ES2326069B1 - MANUFACTURING PROCEDURE OF A CERAMIC RESISTIVE DEVICE FROM CELLULOSIC PRECURSORS AND PRODUCT SO OBTAINED. - Google Patents

MANUFACTURING PROCEDURE OF A CERAMIC RESISTIVE DEVICE FROM CELLULOSIC PRECURSORS AND PRODUCT SO OBTAINED. Download PDF

Info

Publication number
ES2326069B1
ES2326069B1 ES200900580A ES200900580A ES2326069B1 ES 2326069 B1 ES2326069 B1 ES 2326069B1 ES 200900580 A ES200900580 A ES 200900580A ES 200900580 A ES200900580 A ES 200900580A ES 2326069 B1 ES2326069 B1 ES 2326069B1
Authority
ES
Spain
Prior art keywords
stage
silicon
procedure
silicon carbide
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
ES200900580A
Other languages
Spanish (es)
Other versions
ES2326069A1 (en
Inventor
Manuel Jesus Lopez Robledo
Jose Javier Quispe Cancapa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biomorphic Ebt S L
BIOMORPHIC EBT SL
Original Assignee
Biomorphic Ebt S L
BIOMORPHIC EBT SL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biomorphic Ebt S L, BIOMORPHIC EBT SL filed Critical Biomorphic Ebt S L
Priority to ES200900580A priority Critical patent/ES2326069B1/en
Priority to PCT/ES2009/070052 priority patent/WO2010100290A1/en
Publication of ES2326069A1 publication Critical patent/ES2326069A1/en
Application granted granted Critical
Publication of ES2326069B1 publication Critical patent/ES2326069B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • C04B35/62209Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse using woody material, remaining in the ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Ceramic Products (AREA)

Abstract

Procedimiento de fabricación de un dispositivo resistivo cerámico a partir de precursores celulósicos y producto así obtenido.Device manufacturing procedure ceramic resistive from cellulosic precursors and product so obtained.

Procedimiento de fabricación de un dispositivo resistivo cerámico del tipo fabricado con materiales multifásicos de carburo de silicio y silicio a partir de precursores celulósicos caracterizado porque comprende, al menos, una primera etapa configurada para el secado de dicho precursor celulósico; una segunda etapa de pirolisis; una tercera etapa de mecanizado; una cuarta etapa de unión; una quinta etapa de infiltración; una sexta etapa de eliminación selectiva del silicio; una séptima etapa de metalización; una octava etapa de conexión eléctrica configurada para obtener una conexión eléctrica de alta calidad; y una novena etapa de aislamiento térmico y eléctrico.Device manufacturing procedure ceramic resistive of the type manufactured with multiphase materials of silicon carbide and silicon from cellulosic precursors characterized in that it comprises at least a first stage configured for drying said cellulosic precursor; a second stage of pyrolysis; a third machining stage; a fourth stage of union; a fifth stage of infiltration; a sixth stage of selective removal of silicon; a seventh stage of metallization; an eighth stage of electrical connection configured to obtain a high quality electrical connection; and a novena thermal and electrical insulation stage.

Description

Procedimiento de fabricación de un dispositivo resistivo cerámico a partir de precursores celulósicos y producto así obtenido.Device manufacturing procedure ceramic resistive from cellulosic precursors and product so obtained.

El objeto principal de la presente invención está referido a un procedimiento de fabricación de dispositivo resistivo fabricado con materiales multifásicos de carburo de silicio y silicio, concretamente a partir de la infiltración de aleaciones metálicas en preformas de carbón obtenidas por pirolisis de precursores celulósicos, así como el producto obtenido mediante este procedimiento.The main object of the present invention it refers to a device manufacturing procedure resistive made of multiphase carbide materials silicon and silicon, specifically from the infiltration of metal alloys in carbon preforms obtained by pyrolysis of cellulosic precursors, as well as the product obtained by this procedure.

La presente invención es aplicable, fundamentalmente, a procesos de calentamiento y disipación de energía en diversos sectores industriales. Así, es posible obtener componentes para aplicaciones basadas en la obtención de una zona caliente, manteniendo unas propiedades óptimas de dureza, resistencia a la fricción, conductividad térmica, conductividad eléctrica, resistencia mecánica, porosidad, resistencia a la corrosión, resistencia al choque térmico y baja densidad.The present invention is applicable, fundamentally, to heating and dissipation processes of Energy in various industrial sectors. Thus, it is possible to obtain components for applications based on obtaining an area hot, maintaining optimal hardness properties, friction resistance, thermal conductivity, conductivity electrical, mechanical resistance, porosity, resistance to corrosion, resistance to thermal shock and low density.

Estado de la técnica anteriorPrior art

El inicio de la investigación en nuevos materiales cerámicos se ha debido a las limitaciones de las aleaciones metálicas para su uso en aplicaciones estructurales y/o ambientes agresivos a altas temperaturas [1]. Los materiales cerámicos poseen un punto de fusión más alto que los metales, lo que les permite soportar durante periodos de tiempo dilatados el efecto de la temperatura y los esfuerzos mecánicos. El desarrollo de materiales que puedan ser usados a temperaturas más altas que los metales (>1000ºC) posee muchas ventajas y nuevas aplicaciones. Por ejemplo, el aumento de la temperatura de trabajo de motores y turbinas incrementa su eficiencia y reduce las emisiones de gases contaminantes [2-5].The start of research in new ceramic materials have been due to the limitations of the metal alloys for use in structural applications and / or aggressive environments at high temperatures [1]. The materials ceramics have a higher melting point than metals, what which allows them to endure for extended periods of time the effect of temperature and mechanical stress. The development of materials that can be used at temperatures higher than  Metals (> 1000ºC) have many advantages and new applications. For example, the increase in working temperature of engines and turbines increase efficiency and reduce gas emissions pollutants [2-5].

Una de estas cerámicas es el carburo de silicio (SiC). Este material fue sintetizado por primera vez en 1980 por E.G. Acheson en un intento de fabricar diamantes artificiales. Este material no existe de forma natural, aunque se ha detectado su formación en meteoritos. Esta cerámica posee las siguientes propiedades que la hacen en conjunto el mejor candidato para aplicaciones estructurales a alta temperatura, superior a otros materiales cerámicos como la alumina (Al_{2}O_{3}), nitruro de silicio (Si_{3}N_{4}) o zirconia (ZrO_{2}) [5]:One of these ceramics is silicon carbide (Sic). This material was first synthesized in 1980 by E.G. Acheson in an attempt to make rhinestones. This material does not exist naturally, although its meteorite training This ceramic has the following properties that make it together the best candidate for high temperature structural applications, superior to others ceramic materials such as alumina (Al 2 O 3), nitride of silicon (Si_ {N} {4}) or zirconia (ZrO2) [5]:

--
Baja densidad: Muy importante para aplicaciones aerospaciales.Low Density: Very important for aerospace applications.

--
Alta resistencia mecánica a altas temperaturas: No disminuye significativamente con la temperatura hasta 1500ºC.high mechanical resistance at high temperatures: Does not decrease significantly with the temperature up to 1500 ° C.

--
Bajo coeficiente de expansión térmica: No crea tensiones en las zonas de contacto con otros componentes durante los ciclos de calentamiento.Low coefficient of thermal expansion: Does not create tensions in the zones of contact with other components during the cycles of heating.

--
Alta conductividad térmica: Evita los sobrecalentamientos en las uniones metal cerámico.high thermal conductivity: Prevents overheating in joints ceramic metal

--
Alta estabilidad química: La temperatura de descomposición es de 2400ºC.high chemical stability: The decomposition temperature is 2400 ° C.

--
Excelente resistencia a la corrosión y oxidación.Excellent corrosion resistance and oxidation.

--
Alta resistencia al choque térmico.high resistance to thermal shock.

--
Alta resistencia a la abrasión en temperatura.high abrasion resistance in temperature.

--
Alta dureza: muy cercana a la del diamante.high Hardness: very close to that of the diamond.

--
Resistencia a la propagación de fisuras. Es inferior a la de otras cerámicas. La mejora de esta propiedad en SiC es uno de los retos actuales en ciencia de materiales [6].Fissure propagation resistance. It is inferior to that of other ceramics. The improvement of this property in SiC is one of the current challenges in materials science [6].

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    

La principal limitación para el uso de este material ha sido la fabricación de piezas de tamaño macroscópico. El polvo de carburo de silicio se ha usado como material abrasivo desde su descubrimiento. Durante la segunda guerra mundial se intentó usar como elemento de calentamiento, sin embargo fue imposible obtener piezas de SiC de alta densidad. En 1974, S. Prochaza [7, 8] descubrió que era posible la fabricación de piezas de SiC a partir de polvo compactado a alta temperatura (sinterizado) con pequeñas adiciones de boro y carbono. Desde este momento el SiC ha recibido una gran atención para su uso en los siguientes campos de aplicación [2-5, 9, 10]:The main limitation for the use of this material has been the manufacture of macroscopic sized parts. Silicon carbide powder has been used as an abrasive material since its discovery. During World War II it tried to use as a heating element, however it was Impossible to obtain high density SiC parts. In 1974, S. Prochaza [7, 8] discovered that it was possible to manufacture parts SiC from compacted powder at high temperature (sintered) with small additions of boron and carbon. From this moment the SiC It has received great attention for use in the following fields of application [2-5, 9, 10]:

--
Componentes resistentes a la abrasión y corrosión - Juntas mecánicas, válvulas, rebajado de superficies, piezas de corte en la industria papelera, etc.Abrasion resistant components and Corrosion - Mechanical seals, valves, surface reduction, cutting parts in the paper industry, etc.

--
Componentes resistentes a la temperatura - Intercambiadores de calor, ventiladores cerámicos, elementos de calentamiento, tubos protectores, etc.Temperature resistant components - Heat exchangers, ceramic fans, elements of heating, protective tubes, etc.

