ES2296521A1 - Clay monoliths for the treatment of contaminant gaseous effluents - Google Patents

Clay monoliths for the treatment of contaminant gaseous effluents Download PDF

Info

Publication number
ES2296521A1
ES2296521A1 ES200601272A ES200601272A ES2296521A1 ES 2296521 A1 ES2296521 A1 ES 2296521A1 ES 200601272 A ES200601272 A ES 200601272A ES 200601272 A ES200601272 A ES 200601272A ES 2296521 A1 ES2296521 A1 ES 2296521A1
Authority
ES
Spain
Prior art keywords
monoliths
clay
treatment
clays
effluents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
ES200601272A
Other languages
Spanish (es)
Other versions
ES2296521B1 (en
Inventor
Tarik Chafik
Jose Manuel Gatica Casas
Hilario Vidal Muñoz
Gustavo Aurelio Cifredo Chacon
Sanae Harti
Hicham Zaitan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad de Cadiz
Original Assignee
Universidad de Cadiz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad de Cadiz filed Critical Universidad de Cadiz
Priority to ES200601272A priority Critical patent/ES2296521B1/en
Priority to PCT/ES2007/000292 priority patent/WO2007135212A1/en
Publication of ES2296521A1 publication Critical patent/ES2296521A1/en
Application granted granted Critical
Publication of ES2296521B1 publication Critical patent/ES2296521B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • B01J35/56
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/11Clays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/34Specific shapes
    • B01D2253/342Monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Structural Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The clays wherefrom said monoliths are formed are of useful environmental application because of their coincident abundance, low cost, extrudability and ability to adsorb volatile organic compounds. The present invention has the objective of increasing the value of an abundant economic natural resource in the north of Morocco, which to date has solely been used for the manufacture of traditional pottery objects, through its use in environmental protection technologies. The Moroccan clays studied may be employed in controlling contaminant emissions into the atmosphere from various types of industry, both in the form of powder and of monoliths having a honeycomb structure. This design having recognised advantages may be achieved with said materials without the need for additives other than water and thus without making the process of preparation expensive.

Description

Monolitos de arcilla para el tratamiento de efluentes gaseosos contaminantes.Clay monoliths for the treatment of gaseous pollutant effluents.

Dominio de la técnicaMastery of the technique

La invención es de aplicación en el desarrollo comercial de filtros, tanto en forma de tamices como monolíticos, constituidos por arcillas como tecnología de protección medioambiental, fundamentalmente en el tratamiento de efluentes gaseosos contaminados.The invention is applicable in development commercial filters, both in the form of sieves and monolithic, constituted by clays as protection technology environmental, mainly in the treatment of effluents contaminated soda

Estado anterior de la técnicaPrior state of the art

Es bien conocido que las arcillas naturales son minerales constituidos por partículas cristalinas pequeñas cuya estructura consiste en capas de tetraedros formados por iones silicio coordinados con cuatro oxígenos, alternadas con otras capas en las que iones aluminio o magnesio están coordinados octaédricamente con seis oxígenos o grupos hidroxilo. Durante el proceso de formación de una arcilla el aluminio puede reemplazar al silicio en las capas de tetraedros, mientras que hierro, magnesio, manganeso y otros cationes de tamaño similar pueden sustituir al aluminio en las capas octaédricas (ver, por ejemplo, Grim, R.E. en Clay Mineralogy, Mc Graw Hill, New York, 1968). Estos aluminosilicatos son muy abundantes en la naturaleza al ser el resultado de los múltiples procesos de envejecimiento, en su mayoría con participación del agua, que sufren los constituyentes primigenios del suelo (ver, por ejemplo, Sposito, G. en The Chemistry of Soils, Oxford University Press, New York, 1989). Su abundancia asociada a un coste relativamente bajo y a sus interesantes propiedades físico-químicas justifican su uso tradicional en cerámica, papel, pinturas, plásticos, como soporte químico, en membranas de intercambio iónico, en decoloración de fluidos, etc., e incluso, de manera más reciente, en otras aplicaciones más avanzadas como la catálisis (ver, por ejemplo, Ciullo, P.A. en Industrial Minerals and their uses: a handbook and formulary; William Andrew Inc., New Jersey, 1996). A pesar de todo este bagaje de experiencia y conocimiento en torno a las arcillas, todavía se anuncian mejoras en las técnicas que se emplean para su extracción y procesado (ver, por ejemplo, Murray, H. en Applied Clay Science; vol. 17, pág. 207-221, 2000).It is well known that natural clays are minerals consisting of small crystalline particles whose structure consists of layers of tetrahedra formed by ions silicon coordinated with four oxygen, alternated with other layers in which aluminum or magnesium ions are coordinated octahedrally with six oxygens or hydroxyl groups. During the process of forming a clay the aluminum can replace the silicon in the layers of tetrahedra, while iron, magnesium, manganese and other cations of similar size may replace the aluminum in the octahedral layers (see, for example, Grim, R.E. in Clay Mineralogy, Mc Graw Hill, New York, 1968). These aluminosilicates are very abundant in nature to be the result of multiple aging processes, mostly with the participation of water, which the constituents suffer soil primitives (see, for example, Sposito, G. in The Chemistry of Soils, Oxford University Press, New York, 1989). its abundance associated with a relatively low cost and its interesting physicochemical properties justify its traditional use in ceramics, paper, paints, plastics, as chemical support, in ion exchange membranes, in fluid discoloration, etc., and even more recently, in other more advanced applications such as catalysis (see, for example, Ciullo, P.A. in Industrial Minerals and their uses: a handbook and formulary; William Andrew Inc., New Jersey, 1996). TO in spite of all this background of experience and knowledge around the clays are still announced improvements in the techniques that are used for extraction and processing (see, for example, Murray, H. in Applied Clay Science; vol. 17, p. 207-221, 2000).

