ES2294969A1 - Photovoltaic device for making use of solar energy - Google Patents

Photovoltaic device for making use of solar energy Download PDF

Info

Publication number
ES2294969A1
ES2294969A1 ES200702032A ES200702032A ES2294969A1 ES 2294969 A1 ES2294969 A1 ES 2294969A1 ES 200702032 A ES200702032 A ES 200702032A ES 200702032 A ES200702032 A ES 200702032A ES 2294969 A1 ES2294969 A1 ES 2294969A1
Authority
ES
Spain
Prior art keywords
fluid
plate
solar
layer
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
ES200702032A
Other languages
Spanish (es)
Other versions
ES2294969B1 (en
Inventor
Antonio Barroso Quiñones
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to ES200702032A priority Critical patent/ES2294969B1/en
Publication of ES2294969A1 publication Critical patent/ES2294969A1/en
Priority to ES200950006U priority patent/ES1072483Y/en
Priority to PCT/ES2008/000508 priority patent/WO2009013372A2/en
Application granted granted Critical
Publication of ES2294969B1 publication Critical patent/ES2294969B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • H01L31/0521Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • F24J2/50
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • H01L31/0522
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • H01L31/058
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The device has a photovoltaic solar cell which has an incidence surface for the sunlight. The device is comprised of an interposing unit between the light source to be used and the incidence surface of solar cell and a layer of liquid in movement, with a refractive index higher than that of air.

Description

Dispositivo para el aprovechamiento de la energía solar de tipo fotovoltaico.Device for the use of photovoltaic solar energy.

La presente invención hace referencia a dispositivos de aprovechamiento de la energía solar de tipo fotovoltaico.The present invention refers to solar energy utilization devices of type photovoltaic

Más en particular, la presente invención hace referencia a una nueva disposición que permite mejorar la eficacia y eficiencia de los dispositivos de tipo conocido.More in particular, the present invention makes reference to a new provision that improves efficiency and efficiency of devices of known type.

Los dispositivos fotovoltaicos comprenden, por regla general, una placa fotovoltaica con una superficie de recepción de radiación solar, en la que se dispone un conjunto de células fotovoltaicas que presentan una diferencia de potencial eléctrico en respuesta a la radiación solar recibida en la citada superficie. Por motivos de protección, es habitual disponer de un vidrio templado que cubre la citada superficie, de tal manera que queda un espacio entre la placa y el vidrio. Por otro lado, las placas aprovechan únicamente una parte limitada de la radiación, situada alrededor del espectro visible.Photovoltaic devices comprise, by general rule, a photovoltaic plate with an area of solar radiation reception, in which a set of photovoltaic cells that have a potential difference electric in response to solar radiation received in the aforementioned surface. For protection reasons, it is usual to have a tempered glass covering said surface, such that there is a space between the plate and the glass. On the other hand, the plates take advantage of only a limited part of the radiation, located around the visible spectrum.

Los dispositivos de este tipo presentan dos problemas principales:Devices of this type have two main problems:

- En primer lugar, las placas solares disminuyen su potencia de salida cuando aumenta la temperatura de la superficie. Como consecuencia, cuando la aportación energética es mayor, la temperatura también es máxima y la potencia disminuye.- First, solar panels decrease its output power when the temperature of the surface. As a consequence, when the energy contribution is higher, the temperature is also maximum and the power decreases

- En segundo lugar, en los paneles fijos, sólo se consigue un rendimiento aceptable cuando el sol se encuentra en un ángulo alrededor de la perpendicular de la placa o "tilt" de 40ºC. Esta limita las horas de aprovechamiento.- Second, on fixed panels, only Acceptable performance is achieved when the sun is at an angle around the perpendicular of the plate or "tilt" of 40 ° C This limits the hours of use.