--
Componente de motores y turbinas.Engine component and turbines

--
Componentes para la industria del acero y otros metales (refinamiento y manufactura).Components for the steel industry and other metals (refinement and manufacturing).

--
Porta catalizador.Holder catalyst.

--
Paredes de refrigeración en reactores de fusión - Nuclear.Cooling walls in reactors nuclear fusion.

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    

Por otro lado, los principales métodos de fabricación de piezas de SiC se enuncian a continuación:On the other hand, the main methods of SiC parts manufacturing are listed below:

(a) Sinterizado en caliente sin presión [11-13]: El polvo de SiC se mezcla con pequeñas cantidades de B y C y se calienta a temperaturas entre 2000-2300ºC. Los principales inconvenientes de esta técnica son que las altas temperaturas hacen necesario el uso de tecnologías más caras; el control de la temperatura es muy critico y sólo puede hacerse con pirómetros ópticos, que presentan problemas de precisión; se pueden producir transformaciones entre los distintos polimorfismos de SiC dando lugar a crecimiento de tamaño de grano anómalo; necesita de acabado final, lo que aumenta considerablemente los costes debido a la resistencia al desgaste del material; la resistencia del producto final disminuye considerablemente a altas temperaturas; y los aditivos usados para el sinterizado pueden alterar otras propiedades como resistencia a la corrosión.(a) Hot sintered without pressure [11-13]: SiC powder is mixed with small amounts of B and C and heated at temperatures between 2000-2300 ° C. The main drawbacks of this technique are that high temperatures make it necessary to use more expensive technologies; Temperature control is very critical and can only be done with optical pyrometers, which present precision problems; transformations between the different SiC polymorphisms can occur leading to anomalous grain size growth; It needs a final finish, which considerably increases costs due to the wear resistance of the material; the resistance of the final product decreases considerably at high temperatures; and the additives used for sintering can alter other properties such as corrosion resistance.

(b) Sinterizado en caliente con presión [14]: Produce materiales con mayor resistencia que los producidos por el sinterizado sin presión. Los principales inconvenientes de esta técnica es que solo es aplicable para geometrías simples y el coste es incluso más elevado que el del sinterizado sin presión.(b) Hot sintering with pressure [14]: Produces materials with greater resistance than those produced by sintering without pressure. The main drawbacks of this technique is that it is only applicable for simple geometries and the cost is even higher than that of sintering without pressure.

(c) Deposición química en fase vapor [15, 16]: Se produce a partir de la reacción en un gas que contiene Si y C, depositándose posteriormente en un substrato. Produce SiC puro sin aditivos. Los principales inconvenientes son que solo pueden producirse láminas delgadas; la velocidad de crecimiento es muy lenta; y el tamaño de los granos varia sistemáticamente durante el proceso de deposición.(c) Chemical deposition in vapor phase [15, 16]: It is produced from the reaction in a gas containing Si and C, subsequently deposited on a substrate. Produces pure SiC without additives. The main drawbacks are that only thin sheets can be produced; the growth rate is very slow; and the size of the grains varies systematically during the deposition process.

(d) Compactado por reacción [17, 18]: Esta técnica es una mezcla de SiC en polvo y C se hace reaccionar con SiC gaseoso o líquido. La temperatura de fabricación es inferior (1410ºC). El principal inconveniente radica en que las áreas de contacto entre los granos de SiC son pequeñas y el material presenta muy baja resistencia a alta temperatura ya que está controlada por el flujo de silicio [19-21].(d) Compacted by reaction [17,18]: This technique is a mixture of SiC powder and C is reacted with gaseous or liquid SiC. The manufacturing temperature is lower (1410 ° C). The main drawback is that the contact areas between the SiC grains are small and the material has very low resistance to high temperature since it is controlled by the flow of silicon [19-21].

(e) Infiltración reactiva [22-25]: Fabricación de carburo de silicio a partir de la infiltración de silicio líquido en preformas de carbono artificiales. El principal inconveniente radica en que la estructura necesita optimización en su interconectividad y no presenta direccionalidad. Los poros son de tamaño uniforme sin jerarquización, lo que limita ciertas aplicaciones en las que la superficie específica es importante.(e) Reactive infiltration [22-25]: Manufacture of silicon carbide from the infiltration of liquid silicon into artificial carbon preforms. The main drawback is that the structure needs optimization in its interconnectivity and does not present directionality. The pores are of uniform size without nesting, which limits certain applications in which the specific surface is important.

(f) Fabricación por pirolisis e infiltración con silicio de precursores vegetales: Existen documentos de patente relativos a la fabricación de carburo de silicio a partir de la infiltración de silicio líquido en preformas naturales de carbono [26], así como relativos a la fabricación de cerámicas porosas y materiales multifásicos a partir de precursores celulósicos en la que reivindican los procesos de infiltración reactiva y no reactiva de aleaciones metálicas en el carburo de silicio fabricados según la primera patente. La microestructura y propiedades de estas cerámicas de SiC fabricadas por infiltración de silicio líquido en carbón vegetal se describen en diversas publicaciones [27-37], así como el modelado del proceso de fabricación [38] y de su comportamiento mecánico [39-41]. Los resultados obtenidos indican que estas cerámicas presentan múltiples ventajas frente a las obtenidas mediante otros procedimientos de fabricación, que las hacen susceptibles de ser usadas en un amplio rango de aplicaciones [42-46].(f) Manufacturing by pyrolysis and infiltration with silicon of plant precursors : There are patent documents related to the manufacture of silicon carbide from the infiltration of liquid silicon into natural carbon preforms [26], as well as related to the manufacture of Porous ceramics and multiphasic materials from cellulosic precursors in which they claim the processes of reactive and non-reactive infiltration of metal alloys in silicon carbide manufactured according to the first patent. The microstructure and properties of these SiC ceramics manufactured by infiltration of liquid silicon into charcoal are described in various publications [27-37], as well as the modeling of the manufacturing process [38] and its mechanical behavior [39-41] . The results obtained indicate that these ceramics have multiple advantages over those obtained by other manufacturing processes, which make them susceptible to being used in a wide range of applications [42-46].

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    

En ningún caso, el actual estado de la técnica explica un procedimiento novedoso en la fabricación de dispositivos resistivos consistente, esencialmente en un procedimiento de unión de estos materiales, un procedimiento para la eliminación de silicio, un procedimiento para su conexión eléctrica, y un procedimiento para el aislamiento térmico y eléctrico, así como dispositivos resistivos fabricados bajo ese procedimiento.In no case, the current state of the art explains a novel procedure in the manufacture of devices consistent resistors, essentially in a bonding procedure of these materials, a procedure for the elimination of silicon, a procedure for its electrical connection, and a procedure for thermal and electrical insulation, as well as resistive devices manufactured under that procedure.

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    
Referencias References

[1] W. D. Kingery, "Social needs and ceramic technology", Am. Ceram. Soc. Bull., 59(6), 598-600 (1980).[1] WD Kingery , "Social needs and ceramic technology", Am. Ceram. Soc. Bull ., 59 (6), 598-600 ( 1980 ).

[2] H. B. Strock, "Spectrum Materials Manufacturing", 35, 1-11 (1992).[2] HB Strock , " Spectrum Materials Manufacturing ", 35, 1-11 ( 1992 ).

[3] J. D. Cawley and C. E. Semler, "Silicon Carbide' 87", Ceramic Transactions vol. 2 , American Ceramics Society (1987).[3] JD Cawley and CE Semler , "Silicon Carbide '87", Ceramic Transactions vol. 2, American Ceramics Society ( 1987 ).

[4] S. J. Dapkunas, "Ceramics Heat Exchangers", Am. Ceram. Soc. Bull., 67 \Box 2 \Box 388-91 (1988).[4] SJ Dapkunas , "Ceramics Heat Exchangers", Am. Ceram. Soc. Bull ., 67 \ Box 2 \ Box 388-91 ( 1988 ).

       \newpage\ newpage
    

[5] K. Yamada y M. Mori, "Properties and applications of SiC ceramics", en "Silicon carbide ceramics", pp. 13-44, Elsevier Applied Science, ISBN 1-85166-560-9, 1991.[5] K. Yamada and M. Mori , "Properties and applications of SiC ceramics", in "Silicon carbide ceramics", pp. 13-44, Elsevier Applied Science , ISBN 1-85166-560-9, 1991 .

[6] R. Naslain, "Materials design and processing of high temperature matrix composites: state of the art and future trends", Adv. Composite mater. Vol. 8, No. 1, pp. 3-16, 1999.[6] R. Naslain , "Materials design and processing of high temperature matrix composites: state of the art and future trends", Adv. Composite mater . Vol. 8, No. 1, pp. 3-16, 1999 .

[7] S. Prochazka, GE report, SRD-72-035, 1972.[7] S. Prochazka , GE report , SRD-72-035, 1972 .

[8] S. Prochazca, "The role of boron and carbon in the sintering of silicon carbide", Special Ceramics Vol. 6, British Ceramics Research Association, 171-81, 1975.[8] S. Prochazca , "The role of boron and carbon in the sintering of silicon carbide", Special Ceramics Vol. 6, British Ceramics Research Association , 171-81, 1975 .

[9] G. Wei, and V. Tennery, "Evaluation of tubular ceramics heat exchanger materials in residual oil combustion environments", ORNL/TM-757, 1981.[9] G. Wei , and V. Tennery , "Evaluation of tubular ceramics heat exchanger materials in residual oil combustion environments", ORNL / TM-757, 1981 .

[10] G. Trantina, "Design techniques for ceramics in fusion reactors", Nucl. Eng. Des. 54(1), 676-677, 1979.[10] G. Trantina , "Design techniques for ceramics in fusion reactors", Nucl. Eng. Des . 54 (1), 676-677, 1979 .

