ES2299350A1 - Procedure and reactor for the reformation of fuels - Google Patents
Procedure and reactor for the reformation of fuels Download PDFInfo
- Publication number
- ES2299350A1 ES2299350A1 ES200601466A ES200601466A ES2299350A1 ES 2299350 A1 ES2299350 A1 ES 2299350A1 ES 200601466 A ES200601466 A ES 200601466A ES 200601466 A ES200601466 A ES 200601466A ES 2299350 A1 ES2299350 A1 ES 2299350A1
- Authority
- ES
- Spain
- Prior art keywords
- reactor
- reforming
- barrier discharge
- fuels
- fuels according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 239000000446 fuel Substances 0.000 title claims abstract description 51
- 230000008569 process Effects 0.000 claims abstract description 34
- 239000000203 mixture Substances 0.000 claims abstract description 28
- 230000004888 barrier function Effects 0.000 claims abstract description 25
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 19
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 19
- 239000007788 liquid Substances 0.000 claims abstract description 12
- 238000002407 reforming Methods 0.000 claims description 30
- 238000006243 chemical reaction Methods 0.000 claims description 18
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 14
- 229910000831 Steel Inorganic materials 0.000 claims description 10
- 239000010959 steel Substances 0.000 claims description 10
- 239000011541 reaction mixture Substances 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 5
- 150000001298 alcohols Chemical class 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 239000010453 quartz Substances 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims description 2
- 239000003502 gasoline Substances 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 238000009834 vaporization Methods 0.000 claims description 2
- 230000008016 vaporization Effects 0.000 claims description 2
- 239000002737 fuel gas Substances 0.000 claims 1
- 239000003345 natural gas Substances 0.000 claims 1
- 238000009419 refurbishment Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 11
- 239000001257 hydrogen Substances 0.000 abstract description 5
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract 1
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 22
- 210000002381 plasma Anatomy 0.000 description 21
- 239000004215 Carbon black (E152) Substances 0.000 description 9
- 239000003989 dielectric material Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000006057 reforming reaction Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/087—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
- B01J19/088—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/2406—Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/342—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents with the aid of electrical means, electromagnetic or mechanical vibrations, or particle radiations
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/2406—Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
- H05H1/2443—Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
- H05H1/246—Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube the plasma being activated using external electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0803—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
- B01J2219/0805—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
- B01J2219/0807—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
- B01J2219/0824—Details relating to the shape of the electrodes
- B01J2219/0826—Details relating to the shape of the electrodes essentially linear
- B01J2219/083—Details relating to the shape of the electrodes essentially linear cylindrical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0873—Materials to be treated
- B01J2219/0875—Gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0894—Processes carried out in the presence of a plasma
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0211—Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
- C01B2203/0216—Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0211—Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
- C01B2203/0222—Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic carbon dioxide reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0861—Methods of heating the process for making hydrogen or synthesis gas by plasma
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H2245/00—Applications of plasma devices
- H05H2245/10—Treatment of gases
- H05H2245/17—Exhaust gases
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Toxicology (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Fluid Mechanics (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
Procedimiento y reactor para el reformado de combustibles.Procedure and reactor for reforming fuels
El sector de aplicación de la presente invención se enmarca, dentro del campo de nuevas tecnologías para el sector energético y el de las tecnologías químicas, en el desarrollo de procedimientos de conversión de combustibles líquidos o gases en hidrógeno y/o de preparación de mezclas "syngas" (mezclas CO más H_{2}). Una de las aplicaciones potenciales de la tecnología se relaciona con su uso como fuente primaria de hidrógeno para alimentar pilas de combustible u otros procesos de transformación de energía química en mecánica (motores) y/o eléctrica. Otra aplicación sería como generador de "syngas" para fines sintéticos.The application sector of the present invention is framed, within the field of new technologies for the sector energy and chemical technologies, in the development of procedures for converting liquid fuels or gases into hydrogen and / or preparation of "syngas" mixtures (CO mixtures plus H 2). One of the potential applications of technology it relates to its use as a primary source of hydrogen for feed fuel cells or other transformation processes of chemical energy in mechanics (motors) and / or electrical. Other application would be as a generator of "syngas" for purposes synthetic
El objeto de la presente invención es un procedimiento y un reactor para el reformado de combustibles líquidos o gaseosos y su transformación en H_{2} y CO a partir de mezclas de los mismos con vapor de agua y/o CO_{2}. Este procedimiento se basa en la utilización de la tecnología de plasmas fríos y, en concreto, en la utilización de descargas tipo barrera en un reactor cilíndrico donde el control de la rugosidad superficial a escala micrométrica de uno de los electrodos es un factor determinante de la eficacia del proceso. Las mezclas del combustible y del otro gas (CO_{2} o H_{2}O) se hacen pasar por el reactor a temperatura ambiente (o calentadas por encima de 100ºC en el caso del agua) para proceder a su activación y conversión en la mezcla final deseada.The object of the present invention is a procedure and a reactor for fuel reforming liquid or gaseous and its transformation into H2 and CO from mixtures thereof with water vapor and / or CO2. This procedure is based on the use of plasma technology cold and, in particular, in the use of barrier-type discharges in a cylindrical reactor where the roughness control Micrometric scale surface of one of the electrodes is a determining factor of the effectiveness of the process. The mixtures of fuel and other gas (CO2 or H2O) are passed through the reactor at room temperature (or heated above 100 ° C in the case of water) to proceed with its activation and conversion into The final desired mixture.