El norte de Marruecos es una zona geográfica en la que abundan los minerales de naturaleza arcillosa, lo que representa un potencial enorme para el desarrollo de la economía local. Sin embargo, es de destacar que hasta el presente estas arcillas sólo están siendo utilizadas como materia prima para la fabricación de objetos de cerámica tradicional, de escaso valor en el mercado y nulo interés tecnológico.The north of Morocco is a geographical area in the abundant minerals of clay nature, which It represents a huge potential for the development of the economy local. However, it is noteworthy that until now you are clays are only being used as raw material for manufacture of traditional ceramic objects, of low value in the market and zero technological interest.

Esta situación contrasta con la existencia en la zona o en sus alrededores de diferentes industrias que emiten al aire diversos contaminantes, entre ellos Compuestos Orgánicos Volátiles (COVs), sustancias de procedencia muy variada y reconocida toxicidad y que, por ello, han sido seleccionadas en este estudio para chequear el rendimiento del material elaborado a escala de laboratorio. La emisión de COVs a partir de industrias químicas y petroquímicas se ha convertido desde hace años, no sólo en Marruecos sino a nivel mundial, en una de las formas más preocupantes de contaminación atmosférica debido a los múltiples efectos nocivos que provocan tanto en los seres humanos como en el medio ambiente (ver, por ejemplo, Heck, R.M. et al. en Catalytic air pollution control: Commercial technology; pág. 281-305; John Wiley, New York, 2002). En muchos casos, estas emisiones proceden de procesos industriales que utilizan disolventes, polímeros y resinas tales como los implicados en operaciones de pintura y recubrimiento (ver, por ejemplo, Kiely, G. en Environmental Engineering, McGraw Hill, Berkshire, UK, 1997). Entre las muy diversas tecnologías desarrolladas para eliminar COVs en aire contaminado, la adsorción es quizás una de las más utilizadas (ver, por ejemplo, Hocking, M.B. en Handbook of chemical technology and pollution control; Academia Press, San Diego, 1998; y Khan, F.I. y Ghoshal, A.K. en Journal of Loss prevention in the Process Industries, vol. 13, pág.
527-545, 2000).
This situation contrasts with the existence in the area or in its surroundings of different industries that emit various pollutants into the air, among them Volatile Organic Compounds (VOCs), substances of very varied origin and recognized toxicity and that, therefore, have been selected in this study to check the performance of the material elaborated on a laboratory scale. The emission of VOCs from chemical and petrochemical industries has become for years, not only in Morocco but worldwide, in one of the most worrisome forms of air pollution due to the multiple harmful effects they cause both in humans as in the environment (see, for example, Heck, RM et al . in Catalytic air pollution control: Commercial technology; p. 281-305; John Wiley, New York, 2002). In many cases, these emissions come from industrial processes that use solvents, polymers and resins such as those involved in painting and coating operations (see, for example, Kiely, G. in Environmental Engineering, McGraw Hill, Berkshire, UK, 1997) . Among the very diverse technologies developed to eliminate VOCs in polluted air, adsorption is perhaps one of the most used (see, for example, Hocking, MB in Handbook of chemical technology and pollution control; Academia Press, San Diego, 1998; and Khan , FI and Ghoshal, AK in Journal of Loss prevention in the Process Industries, vol. 13, p.
527-545, 2000).