[11] C. Greskovic y J. H. Rosolowski, "Sintering of covalent solids", J. Am. Ceram. Soc, 59(7-8), p. 336-43, 1976.[11] C. Greskovic and JH Rosolowski , "Sintering of covalent solids", J. Am. Ceram. Soc , 59 (7-8), p. 336-43, 1976 .

[12] W. Bocker y H. Hausner, "Observations on the sintering characteristic of submicron silicon carbide powders", Science of Ceramics 9, pp. 168-75, 1977.[12] W. Bocker and H. Hausner , "Observations on the sintering characteristic of submicron silicon carbide powders", Science of Ceramics 9, pp. 168-75, 1977 .

[13] H. Tanaka, "Sintering of SiC", en "Properties and applications of SiC ceramics", "Silicon carbide ceramics", pp. 213-238, Elsevier Applied Science, ISBN 1-85166-560-9, 1991.[13] H. Tanaka , "Sintering of SiC", in "Properties and applications of SiC ceramics", "Silicon carbide ceramics", pp. 213-238, Elsevier Applied Science , ISBN 1-85166-560-9, 1991 .

[14] R. A. Alliegro, L. B. Coffin y J. R. Tinklepaught, J. Am. Ceram. Soc. 39, p. 386 (1956).[14] RA Alliegro , LB Coffin and JR Tinklepaught , J. Am. Ceram. Soc . 39, p. 386 ( 1956 ).

[15] T. Hirai, y M. Sasaki, "SiC prepared by chemical vapor deposition", en "Properties and applications of SiC ceramics", "Silicon carbide ceramics", pp. 77-98, Elsevier Applied Science, ISBN 1-85166-560-9, 1991.[15] T. Hirai , and M. Sasaki , "SiC prepared by chemical vapor deposition", in "Properties and applications of SiC ceramics", "Silicon carbide ceramics", pp. 77-98, Elsevier Applied Science , ISBN 1-85166-560-9, 1991 .

[16] T. Hirai, H. Asakura, y M. Sasaki, Bull. Japan Inst. Met, 26, p. 809 (1987).[16] T. Hirai , H. Asakura , and M. Sasaki , Bull. Japan Inst. Met , 26, p. 809 ( 1987 ).

[17] C. Forrest, P. Kenedy and J. Sherman, "The fabrications and properties of self-bonded silicon carbide", Special Ceramics, Vol. 5, pp. 99-123, 1972.[17] C. Forrest , P. Kenedy and J. Sherman , "The fabrications and properties of self-bonded silicon carbide", Special Ceramics , Vol. 5, pp. 99-123, 1972 .

[18] O. Chakrabati, S. Ghosh y J. Mukerji, "Influence of grain size, free silicon content and temperature in the strength and thoughness of reaction bonded silicon carbide", Ceramics International, 5(2), 118-123, 1991.[18] O. Chakrabati , S. Ghosh and J. Mukerji , "Influence of grain size, free silicon content and temperature in the strength and thoughness of reaction bonded silicon carbide", Ceramics International , 5 (2), 118-123, 1991

[19] B. John, and J. Wachtman, "Structural Ceramics" Vol. 29, Academic Press, 91-163, 1989.[19] B. John , and J. Wachtman , "Structural Ceramics" Vol. 29, Academic Press , 91-163, 1989 .

[20] B. J. Hockey, and S. M. Wiederhorn, "Effect of microstructure on the creep of siliconized silicon carbide", J. Am. Ceram. Soc. 75 [7] 1822-30 (1992).[20] BJ Hockey , and SM Wiederhorn , "Effect of microstructure on the creep of siliconized silicon carbide", J. Am. Ceram. Soc . 75 [7] 1822-30 ( 1992 ).

[21] S. M. Wiederhorn, B. J. Hockey and J. D. French, "Mechanisms of deformation of silicon nitride and silicon carbide at high temperatures", J. European Ceramic Society, Volume 19, Issues 13-14, 2273-2284, 1999.[21] SM Wiederhorn , BJ Hockey and JD French , "Mechanisms of deformation of silicon nitride and silicon carbide at high temperatures", J. European Ceramic Society , Volume 19, Issues 13-14, 2273-2284, 1999 .

[22] M. Singh, D.R. Behrendt, "Reactive melt infiltration of silicon-niobium alloys in microporous carbon", J. Mater. Res., 1994; 9:1701.[22] M. Singh , DR Behrendt , "Reactive melt infiltration of silicon-niobium alloys in microporous carbon", J. Mater. Res ., 1994 ; 9: 1701.

[23] M. Singh, D.R. Behrendt, "Reactive melt infiltration of silicon-molybdenum alloys in microporous carbon", Mater. Sci. and Eng., 1995; A194:193.[23] M. Singh , DR Behrendt , "Reactive melt infiltration of silicon-molybdenum alloys in microporous carbon", Mater. Sci. And Eng ., 1995 ; A194: 193.

[24] M. Singh, D.R. Behrendt, "Microstructure and mechanical properties of reaction-formed silicon carbide (RFSC) ceramics", Mater. Sci. and Eng., 1994; A187:183.[24] M. Singh , DR Behrendt , "Microstructure and mechanical properties of reaction-formed silicon carbide (RFSC) ceramics", Mater. Sci. And Eng ., 1994 ; A187: 183.

[25] A. Muñoz, J. Martínez Fernández, A. Domínguez Rodríguez, M. Singh, "High temperature compressive strength of reaction formed silicon carbide (RFSC) ceramics", J. Europ. Ceram. Soc., 1998; 18:65.[25] A. Muñoz , J. Martínez Fernández , A. Domínguez Rodríguez , M. Singh , "High temperature compressive strength of reaction formed silicon carbide (RFSC) ceramics", J. Europ. Ceram Soc ., 1998 ; 18:65.

[26] "Procedure to fabricate silicon carbide ceramics from natural precursors". Patente internacional PCT/ES 02/ 00483 (4/11/2002).[26] "Procedure to fabricate silicon carbide ceramics from natural precursors ". International patent PCT / ES 02/00483 (11/4/2002).

[27] J. Martínez-Fernández, F. M. Valera-Feria y M. Singh, "Microstructure and thermomechanical characterizacion of bimorphic silicon carbide-based ceramics", Scripta Materialia 43 (2000) 813-818.[27] J. Martínez-Fernández , FM Valera-Feria and M. Singh , "Microstructure and thermomechanical characterization of bimorphic silicon carbide-based ceramics", Scripta Materialia 43 ( 2000 ) 813-818.

[28] J. Martínez-Fernández, F. M. Valera-Feria F. M., A. Domínguez Rodríguez, M. Singh, "Microstructure and thermomechanical characterizacion of bimorphic silicon carbide-based ceramics, Environment Conscious Materials"; Ecomaterials. ISBN: 1-894475-04-6. Canadian Institute of Mining, Metallurgy, and Petroleum., pp. 733-740 (2000).[28] J. Martínez-Fernández , FM Valera-Feria FM, A. Domínguez Rodríguez , M. Singh , "Microstructure and thermomechanical characterization of bimorphic silicon carbide-based ceramics, Environment Conscious Materials"; Ecomaterials ISBN: 1-894475-04-6. Canadian Institute of Mining, Metallurgy, and Petroleum., Pp. 733-740 ( 2000 ).

[29] F. M. Varela–Feria, J. Martínez–Fernández, A. R. de Arellano–López, and M. Singh, "Low Density Biomorphic Silicon Carbide: Microstructure and Mechanical Properties", J. Europ. Ceram. Soc., Vol. 22 [14-15] pp. 2719-2725 (2002).[29] FM Varela – Feria , J. Martínez – Fernández , AR de Arellano – López , and M. Singh , "Low Density Biomorphic Silicon Carbide: Microstructure and Mechanical Properties", J. Europ. Ceram Soc ., Vol. 22 [14-15] pp. 2719-2725 ( 2002 ).

[30] M. Singh, J. Martínez–Fernández, A. R. de Arellano–López, "Environmentally Conscious Ceramics (Ecoceramics) from Natural Wood Precursors", Current Opinions on Solid State & Material Science Vol. 7, pp. 247-254 (2003).[30] M. Singh , J. Martínez – Fernández , AR of Arellano – López , "Environmentally Conscious Ceramics (Ecoceramics) from Natural Wood Precursors", Current Opinions on Solid State & Material Science Vol. 7, pp. 247-254 ( 2003 ).

[31] Y. Kardashev, I. Burenkov, B. Smirnov, A. R. de Arellano-López, J. Martínez-Fernández, F. M. Varela-Feria, "Elasticity and Inelasticity of Biomorphic Silicon Carbide Ceramics", Physics of the Solid State, V.46, N10 (2004) 1873-1877.[31] Y. Kardashev , I. Burenkov , B. Smirnov , AR of Arellano-López , J. Martínez-Fernández , FM Varela-Feria , "Elasticity and Inelasticity of Biomorphic Silicon Carbide Ceramics", Physics of the Solid State , V .46, N10 ( 2004 ) 1873-1877.

[32] T. S. Orlova, B. I. Smirnov, A. R. de Arellano López, J. Martínez Fernández, R. Sepúlveda, "Anisotropy of electric resistivity of Sapele-based biomorphic SiC/Si composites", Physics of the Solid State, V.47, N2 (2005), 220-223.[32] TS Orlova , BI Smirnov , AR de Arellano López , J. Martínez Fernández , R. Sepúlveda , "Anisotropy of electric resistivity of Sapele-based biomorphic SiC / Si composites", Physics of the Solid State , V.47, N2 ( 2005 ), 220-223.