Los métodos de reformado de hidrocarburos más clásicos se basan en el uso de catalizadores y transcurren a temperaturas elevadas (Catalyst for hydrocarbon reforming reaction: United States Patent 6852668). Más recientemente se ha propuesto el uso de procesos de reformado usando plasmas. Estos métodos tienen como ventajas el que pueden llevarse a cabo a más bajas temperaturas, virtualmente a temperatura ambiente y que requieren tiempos de estabilización muy cortos. Se ha propuesto el uso de diversas fuentes de excitación, incluyéndose entre los más comunes los procesos de reformado usando fuentes de microondas (Maxim Deminsky, Victor Jivotov, Boris Potapkin, and Vladimir Rusanov, Plasma-assisted production of hydrogen from hydrocarbons, Pure Appl. Chem., Vol. 74, No. 3, pp. 413-418, 2002.) o descargas barreras (DBD) (Kogelschatz U., Plasma Chemistry and Plasma Processing, 18, 375-393 (1998)). En el primer caso, existen procesos que se realizan a presiones por debajo de la atmosférica y otros donde los reactores correspondientes actúan a presión atmosférica. En ambos casos no es infrecuente que, los productos de reacción incluyan hidrocarburos superiores fruto de procesos no controlados de dimerización de hidrocarburos. Otra tecnología de plasma bastante utilizada para la realización de procesos de reformado con hidrocarburos u alcoholes es la basada en procesos de descarga barrera, en los cuales el plasma se genera mediante descargas AC de alto voltaje (entre 5 y 30 kV generalmente) y frecuencias en el rango de los kHz (Eliasson B., IEEE Transactions on Plasma Science, 19, 1063-1077 (1991); Hammer T., Contributions to Plasma Physics, 39, 441-462 (1999)), aunque hay resultados descritos sobre la utilización de 50 Hz de frecuencia (Aghamir Farzin M., Matin Nasser S., Jalili Amir-hossein and Esfarayeni Mohammad-Ali, Methanol Production in AC Dielectric Barrier Discharge, J. Plasma Fusion Res. Series, Vol. 6 (2004) 696-698). De nuevo, en este caso, suele ser normal la obtención de mezclas de reacción donde, además de los gases deseados, se encuentren cantidades significativas de hidrocarburos y/o alcoholes superiores. (Shigeru Futamura, Hajime Kabashima, and Hisahiro Einaga, Steam Reforming of Aliphatic Hydrocarbons With Nonthermal Plasma, IEEE Transactions on industry applications, vol. 40, no. 6, November/December 2004). En la mayoría de todos estos procesos es normal añadir al reactor una mezcla en las proporciones adecuadas del combustible y agua o CO_{2} (Shigeru Futamura and Gurusamy Annadurai, Plasma Reforming of Aliphatic Hydrocarbons With CO_{2'} IEEE Transactions on industry applications, vol. 41, no. 6, November/December 2005). Sin embargo, existe una referencia reciente de un proceso donde mediante la utilización de plasmas de descarga barrera se reivindica la posibilidad de proceder a la disociación directa del metano en carbono (sólido) e hidrógeno (David E. Fletcher, United States patent application publication No. US 2004/0148860 A1, Aug. 5, 2004). El reactor utilizado en este caso integra un mecanismo complejo donde un electrodo cónico y estriado a modo de tornillo gira a gran velocidad enfrentado a un cono hueco de material dieléctrico donde se aplica el otro electrodo. Un elemento esencial en el desarrollo de los plasmas de descarga barrera lo constituye el tipo de descarga utilizada y el modo en que ésta se aplica. Generalmente, uno de los electrodos del sistema se activa mediante la descarga de alto voltaje AC, mientras que el otro suele colocarse a tierra (Ulrich Kogelschatz, Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications, Plasma Chemistry and Plasma Processing, Volume 23, Number 1, March 2003 pages 1 - 46). Otros documentos recientes (US 2004/0091418 A1 de Carlow et al.) reivindican la utilización de descargas barrera, microondas y radiofrecuencia para producir el reformado de hidrocarburos (que no de alcoholes) y para la purificación de gases basada en descarga de barrera dieléctrica (US 2003/0030374 A1 de Deepak Pai). En estos documentos aparte de reivindicar el método, no se presenta un análisis detallado de los gases producidos ni se reporta optimización alguna de los rendimientos al modificar las características microestructurales (por ejemplo, porosidad en el rango de las micras) del material dieléctrico.The most classical hydrocarbon reforming methods are based on the use of catalysts and run at elevated temperatures (Catalyst for hydrocarbon reforming reaction: United States Patent 6852668). More recently, the use of reforming processes using plasmas has been proposed. These methods have the advantages that they can be carried out at lower temperatures, virtually at room temperature and that require very short stabilization times. The use of various sources of excitation has been proposed, including among the most common the processes of reforming using microwave sources (Maxim Deminsky, Victor Jivotov, Boris Potapkin, and Vladimir Rusanov, Plasma-assisted production of hydrogen from hydrocarbons, Pure Appl. Chem ., Vol. 74, No. 3, pp. 413-418, 2002.) or barrier discharge (DBD) (Kogelschatz U., Plasma Chemistry and Plasma Processing , 18, 375-393 (1998)). In the first case, there are processes that are carried out at pressures below atmospheric and others where the corresponding reactors act at atmospheric pressure. In both cases it is not uncommon for the reaction products to include higher hydrocarbons, the result of uncontrolled hydrocarbon dimerization processes. Another plasma technology widely used to carry out reforming processes with hydrocarbons