El primer problema afecta al propio diseño de la placa solar, que debe ser diseñada atendiendo a las condiciones de temperatura máxima, sin atender a criterios de minimización de la superficie o aumento medio del rendimiento o potencia. Para solucionar dicho problema, resulta conocida la disposición de intercambiadores de calor a la cara de la placa opuesta a la superficie de recepción de radiación solar. Ejemplos de soluciones de este tipo se describen en los documentos DE 20 2006010460 U1 y KR 20040081816. Esta solución, sin embargo, no resulta suficiente, por cuanto los materiales en los que se realizan las placas son malos conductores térmicos y, por lo tanto, no se consigue una disminución de la temperatura que provoque un aumento de rendimiento que a su vez compense la complejidad del intercambiador que debe ser colocado en la parte posterior.The first problem affects the design of the solar panel, which must be designed according to the conditions of maximum temperature, without meeting criteria of minimization of the surface or average increase in performance or power. For to solve this problem, the provision of heat exchangers to the face of the plate opposite the solar radiation reception surface. Examples of solutions of this type are described in documents DE 20 2006010460 U1 and KR 20040081816. This solution, however, is not enough, because the materials in which the plates are made are bad thermal conductors and therefore a temperature decrease that causes a performance increase which in turn compensates for the complexity of the exchanger that must Be placed in the back.

En cuanto al segundo problema, resulta conocida la disposición de dispositivos de orientación de placas que hacen que las placas "sigan" el movimiento del sol a lo largo del día. Dichos dispositivos son complicados y, por ello, difícilmente utilizables en aplicaciones domésticas o pequeñas industriales. Además, los dispositivos de orientación consumen energía para orientar las placas.As for the second problem, it is known the arrangement of plate orientation devices that make that the plates "follow" the movement of the sun along the day. Such devices are complicated and, therefore, hardly Usable in domestic or small industrial applications. In addition, guidance devices consume energy to Orient the plates.

Es un objetivo de la presente invención dar a conocer un dispositivo de aprovechamiento solar de tipo fotovoltaico, del tipo que comprende una placa solar con una superficie de recepción de radiación solar, que se caracteriza porque el dispositivo presenta medios para interponer entre el origen de la radiación solar a aprovechar y la placa una capa de fluido en movimiento que cubre, al menos parcialmente, la citada superficie de recepción, presentando el citado fluido un índice de refracción superior al del aire. El movimiento del fluido podrá ser continuo, variable y/o intermitente.It is an objective of the present invention to give know a type solar harvesting device photovoltaic, of the type comprising a solar panel with a solar radiation reception surface, which is characterized because the device has means to interpose between the origin of solar radiation to take advantage of and the plate a layer of moving fluid that covers, at least partially, the aforementioned receiving surface, said fluid presenting an index of higher refraction than air. The movement of the fluid may be continuous, variable and / or intermittent.

Por último, pero no menos importante, la capa fluida, al presentar un índice de refracción superior al del aire, aumenta el ángulo solar o "tilt" para el que el aprovechamiento de la radiación solar es máximo. En efecto, según la Ley de Snell, cuando un rayo luminoso pasa de un medio (por ejemplo aire), con un índice de refracción n_{1} a un segundo medio de refracción n_{2} (por ejemplo agua), incidiendo con un determinado ángulo \theta_{1} con respecto a la perpendicular a la superficie de contacto entre ambos medios, éste varía su ángulo \theta_{2} con respecto a la citada perpendicular, acercándose a ésta, siempre que el índice de refracción n_{2} del segundo medio sea mayor que el índice de refracción n_{1} del primer medio, según la fórmula:Last but not least, the layer fluid, presenting a higher refractive index than air, increases the solar angle or "tilt" for which the use of solar radiation is maximum. Indeed, according to Snell's Law, when a light ray passes from a medium (for example air), with a refractive index n_ {1} to a second means of refraction n_ {2} (for example water), affecting a certain angle \ theta_ {1} with respect to the perpendicular to the surface of contact between both means, this varies its angle \ theta_ {2} with respect to the aforementioned perpendicular, approaching it, always the refractive index n_ {2} of the second medium is greater than the refractive index n_ {1} of the first medium, according to the formula:

n_{1} sin \theta_{1} = n_{2} sin \theta_{2}; n_{2} > n_{1}n_ {1} without \ theta_ {1} = n_ {2} without \ theta_ {2}; n_ {2}> n_ {1}