En este sentido, se han probado con éxito muchos materiales diversos tales como carbones activos, zeolitas, alúminas, sílices e incluso polímeros (ver, por ejemplo, Ruthven, D.M. en Principles of adsorption processes; John Wiley, New York, 1984; Gélin et al. en Microporous Materials; vol. 4, pág. 283-290, 1995; Takeuchi et al. en Separations Technology; vol. 5, pág. 23-24, 1995; Carsten et al. en Microporous and Mesoporous Materials; vol. 35, pág. 349-365, 2000; y Marsh, H. en Activated carbon compendium; Elsevier, Amsterdam, 2001). Sin embargo, aún hay un continuo esfuerzo por encontrar adsorbentes que asocien eficiencia con bajo coste, como lo demuestran nuestras propias investigaciones recientes en las que hemos comparado el rendimiento de tierras de diatomeas con el de sílice comercial (ver, por ejemplo, Zaitan, H. y Chafik, T. en Comptes Rendus Chimie; vol. 8, pág. 1701-1709, 2005), o estudiado las posibilidades como adsorbentes de COVs tanto de monolitos a base de carbón natural activados tras la extrusión (ver, por ejemplo, Gatica, J.M. et al. en Comptes Rendus Chimie; en prensa) como de diversos minerales arcillosos procedentes de Marruecos en forma de polvo (ver, por ejemplo, Harti, S. et al. en Applied Clay Science; enviado).In this sense, many diverse materials such as active carbons, zeolites, aluminas, silicas and even polymers have been successfully tested (see, for example, Ruthven, DM in Principles of adsorption processes; John Wiley, New York, 1984; Gélin et al . in Microporous Materials; vol. 4, p. 283-290, 1995; Takeuchi et al . in Separations Technology; vol. 5, p. 23-24, 1995; Carsten et al . in Microporous and Mesoporous Materials; vol. 35, pp. 349-365, 2000; and Marsh, H. in Activated carbon compendium; Elsevier, Amsterdam, 2001). However, there is still a continuous effort to find adsorbents that associate efficiency with low cost, as evidenced by our own recent research in which we have compared the yield of diatomaceous earths with that of commercial silica (see, for example, Zaitan, H and Chafik, T. in Comptes Rendus Chimie; vol. 8, p. 1701-1709, 2005), or studied the possibilities as adsorbents of VOCs of both natural carbon-based monoliths activated after extrusion (see, for example, Gatica, JM et al . In Comptes Rendus Chimie; in press) as various clay minerals from Morocco in powder form (see, for example, Harti, S. et al . In Applied Clay Science; sent).

En relación con el diseño de estos adsorbentes, frente a los más convencionales como los basados en lechos de partículas, las estructuras monolíticas en forma de panal de abeja ofrecen probadas ventajas tales como baja caída de presión en caudales gaseosos con alta velocidad espacial, así como menores requerimientos de peso y espacio, lo que las vuelve especialmente atractivas en aplicaciones medioambientales (ver, por ejemplo, Heck, R.M. en Catalytic air pollution control: Commercial technology; pág. 11-24, John Wiley, New York, 2002). Sin embargo, para que una pasta sea extruible debe poseer unas propiedades reológicas muy específicas que le permitan ser conformada con una estructura rígida como la de un monolito (ver, por ejemplo, Avila, P. et al. en Chemical Engineering Journal, vol. 109, pág. 11-36, 2005). Esto hace que el proceso de extrusión sea a menudo tedioso y requiera un gran número de ensayos empleando diversos aditivos que mejoren la plasticidad (ver, por ejemplo Gatica, J.M. et al. en Carbon; vol. 42, pag. 3251-3254, 2004; y Mohino, F. et al. en Applied Clay Science; vol. 29, pag. 125-136, 2005). En este sentido, la utilización de diferentes aditivos que aportan propiedades aglomerantes, plastificantes, lubricantes y dispersantes a los materiales de base (ver, por ejemplo, Gatica, J.M. et al. en Carbon; vol. 42, pág. 3251-3254) comporta un evidente coste económico tanto por su uso como por el tratamiento térmico posterior que debe realizarse para su eliminación y la necesaria reactivación de la capacidad de adsorción. Además puede inducir efectos negativos en las propiedades químico-estructurales del material de base tanto por la interacción directa como por el posterior tratamiento indicado (ver, por ejemplo, Velde, B. en Origin and Mineralogy of Clays: Clays and Environment; Springer, Berlin, 1995).In relation to the design of these adsorbents, compared to the more conventional ones such as those based on particle beds, monolithic structures in the form of honeycomb offer proven advantages such as low pressure drop in gaseous flows with high spatial velocity, as well as lower weight and space requirements, which makes them especially attractive in environmental applications (see, for example, Heck, RM in Catalytic air pollution control: Commercial technology; p. 11-24, John Wiley, New York, 2002). However, for a paste to be extrudable, it must have very specific rheological properties that allow it to be shaped with a rigid structure such as that of a monolith (see, for example, Avila, P. et al . In Chemical Engineering Journal, vol. 109, p. 11-36, 2005). This makes the extrusion process often tedious and requires a large number of tests using various additives that improve plasticity (see, for example, Gatica, JM et al . In Carbon; vol. 42, page 3251-3254, 2004 ; and Mohino, F. et al . in Applied Clay Science; vol. 29, p. 125-136, 2005). In this sense, the use of different additives that provide binder, plasticizer, lubricant and dispersant properties to the base materials (see, for example, Gatica, JM et al . In Carbon; vol. 42, p. 3251-3254) entails an obvious economic cost both for its use and for the subsequent heat treatment that must be carried out for its elimination and the necessary reactivation of the adsorption capacity. It can also induce negative effects on the chemical-structural properties of the base material both by direct interaction and by the subsequent treatment indicated (see, for example, Velde, B. in Origin and Mineralogy of Clays: Clays and Environment; Springer, Berlin , nineteen ninety five).