or alcohols is that based on barrier discharge processes, in which the plasma is generated by high-voltage AC discharges (generally between 5 and 30 kV) and frequencies in the kHz range (Eliasson B., IEEE Transactions on Plasma Science , 19, 1063-1077 (1991); Hammer T., Contributions to Plasma Physics , 39, 441-462 (1999)), although there are results described on the 50 Hz frequency utilization (Aghamir Farzin M., Matin Nasser S., Jalili Amir-hossein and Esfarayeni Mohammad-Ali, Methanol Production in AC Dielectric Barrier Discharge, J. Plasma Fusion Res. Series, Vol. 6 (2004) 696 -698). Again, in this case, it is usually normal to obtain reaction mixtures where, in addition to the desired gases, significant amounts of hydrocarbons and / or higher alcohols are found. (Shigeru Futamura, Hajime Kabashima, and Hisahiro Einaga, Steam Reforming of Aliphatic Hydrocarbons With Nonthermal Plasma, IEEE Transactions on industry applications, vol. 40, no. 6, November / December 2004). In most of all these processes it is normal to add a mixture in the appropriate proportions of the fuel and water or CO2 to the reactor (Shigeru Futamura and Gurusamy Annadurai, Plasma Reforming of Aliphatic Hydrocarbons With CO_ {2 '} IEEE Transactions on industry applications , vol. 41, no.6, November / December 2005). However, there is a recent reference to a process where, through the use of barrier discharge plasmas, the possibility of direct dissociation of methane into carbon (solid) and hydrogen is claimed (David E. Fletcher, United States patent application publication No US 2004/0148860 A1, Aug. 5, 2004). The reactor used in this case integrates a complex mechanism where a screw-shaped conical electrode rotates at high speed in front of a hollow cone of dielectric material where the other electrode is applied. An essential element in the development of barrier discharge plasmas is the type of discharge used and the way in which it is applied. Generally, one of the system's electrodes is activated by high-voltage AC discharge, while the other is usually grounded (Ulrich Kogelschatz, Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications, Plasma Chemistry and Plasma Processing , Volume 23, Number 1, March 2003 pages 1-46). Other recent documents (US 2004/0091418 A1 by Carlow et al .) Claim the use of barrier, microwave and radiofrequency discharges to produce hydrocarbon reforming (not alcohol) and for gas purification based on dielectric barrier discharge ( US 2003/0030374 A1 by Deepak Pai). In these documents apart from claiming the method, a detailed analysis of the gases produced is not presented, nor is any performance optimization reported by modifying the microstructural characteristics (for example, porosity in the micron range) of the dielectric material.
En consecuencia, una de las características diferenciales del procedimiento de la invención tiene que ver con el modo de aplicar el voltaje externo. Otro elemento característico presente en alguna de las patentes existentes sobre reactores DBD es la utilización de un metal poroso como electrodo activo, a través de cuyos poros circula el gas o mezcla de gases utilizada. Aparentemente una naturaleza singular de las microdescargas producidas en dichos poros (condiciones similares a las denominadas "hollow cathode") puede tener una influencia importante en el control de las características del proceso (Yun Yang, Alternating-Current Glow and Pseudoglow Discharges in Atmospheric Pressure, IEEE Transactions on plasma science, vol. 31, no. 1, February 2003).Consequently, one of the characteristics differentials of the process of the invention has to do with How to apply external voltage. Other characteristic element present in any of the existing patents on DBD reactors is the use of a porous metal as an active electrode, to through whose pores the gas or mixture of gases used circulates. Apparently a unique nature of micro downloads produced in said pores (conditions similar to those called "hollow cathode") can have an important influence on the process characteristics control (Yun Yang, Alternating-Current Glow and Pseudoglow Discharges in Atmospheric Pressure, IEEE Transactions on plasma science, vol. 31, no. 1, February 2003).
Figura 1.- Modo de conexión y descripción esquemática de la estructura eléctrica del reactorFigure 1.- Connection mode and description schematic of the electrical structure of the reactor
- 1.one.
- Líneas de conducción de gases/vapores de entrada y salida calentablesGas / Vapor Conduction Lines Heated input and output
- 2.2.
- Fuente de potencialSource of potential
- 3.3.
- Electrodo (cilindro interno)Electrode (internal cylinder)
- 4.Four.
- Electrodo (capa metálica externa)Electrode (metallic layer external)
- 5.5.
- Tubo de material dieléctricoTube of dielectric material
Figura 2.- Esquema general del sistema de reacciónFigure 2.- General scheme of the system reaction
- 1.-one.-
- Líneas de conducción de gases/vapores de entrada y salida calentablesGas / Vapor Conduction Lines Heated input and output
- 6.-6.-
- Reactor de descarga barreraBarrier discharge reactor
- 7.-7.-
- Conexión al sistema de control y análisis de gases.Connection to the control system and gas analysis
Figura 3.- Esquema general del reactorFigure 3.- General scheme of the reactor
- 5.-5.-
- Tubo de material dieléctricoTube of dielectric material
- 8.-8.-
- Cilindro de acero macizo o tubular con rugosidad superficial controlada en la zona de la descarga.Solid or tubular steel cylinder with surface roughness controlled in the area of the discharge.
