lados de una pastilla densa de YSZ (1 mm de grosor y 15 mm de ancho). Se pintan círculos de 10 mm de diámetro lo cual da lugar a un área geométrica de 0.785 cm^{2}. Primero se pinta una cara, se seca en un horno a unos 70ºC y se repite el otro proceso con la otra cara.3) Electrodes are painted using silkscreen symmetrical, with the slurry of point 2), on both sides of a dense YSZ tablet (1 mm thick and 15 mm wide). They are painted 10 mm diameter circles which gives rise to a geometric area 0.785 cm2. First a face is painted, dried in an oven to about 70 ° C and the other process is repeated with the other side.

4) Una vez seca, se coloca la celda encima de un sustrato de alúmina para evitar reactividades con el horno y se sinteriza a 1200ºC, durante 2 horas. Con unas rampas de calentamiento y enfriamiento de 5º/min.4) Once dry, the cell is placed on top of a alumina substrate to avoid reactivities with the oven and it Sinter at 1200 ° C for 2 hours. With ramps of heating and cooling of 5º / min.

5) Se pinta la parte superior de ambos electrodos con pintura comercial de platino, para adicionar así el colector de corriente. Se introduce en un horno y se quema a 950ºC durante 2 horas. De nuevo, las rampas de calentamiento y enfriamiento son de 5º/min. Y con esto finalizaría el montaje de una pila.5) The upper part of both is painted electrodes with commercial platinum paint, to add the current collector It is introduced in an oven and burned at 950 ° C for 2 hours Again, the heating ramps and cooling are 5º / min. And with this the assembly of a battery.

Claims (7)

1. Material de electrodo simétrico, que actúa como ánodo y cátodo simultáneamente, para pilas SOFC, caracterizado por A, B y C, siendo:1. Symmetric electrode material, which acts as an anode and cathode simultaneously, for SOFC batteries, characterized by A, B and C, being:
A: un electrolito que comprende YSZ, o bien CGO o bien CSO o bien LSGMYet electrolyte comprising YSZ, either CGO or CSO or LSGM
B: CeO_{2}B: CeO 2
C: un colector de corriente que comprende, un metal noble o una cromitaC: a collector of current comprising, a noble metal or a chromite
         \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
      
2. Material de electrodo simétrico, caracterizado según reivindicación 1, donde:2. Symmetric electrode material, characterized according to claim 1, wherein:
A equivale a YSZA equals YSZ
B equivale a CeO_{2}B equals CeO 2
C equivale a PtC equals Pt
3. Material de electrodo simétrico, caracterizado según reivindicación 1, donde:3. Symmetric electrode material, characterized according to claim 1, wherein:
A equivale a CSOA equals CSO
B equivale a CeO_{2}B equals CeO 2
C equivale a PtC equals Pt
4. Material de electrodo simétrico, caracterizado según reivindicación 1, donde:4. Symmetric electrode material, characterized according to claim 1, wherein:
A equivale a YSZA equals YSZ
B equivale a CeO_{2}B equals CeO 2
C equivale a AuC equals Au
5. Material de electrodo simétrico, caracterizado según reivindicación 1, donde:5. Symmetric electrode material, characterized according to claim 1, wherein:
A equivale a CSOA equals CSO
B equivale a CeO_{2}B equals CeO 2
C equivale a AuC equals Au
6. Material de electrodo simétrico, caracterizado según reivindicación 1, donde:6. Symmetric electrode material, characterized according to claim 1, wherein:
A equivale a YSZA equals YSZ
B equivale a CeO_{2}B equals CeO 2
C equivale a AgC equals Ag
7. Material de electrodo simétrico, caracterizado según reivindicación 1, donde:7. Symmetric electrode material, characterized according to claim 1, wherein:
A equivale a CSOA equals CSO
B equivale a CeO_{2}B equals CeO 2
C equivale a AgC equals Ag
ES200701333A 2007-04-27 2007-04-27 Material for symmetrical electrode of solid oxides fuel batteries (Machine-translation by Google Translate, not legally binding) Pending ES2343493A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES200701333A ES2343493A1 (en) 2007-04-27 2007-04-27 Material for symmetrical electrode of solid oxides fuel batteries (Machine-translation by Google Translate, not legally binding)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200701333A ES2343493A1 (en) 2007-04-27 2007-04-27 Material for symmetrical electrode of solid oxides fuel batteries (Machine-translation by Google Translate, not legally binding)