Con los antecedentes expuestos, es evidente que seria muy interesante conseguir que un material abundante y barato como lo son las arcillas naturales que abundan en el norte de Marruecos pudieran también utilizarse como adsorbente de compuestos orgánicos volátiles, sin prejuicio de que esta aplicación pudiera extrapolarse a la depuración de otros contaminantes que habitualmente están presentes en los efluentes gaseosos generados por cualquier tipo de actividad humana. Esto daría un valor añadido al producto ya existente a la vez que aportaría un nuevo material competitivo frente a los que ya se vienen empleando en aplicaciones de descontaminación ambiental. Asimismo, sería de gran interés conseguir que a partir de estas arcillas se pudieran obtener filtros o soportes monolíticos y, aún más si cabe, que la metodología de fabricación no implicase el uso de aditivos para facilitar el proceso de extrusión.With the background exposed, it is clear that it would be very interesting to get an abundant and cheap material as are the natural clays that abound in the north of Morocco could also be used as an adsorbent of compounds volatile organic, without prejudice that this application could extrapolate to the clearance of other contaminants that they are usually present in the gaseous effluents generated for any type of human activity. This would give added value. to the existing product while contributing a new material competitive compared to those already used in applications of environmental decontamination. It would also be of great interest get that from these clays filters could be obtained or monolithic supports and, even more so, that the methodology of manufacturing does not involve the use of additives to facilitate the extrusion process

Explicación de la invenciónExplanation of the invention.

Se proponen dos arcillas procedentes específicamente de depósitos localizados en el área de Tetuán, aunque son muy abundantes en todo el norte de Marruecos. La arcilla denominada FERA contiene diversos minerales de acuerdo con el análisis de difracción de rayos X: cuarzo, moscovita, vermiculita, caolinita y albita. Por su parte, el análisis de la otra arcilla, denominada TEFA, indica que está compuesta de cuarzo, calcita, moscovita y clinocloro. Desde el punto de vista elemental, el análisis químico mediante Espectroscopia de Energía Dispersiva (EDS) revela que la composición media de las arcillas (% en peso) es, en el caso de la arcilla FERA, 0 (39,3%), Si (23,4%), Fe (16,3%), Al (13,2%), K (5,3%), Mg (0,8%), Ca (0,6%), C (0,4%), Ti (0,4%) y Na (0,3%); y en el caso de la arcilla TEFA: 0 (44,4%), Si (21,3%), Al (9,2%), Fe (8,9%), Ca (5,8%), C (5,1%), K (2,8%), Mg (1,9%), Ti (0,2%), Cl (0,2%) y S (0,2%).Two clays are proposed specifically from deposits located in the Tetouan area, although they are very abundant in all the north of Morocco. Clay called FERA contains various minerals according to the X-ray diffraction analysis: quartz, muscovite, vermiculite, kaolinite and albite. For its part, the analysis of the other clay, called TEFA, it indicates that it is composed of quartz, calcite, Muscovite and Clinochlor. From the elementary point of view, the Chemical analysis using Dispersive Energy Spectroscopy (EDS) reveals that the average clay composition (% by weight) is, in the case of clay FERA, 0 (39.3%), Si (23.4%), Fe (16.3%), Al (13.2%), K (5.3%), Mg (0.8%), Ca (0.6%), C (0.4%), Ti (0.4%) and Na (0.3%); and in the case of TEFA clay: 0 (44.4%), Si (21.3%), Al (9.2%), Fe (8.9%), Ca (5.8%), C (5.1%), K (2.8%), Mg (1.9%), Ti (0.2%), Cl (0.2%) and S (0.2%).