- 9.-9.-
- Conexiones eléctricas de alto voltaje de los electrodos metálicos activos.High voltage electrical connections of the active metal electrodes.
- 10.-10.-
- zona de aislamiento dieléctricoisolation zone dielectric
- 11.-eleven.-
- Flechas indicando el flujo de gasesArrows indicating the flow of gas
- 12.-12.-
- Capa metálica que actúa como electrodoMetallic layer that acts as electrode
- 13.-13.-
- Horno de calefacciónHeating furnace
Figura 4.- Ejemplo sobre la eficacia del proceso expresada en términos de porcentaje de descomposición de CH_{4} en mezclas equimoleculares de este gas con CO_{2} en función del flujo de los reactivos.Figure 4.- Example about the effectiveness of the process expressed in terms of percentage decomposition of CH4 in equimolecular mixtures of this gas with CO2 depending on the reagent flow.
La presente invención se refiere a un procedimiento para el reformado de combustibles gaseosos o líquidos vaporables, en un reactor de plasma de descarga barrera que comprende las siguientes etapas:The present invention relates to a procedure for reforming gaseous or liquid fuels vaporable, in a plasma barrier discharge reactor that It comprises the following stages:
- a)to)
- la introducción de una mezcla en forma de vapor o gas entre el combustible y CO_{2} y/o H_{2}O, en proporciones comprendidas entre 1:1 y 1:10 en el reactor de descarga barrera para su tratamiento en forma continua y a presión atmosférica.the introduction of a mixture in the form of steam or gas between the fuel and CO2 and / or H2O, in proportions between 1: 1 and 1:10 in the barrier discharge reactor for its continuous and atmospheric pressure treatment.
- b)b)
- el ajuste en el reactor de las condiciones de la descarga, particularmente el valor de alto voltaje y de frecuencia, así como las condiciones de temperatura.he adjustment in the reactor of the discharge conditions, particularly the high voltage and frequency value, as well as temperature conditions
- c)C)
- la activación del reactor una vez ajustadas las condiciones en la etapa anterior.the reactor activation once the conditions in the previous stage
La descarga se realiza suministrando un potencial AC de alto voltaje comprendido entre preferentemente 0.5 y 80 kV, más preferentemente entre 15 y 30 kV y de frecuencia comprendida entre preferentemente 50 Hz y 70 kHz, más preferentemente entre 3 y 15 kHz, aplicado entre los dos electrodos del reactor de descarga barrera cambiando la polaridad alternativamente, sin que ninguno de esos electrodos esté en ningún momento conectado a tierra. Cuando se introduce una mezcla combustible/CO_{2} se emplea una proporción comprendida entre preferentemente 1 y 10. Cuando se introduce una mezcla combustible/H_{2}O se emplea igualmente una proporción comprendida preferentemente entre 1 y 10. Cuando se introduce una mezcla a tres, combustible/CO_{2}/H_{2}O, la proporción está comprendida preferentemente entre 1:0.5:0.5 y 1:5:5.The download is done by supplying a high voltage AC potential preferably between 0.5 and 80 kV, more preferably between 15 and 30 kV and frequency preferably between 50 Hz and 70 kHz, plus preferably between 3 and 15 kHz, applied between the two electrodes of the barrier discharge reactor by changing the polarity alternatively, without any of those electrodes being in any grounded moment. When a mixture is introduced fuel / CO2 is used a proportion between preferably 1 and 10. When a mixture is introduced fuel / H2O a proportion is also used preferably between 1 and 10. When a mixture to three, fuel / CO 2 / H 2 O, the proportion is preferably between 1: 0.5: 0.5 and 1: 5: 5.
En el caso de que se reformen combustibles líquidos y/o H_{2}O líquida, se incluye una etapa previa de vaporización por calentamiento.In the event that fuels are reformed liquid and / or liquid H2O, a previous stage of vaporization by heating.
Adicionalmente se puede agregar oxígeno a la mezcla del combustible con CO_{2} y/o H_{2}O, en una proporción comprendida entre 0.1 y 0.3% respecto al combustible.Additionally, oxygen can be added to the mixing the fuel with CO2 and / or H2O, in a proportion between 0.1 and 0.3% with respect to fuel.
El flujo de la mezcla de reacción está comprendido entre 1 y 100 centímetros cúbicos standard por minuto (sccm) dependiendo del tamaño del reactor, y los combustibles utilizados son preferentemente hidrocarburos, alcoholes, gas natural o mezclas de ellos, más preferentemente combustibles comerciales en forma de fluidos volatilizables tales como gasolinas ó gas-oil.The flow of the reaction mixture is between 1 and 100 standard cubic centimeters per minute (sccm) depending on reactor size, and fuels used are preferably hydrocarbons, alcohols, gas natural or mixtures thereof, more preferably fuels commercial in the form of volatile fluids such as gasoline or gas oil.
Los productos obtenidos mediante el procedimiento de reformado objeto de la presente invención tienen un contenido en hidrocarburos superiores inferior al 1% y un contenido en CO + H_{2} correspondientes a conversiones de metano de hasta el 95%.The products obtained through the reforming process object of the present invention have a hydrocarbon content of less than 1% and a CO + H_ {2} content corresponding to methane conversions up to 95%.