[33] L. S. Parfenieva, B. I. Smirnov, I. A. Smirnov, H. Misiorek, J. Mucha, A. Jezowski, A. R. de Arellano-López, J. Martínez-Fernández, R. Sepúlveda, "Thermal Conductivity of Bio-SiC and the Si Embedded in Cellular Pores of the SiC/Si Biomorphic Composite", Physics of the Solid State, Vol. 49, No. 2, pp. 211–214 (2007).[33] LS Parfenieva , BI Smirnov , IA Smirnov , H. Misiorek , J. Mucha , A. Jezowski , AR de Arellano-López , J. Martínez-Fernández , R. Sepúlveda , "Thermal Conductivity of Bio-SiC and the Si Embedded in Cellular Pores of the SiC / Si Biomorphic Composite ", Physics of the Solid State , Vol. 49, No. 2, pp. 211-214 ( 2007 ).

[34] T. S. Orlova, D. V. Il'in, B. I. Smirnov, I. A. Smirnov, R. Sepúlveda, J. Martínez-Fernández, and A. R. de Arellano-López, "Electrical Properties of Bio-SiC and Si Components of the SiC/Si Biomorphic Composite", Physics of the Solid State, Vol. 49, No. 2, pp. 205–210 (2007).[34] TS Orlova , DV Il'in , BI Smirnov , IA Smirnov , R. Sepúlveda , J. Martínez-Fernández , and AR de Arellano-López , "Electrical Properties of Bio-SiC and Si Components of the SiC / Si Biomorphic Composite ", Physics of the Solid State , Vol. 49, No. 2, pp. 205–210 ( 2007 ).

[35] I. A. Smirnov, B. I. Smirnov, H. Misiorek, A. Jezowski, A. R. de Arellano-López, J. Martínez-Fernández, F. M. Varela-Feria, A. I. Krivchikov, G. A. Zviagina, and K. R. Zhekov, "Heat Capacity and Velocity of Sound in the SiC/Si Biomorphic Composite", Physics of the Solid State, Vol. 49, N 10 1839-1844 (2007).[35] IA Smirnov , BI Smirnov , H. Misiorek , A. Jezowski , AR de Arellano-López , J. Martínez-Fernández , FM Varela-Feria , AI Krivchikov , GA Zviagina , and KR Zhekov , "Heat Capacity and Velocity of Sound in the SiC / Si Biomorphic Composite ", Physics of the Solid State , Vol. 49, N 10 1839-1844 ( 2007 ).

[36] I. A. Smirnov, B. I. Smirnov, A. I. Krivchikov, H. Misiorek, A. Jezowski, A. R. de Arellano-López, J. Martínez-Fernández, R. Sepulveda. "Heat Capacity of Silicon Carbide at Low Temperatures", Physics of the Solid State, V49, N2 1835-1838 (2007).[36] IA Smirnov , BI Smirnov , AI Krivchikov , H. Misiorek , A. Jezowski , AR de Arellano-López , J. Martínez-Fernández , R. Sepulveda . "Heat Capacity of Silicon Carbide at Low Temperatures", Physics of the Solid State , V49, N2 1835-1838 ( 2007 ).

[37] A. R. de Arellano López, J. Martínez Fernández, F. M. Varela Feria, R. E. Sepúlveda, M. J. López Robledo, J. Llorca, J. Y. Pastor, M. Presas, K. T. Faber, V. S. Kaul, K. E. Pappacena, T.E. Wilkes, "Processing, microstructure and mechanical properties of SiC-based ceramics via naturally derived scaffolds", Mechanical Properties and Performance of Engineering Ceramics and Composites Vol. 2, pp. 635-650, Wiley and Sons (2007).[37] AR by Arellano López , J. Martínez Fernández , FM Varela Feria , RE Sepúlveda , MJ López Robledo , J. Llorca , JY Pastor , M. Presas , KT Faber , VS Kaul , KE Pappacena , TE Wilkes , "Processing, microstructure and mechanical properties of SiC-based ceramics via naturally derived scaffolds ", Mechanical Properties and Performance of Engineering Ceramics and Composites Vol. 2, pp. 635-650, Wiley and Sons ( 2007 ).

[38] F. M. Varela-Feria, J. Ramírez-Rico, A. R. de Arellano-López, J. Martínez-Fernández, "Reaction-formation Mechanisms and Microstructure Evolution of Biomorphic SiC", Journal of Materials Science, DOI 10.1007/
s10853-007-2207-4, en prensa (2008).
[38] FM Varela-Feria , J. Ramírez-Rico , AR of Arellano-López , J. Martínez-Fernández , "Reaction-formation Mechanisms and Microstructure Evolution of Biomorphic SiC", Journal of Materials Science , DOI 10.1007 /
s10853-007-2207-4, in press ( 2008 ).

[39] J. Martínez Fernández, A. Muñoz, A. R. de Arellano López, F. M. Valera Feria, A. Dominguez-Rodriguez, M. Singh, "Microstructure-mechanical property correlation in siliconized silicon carbide ceramics", Acta Materialia, 51 [11] pp. 3259-3275 (2003).[39] J. Martínez Fernández , A. Muñoz , AR de Arellano López , FM Valera Feria , A. Dominguez-Rodriguez , M. Singh , "Microstructure-mechanical property correlation in siliconized silicon carbide ceramics", Acta Materialia , 51 [11 ] pp. 3259-3275 ( 2003 ).

[40] B. K. Kardashev, B. I. Smirnov, A. R. de Arellano-López, J. Martínez-Fernández, F. M. Varela-Feria, "Elastic and anelastic properties of SiC/Si ecoceramics", Materials Science and Engineering A, A 442 pp. 444-448 (2006).[40] BK Kardashev , BI Smirnov , AR de Arellano-López , J. Martínez-Fernández , FM Varela-Feria , "Elastic and anelastic properties of SiC / Si ecoceramics", Materials Science and Engineering A, A 442 pp. 444-448 ( 2006 ).

[41] A. I. Shelykh, B. I. Smirnov, I. A. Smirnov, A. R. de Arellano-López, J. Martínez-Fernández, F. M. Varela-Feria, "Linear expansion coefficient of biomorphic composite SiC/Si", Physics of the Solid State, 48 [2] (2006), 202-203.[41] AI Shelykh , BI Smirnov , IA Smirnov , AR de Arellano-López , J. Martínez-Fernández , FM Varela-Feria , "Linear expansion coefficient of biomorphic composite SiC / Si", Physics of the Solid State , 48 [2 ] ( 2006 ), 202-203.

[42] A. R. de Arellano-López, J. Martínez-Fernández, P. González, C. Domínguez, V. Fernández-Quero, M. Singh, "Biomorphic sic: a new engineered ceramic material" (primer número), Int. Journal of Applied Ceramic Technology Vol. 1 pp. 95-100 (2004).[42] AR de Arellano-López , J. Martínez-Fernández , P. González , C. Domínguez , V. Fernández-Quero , M. Singh , "Biomorphic sic: a new engineered ceramic material" (first issue), Int. Journal of Applied Ceramic Technology Vol. 1 pp. 95-100 ( 2004 ).

[43] L. S. Parfeneva, B. I. Smirnov, I. A. Smirnov, D. Wlosewicz, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-López, J. Martínez-Fernández, F. M. Varela-Feria, and A. I. Krivchikov, "Heat Capacity of a White-Eucalyptus Biocarbon Template for SiC/Si Ecoceramics", Physics of the Solid State, Vol. 48, No. 11, pp. 2056–2059 (2006).[43] LS Parfeneva , BI Smirnov , IA Smirnov , D. Wlosewicz , H. Misiorek , A. Jezowski , J. Mucha , AR of Arellano-López , J. Martínez-Fernández , FM Varela-Feria , and AI Krivchikov , " Heat Capacity of a White-Eucalyptus Biocarbon Template for SiC / Si Ecoceramics ", Physics of the Solid State , Vol. 48, No. 11, pp. 2056–2059 ( 2006 ).

[44] L. S. Parfenieva, T. S. Orlova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, J. Mucha, A. Jezowski, A. R. de Arellano-López, J. Martínez-Fernández, F. M. Varela-Feria, "Anisotropy of the Thermal Conductivity and Electrical Resistivity of the SiC/Si Biomorphic Composite Based on a White-Eucalyptus Biocarbon Template", Physics of the Solid State, 48 [11] (2006) 2281-2288.[44] LS Parfenieva , TS Orlova , BI Smirnov , IA Smirnov , H. Misiorek , J. Mucha , A. Jezowski , AR de Arellano-López , J. Martínez-Fernández , FM Varela-Feria , "Anisotropy of the Thermal Conductivity and Electrical Resistivity of the SiC / Si Biomorphic Composite Based on a White-Eucalyptus Biocarbon Template ", Physics of the Solid State , 48 [11] ( 2006 ) 2281-2288.

       \newpage\ newpage
    

[45] L. S. Parfenieva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-López, J. Martínez-Fernández, F. M. Varela-Feria, "Thermal and electrical conductivity of a white eucalyptus bio-carbon matrix for ecoceramic SiC/Si", Physics of the Solid State, 48 [3] (2006) 441-446.[45] LS Parfenieva , TS Orlova , NF Kartenko , NV Sharenkova , BI Smirnov , IA Smirnov , H. Misiorek , A. Jezowski , J. Mucha , AR de Arellano-López , J. Martínez-Fernández , FM Varela-Feria , "Thermal and electrical conductivity of a white eucalyptus bio-carbon matrix for ecoceramic SiC / Si", Physics of the Solid State , 48 [3] ( 2006 ) 441-446.

[46] V. V. Popov, T. S. Orlova, J. Ramirez-Rico, A. R. de Arellano-López, and J. Martínez-Fernández, "Electrical Properties of the SiC/Si Composite and the Biomorphic SiC Ceramic Fabricated from Spanish Beech Wood", Physics of the Solid State, Vol. 50, No. 10, pp. 1819–1825 (2008).[46] VV Popov , TS Orlova , J. Ramirez-Rico , AR de Arellano-López , and J. Martínez-Fernández , "Electrical Properties of the SiC / Si Composite and the Biomorphic SiC Ceramic Fabricated from Spanish Beech Wood", Physics of the Solid State , Vol. 50, No. 10, pp. 1819–1825 ( 2008 ).