Si el tilt máximo de aprovechamiento solar de una placa de tipo conocido es \theta_{tilt1}, la disposición de una placa de fluido según la presente invención aumenta el ángulo de incidencia solar en lo que el aprovechamiento de la placa es óptimo, puesto que la capa de fluido aproxima la radiación a la perpendicular a la placa. Matemáticamente:If the maximum tilt of solar utilization of a plate of known type is \ theta_ {tilt1}, the arrangement of a fluid plate according to the present invention increases the angle of solar incidence in which the use of the plate is optimal, since the fluid layer approximates the radiation to the perpendicular to the plate. Mathematically:

\theta_{tilt2} = arc sin \left(\frac{n_{1}}{n_{2}} \ sin \ \theta_{tilt1}\right)\ theta_ {tilt2} = arc sin \ left (\ frac {n_ {1}} {n_ {2}} \ sin \ \ theta_ {tilt1} \ right)

de donde se deduce que \theta_{tilt2} > \theta_{tilt1} si n_{2} > n_{1}.from which it follows that \ theta_ {tilt2}> \ theta_ {tilt1} if n_ {2}> n_ {1}.

Dado que, en general, el índice de refracción es mayor cuando mayor es la densidad, el fluido de la capa fluida presentará, preferentemente, una densidad superior a la del aire.Since, in general, the index of refraction is The higher the density, the fluid in the fluid layer preferably have a density greater than that of air.

Por ello, el fluido será preferentemente un líquido. El aumento de la densidad, además, lleva asociado una mayor capacidad de extracción de calor procedente de la placa fotovoltaica por aumento de la capacidad calorífica del flujo de capa fluida.Therefore, the fluid will preferably be a liquid. The increase in density also has an associated increased heat extraction capacity from the plate photovoltaic by increasing the heat capacity of the flow of fluid layer

El dispositivo objeto de la presente invención presenta las siguientes ventajas:The device object of the present invention It has the following advantages:

- La capa fluida en movimiento refrigera la placa fotovoltaica precisamente por el lado que recibe la radiación solar, que es el que sufre un aumento mayor de temperatura. La refrigeración es, por lo tanto, más efectiva, especialmente si la capa fluida en movimiento está en contacto con la placa fotovoltaica.- The moving fluid layer cools the photovoltaic plate precisely on the side that receives the radiation solar, which is the one that suffers a greater increase in temperature. The refrigeration is therefore more effective, especially if the fluid layer in motion is in contact with the plate Photovoltaic

- El fluido de la capa fluida en movimiento puede elegirse con propiedades filtrantes para el aspecto infrarrojo. Al impedir la aplicación de radiación infrarroja sobre la superficie de recepción, se evita el aumento de temperatura de la placa sin disminuir el aprovechamiento fotovoltaico, por cuanto la placa solar no aprovecha el espectro infrarrojo.- The fluid in the fluid layer in motion can be chosen with filtering properties for appearance infrared. By preventing the application of infrared radiation on the receiving surface, the temperature rise of the plate without reducing the photovoltaic use, because The solar panel does not take advantage of the infrared spectrum.

Por ello el fluido de la capa fluida podrá comprender ventajosamente agua desionizada, que presenta excelentes propiedades de retención de las radiaciones ultravioletas, es transparente a la radiación visible y presenta altos valores de densidad y capacidad calorífica.Therefore the fluid in the fluid layer may advantageously comprise deionized water, which has excellent retention properties of ultraviolet radiation, is transparent to visible radiation and has high values of density and heat capacity.

Para obtener resultados ventajosos, además, no resulta necesario que la capa fluida sea excesivamente gruesa. Mediante capas finas se evita la eliminación de fotones durante el paso de la radiación por la capa fluida.For advantageous results, in addition, no it is necessary that the fluid layer is excessively thick. Using thin layers prevents the removal of photons during the radiation passing through the fluid layer.

Según los estudios realizados por el inventor, un espesor de 2 mm de agua desionizada podría ser suficientemente operativo.According to studies done by the inventor, a thickness of 2 mm deionized water could be sufficiently operational

La presente invención presenta, además, la ventaja de un aplicable a placas ya existentes, colocando un dispositivo que genera una capa de fluido que "caiga" a modo de cortina, por el interior del vidrio templado de un dispositivo ya existente. De esta manera, como se observa, no es necesario disponer un intercambiador de calor sofisticado para refrigerar el dispositivo.The present invention also presents the advantage of an applicable to existing plates, placing a device that generates a layer of fluid that "falls" by way of curtain, inside the tempered glass of a device it already exists. In this way, as noted, it is not necessary arrange a sophisticated heat exchanger to cool the device.