Constituye igualmente un objeto de la presente invención, un reactor de plasma de descarga barrera para el reformado de combustibles, que comprende los siguientes elementos:It is also an object of the present invention, a barrier plasma discharge reactor for the refurbished fuels, comprising the following elements:
a) una fuente de alimentación que suministra una corriente alterna de alto voltaje, comprendido entre 0,5 y 80 kV, preferentemente entre 15 y 30 kV, y de frecuencia comprendida entre 50 Hz y 70 kHz, preferentemente entre 3 y 15 kHz;a) a power supply that supplies a high voltage alternating current, between 0.5 and 80 kV, preferably between 15 and 30 kV, and with a frequency between 50 Hz and 70 kHz, preferably between 3 and 15 kHz;
b) un electrodo cilíndrico de acero que incorpora en su exterior una lámina de metal y conectado a una fuente de alimentación de alto voltaje; yb) a cylindrical steel electrode that incorporates in its exterior a sheet of metal and connected to a high voltage power supply; Y
c) un dispositivo dieléctrico de geometría cilíndrica colocado en forma concéntrica exteriormente al electrodo cilíndrico.c) a dielectric geometry device cylindrical placed concentrically outside the electrode cylindrical.
La superficie del electrodo de acero presenta preferentemente, una rugosidad superficial caracterizada por motivos rugosos de tamaño comprendido entre 1 y 10 \mum y la distancia entre el electrodo cilíndrico de acero y el dispositivo dieléctrico, correspondiente a la zona de descarga está comprendida entre 1 y 10 mm, preferentemente entre 1 y 3 mm.The surface of the steel electrode presents preferably, a surface roughness characterized by rough motifs of size between 1 and 10 µm and the distance between the cylindrical steel electrode and the device dielectric, corresponding to the discharge zone is comprised between 1 and 10 mm, preferably between 1 and 3 mm.
En una realización preferente, el dispositivo dieléctrico se construye en cuarzo, alúmina o cerámica y presenta un espesor comprendido entre 1 y 10 mm.In a preferred embodiment, the device Dielectric is built in quartz, alumina or ceramic and presents a thickness between 1 and 10 mm.
Opcionalmente, el reactor presenta unas dimensiones comprendidas entre 8 y 40 cm de largo y entre 1.5 y 20 cm de diámetro.Optionally, the reactor has some dimensions between 8 and 40 cm long and between 1.5 and 20 cm in diameter
En una realización preferida, el reactor incluye elementos de control de la temperatura de la zona de reacción, que permiten su regulación entre la temperatura ambiente y 500ºC.In a preferred embodiment, the reactor includes temperature control elements of the reaction zone, which They allow its regulation between room temperature and 500ºC.
En el reactor objeto de la presente invención, la fuente de alimentación no trabaja entre un electrodo activo y otro a tierra, sino que opera aplicando alternativamente el alto voltaje entre los dos electrodos que, de esta manera, actúan ambos como electrodos activos.In the reactor object of the present invention, the power supply does not work between an active electrode and another to ground, but operates alternatively applying the high voltage between the two electrodes that, in this way, both act As active electrodes.
Para la realización del proceso de reformado de combustibles mediante plasmas de barrera dieléctrica, se ha construido un reactor basado en este principio que se alimenta eléctricamente con una fuente AC de alto voltaje tal y como se describe esquemáticamente en la Figura 1. En esta figura se pone de manifiesto que, como elemento novedoso respecto a otros reactores DBD previamente utilizados, en el proceso aquí desarrollado ninguno de los dos electrodos se conecta a tierra, sino que se activan sucesivamente y de forma opuesta con voltajes positivos y negativos suministrados por la fuente.For the realization of the process of reforming fuels through dielectric barrier plasmas, it has built a reactor based on this principle that feeds electrically with a high voltage AC source as described schematically in Figure 1. This figure shows I manifest that, as a novel element with respect to other reactors DBD previously used, in the process developed here none of the two electrodes is grounded; they are activated successively and in the opposite way with positive and negative voltages supplied by the source.
La fuente de potencial construida y que constituye una parte indisociable del reactor para la realización del proceso de reformado, es una fuente de corriente alterna con frecuencia variable preferentemente entre 50 Hz y 70 kHz, más preferentemente entre 3 y 15 kHz, y que suministra voltajes pico a pico comprendidos preferentemente entre 0.5 y 80 kV, más preferentemente entre 15 y 30 kV.The source of potential built and that constitutes an inseparable part of the reactor for the realization of the reforming process, it is a source of alternating current with variable frequency preferably between 50 Hz and 70 kHz, more preferably between 3 and 15 kHz, and that supplies peak voltages at peak preferably between 0.5 and 80 kV, plus preferably between 15 and 30 kV.
El reactor se integra en un sistema de reacción general donde es posible dosificar cantidades controladas de los reactivos (Figura 2). Tanto los tubos de alimentación de reactivos como los de salida de productos se pueden calentar a temperaturas controladas por encima de 100ºC. Es necesario proceder a este calentamiento en el caso de utilizar agua y/o combustibles líquidos que sea necesario vaporizar antes de alimentar la mezcla en el reactor. El control del flujo de gases puede hacerse mediante controladores de flujo (gases) o sistemas de control de flujo de líquidos en el sistema de tubos de alimentación del reactor.The reactor is integrated into a reaction system general where it is possible to dose controlled quantities of reagents (Figure 2). Both reagent feed tubes As the output products can be heated to temperatures controlled above 100 ° C. It is necessary to proceed to this heating in the case of using water and / or liquid fuels it is necessary to vaporize before feeding the mixture in the reactor. Gas flow control can be done by flow controllers (gases) or flow control systems of liquids in the reactor feed tube system.