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    
Descripción de la invenciónDescription of the invention

Tal y como ha sido indicado, es objeto de la presente invención el desarrollo de un proceso de fabricación de un dispositivo resistivo cerámico con base en materiales multifásicos de carburo de silicio y silicio a partir de la infiltración de aleaciones metálicas en preformas de carbón obtenidas por pirolisis de precursores celulósicos.As indicated, it is the subject of present invention the development of a manufacturing process of a ceramic resistive device based on multiphase materials of silicon carbide and silicon from the infiltration of metal alloys in carbon preforms obtained by pyrolysis of cellulosic precursors.

La selección de dichos precursores celulósicos es un paso de gran importancia, donde se puede utilizar tanto madera natural de distintas densidades (pino, sapelli, haya, etc.), como madera procesada (tableros de madera prensada, de fibra de madera de densidad media, etc.). Es condición indispensable que los precursores seleccionados tengan una distribución de poros que produzca una microestructura óptima para la infiltración. La necesidad de obtener formas finales complejas hace esencial el uso de un sistema versátil y robusto de unión de estos materiales, que también se incluye en la presente invención. Del mismo modo, se ha desarrollado un método para la eliminación selectiva del silicio, un método para la conexión eléctrica del dispositivo, así como su aislamiento térmico y eléctrico.The selection of said cellulosic precursors It is a step of great importance, where you can use both natural wood of different densities (pine, sapelli, beech, etc.), as processed wood (pressed wood, fiberboard medium density wood, etc.). It is an indispensable condition that selected precursors have a pore distribution that produce an optimal microstructure for infiltration. The The need to obtain complex final forms makes use essential of a versatile and robust system of joining these materials, which It is also included in the present invention. Similarly, it has developed a method for the selective removal of silicon, a method for the electrical connection of the device, as well as its thermal and electrical insulation.

El procedimiento de fabricación de un dispositivo resistivo cerámico del tipo fabricado con materiales multifásicos de carburo de silicio y silicio a partir de precursores celulósicos, objeto de la presente invención comprende, esencialmente y al menos, las siguientes etapas:The manufacturing process of a ceramic resistive device of the type manufactured with materials multiphase silicon carbide and silicon from cellulosic precursors, object of the present invention comprises, essentially and at least the following stages:

(i) una primera etapa configurada para el secado de dicho precursor celulósico;(i) a first stage configured for drying of said cellulosic precursor;

(ii) una segunda etapa de pirolisis configurada para someter al precursor celulósico a un proceso de pirolisis consistente en la descomposición por calentamiento de la materia orgánica y en donde este proceso se lleva a cabo en ausencia de oxígeno, de manera que las sustancias volátiles y el agua desaparecen como gases no contaminantes, quedando el carbón como residuo del proceso;(ii) a second stage of configured pyrolysis to subject the cellulosic precursor to a pyrolysis process consisting of decomposition by heating of matter organic and where this process is carried out in the absence of oxygen, so that volatile substances and water they disappear as non-polluting gases, leaving the coal as process waste;

(iii) una tercera etapa de mecanizado configurada para la obtención de unas dimensiones óptimas tal que permitan controlar la resistencia en la zona caliente manteniéndose la disipación de potencia por área por debajo de los límites soportables por el propio material;(iii) a third stage of machining configured to obtain optimal dimensions such that allow to control the resistance in the hot zone keeping power dissipation per area below limits bearable by the material itself;

(iv) una cuarta etapa de unión en donde se ponen en contacto las preformas de carbón, ya mecanizadas, recubriendo previamente la superficie de unión con una pasta rica en carbono;(iv) a fourth stage of union where they put in contact the preforms of coal, already mechanized, covering previously the joint surface with a paste rich in carbon;

(v) una quinta etapa de infiltración con al menos una aleación metálica rica en silicio del elemento obtenido en las etapas anteriores;(v) a fifth stage of infiltration with at minus a silicon-rich metal alloy of the element obtained in the previous stages;

(vi) una sexta etapa de eliminación selectiva del silicio/metales/fases producidas por reacción en la quinta etapa de infiltración, en donde, dicha sexta etapa está configurada para aumentar la resistividad en la zona caliente del dispositivo calefactor;(vi) a sixth stage of selective elimination of silicon / metals / phases produced by reaction in the fifth infiltration stage, where, said sixth stage is configured to increase the resistivity in the hot zone of the device heater;

(vii) una séptima etapa de metalización configurada para facilitar la conexión eléctrica en la zona fría del elemento calefactor de tal forma que el material multifásico rico en carburo de silicio y el propio silicio es metalizado por evaporación de metales nobles.(vii) a seventh stage of metallization configured to facilitate the electrical connection in the cold zone of the heating element in such a way that the multiphase material rich in silicon carbide and silicon itself is metallized by evaporation of noble metals.

(viii) una octava etapa de conexión eléctrica configurada para obtener una conexión eléctrica de alta calidad; y(viii) an eighth stage of electrical connection configured to obtain a high quality electrical connection; Y

(ix) una novena etapa de aislamiento térmico y eléctrico.(ix) a ninth stage of thermal insulation and electric.

Con el procedimiento descrito se consigue resolver el problema técnico planteado de un procedimiento de fabricación de dispositivos resistivos cerámicos de tal forma que se puedan obtener componentes para aplicaciones basadas en la obtención de una zona caliente, manteniendo unas propiedades óptimas de dureza, resistencia a la fricción, conductividad térmica, conductividad eléctrica, resistencia mecánica, porosidad, resistencia a la corrosión, resistencia al choque térmico y baja densidad.With the described procedure it is achieved solve the technical problem posed by a procedure of manufacture of ceramic resistive devices such that components for applications based on the obtaining a hot zone, maintaining some properties optimum hardness, friction resistance, conductivity thermal, electrical conductivity, mechanical resistance, porosity, corrosion resistance, thermal shock resistance and low density.

Del mismo modo, el dispositivo resistivo cerámico obtenido mediante el procedimiento descrito permite ser utilizado en cualquier tipo de aplicación donde sean indispensables sus propiedades en cuanto a dureza, resistencia a la fricción, conductividad térmica, conductividad eléctrica, resistencia mecánica, porosidad, resistencia a la corrosión, resistencia al choque térmico y densidad como, a modo de ejemplo, elementos de calentamiento, sistemas de ignición, disipadores térmicos de alta temperatura y protectores para sobretensiones.Similarly, the resistive device ceramic obtained by the described procedure allows to be used in any type of application where they are indispensable its properties in terms of hardness, resistance to friction, thermal conductivity, electrical conductivity, resistance Mechanical, porosity, corrosion resistance, resistance to thermal shock and density as, by way of example, elements of heating, ignition systems, high heatsinks temperature and surge protectors.

A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Además, la presente invención cubre todas las posibles combinaciones de realizaciones particulares y preferidas aquí indicadas.Throughout the description and the claims the word "comprises" and its variants not they intend to exclude other technical characteristics, additives, components or steps. For experts in the field, others objects, advantages and features of the invention will come off partly from the description and partly from the practice of invention. The following examples and drawings are provided by way of of illustration, and are not intended to be limiting of the present invention In addition, the present invention covers all possible combinations of particular and preferred embodiments here indicated.

Realización preferente de la invenciónPreferred Embodiment of the Invention

En una realización preferida, el procedimiento de fabricación de un dispositivo resistivo cerámico a partir de precursores celulósicos, objeto de la presente invención comprende, al menos:In a preferred embodiment, the process of manufacturing a ceramic resistive device from cellulosic precursors, object of the present invention comprises, at least:

(i) una primera etapa de secado del precursor configurada para que el precursor sea sometido a una primera fase de secado, realizada durante un tiempo comprendido entre las 12 y las 36 horas en una estufa a una temperatura comprendida entre 50ºC y 150ºC si el precursor ha sido previamente tratado para su uso industrial o durante 36 a 150 horas en caso contrario;(i) a first stage of drying the precursor configured so that the precursor is subjected to a first phase drying, performed for a time between 12 and 36 hours in an oven at a temperature between 50ºC and 150 ° C if the precursor has been previously treated for use industrial or for 36 to 150 hours otherwise;

(ii) una segunda etapa de pirolisis, configurada para someter al precursor celulósico a un proceso de pirolisis consistente en la descomposición por calentamiento de la materia orgánica y en donde este proceso se lleva a cabo en ausencia de oxígeno, de manera que las sustancias volátiles y el agua desaparecen como gases no contaminantes, quedando el carbón como residuo del proceso. De forma más concreta, la pirolisis se realiza con presiones parciales de oxígeno del orden de 10^{-1} Torr o inferiores, a velocidades de calentamiento inferiores a 2ºC por minuto hasta temperaturas superiores a 600ºC y un posterior enfriamiento a una velocidad entre 1 y 15ºC por minuto desde la temperatura máxima alcanzada hasta temperatura ambiente;(ii) a second stage of pyrolysis, configured to subject the cellulosic precursor to a pyrolysis process consisting of decomposition by heating of matter organic and where this process is carried out in the absence of oxygen, so that volatile substances and water they disappear as non-polluting gases, leaving the coal as process waste More specifically, pyrolysis is performed with partial oxygen pressures of the order of 10-1 Torr or lower, at heating rates below 2ºC per minute up to temperatures higher than 600ºC and later cooling at a speed between 1 and 15 ° C per minute from the maximum temperature reached to room temperature;

(iii) una tercera etapa de mecanizado, en donde tras el proceso de carbonización del precursor celulósico las preformas son fácilmente mecanizables. Se utilizan medios robotizados por control numérico para obtener la forma definitiva del dispositivo de calentamiento a fabricar. Es de especial importancia el diseño de las dimensiones óptimas que aumenten la resistencia en la zona disipadora, manteniendo la disipación de potencia por área por debajo de los límites que soporta el material.(iii) a third stage of machining, where after the process of carbonization of the cellulosic precursor the Preforms are easily machinable. Media are used robotized by numerical control to obtain the definitive form of the heating device to be manufactured. It's special importance the design of the optimal dimensions that increase the resistance in the dissipative zone, maintaining the dissipation of power per area below the limits supported by the material.