Antes de cualquier uso, las arcillas en forma de polvo han sido molidas y tamizadas a un tamaño medio de grano de 180 micras.Before any use, clays in the form of powder have been ground and sieved to an average grain size of 180 microns

Para probar su potencial de aplicación en el tratamiento de efluentes gaseosos contaminados se ha estudiado su capacidad de adsorción de compuestos orgánicos volátiles y, en particular, se ha elegido o-xileno como modelo por ser uno de los más habituales en las emisiones de muchas industrias de la zona. Los ensayos se han realizado en condiciones dinámicas a presión atmosférica en un dispositivo instrumental ya descrito en la bibliografía (ver, por ejemplo, Zaitan, H. y Chafik, T. en Comptes Rendus Chimie; vol. 8, pág. 1701-1709). Se ha utilizado nitrógeno como gas portador de vapores de o-xileno, preparando una mezcla que contiene 3600 ppm de contaminante mediante un saturador asociado a un condensador que está inmerso en un baño termostático para mantener la temperatura a 10\pm0,5ºC. El flujo total de la mezcla durante los ensayos fue de 100 cm^{3} min^{-1}. Los tests de adsorción se han llevado a cabo a 27ºC en un reactor de cuarzo con 1 gramo de la arcilla, que previamente se ha sometido a un tratamiento in situ en flujo de 100 cm^{3} min^{-1} de N_{2} a 210ºC durante 30 minutos para limpiar su superficie de especies previamente adsorbidas. Una vez que se alcanza la saturación de la muestra, se hace pasar por ella un flujo de N_{2} puro (100 cm^{3} min^{-1}) para inducir la desorción térmica a 27ºC hasta que la concentración de o-xileno a la salida del reactor se haga cero. A continuación se realiza un experimento de Desorción Térmica Programada (DTP) usando una velocidad de calentamiento de la muestra de 5ºC min^{-1}. La composición de la mezcla gaseosa a la salida del reactor se ha monitorizado mediante un espectrofotómetro FTIR (modelo Jasco 410) registrando espectros infrarrojos con una resolución de análisis de 4 cm^{-1}, usando para ello una celda construida en vidrio Pirex con ventanas de CaF_{2} e integrando las bandas FTIR características de o-xileno en la región comprendida entre 2600 y 3200 cm^{-1}. El análisis cuantitativo de estas bandas se ha llevado a cabo en base a un calibrado previo realizado con mezclas de concentración de o-xileno conocida.In order to test its application potential in the treatment of contaminated gaseous effluents, its ability to adsorb volatile organic compounds has been studied and, in particular, o-xylene has been chosen as a model because it is one of the most common emissions in many industries from the area The tests have been carried out under dynamic conditions at atmospheric pressure in an instrumental device already described in the literature (see, for example, Zaitan, H. and Chafik, T. in Comptes Rendus Chimie; vol. 8, p. 1701-1709) . Nitrogen has been used as a carrier gas for o-xylene vapors, preparing a mixture containing 3600 ppm of contaminant by means of a saturator associated with a condenser that is immersed in a thermostatic bath to maintain the temperature at 10 ± 0.5 ° C. The total flow of the mixture during the tests was 100 cm 3 min -1. The adsorption tests have been carried out at 27 ° C in a quartz reactor with 1 gram of the clay, which has previously undergone an in situ flow treatment of 100 cm 3 min -1 of N_ {2} at 210 ° C for 30 minutes to clean its surface of previously adsorbed species. Once the sample saturation is reached, a flow of pure N2 (100 cm3 min -1) is passed through to induce thermal desorption at 27 ° C until the concentration of o-xylene at the outlet of the reactor becomes zero. A Programmed Thermal Desorption (DTP) experiment is then performed using a sample heating rate of 5 ° C min -1. The composition of the gas mixture at the outlet of the reactor has been monitored by an FTIR spectrophotometer (Jasco 410 model) recording infrared spectra with an analysis resolution of 4 cm -1, using a cell built in Pirex glass with CaF 2 windows and integrating the FTIR bands characteristic of o-xylene in the region between 2600 and 3200 cm -1. The quantitative analysis of these bands has been carried out based on a previous calibration performed with mixtures of known o-xylene concentration.