El control de los gases de salida (composición, etc.) puede hacerse mediante un sistema de análisis directamente conectado al tubo de gases de salida.The control of the exhaust gases (composition, etc.) can be done through an analysis system directly connected to the outlet gas pipe.
\newpage\ newpage
Como puede observarse en el dibujo esquemático de la Figura 3, el reactor está formado por un cilindro de acero, cuya superficie externa en la zona de descarga ha sido sometido a un proceso de abrasión controlada para producir una superficie rugosa de características definidas. El cilindro se conecta a la alimentación de alto voltaje de la fuente y a un tubo de alimentación de acero. Para evitar que a través de este tubo se active eléctricamente todo el sistema de tuberías de alimentación, aquél se aísla eléctricamente de las tuberías, acoplando en una zona intermedia un tubo de vidrio u otro material dieléctrico. El cilindro de acero se coloca concéntrico a un tubo de un material dieléctrico (cuarzo, alúmina o cualquier otra cerámica) de espesor comprendido entre 1 y 10 mm, de manera que la mezcla de reacción circule entre el cilindro de acero y el tubo cerámico. La distancia entre ambos es otro de los parámetros críticos del proceso y puede variar entre 1 y 10 mm. Por la parte exterior del cilindro, se coloca una lámina de metal que actúa como el otro electrodo activo del proceso. El plasma en la zona de circulación de la mezcla de gases, se forma coincidiendo con la superficie del cilindro metálico que tiene arrollada la capa metálica, pudiendo en consecuencia ser variada a voluntad. Todo el conjunto está rodeado por un pequeño horno para mantener el conjunto por encima de 100ºC en caso de que se use H_{2}O y/o combustibles líquidos en la mezcla de reacción.As can be seen in the schematic drawing of Figure 3, the reactor is formed by a steel cylinder, whose external surface in the discharge zone has been subjected to a controlled abrasion process to produce a surface rugged with defined characteristics. The cylinder connects to the high voltage power supply to the tube and to a steel feed. To avoid that through this tube electrically activate the entire feed pipe system, that is electrically isolated from the pipes, coupling in a intermediate zone a glass tube or other dielectric material. He Steel cylinder is placed concentrically to a tube of a material dielectric (quartz, alumina or any other ceramic) thick between 1 and 10 mm, so that the reaction mixture circulate between the steel cylinder and the ceramic tube. Distance between the two is another of the critical parameters of the process and can vary between 1 and 10 mm. On the outside of the cylinder, it place a sheet of metal that acts as the other active electrode of process. Plasma in the circulation zone of the mixture of gases, is formed coinciding with the surface of the cylinder metallic that has the metallic layer rolled, being able to consequence be varied at will. The whole set is surrounded by a small oven to keep the set above 100ºC in case H 2 O and / or liquid fuels are used in the reaction mixture.
Todo el sistema de reacción anterior se puede integrar en una carcasa de protección y aislamiento si así se considera necesario.The entire previous reaction system can be integrate into a protective and insulating housing if so considered necessary.
El reactor presenta unas dimensiones características comprendidas entre 8 y 40 cm de largo y entre 1,5 y 20 cm de diámetro.The reactor has dimensions characteristics between 8 and 40 cm long and between 1.5 and 20 cm in diameter
Las reacciones que se pueden activar mediante el reactor desarrollado, se pueden esquematizar según:The reactions that can be activated by developed reactor, can be schematized according to:
\vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
donde C_{n}H_{m} puede indicar un hidrocarburo, mezclas de hidrocarburos, un alcohol o mezclas de alcholes y/o hidrocarburos.where C_ {n} H_ {m} can indicate a hydrocarbon, hydrocarbon mixtures, an alcohol or mixtures of alcholes and / or hydrocarbons
Con el sistema de reacción anteriormente descrito se puede realizar el reformado del (de los) combustible(s) seleccionado(s) cambiando distintas variables del proceso, como son el voltaje y la frecuencia de la descarga, la temperatura del reactor, el flujo total de la mezcla de reacción o la proporción entre el hidrocarburo/alcohol y el otro reactivo seleccionado (H_{2}O o CO_{2}). Con el dispositivo se puede también inducir la disociación directa del hidrocarburo en C (sólido) e H_{2}. Aunque experimentos de este tipo han podido realizarse durante periodos de tiempo de hasta 45 min, su ejecución no es recomendable ya que el carbono producido que permanece en el interior de la zona de descarga puede servir de punto de inducción de descargas indeseadas.With the reaction system above described you can perform the reform of the selected fuel (s) changing different process variables, such as the voltage and frequency of the discharge, reactor temperature, total flow of the mixture reaction or the ratio between the hydrocarbon / alcohol and the other selected reagent (H2O or CO2). With the device you it can also induce direct dissociation of the C-hydrocarbon (solid) and H2. Although experiments of this type have been able be carried out for periods of time up to 45 min, its execution It is not recommended since the carbon produced that remains in the inside the discharge zone can serve as an induction point of unwanted downloads.