Publications (1)

Publication Number Publication Date
ES2343493A1 true ES2343493A1 (en) 2010-08-02

Family

ID=42338060

Family Applications (1)

Application Number Title Priority Date Filing Date
ES200701333A Pending ES2343493A1 (en) 2007-04-27 2007-04-27 Material for symmetrical electrode of solid oxides fuel batteries (Machine-translation by Google Translate, not legally binding)

Country Status (1)

Country Link
ES (1) ES2343493A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6630267B2 (en) * 2000-05-18 2003-10-07 Corning Incorporated Solid oxide fuel cells with symmetric composite electrodes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6630267B2 (en) * 2000-05-18 2003-10-07 Corning Incorporated Solid oxide fuel cells with symmetric composite electrodes

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
G.C MATHER, F.M. FIGUEIREDO, D.P. FAGG, T. NORBY, J.R. JURADO, J. R. FRADE, "{}Synthesis and characterization of Ni-SrCeYbO3 cermet anodes for protonic ceramic fuel cells"{}, Solid State Ionics, Marzo 2003, Volumen 158, Números 3-4, Páginas 333-342. *
G.C MATHER, F.M. FIGUEIREDO, D.P. FAGG, T. NORBY, J.R. JURADO, J. R. FRADE, "Synthesis and characterization of Ni-SrCeYbO3 cermet anodes for protonic ceramic fuel cells", Solid State Ionics, Marzo 2003, Volumen 158, Números 3-4, Páginas 333-342. *
JUAN CARLOS RUIZ-MORALES, JESUS CANALES VÁZQUEZ, BELEN BALLESTEROS-PÉREZ, JUAN PEÑA-MARTÍNEZ, DAVID MARRERO-LÓPEZ, JOHN T.S. IRVINE, PEDRO NÚÑEZ, "{}LSCM-(YSM-CGO) composites as improved symmetrical electrodes for solid Oxide Fuel Cells"{}, Journal of the European Ceramic Society, Enero 2007, Volumen 27, Números 13-15, Páginas 4223-4227. *
JUAN CARLOS RUIZ-MORALES, JESUS CANALES VÁZQUEZ, BELEN BALLESTEROS-PÉREZ, JUAN PEÑA-MARTÍNEZ, DAVID MARRERO-LÓPEZ, JOHN T.S. IRVINE, PEDRO NÚÑEZ, "LSCM-(YSM-CGO) composites as improved symmetrical electrodes for solid Oxide Fuel Cells", Journal of the European Ceramic Society, Enero 2007, Volumen 27, Números 13-15, Páginas 4223-4227. *
JUAN CARLOS RUIZ-MORALES, JESUS CANALES VÁZQUEZ, JUAN PEÑA- MARTÍNEZ, y DAVID MARRERO, "{}On the simultaneous use of LaSrCrMnO as both anode and cathode material with improved microestructure in solid oxide Fuel Cells"{}, Electrochimica Acta, Octubre 2006, Volumen 52, Número 1, Páginas 278-284. *
JUAN CARLOS RUIZ-MORALES, JESUS CANALES VÁZQUEZ, JUAN PEÑA- MARTÍNEZ, y DAVID MARRERO, "On the simultaneous use of LaSrCrMnO as both anode and cathode material with improved microestructure in solid oxide Fuel Cells", Electrochimica Acta, Octubre 2006, Volumen 52, Número 1, Páginas 278-284. *
MITSUNOBU SHIONO, KENICHI KOBAYASHI, TUONG LAN NGUYEN, KAN HOSODA, TORU KATO, KENICHIRO OTA, MASAYUKI DOKIYA, "{}Effect of CeO2 interlayer on Zr02 electrolyte/la(Sr)CoO3 cathode for low- temperature SOFCs"{}, Solid State Ionics, Mayo 2004, Volumen 170, Números 1-2, Páginas 1-7. *
MITSUNOBU SHIONO, KENICHI KOBAYASHI, TUONG LAN NGUYEN, KAN HOSODA, TORU KATO, KENICHIRO OTA, MASAYUKI DOKIYA, "Effect of CeO2 interlayer on Zr02 electrolyte/la(Sr)CoO3 cathode for low- temperature SOFCs", Solid State Ionics, Mayo 2004, Volumen 170, Números 1-2, Páginas 1-7. *
WENQUAN GONG, SRIKANTH GOPALAN, UDAY B. PAL, "{}Performance of intermediate temperature (600-800$^{o}$C) solid oxide fuel cell based on Sr and Mg doped Lanthanum-gallate electrolyte"{}, Journal of Power Sources, Septiembre 2006, Volumen 160, Número 1, Páginas 305-315. *
WENQUAN GONG, SRIKANTH GOPALAN, UDAY B. PAL, "Performance of intermediate temperature (600-800ºC) solid oxide fuel cell based on Sr and Mg doped Lanthanum-gallate electrolyte", Journal of Power Sources, Septiembre 2006, Volumen 160, Número 1, Páginas 305-315. *