(iv) una cuarta etapa de unión en donde se ponen en contacto las preformas de carbón, ya mecanizadas, recubriendo previamente la superficie de unión con una pasta rica en carbono, de tal forma que una vez infiltrada la pieza unida en la siguiente etapa del procedimiento, las uniones tienen una resistencia similar a los materiales desarrollados a través de esta invención, por lo que no producen una disminución de sus propiedades durante el uso en aplicaciones específicas. Es fundamental que la unión sea de extraordinaria calidad. Este paso permite obtener formas complejas en 3D.(iv) a fourth stage of union where they put in contact the preforms of coal, already mechanized, covering previously the bonding surface with a carbon rich paste, in such a way that once the piece joined in the next procedure stage, the joints have a similar resistance to the materials developed through this invention, so that do not produce a decrease in their properties during use in specific applications. It is essential that the union be of extraordinary quality This step allows to obtain complex shapes in 3D

(v) una quinta etapa de infiltración en donde dicho proceso se puede realizar con diversas aleaciones metálicas ricas en silicio, aplicando presiones parciales de oxígeno inferiores a 10^{-1} torr y temperaturas inferiores a 1800ºC. El proceso de calentamiento se realiza a velocidades inferiores a 20ºC por minuto desde temperatura ambiente hasta alcanzar la temperatura final de infiltración, que dependerá del precursor celulósico utilizado. De forma similar se realiza el proceso de enfriamiento hasta temperatura ambiente. Las aleaciones de silicio usadas en la infiltración se han de pulverizar para que el proceso sea efectivo, distribuyéndose el polvo uniformemente sobre la preforma de carbón, de forma que por capilaridad se logre la infiltración completa. Todo el proceso se realiza en un crisol no reactivo, por ejemplo de nitruro de boro.(v) a fifth infiltration stage where This process can be performed with various metal alloys rich in silicon, applying partial oxygen pressures below 10-1 torr and temperatures below 1800 ° C. He heating process is carried out at speeds below 20ºC per minute from room temperature to reach temperature final infiltration, which will depend on the cellulosic precursor used. The cooling process is similarly performed. up to room temperature The silicon alloys used in the infiltration must be sprayed for the process to be effective, distributing the powder evenly over the carbon preform, so that by capillarity complete infiltration is achieved. The whole process is carried out in a non-reactive crucible, for example of boron nitride

La cantidad de silicio será la estequiométrica, según la reacción atómica (1:1) del compuesto SiC. Se pesará primero la preforma de carbón, se determinará luego el número de moles de carbono y posteriormente la cantidad de la aleación de silicio a usar. Por lo general esta cantidad se incrementa en aproximadamente entre un 15- 25% para garantizar una reacción completa de carbono. Aún así el carbono que no reacciona se quema en la utilización de la pieza a alta temperatura, afectando a su microestructura. Durante el proceso de la infiltración con metal, la interacción entre el metal fundido y la estructura porosa de carbón desempeña un papel fundamental y esencial. Si no se utiliza la presión, el metal fundido debe mojar la estructura porosa de carbón. La mojabilidad describe si un líquido se separará de un substrato sólido o si bien se adhiere para mojarlo. Cuando un líquido y un sólido están en contacto, el equilibrio de las energías superficiales entre el vapor y sólido, sólido y líquido, y vapor y líquido determina la mojabilidad del líquido en sólido.The amount of silicon will be stoichiometric, according to the atomic reaction (1: 1) of the compound SiC. It will weigh first the carbon preform, then the number of moles of carbon and subsequently the amount of the alloy of silicon to use. Usually this amount is increased by approximately 15-25% to ensure a reaction full carbon. Still the unreacted carbon burns in the use of the piece at high temperature, affecting its microstructure During the metal infiltration process, the interaction between molten metal and porous carbon structure It plays a fundamental and essential role. If the pressure, the molten metal must wet the porous structure of Coal. Wettability describes whether a liquid will separate from a solid substrate or even adheres to wet it. When a liquid and a solid are in contact, the balance of the surface energies between steam and solid, solid and liquid, and Vapor and liquid determines the wettability of the liquid in solid.

Para mejorar la mojabilidad, la infiltración puede realizarse con aleaciones, lo que permite modificar el ángulo de mojado. El uso de aleaciones modifica también el punto de fusión, de manera que se puedan producir las reacciones deseadas a menor temperatura.To improve wettability, infiltration It can be made with alloys, which allows you to modify the angle of wet. The use of alloys also modifies the melting point, so that the desired reactions can occur at a lower temperature.

(vi) una sexta etapa de eliminación selectiva del silicio/metales/fases producidas por reacción, en donde, debido a que las aleaciones ricas en silicio usadas en el proceso de infiltración suelen ser conductoras eléctricas, para aumentar la resistividad en la zona caliente del dispositivo calefactor, se suelen eliminar de forma selectiva. Para llevar a cabo este proceso se puede realizar un ataque químico con soluciones que contengan uno a varios de los siguientes compuestos ácidos: HF, HNO_{3}, HCl, H_{2}SO_{4}. O también se puede realizar un procedimiento electroquímico con agua salada.(vi) a sixth stage of selective elimination of silicon / metals / phases produced by reaction, where, due to the silicon-rich alloys used in the process of infiltration are usually electrical conductors, to increase the resistivity in the hot zone of the heating device, it They usually selectively remove. To carry out this process a chemical attack can be carried out with solutions containing one to several of the following acidic compounds: HF, HNO 3, HCl, H 2 SO 4. Or you can also perform a procedure electrochemical with salt water.

En el primer caso, para eliminar cualquier exceso de silicio en los poros se utiliza una mezcla del ácido nítrico (HNO_{3}) y del ácido fluorhídrico (HF). El ácido nítrico primero oxida el silicio para formar el dióxido de silicio (SiO_{2}) que es eliminado de los poros por el HF:In the first case, to eliminate any excess silicon in the pores a mixture of the acid is used nitric (HNO3) and hydrofluoric acid (HF). Nitric acid first oxidizes silicon to form silicon dioxide (SiO_ {2}) that is removed from the pores by the HF:

1one

En el segundo caso, para eliminar el silicio residual se utiliza un baño con agua salada, con una concentración entre 2 y 30 g de sal por cada litro de agua. Usando dos electrodos, se hace pasar una corriente eléctrica CC que provoca una reacción electroquímica de oxidación de la sal, favoreciendo la eliminación del silicio residual.In the second case, to remove silicon residual is used a bath with salt water, with a concentration between 2 and 30 g of salt per liter of water. Using two electrodes, a DC electric current that causes a electrochemical reaction of salt oxidation, favoring residual silicon removal.

Después de eliminar el exceso de silicio, se obtiene una estructura porosa de carburo del silicio. Las zonas que no interesen ser atacadas químicamente serán cubiertas con esmalte, para evitar que las soluciones ácidas ataquen al material multifásico rico en carburo de silicio y silicio.After removing excess silicon, it will Obtains a porous silicon carbide structure. The areas that not interested in being chemically attacked will be covered with enamel, to prevent acid solutions from attacking the material multiphase rich in silicon carbide and silicon.

(vii) una séptima etapa de metalización, en donde para facilitar la conexión eléctrica en la zona fría del elemento calefactor, el material multifásico rico en carburo de silicio y el propio silicio suele ser metalizado por evaporación de metales nobles, como por ejemplo oro o plata. El proceso en sí se lleva a cabo bajo presiones parciales de oxígeno inferiores a 10^{-3} Torr, llegándose a depositar una película de varios micrómetros de espesor.(vii) a seventh stage of metallization, in where to facilitate the electrical connection in the cold zone of the heating element, the carbide-rich multiphase material of silicon and silicon itself is usually metallized by evaporation of noble metals, such as gold or silver. The process itself is carried out under partial oxygen pressures lower than 10 ^ - 3 Torr, getting to deposit a film of several micrometers thick.

(viii) una octava etapa de conexión eléctrica en donde sobre las zonas frías ya metalizadas se colocan pletinas de plata pura que van conectadas a cables de alta temperatura. De esta forma se asegura una conexión eléctrica de alta calidad.(viii) an eighth stage of electrical connection in where cold plates are already placed on metallic areas Pure silver that are connected to high temperature cables. This form ensures a high quality electrical connection.

(ix) una novena etapa de aislamiento térmico y eléctrico, en donde dependiendo de la aplicación para la que se desarrolle el dispositivo de calentamiento, las partes frías y la zona de conexión se aíslan térmica y eléctricamente. Para ello se mecanizan cuerpos cerámicos, generalmente de silicatos, que son aislantes eléctricos, en cuyo interior serán sellados los elementos calefactores con adhesivos cerámicos de alta temperatura también aislantes eléctricamente.(ix) a ninth stage of thermal insulation and electrical, where depending on the application for which develop the heating device, the cold parts and the Connection zone are thermally and electrically isolated. To do this they mechanize ceramic bodies, generally of silicates, which are electrical insulators, inside which the elements will be sealed heaters with high temperature ceramic adhesives too electrically insulating.