Siguiendo el tratamiento numérico de datos descrito en la bibliografía (ver, por ejemplo, Gatica, J.M. et al. en Comptes Rendus Chimie, en prensa) se ha comprobado que, en las condiciones experimentales indicadas, las arcillas FERA y TEFA tienen una capacidad de adsorción total de o-xileno a 27ºC de 157 y 156 \mumol g^{-1} respectivamente. Estas cantidades, aunque inferiores a las de otros adsorbentes en el mercado, son comparables a las de otros materiales estudiados en la bibliografía (ver por ejemplo, Zaitan, H. y Chafik, T. en Comptes Rendus Chimie; vol. 8, pág. 1701-1709, 2005) y pueden considerarse aceptables si se tiene en cuenta que no se ha realizado ningún esfuerzo por mejorar la textura de las arcillas, que según nuestros estudios previos demostró corresponder en ambos casos a la de un material no microporoso con una superficie en torno a los 40 m^{2} g^{-1}. Además, se ha observado que la mayor parte de la cantidad adsorbida (81% en el caso de FERA y 74% en el de TEFA) corresponde a un tipo de adsorción reversible (eliminable a temperatura ambiente) y que ambas arcillas pueden regenerarse completamente a baja temperatura (65ºC y 100ºC respectivamente) lo que añade un mayor atractivo a los resultados obtenidos. No debe perderse de vista que las arcillas estudiadas son muy económicas si se comparan con otros materiales. Su precio estimado es de 30 euros por tonelada (excluidos los costes de transporte) lo que, unido a los resultados comentados, las convierte en un potencial adsorbente muy competitivo.Following the numerical data treatment described in the literature (see, for example, Gatica, JM et al . In Comptes Rendus Chimie, in press) it has been found that, under the indicated experimental conditions, the FERA and TEFA clays have a capacity to total adsorption of o-xylene at 27 ° C of 157 and 156 µg g -1, respectively. These quantities, although lower than those of other adsorbents in the market, are comparable to those of other materials studied in the literature (see for example, Zaitan, H. and Chafik, T. in Comptes Rendus Chimie; vol. 8, p. 1701-1709, 2005) and can be considered acceptable if one takes into account that no effort has been made to improve the texture of the clays, which according to our previous studies proved to correspond in both cases to that of a non-microporous material with a surface around 40 m 2 g -1. Furthermore, it has been observed that most of the adsorbed amount (81% in the case of FERA and 74% in the case of TEFA) corresponds to a reversible adsorption type (removable at room temperature) and that both clays can be completely regenerated at low temperature (65ºC and 100ºC respectively) which adds more attractiveness to the results obtained. It should not be forgotten that the clays studied are very economical when compared to other materials. Its estimated price is 30 euros per ton (excluding transport costs) which, together with the results mentioned, makes them a very competitive adsorbent potential.

Adicionalmente se ha estudiado la posibilidad de extrusión de las dos arcillas en forma de monolitos de tipo panal de abeja siguiendo la metodología previamente descrita en la bibliografía (ver, por ejemplo, Gatica, J.M. et al. en Carbon; vol. 42, pág. 3251-3254, 2004). El resultado de este estudio ha demostrado que ambas arcillas cumplen con los requisitos necesarios para ser extruidas al poseer un límite líquido (LL) y un índice de plasticidad (IP) adecuado: LL = 49,2% y IP = 28,8% en el caso de la arcilla denominada FERA, y LL = 51,2% y IP = 28,8% en el caso de TEFA.Additionally, the possibility of extrusion of the two clays in the form of honeycomb monoliths has been studied following the methodology previously described in the literature (see, for example, Gatica, JM et al . In Carbon; vol. 42, p. 3251-3254, 2004). The result of this study has shown that both clays meet the necessary requirements to be extruded by having a liquid limit (LL) and an adequate plasticity index (IP): LL = 49.2% and IP = 28.8% in the case of clay called FERA, and LL = 51.2% and IP = 28.8% in the case of TEFA.