Similar Documents

Publication Publication Date Title
Ruiz-Morales et al. On the simultaneous use of La0. 75Sr0. 25Cr0. 5Mn0. 5O3− δ as both anode and cathode material with improved microstructure in solid oxide fuel cells
Bastidas et al. A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes
US9806345B2 (en) Electrochemical energy conversion devices and cells, and positive electrode-side materials for them
Cao et al. Titanium-substituted lanthanum strontium ferrite as a novel electrode material for symmetrical solid oxide fuel cell
Canales-Vázquez et al. Fe-substituted (La, Sr) TiO3 as potential electrodes for symmetrical fuel cells (SFCs)
Zhang et al. Interactions of a La0. 9Sr0. 1Ga0. 8Mg0. 2O3− δ electrolyte with Fe2O3, Co2O3 and NiO anode materials
CN103477484B (en) Fuel cell
Li et al. Composite cathode based on Ni-loaded La0. 75Sr0. 25Cr0. 5Mn0. 5O3− δ for direct steam electrolysis in an oxide-ion-conducting solid oxide electrolyzer
US8778560B2 (en) Mixed ionic and electronic conductor based on Sr2Fe2-xM0XO6 perovskite
Yang et al. Improving stability and electrochemical performance of Ba0. 5Sr0. 5Co0. 2Fe0. 8O3-δ electrode for symmetrical solid oxide fuel cells by Mo doping
CN102208651A (en) Metal oxide-yttria stabilized zirconia composite and solid oxide fuel cell using the same
US20130224627A1 (en) Scandium-doped bzcy electrolytes
Huang et al. Performances of planar solid oxide fuel cells with doped strontium titanate as anode materials
JP2013140737A (en) Method for manufacturing solid electrolyte fuel cell, and solid electrolyte fuel cell
US10069163B2 (en) Fuel cell
Zhang et al. Modification of electrocatalytic activity of BaCe0. 40Sm0. 20Fe0. 40O3− δ with Co3O4 as cathode for proton-conducting solid oxide fuel cell
CN111653790B (en) All-solid-state iron-air battery
Liang et al. Microwave plasma rapid heating towards robust cathode/electrolyte interface for solid oxide fuel cells
Ruiz-Morales et al. Potential electrode materials for symmetrical solid oxide fuel cells
Ishihara et al. Intermediate temperature solid oxide electrolysis cell using LaGaO3-base oxide
Guo et al. Anode-supported LaGaO3-based electrolyte SOFCs with Y2O3-doped Bi2O3 and La-doped CeO2 buffer layers
JP3160993B2 (en) Solid oxide fuel cell
ES2343493A1 (en) Material for symmetrical electrode of solid oxides fuel batteries (Machine-translation by Google Translate, not legally binding)
ES2343494A1 (en) Material for symmetrical electrode of batteries of combustibles of solid oxides of intermediate temperature. (Machine-translation by Google Translate, not legally binding)
Lan et al. Proton‐conducting materials as electrolytes for solid oxide fuel cells

Legal Events

Date Code Title Description
EC2A Search report published

Date of ref document: 20100802

Kind code of ref document: A1

FC2A Grant refused

Effective date: 20110906