Entre las ventajas del procedimiento así descrito, tras los ensayos y pruebas pertinentes, podemos destacar:Among the advantages of the procedure as well described, after the relevant tests and tests, we can highlight:

- Bajo coste, debido a las bajas temperaturas de procesado, entre 600 y 900ºC inferiores al procesado por sinterizado, ya que no es necesario partir de polvo de carburo de silicio, y debido a que las piezas no necesitan acabado final, pues la mecanización de la preforma de carbón evita este último paso.- Low cost, due to the low temperatures of processed, between 600 and 900ºC lower than the processed by sintered, since it is not necessary to start from carbide powder silicon, and because the pieces do not need final finishing, well the mechanization of the carbon preform avoids the latter He passed.

- Utilización de materiales regenerables, con la consecuente no producción de polución ambiental, siendo posible la fabricación de formas complejas con el simple moldeado previo de la madera de origen, y no siendo necesario el uso de aditivos. Además este procedimiento se realiza a mayor velocidad de fabricación y a menor temperatura que los procedimientos de fabricación por reacción con gases.- Use of regenerable materials, with the consequent non-production of environmental pollution, being possible the manufacture of complex shapes with the simple pre-molding of the wood of origin, and the use of additives is not necessary. further This procedure is performed at a faster manufacturing speed and at lower temperature than manufacturing procedures by reaction with gases.

- Las cerámicas obtenidas poseen la estructura fibrosa de la madera usada en la fabricación, estructura ideal para unas óptimas propiedades mecánicas ya que es el resultado del perfeccionamiento del proceso evolutivo. Los productos resultantes de la infiltración con silicio, alcanzan, con densidades un 50% inferiores, resistencias similares a las del carburo de silicio sinterizado y muy superiores a las del carburo de silicio compactado por reacción.- The ceramics obtained have the structure fibrous wood used in manufacturing, ideal structure for optimal mechanical properties as it is the result of improvement of the evolutionary process. The resulting products of infiltration with silicon, reach 50% densities lower, resistance similar to silicon carbide sintered and far superior to those of silicon carbide compacted by reaction.

- Se obtiene de forma natural una estructura similar a la de los materiales compuestos de fibra continua, materiales diseñados para mejorar la baja tenacidad intrinseca de las cerámicas.- A structure is obtained naturally similar to that of continuous fiber composite materials, materials designed to improve the intrinsic low toughness of Ceramics

- Se pueden obtener una gran gama de microestructuras y propiedades para aplicaciones específicas simplemente utilizando el precursor vegetal adecuado.- You can get a wide range of microstructures and properties for specific applications simply using the right vegetable precursor.

- La generación de materiales mixtos cerámico-metal, abre un amplio campo de aplicaciones asociados a la generación de materiales multifuncionales, que combinan alta resistencia mecánica con propiedades eléctricas, magnéticas, térmicas y ópticas diseñadas a medida. En particular, con una ajustada selección de las aleaciones en el proceso de infiltración, y posterior eliminación por ataque químico, podremos controlar las resistividades de las distintas zonas del dispositivo de calentamiento.- The generation of mixed materials ceramic-metal, opens a wide field of applications associated with the generation of materials multifunctional, which combine high mechanical strength with electrical, magnetic, thermal and optical properties designed to measure. In particular, with a tight selection of alloys in the infiltration process, and subsequent elimination by attack chemical, we can control the resistivities of the different zones of the heating device.

- Las uniones por reacción descritas en esta invención permiten la fabricación de estos materiales con formas complejas y de forma robusta, lo que abre el abanico de aplicaciones ya que éstas son difícilmente alcanzables con los métodos convencionales de fabricación del carburo de silicio comercial.- The reaction junctions described in this invention allow the manufacture of these materials with shapes complex and robust, which opens the range of applications since these are hardly attainable with the conventional methods of manufacturing silicon carbide commercial.

Claims (11)

1. Procedimiento de fabricación de un dispositivo resistivo cerámico del tipo fabricado con materiales multifásicos de carburo de silicio y silicio a partir de precursores celulósicos caracterizado porque comprende, al menos, las siguientes etapas:1. Method of manufacturing a ceramic resistive device of the type manufactured with multiphase materials of silicon carbide and silicon from cellulosic precursors characterized in that it comprises at least the following steps: (i) una primera etapa configurada para el secado de dicho precursor celulósico;(i) a first stage configured for drying of said cellulosic precursor; (ii) una segunda etapa de pirolisis configurada para someter al precursor celulósico a un proceso de pirolisis consistente en la descomposición por calentamiento de la materia orgánica y en donde este proceso se lleva a cabo en ausencia de oxígeno, de manera que las sustancias volátiles y el agua desaparecen como gases no contaminantes, quedando el carbón como residuo del proceso;(ii) a second stage of configured pyrolysis to subject the cellulosic precursor to a pyrolysis process consisting of decomposition by heating of matter organic and where this process is carried out in the absence of oxygen, so that volatile substances and water they disappear as non-polluting gases, leaving the coal as process waste; (iii) una tercera etapa de mecanizado configurada para la obtención de unas dimensiones óptimas tal que permitan controlar la resistencia en la zona caliente manteniéndose la disipación de potencia por área por debajo de los límites soportables por el propio material;(iii) a third stage of machining configured to obtain optimal dimensions such that allow to control the resistance in the hot zone keeping power dissipation per area below limits bearable by the material itself; (iv) una cuarta etapa de unión en donde se ponen en contacto las preformas de carbón, ya mecanizadas, recubriendo previamente la superficie de unión con una pasta rica en carbono;(iv) a fourth stage of union where they put in contact the preforms of coal, already mechanized, covering previously the joint surface with a paste rich in carbon; (v) una quinta etapa de infiltración con al menos una aleación metálica rica en silicio del elemento obtenido en las etapas anteriores;(v) a fifth stage of infiltration with at minus a silicon-rich metal alloy of the element obtained in the previous stages; (vi) una sexta etapa de eliminación selectiva del silicio/metales/fases producidas por reacción en la quinta etapa de infiltración, en donde, dicha sexta etapa está configurada para aumentar la resistividad en la zona caliente del dispositivo calefactor;(vi) a sixth stage of selective elimination of silicon / metals / phases produced by reaction in the fifth infiltration stage, where, said sixth stage is configured to increase the resistivity in the hot zone of the device heater; (vii) una séptima etapa de metalización configurada para facilitar la conexión eléctrica en la zona fría del elemento calefactor de tal forma que el material multifásico rico en carburo de silicio y el propio silicio es metalizado por evaporación de metales nobles;(vii) a seventh stage of metallization configured to facilitate the electrical connection in the cold zone of the heating element in such a way that the multiphase material rich in silicon carbide and silicon itself is metallized by evaporation of noble metals; (viii) una octava etapa de conexión eléctrica configurada para obtener una conexión eléctrica de alta calidad; y(viii) an eighth stage of electrical connection configured to obtain a high quality electrical connection; Y (ix) una novena etapa de aislamiento térmico y eléctrico.(ix) a ninth stage of thermal insulation and electric.
         \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
      
2. Procedimiento de acuerdo a la reivindicación 1 en donde la primera etapa de secado se realiza en una primera fase y con una forma seleccionada entre:2. Procedure according to claim 1 where the first stage of drying is carried out in a first phase and with a form selected from: (a) durante un tiempo comprendido entre las 12 y las 36 horas en una estufa a una temperatura comprendida entre 50ºC y 150ºC si el precursor ha sido previamente tratado para su uso industrial; o(a) for a time between 12 and 36 hours in an oven at a temperature between 50ºC and 150 ° C if the precursor has been previously treated for use industrial; or (b) durante 36 a 150 horas en una estufa a una temperatura comprendida entre 50ºC y 150ºC si el precursor no ha sido previamente tratado para su uso industrial.(b) for 36 to 150 hours in a stove at one temperature between 50ºC and 150ºC if the precursor has not previously treated for industrial use.
         \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
      
3. Procedimiento de acuerdo con la reivindicación 1 y 2 en donde la segunda etapa de pirolisis se realiza con presiones parciales de oxígeno del orden de 10^{-1} Torr o inferiores, a velocidades de calentamiento inferiores a 2ºC por minuto hasta temperaturas superiores a 600ºC y un posterior enfriamiento a una velocidad entre 1 y 15ºC por minuto desde la temperatura máxima alcanzada hasta temperatura ambiente.3. Procedure in accordance with the claims 1 and 2 wherein the second pyrolysis stage is performs with partial oxygen pressures of the order of 10-1 Torr or lower, at heating rates below 2ºC per minute up to temperatures above 600ºC and later cooling at a speed between 1 and 15 ° C per minute from the maximum temperature reached to room temperature. 4. Procedimiento de acuerdo con las reivindicaciones anteriores en donde en la tercera etapa de mecanizado se utilizan medios robotizados por control numérico para mecanizar la preforma de carbón y obtener la forma definitiva del dispositivo de calentamiento a fabricar.4. Procedure in accordance with previous claims wherein in the third stage of machining means roboticized by numerical control are used to mechanize the carbon preform and obtain the definitive form of heating device to be manufactured. 5. Procedimiento de acuerdo con las reivindicaciones anteriores en donde la sexta etapa de eliminación selectiva del silicio/metal/fases se implementa por al menos una de las siguientes soluciones:5. Procedure in accordance with previous claims wherein the sixth stage of elimination Selective silicon / metal / phases is implemented by at least one of The following solutions: (a) un ataque químico con soluciones que contengan uno a varios de los siguientes compuestos ácidos: HF, HNO_{3}, HCl, H_{2}SO_{4};(a) a chemical attack with solutions that contain one to several of the following acidic compounds: HF, HNO 3, HCl, H 2 SO 4; (b) un procedimiento electroquímico con agua salada,(b) an electrochemical procedure with water salty, y en donde las zonas que no interesen ser atacadas químicamente serán cubiertas con esmalte, de tal forma que eviten que las soluciones ácidas ataquen al material multifásico rico en carburo de silicio y silicio.and where the areas that do not interest be chemically attacked will be covered with enamel, so that prevent acid solutions from attacking multiphase material Rich in silicon carbide and silicon.
         \newpage\ newpage
      