Un ejemplo de aplicación del procedimiento lo constituye el reformado de metano (CH_{4}), usando CO_{2} como el otro gas del proceso en un reactor con unas dimensiones de 10 cm de largo y 3 cm de diámetro. Para esta mezcla de reacción se ha medido la eficacia del proceso y se ha verificado que, dependiendo de las condiciones de trabajo y de las características de la fuente, se pueden conseguir conversiones prácticamente totales del metano con la formación de una mezcla de CO e H_{2} que se puede escribir, de acuerdo a la reacción [1] ajustada estequiométricamente, según:An example of application of the procedure is constitutes methane reforming (CH4), using CO2 as the other process gas in a reactor with dimensions of 10 cm long and 3 cm in diameter. For this reaction mixture has been measured the effectiveness of the process and it has been verified that, depending of working conditions and the characteristics of the source, virtually total conversions of the methane with the formation of a mixture of CO and H2 that can be write, according to the reaction [1] adjusted stoichiometrically, according to:
Conviene destacar que como producto de la reacción sólo se detectaron trazas de hidrocarburos superiores, siempre por debajo de un límite superior del 1%. Esta ausencia de hidrocarburos superiores se puede considerar como una de las características más singulares del proceso desarrollado. En el rendimiento de la reacción [3] influyen muchos parámetros como se dijo previamente. Un ejemplo de cómo varía la eficacia de la reacción en función de parámetros del proceso, se presenta en la Figura 4 que representa el tanto por ciento de conversión de metano para una frecuencia y voltaje dados, en función del flujo total de gases a través del reactor. Como es previsible, el porcentaje de conversión varia de modo inversamente proporcional al flujo de gases, tal y como cabe esperar de procesos donde el tiempo de residencia en el reactor debe ser un factor controlador de máxima importancia.It should be noted that as a product of the reaction only traces of higher hydrocarbons were detected, always below an upper limit of 1%. This absence of higher hydrocarbons can be considered as one of the most unique characteristics of the process developed. At reaction performance [3] influence many parameters as He said previously. An example of how the effectiveness of the reaction depending on process parameters, is presented in the Figure 4 representing the percent conversion of methane for a given frequency and voltage, depending on the total flow of gases through the reactor. As expected, the percentage of conversion varies inversely proportional to the flow of gases, as expected from processes where the time of reactor residence must be a maximum controlling factor importance.
Según los datos de la gráfica representada en la Figura 4, la temperatura es también un parámetro de gran importancia que, para valores por encima de 120ºC influye disminuyendo el rendimiento de la reacción.According to the data in the graph represented in the Figure 4, the temperature is also a large parameter importance that, for values above 120ºC influences decreasing the yield of the reaction.
El presente ejemplo se introduce a modo ilustrativo del funcionamiento de la presente invención, sin ser en modo alguno, limitativo de su alcance.The present example is introduced by way of illustrative of the operation of the present invention, without being in in any way, limiting its scope.
Claims (20)
- a)to)
- introducción de una mezcla en forma de vapor o gas de combustible y, CO_{2} y/o H_{2}O, en proporciones comprendidas entre 1:1 y 1:10 en un reactor de descarga barrera para su tratamiento en forma continua y a presión atmosférica;introduction of a mixture in the form of steam or fuel gas and, CO2 and / or H2O, in ratios between 1: 1 and 1:10 in a reactor of barrier discharge for continuous and pressure treatment atmospheric;
- b)b)
- ajuste en el reactor de las siguientes condiciones de la descarga: el valor de alto voltaje, la frecuencia, y la temperatura;adjustment in the reactor of the following discharge conditions: high voltage value, the frequency, and temperature;
- c)C)
- activación del reactor una vez ajustadas las condiciones en la etapa anterior;reactor activation once adjusted the conditions in the previous stage;
- a)to)
- una fuente de alimentación que suministra una corriente alterna de alto voltaje, comprendido entre 0,5 y 80 kV;a power supply that supplies a high alternating current voltage, between 0.5 and 80 kV;
- b)b)
- un electrodo cilíndrico de acero que incorpora en su exterior una lámina de metal, conectado a una fuente de alimentación de alto voltaje, y que presenta una rugosidad superficial con motivos rugosos;a cylindrical steel electrode that incorporates a sheet metal, connected to a high power supply voltage, and that presents a superficial roughness with motifs rough
- c)C)
- un dispositivo dieléctrico de geometría cilíndrica colocado de forma concéntrica en el exterior del electrodo, de modo que la distancia entre el electrodo cilíndrico de acero y el dispositivo dieléctrico, correspondiente a la zona de descarga es de entre 1 y 10 mm.a cylindrical geometry dielectric device positioned concentric on the outside of the electrode, so that the distance between the cylindrical steel electrode and the dielectric device, corresponding to the download zone is between 1 and 10 mm