Adicionalmente, con objetivo de aumentar adicionalmente el tilt de la placa, puede disponerse al menos una superficie transparente con índice de refracción superior al del aire de manera superior a la placa y formando un ángulo oblicuo con respecto a ésta para acercar rayos solares oblicuos a la perpendicular a la placa y dirigirlos hacia ésta.Additionally, with the objective of increasing additionally the tilt of the plate, at least one transparent surface with refractive index higher than air superior to the plate and forming an oblique angle with with respect to it to bring oblique solar rays to the perpendicular to the plate and direct them towards it.

La superficie, por ejemplo un vidrio, podrá presentar una densidad variable, de tal manera que se desvíe la trayectoria de aquellos rayos que, por su ángulo próximo a la horizontal, escaparía de la superficie de transformación fotovoltaica.The surface, for example a glass, may have a variable density, in such a way that the trajectory of those rays that, due to their angle close to the horizontal, escape from the transformation surface Photovoltaic

La densidad variable podrá obtenerse, por ejemplo, disponiendo franjas contiguas de densidad creciente.The variable density can be obtained, by for example, by providing contiguous strips of increasing density.

Preferentemente la densidad será mayor en los puntos de la superficie transparente más alejados de la placa fotovoltaica.Preferably the density will be higher in the transparent surface points farther from the plate Photovoltaic

La capa fluida podrá disponerse en contacto con la placa o cubriendo una capa de protección de la placa fotovoltaica.The fluid layer may be arranged in contact with the plate or covering a plate protection layer Photovoltaic

Para su mejor comprensión se adjuntan, a título de ejemplo explicativo pero no limitativo, unos dibujos de una realización preferente de la presente invención.For your better understanding they are attached, by title explanatory example but not limiting, some drawings of a preferred embodiment of the present invention.

La figura 1 muestra un esquema en el que se observa el principio en el que se basa el aumento del "tilt" obtenido según la presente invención.Figure 1 shows a scheme in which observe the principle on which the increase in tilt is based obtained according to the present invention.

La figura 2 muestra tres gráficos que muestran, respectivamente el rendimiento teórico, el real obtenido mediante placas fijas de tipo conocido y el obtenido con un dispositivo según la presente invención.Figure 2 shows three graphs that show, respectively the theoretical yield, the real one obtained by fixed plates of known type and that obtained with a device according to The present invention.

La figura 3 es una vista en perspectiva, parcialmente seccionada, de una realización de placa según la presente invención.Figure 3 is a perspective view, partially sectioned, of an embodiment of plate according to the present invention

La figura 4 es un esquema de otro dispositivo según la presente invención, en el que el fluido de la capa fluida es recirculado.Figure 4 is a diagram of another device according to the present invention, wherein the fluid in the fluid layer It is recirculated.

La figura 5 es una vista en perspectiva de otro dispositivo según la presente invención.Figure 5 is a perspective view of another device according to the present invention.

La figura 6 es una vista esquemática en alzado lateral que muestra un principio de funcionamiento de la realización de la figura 6.Figure 6 is a schematic elevation view side showing a working principle of the embodiment  of figure 6.

En la figura 1 se ha representado de manera esquemática el principio de funcionamiento del dispositivo objeto de la presente invención. Como puede observarse, el ángulo de incidencia de los rayos solares varía con la posición del sol y, por ende, con el momento del día. Sin embargo, la placa fotovoltaica (2) resulta eficiente solamente dentro de un determinado ángulo (\alpha) alrededor de la perpendicular de la placa. Otro problema asociado es el aumento de la temperatura de la placa por la exposición a la radiación solar.In figure 1 it has been represented in a way schematic the principle of operation of the object device of the present invention. As can be seen, the angle of incidence of solar rays varies with the position of the sun and, therefore, with the time of day. However, the photovoltaic plate (2) is efficient only within a certain angle (?) around the perpendicular of the plate. Another problem associated is the increase in plate temperature by the exposure to solar radiation.