6. Procedimiento de acuerdo con la reivindicación 5 en donde el ataque químico para eliminar cualquier exceso de silicio en los poros se utiliza una mezcla del ácido nítrico (HNO_{3}) y del ácido fluorhídrico (HF), de tal forma que el ácido nítrico primero oxida el silicio para formar el dióxido de silicio (SiO_{2}) que es eliminado de los poros por el HF:6. Procedure in accordance with the claim 5 wherein the chemical attack to eliminate any excess silicon in the pores a mixture of the acid is used nitric (HNO3) and hydrofluoric acid (HF), so that nitric acid first oxidizes silicon to form the dioxide of silicon (SiO2) that is removed from the pores by the HF: 22 7. Procedimiento de acuerdo con la reivindicación 5 en donde el procedimiento electroquímico con agua salada se implementa para eliminar el silicio residual con un baño con agua salada, con una concentración entre 2 y 30 g de sal por cada litro de agua, de tal forma que usando dos electrodos, se hace pasar una corriente eléctrica por corriente continua que provoca una reacción electroquímica de oxidación de la sal de tal forma que se elimine el silicio residual, y en donde, además, se obtiene una estructura porosa de carburo del silicio.7. Procedure in accordance with the claim 5 wherein the electrochemical process with water Salty is implemented to remove residual silicon with a bath with salt water, with a concentration between 2 and 30 g of salt per each liter of water, so that using two electrodes, it is made pass an electric current through direct current that causes an electrochemical reaction of salt oxidation such that the residual silicon is removed, and where, in addition, a Porous silicon carbide structure. 8. Procedimiento de acuerdo con las reivindicaciones anteriores en donde la séptima etapa de metalización se lleva a cabo bajo presiones parciales de oxígeno inferiores a 10^{-3} Torr, llegándose a depositar una película de varios micrómetros de espesor de metal noble.8. Procedure in accordance with previous claims wherein the seventh stage of metallization is carried out under partial oxygen pressures less than 10 - 3 Torr, getting to deposit a film of several micrometers thick noble metal. 9. Procedimiento de acuerdo con las reivindicaciones anteriores en donde en la octava etapa de conexión eléctrica en las zonas frías ya metalizadas se colocan pletinas de plata pura que van conectadas a cables de alta temperatura.9. Procedure in accordance with the previous claims wherein in the eighth stage of connection electric in cold areas already metallized plates are placed Pure silver that are connected to high temperature cables. 10. Procedimiento de acuerdo con las reivindicaciones anteriores en donde en la etapa de aislamiento eléctrico y térmico el producto resultado de las etapas anteriores se ensambla en un cuerpo cerámico aislante eléctrico, en cuyo interior son sellados los elementos calefactores con adhesivos cerámicos de alta temperatura también aislantes eléctricamente.10. Procedure in accordance with previous claims wherein in the isolation stage electrical and thermal the product resulting from the previous stages it is assembled in an electrical insulating ceramic body, in whose inside the heating elements are sealed with adhesives High temperature ceramics also electrically insulating. 11. Dispositivo resistivo cerámico del tipo fabricado con materiales multifásicos de carburo de silicio y silicio a partir de precursores celulósicos fabricado según reivindicaciones 1 a 10.11. Ceramic resistive device of the type manufactured with multiphase materials of silicon carbide and silicon from cellulosic precursors manufactured according to claims 1 to 10.
ES200900580A 2009-03-02 2009-03-02 MANUFACTURING PROCEDURE OF A CERAMIC RESISTIVE DEVICE FROM CELLULOSIC PRECURSORS AND PRODUCT SO OBTAINED. Expired - Fee Related ES2326069B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES200900580A ES2326069B1 (en) 2009-03-02 2009-03-02 MANUFACTURING PROCEDURE OF A CERAMIC RESISTIVE DEVICE FROM CELLULOSIC PRECURSORS AND PRODUCT SO OBTAINED.
PCT/ES2009/070052 WO2010100290A1 (en) 2009-03-02 2009-03-03 Method for producing a ceramic resistive device from cellulose precursors, and resulting product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200900580A ES2326069B1 (en) 2009-03-02 2009-03-02 MANUFACTURING PROCEDURE OF A CERAMIC RESISTIVE DEVICE FROM CELLULOSIC PRECURSORS AND PRODUCT SO OBTAINED.

Publications (2)

Publication Number Publication Date
ES2326069A1 ES2326069A1 (en) 2009-09-29
ES2326069B1 true ES2326069B1 (en) 2010-07-05

Family

ID=41065936

Family Applications (1)

Application Number Title Priority Date Filing Date
ES200900580A Expired - Fee Related ES2326069B1 (en) 2009-03-02 2009-03-02 MANUFACTURING PROCEDURE OF A CERAMIC RESISTIVE DEVICE FROM CELLULOSIC PRECURSORS AND PRODUCT SO OBTAINED.

Country Status (2)

Country Link
ES (1) ES2326069B1 (en)
WO (1) WO2010100290A1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BOSCH OJEDA, C. et al. "{}Sinthesys and Acid Digestion of Biomrophic Ceramics: Determination of Alkaline and Alkaline Earth Ions"{} Annali di Chimica 16.07.2007 Vol. 97, páginas 947-958; páginas 948,950,952. *
INDACOCHEA, J.E. et al. "{}Joininig and Processing in Engineering Ceramics to Metallic Materials in Biomorphic SiC Ceramics, and in Bioactive and Bioinert Ceramics"{} Materials Science Forum, 15.11.2003, Vol. 439, páginas 23-29; todo el documento. *
LÓPEZ ROBLEDO, M.J. et al. "{}Propiedades mecánicas de SiC biomórfico poroso"{} Boletín de la Sociedad Española de Cerámica y Vidrio 2005 Vol. 44 (5), páginas 318-323; apartados 1-2. *
QING WANG et al. "{}Biomorphic porous silicon carbide prepared from carboinized millet"{} Materials Science and Engineering A. 25.06.2007, Vol. 459, páginas 1-6; apartados 1,2.1. *

Also Published As

Publication number Publication date
WO2010100290A1 (en) 2010-09-10
ES2326069A1 (en) 2009-09-29

Similar Documents

Publication Publication Date Title
Feng et al. Investigation on the ablation performance and mechanism of HfC coating modified with TaC
Al Nasiri et al. Thermal properties of rare‐earth monosilicates for EBC on Si‐based ceramic composites
ES2334620B1 (en) PROCESS OF MANUFACTURE OF POROUS CERAMICS AND MULTIPHASICAL MATERIALS FROM CELLULOSIC PRECURSORS.
Zhong et al. Microstructure and thermal properties of atmospheric plasma-sprayed Yb 2 Si 2 O 7 Coating
Li et al. High strength retention and improved oxidation resistance of C/C composites by utilizing a layered SiC ceramic coating
Liu et al. Ablation behavior and thermal protection performance of TaSi2 coating for SiC coated carbon/carbon composites
Yang et al. SiC/Si–ZrSi2–ZrB2-HfB2/SiC coating for oxidation protection of C/C composites prepared by three-step method
Gu et al. New anti-ablation candidate for carbon/carbon composites: preparation, composition and ablation behavior of Y2Hf2O7 coating under an oxyacetylene torch
Chen et al. Thermal cycling behavior of La2Zr2O7/Yb2Si2O7/SiC coated PIP Cf/SiC composites under burner rig tests
Cheng et al. Laser ablation behavior and mechanism of C/SiC coated with ZrB2–MoSi2–SiC/Mo prepared by HVOF
García et al. The prospect of Y 2 SiO 5-based materials as protective layer in environmental barrier coatings
Kim et al. Direct bonding of silicon carbide ceramics sintered with yttria
WO2009112619A1 (en) Method for producing porous ceramics and multiphasic materials from cellulosic precursors
Farhan et al. Physical, thermal and ablative performance of CVI densified urethane-mimetic SiC preforms containing in situ grown Si3N4 whiskers
Lao et al. In-situ synthesis of nitride whiskers-bonded SiAlON–Al2O3 ceramics for solar thermal storage by aluminothermic nitridation of coal-series kaolin
ES2326069B1 (en) MANUFACTURING PROCEDURE OF A CERAMIC RESISTIVE DEVICE FROM CELLULOSIC PRECURSORS AND PRODUCT SO OBTAINED.
Tu et al. Effect of Si/Al ratio on in-situ synthesis of Al2O3–β-Sialon composite ceramics for solar thermal storage by aluminothermic and silicothermic nitridation
Lao et al. In-situ synthesis of mullite-SiCw composite ceramics in Li2O-Al2O3-SiO2 ternary system for solar heat transmission pipeline
Yamane et al. Fabrication of porous SiC ceramics having pores shaped with Si grain templates
JP2765543B2 (en) Reaction sintered ceramics and method for producing the same
Huang et al. SiC coating with high crack resistance property for carbon/carbon composites
CN105236988B (en) A kind of high-purity high-density recrystallized silicon carbide device and preparation method thereof
Hu et al. Phase evolution of reactive sputtering synthesized holmium silicate coatings
Wu et al. Ablation properties and mechanism of a novel La2Hf2O7 coating
Xu et al. In-situ Synthesis and Oxidation Resistance of Sialon/SiC Composite Ceramics Applied as Solar Absorber

Legal Events

Date Code Title Description
EC2A Search report published

Date of ref document: 20090929

Kind code of ref document: A1

FG2A Definitive protection

Ref document number: 2326069B1

Country of ref document: ES

FD2A Announcement of lapse in spain

Effective date: 20180924