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES200601466A ES2299350B1 (en) | 2006-06-01 | 2006-06-01 | PROCEDURE AND REACTOR FOR REFORMING FUELS. |
PCT/ES2007/000214 WO2007141350A1 (en) | 2006-06-01 | 2007-04-12 | Procedure and reactor for the reformation of fuels |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES200601466A ES2299350B1 (en) | 2006-06-01 | 2006-06-01 | PROCEDURE AND REACTOR FOR REFORMING FUELS. |
Publications (2)
Publication Number | Publication Date |
---|---|
ES2299350A1 true ES2299350A1 (en) | 2008-05-16 |
ES2299350B1 ES2299350B1 (en) | 2009-04-01 |
Family
ID=38801081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES200601466A Expired - Fee Related ES2299350B1 (en) | 2006-06-01 | 2006-06-01 | PROCEDURE AND REACTOR FOR REFORMING FUELS. |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2299350B1 (en) |
WO (1) | WO2007141350A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111111581B (en) * | 2019-12-19 | 2021-07-02 | 中国科学院电工研究所 | Plasma fuel reforming device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030030374A1 (en) * | 2001-08-03 | 2003-02-13 | Deepak Pai | Dielectric barrier discharge plasma reactor cell |
WO2003051767A2 (en) * | 2001-12-18 | 2003-06-26 | Siemens Aktiengesellschaft | Method and device for converting a fuel |
US20040091418A1 (en) * | 2001-03-21 | 2004-05-13 | Carlow John Sydney | Production of hydrogen |
JP2004359508A (en) * | 2003-06-05 | 2004-12-24 | Nissan Motor Co Ltd | Hydrogen producing apparatus |
-
2006
- 2006-06-01 ES ES200601466A patent/ES2299350B1/en not_active Expired - Fee Related
-
2007
- 2007-04-12 WO PCT/ES2007/000214 patent/WO2007141350A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040091418A1 (en) * | 2001-03-21 | 2004-05-13 | Carlow John Sydney | Production of hydrogen |
US20030030374A1 (en) * | 2001-08-03 | 2003-02-13 | Deepak Pai | Dielectric barrier discharge plasma reactor cell |
WO2003051767A2 (en) * | 2001-12-18 | 2003-06-26 | Siemens Aktiengesellschaft | Method and device for converting a fuel |
JP2004359508A (en) * | 2003-06-05 | 2004-12-24 | Nissan Motor Co Ltd | Hydrogen producing apparatus |
Also Published As
Publication number | Publication date |
---|---|
WO2007141350A1 (en) | 2007-12-13 |
ES2299350B1 (en) | 2009-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Plasma-assisted CO2 conversion in a gliding arc discharge: Improving performance by optimizing the reactor design | |
Xin et al. | Characteristics of hydrogen produced by pulsed discharge in ethanol solution | |
Sarmiento et al. | Hydrogen production by reforming of hydrocarbons and alcohols in a dielectric barrier discharge | |
Bo et al. | Plasma assisted dry methane reforming using gliding arc gas discharge: effect of feed gases proportion | |
Yuan et al. | Ozone production in parallel multichannel dielectric barrier discharge from oxygen and air: the influence of gas pressure | |
Duan et al. | Effect of dielectric packing materials on the decomposition of carbon dioxide using DBD microplasma reactor | |
Gutsol et al. | Plasma assisted dissociation of hydrogen sulfide | |
Burlica et al. | Hydrogen generation by pulsed gliding arc discharge plasma with sprays of alcohol solutions | |
Chun et al. | Hydrogen generation from biogas reforming using a gliding arc plasma-catalyst reformer | |
Chen et al. | Hydrogen production from alcohols and ethers via cold plasma: A review | |
Liu et al. | Renewable and high-concentration syngas production from oxidative reforming of simulated biogas with low energy cost in a plasma shade | |
US7744728B2 (en) | Apparatus for and method of producing hydrogen using microwaves | |
US10240815B2 (en) | Efficient dissociation of water vapor in arrays of microchannel plasma devices | |
Kheirollahivash et al. | Hydrogen production from methane decomposition using a mobile and elongating arc plasma reactor | |
Montoro-Damas et al. | Plasma reforming of methane in a tunable ferroelectric packed-bed dielectric barrier discharge reactor | |
Lu et al. | Dry reforming of CH4CO2 in AC rotating gliding arc discharge: Effect of electrode structure and gas parameters | |
Hu et al. | Hydrogen generation from hydro-ethanol reforming by DBD-plasma | |
US7070634B1 (en) | Plasma reformer for hydrogen production from water and fuel | |
Li et al. | Hydrogen production from partial oxidation of methane using an AC rotating gliding arc reactor | |
CN109911850B (en) | Methane reforming device and methane reforming method | |
KR20120134420A (en) | Apparatus and methods for producing hydrocarbons from carbon dioxide | |
Czylkowski et al. | Hydrogen production by direct injection of ethanol microdroplets into nitrogen microwave plasma flame | |
US11053122B2 (en) | Continuous combustion production equipment for synthesizing ton-grade fullerenes and a synthetic process therefor | |
Luche et al. | Syngas production from methane oxidation using a non-thermal plasma: Experiments and kinetic modeling | |
Younas et al. | Hydrogen production through water vapors using optimized corona-DBD hybrid plasma micro-reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EC2A | Search report published |
Date of ref document: 20080516 Kind code of ref document: A1 |
|
FG2A | Definitive protection |
Ref document number: 2299350B1 Country of ref document: ES |
|
PC2A | Transfer of patent |
Owner name: ABENGOA HIDROGENO, S.A. Effective date: 20120904 |
|
FD2A | Announcement of lapse in spain |
Effective date: 20211118 |