La presente invención propone interponer una capa de un fluido en movimiento entre el sol y la placa fotovoltaica (2), de tal manera que los rayos solares deban atravesar la capa fluida en movimiento (4). Además, el fluido debe presentar un coeficiente de refracción superior al del aire. De manera ventajosa, el coeficiente de refracción es lo más alto posible. Dado que, en general, los materiales más densos presentan mayores coeficientes de refracción, el fluido a utilizar será preferentemente un líquido.The present invention proposes to file a layer of a fluid in motion between the sun and the photovoltaic plate  (2), such that the sun's rays must pass through the layer fluid in motion (4). In addition, the fluid must have a coefficient of refraction higher than air. Advantageously, The coefficient of refraction is as high as possible. Since, in In general, the densest materials have higher coefficients of  refraction, the fluid to be used will preferably be a liquid.

La capa fluida en movimiento (4), dado su coeficiente de refracción elevado, desvía los rayos solares hacia la perpendicular a la placa (2), con lo que aumenta el aprovechamiento de los rayos. Además, el fluido (4) refrigera la placa (2). El flujo (4) puede estar en contacto directo con la placa (2) o bien puede disponerse, por ejemplo a modo de cortina, por encima de un vidrio transparente protector de la placa. Obviamente, cuando el flujo (4) está en contacto directo con la placa (2) la disminución de temperatura de la placa es mayor para una misma temperatura de placa. A cambio, el líquido debe estar exento de agentes que puedan atacar la placa fotovoltaica (2).The fluid layer in motion (4), given its high refractive coefficient, deflects the sun's rays towards perpendicular to the plate (2), thereby increasing the lightning harness. In addition, the fluid (4) cools the plate (2). The flow (4) may be in direct contact with the plate (2) or it can be arranged, for example as a curtain, by on top of a transparent glass plate protector. Obviously, when the flow (4) is in direct contact with the plate (2) the plate temperature decrease is greater for the same plate temperature In return, the liquid must be free of agents that can attack the photovoltaic plate (2).

Para ello, por ejemplo, puede utilizarse agua desionizada, o un líquido compuesto desionizado.For this, for example, water can be used deionized, or a deionized compound liquid.

En la figura 2 se observan 3 gráficos de rendimiento de placas fotovoltaicas fijas en función del momento del día, es decir, en función del ángulo de incidencia de los rayos solares. En los gráficos, el rendimiento se expresa como porcentaje sobre el rendimiento máximo teórico y las horas son horas solares.Figure 2 shows 3 graphs of performance of fixed photovoltaic panels depending on the moment of the day, that is, depending on the angle of incidence of the rays solar. In the graphics, the performance is expressed as a percentage about the theoretical maximum yield and the hours are hours solar.

La gráfica (X) representa una gráfica teórica de una placa fotovoltaica fija de tipo conocido, como se observa, el rendimiento disminuye bruscamente fuera de las horas de sol centrales. La gráfica (Y) es la gráfica de una placa real. Con respecto a la gráfica teórica (X) se observa que el rendimiento disminuye debido al aumento de la temperatura. La gráfica (Z) corresponde a un dispositivo según la presente invención, en la que el cociente rendimiento máximo obtenido con respecto al máximo teórico o obtenible se aproxima al 100% debido a la refrigeración de la placa y, además, aumenta el número de horas con rendimiento elevado debido al efecto Snell que se obtiene mediante la capa de fluido.The graph (X) represents a theoretical graph of a fixed photovoltaic plate of known type, as noted, the performance decreases sharply outside of sunny hours central. The graph (Y) is the graph of a real plate. With with respect to the theoretical graph (X) it is observed that the yield It decreases due to temperature rise. The graph (Z) corresponds to a device according to the present invention, in which the maximum yield ratio obtained with respect to the maximum theoretical or obtainable approaches 100% due to refrigeration of the plate and also increases the number of hours with performance elevated due to the Snell effect that is obtained by the layer of fluid.

Las figuras 3 y 4 muestran dos posibles realizaciones de un dispositivo (1) objeto de la presente invención.Figures 3 and 4 show two possible embodiments of a device (1) object of the present invention.