Las predicciones han sido confirmadas al conseguir la extrusión en una máquina extrusora capaz de conformar monolitos de sección cuadrada en forma de panal de abeja con una densidad de 4 celdas cm^{-2}, en configuraciones de 2x2 y 4x4, y con un espesor de pared de 1,3 mm. Para preparar la pasta a extruir no se han precisado más aditivos que agua, añadida en cantidades de 0,325 ml y 0,4 ml por gramo empleado de arcilla FERA y TEFA, respectivamente. Tras obtener los monolitos, éstos se secaron en estufa a 90ºC durante una noche, obteniendo muestras como las de la Figura 1.The predictions have been confirmed at achieve extrusion in an extruder machine capable of shaping Honeycomb square section monoliths with a density of 4 cm-2 cells, in 2x2 and 4x4 configurations, and with a wall thickness of 1.3 mm. To prepare the paste to extrude no more additives than water have been required, added in amounts of 0.325 ml and 0.4 ml per gram used of FERA and TEFA clay, respectively. After obtaining the monoliths, they were dried in stove at 90 ° C overnight, obtaining samples such as those from the Figure 1.

La resistencia mecánica de los monolitos se ha determinado mediante ensayos de compresión realizados en una Máquina Universal de Ensayos Mecánicos Shimadzu AG-IS capaz de trabajar a una presión máxima de 100 kN. Este estudio ha revelado que los monolitos de la arcilla FERA y TEFA resisten presiones ejercidas en el sentido de los canales (longitudinal) de 2,53 MPa y 1,62 MPa respectivamente.The mechanical resistance of the monoliths has determined by compression tests performed on a Universal Shimadzu Mechanical Testing Machine AG-IS capable of working at a maximum pressure of 100 kN. This study has revealed that FERA clay monoliths and TEFA resist pressures exerted in the direction of the channels (longitudinal) of 2.53 MPa and 1.62 MPa respectively.

Claims (5)

1. Monolitos de arcilla para el tratamiento de efluentes gaseosos contaminantes, caracterizados por estar construidos mediante arcillas naturales procedentes del norte de Marruecos, cuya composición estructural contiene minerales como cuarzo, moscovita, vermiculita, caolinita, albita, calcita y clinocloro, con una composición química de 39-45% de 0, 21-23% de Si, 9-13% de Al, 9-16% de Fe y un contenido menor de metales alcalinos y alcalinotérreos y otros elementos.1. Clay monoliths for the treatment of polluting gaseous effluents, characterized by being constructed by natural clays from northern Morocco, whose structural composition contains minerals such as quartz, muscovite, vermiculite, kaolinite, albite, calcite and clinochlor, with a chemical composition of 39-45% of 0, 21-23% of Si, 9-13% of Al, 9-16% of Fe and a lower content of alkali and alkaline earth metals and other elements. 2. Monolitos de arcilla para el tratamiento de efluentes gaseosos contaminantes, según reivindicación 1, caracterizados por ser extruídos sin necesidad de aditivos aparte de agua.2. Clay monoliths for the treatment of gaseous pollutant effluents, according to claim 1, characterized by being extruded without the need for additives other than water. 3. Monolitos de arcilla para el tratamiento de efluentes gaseosos contaminantes, según reivindicaciones 1 y 2, caracterizados por su forma de panal de abeja.3. Clay monoliths for the treatment of gaseous pollutant effluents, according to claims 1 and 2, characterized by their honeycomb shape. 4. Uso de los monolitos de arcilla para el tratamiento de efluentes gaseosos contaminantes, según reivindicaciones 1 a 3 como filtros de adsorción de o-xileno y compuestos volátiles similares, regenerables a baja temperatura.4. Use of clay monoliths for treatment of polluting gaseous effluents, according to claims 1 to 3 as adsorption filters of o-xylene and similar volatile compounds, regenerable at low temperature. 5. Uso de los monolitos de arcilla para el tratamiento de efluentes gaseosos contaminantes, según reivindicaciones 1 a 4, como soporte de fases activas para catálisis medioambiental.5. Use of clay monoliths for treatment of polluting gaseous effluents, according to claims 1 to 4, as support for active phases for environmental catalysis
ES200601272A 2006-05-18 2006-05-18 CLAY MONOLITES FOR THE TREATMENT OF CONTAMINATING GASEOUS EFFLUENTS. Active ES2296521B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES200601272A ES2296521B1 (en) 2006-05-18 2006-05-18 CLAY MONOLITES FOR THE TREATMENT OF CONTAMINATING GASEOUS EFFLUENTS.
PCT/ES2007/000292 WO2007135212A1 (en) 2006-05-18 2007-05-18 Clay monoliths for the treatment of contaminant gaseous effluents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200601272A ES2296521B1 (en) 2006-05-18 2006-05-18 CLAY MONOLITES FOR THE TREATMENT OF CONTAMINATING GASEOUS EFFLUENTS.

Publications (2)

Publication Number Publication Date
ES2296521A1 true ES2296521A1 (en) 2008-04-16
ES2296521B1 ES2296521B1 (en) 2009-04-01

Family

ID=38722986

Family Applications (1)

Application Number Title Priority Date Filing Date
ES200601272A Active ES2296521B1 (en) 2006-05-18 2006-05-18 CLAY MONOLITES FOR THE TREATMENT OF CONTAMINATING GASEOUS EFFLUENTS.

Country Status (2)

Country Link
ES (1) ES2296521B1 (en)
WO (1) WO2007135212A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0716140A1 (en) * 1994-11-22 1996-06-12 Ceca S.A. Use of zeolitic agglomerates of clays of the kaolinitic group for drying gases containing traces of amines
US6908497B1 (en) * 2003-04-23 2005-06-21 The United States Of America As Represented By The Department Of Energy Solid sorbents for removal of carbon dioxide from gas streams at low temperatures

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPN012194A0 (en) * 1994-12-16 1995-01-19 University Of Queensland, The Alumino-silicate derivatives

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0716140A1 (en) * 1994-11-22 1996-06-12 Ceca S.A. Use of zeolitic agglomerates of clays of the kaolinitic group for drying gases containing traces of amines
US6908497B1 (en) * 2003-04-23 2005-06-21 The United States Of America As Represented By The Department Of Energy Solid sorbents for removal of carbon dioxide from gas streams at low temperatures

Also Published As

Publication number Publication date
ES2296521B1 (en) 2009-04-01
WO2007135212A1 (en) 2007-11-29

Similar Documents

Publication Publication Date Title
Lee et al. Adsorptive separation of xenon/krypton mixtures using a zirconium-based metal-organic framework with high hydrothermal and radioactive stabilities
Bandura et al. Synthetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup
Aivalioti et al. Adsorption of BTEX, MTBE and TAME on natural and modified diatomite
Zhang et al. Kinetics and equilibrium studies from the methylene blue adsorption on diatomite treated with sodium hydroxide
Daifullah et al. A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material
Paliulis Removal of formaldehyde from synthetic wastewater using natural and modified zeolites
WO2015158450A1 (en) Adsorptive filter unit having extended useful cycle times and/or an extended service life
Bessaha et al. Characterization and application of heat-treated and acid-leached halloysites in the removal of malachite green: adsorption, desorption, and regeneration studies
Durán et al. Optimizing a low added value bentonite as adsorbent material to remove pesticides from water
KR102216723B1 (en) Honeycomb type adsorbent composition for removing volatile organic compounds
Cruz et al. Physical adsorption of H2S related to the conservation of works of art: the role of the pore structure at low relative pressure
Bialczyk et al. Removal of cyanobacterial anatoxin-a from water by natural clay adsorbents
ES2296521B1 (en) CLAY MONOLITES FOR THE TREATMENT OF CONTAMINATING GASEOUS EFFLUENTS.
US11376539B2 (en) Multilayer film for air purification and method for manufacturing same
KR101718978B1 (en) Loess-carbon composite air purifing device
ES2278535B1 (en) ADSORBENTS WITH ENSTATITA IN ITS COMPOSITION FOR OPERATION OF UNITS IN DYNAMIC REGIME.
Mercury et al. Adsorption of 2, 3-DCDD on FAU and EMT-type zeolites: Influence of the nature and the content of charge compensating cations
Temirov et al. Texture and sorption characteristics of modified bentonite made by ash-gel and together equipment
Barzegar et al. Catalytic degradation of toluene on manganese oxide catalyst loaded on a natural zeolite support
Pongstabodee et al. CO2 capture performance of bi-functional activated bleaching earth modified with basic-alcoholic solution and functionalization with monoethanolamine: isotherms, kinetics and thermodynamics
Ghogomu et al. Adsorption of phenol from aqueous solutions onto natural and thermallymodified kaolinitic materials
Sabbar et al. Adsorption of Janus Green by Flint Clay from Aqueous Solution at Different Temperatures
KR200399986Y1 (en) Water purification filter media
JPH08141391A (en) Cross-linking body between clay layer and production thereof
Abbas et al. Mass transfer process in the removal of Congo Red (CR) onto Natural Clay (NC): Kinetic, isotherm modeling, and thermodynamic study

Legal Events

Date Code Title Description
EC2A Search report published

Date of ref document: 20080416

Kind code of ref document: A1

FG2A Definitive protection

Ref document number: 2296521B1

Country of ref document: ES