En el dispositivo de la figura 3 se observa una placa (2) cubierta por un vidrio templado (3) de alta transmitabilidad existiendo entre la placa (2) y el vidrio (3) una capa fluida móvil que entra y sale por las entradas/salidas (41); (42).In the device of figure 3 a plate (2) covered by a tempered glass (3) high transmissibility existing between the plate (2) and the glass (3) a mobile fluid layer that enters and exits through the inputs / outputs (41); (42).

El fluido de refrigeración -por ejemplo agua desionizada- calentado una vez ha refrigerado la placa (2), puede utilizarse para aplicaciones técnicas o bien ser reciclado, tras pasar por ejemplo, por un refrigerador (13), un motor (11) y un depósito regulador (12). La temperatura del fluido a la entrada (41) será preferiblemente inferior, en uso, a la de la placa (2).The cooling fluid - for example water deionized - heated once the plate (2) has cooled, it can be used for technical applications or be recycled, after go through, for example, a refrigerator (13), an engine (11) and a regulatory tank (12). The temperature of the fluid at the inlet (41) it will preferably be lower, in use, than that of the plate (2).

A efectos de la presente invención, no es necesario incluir un refrigerador activo que consuma energía eléctrica. Con un refrigerador pasivo es posible efectuar una recirculación de agua con un mínimo de consumos eléctricos. Con este mismo fin, en algunos casos, será posible, por ejemplo, disponer de la bomba de recirculación (11) y conseguir una recirculación de agua por gravedad. En el caso de que el fluido no sea reciclado, es posible conectar el fluido con un circuito de agua caliente sanitaria (ACS), por ejemplo.For the purposes of the present invention, it is not it is necessary to include an active refrigerator that consumes energy electric With a passive refrigerator it is possible to make a water recirculation with a minimum of electrical consumption. With this same end, in some cases, will be possible, for example, dispose of the recirculation pump (11) and get a water recirculation by gravity. In case the fluid does not be recycled, it is possible to connect the fluid with a circuit of domestic hot water (DHW), for example.

Las figuras 5 y 6 muestran una realización adicional preferente cuya finalidad es captar rayos solares de inclinación cercana a la horizontal y que caen fuera de la zona de la placa (2), y enviarlos hacia la capa fluida (4) y la placa (2) en dirección a la perpendicular a la placa.Figures 5 and 6 show an embodiment additional preference whose purpose is to capture solar rays from inclination close to the horizontal and that fall outside the area of the plate (2), and send them to the fluid layer (4) and the plate (2) in the direction perpendicular to the plate.

Para ello se dispone de un soporte (102) y dos superficies transparentes (101) que forman ángulo oblicuo con la placa (2). El principio de funcionamiento puede verse en la figura 6. Como se observa en la figura, la superficie (101) presenta una densidad variable, lo que le proporciona y cociente de refracción variable. Como se observa, el coeficiente de refracción (densidad) es mayor en los puntos más alejados de la superficie (101). Esto puede conseguirse, por ejemplo, disponiendo de manera contigua tipos de vidrio de diferente coeficiente de refracción o densidad.For this there is a support (102) and two transparent surfaces (101) that form an oblique angle with the plate (2). The principle of operation can be seen in the figure 6. As shown in the figure, the surface (101) has a variable density, which provides you and refractive quotient variable. As noted, the coefficient of refraction (density) it is greater at the points farthest from the surface (101). This can be achieved, for example, by providing contiguously types of glass of different coefficient of refraction or density.

Si bien la invención se ha descrito con respecto a un ejemplo de realización preferente, éstos no se deben considerar limitativos de la invención, que se definirá por la interpretación más amplia de las siguientes reivindicaciones.While the invention has been described with respect to a preferred embodiment, these are not due consider limiting the invention, which will be defined by the broader interpretation of the following claims.

Claims (13)

1. Dispositivo para el aprovechamiento de la energía solar de tipo fotovoltaico, del tipo que comprende una placa solar con una superficie de recepción de radiación solar caracterizado porque el dispositivo presenta medios para interponer entre el origen de la radiación solar a aprovechar y la placa capa de fluido en movimiento que cubre, al menos parcialmente, la citada superficie de recepción, presentando, en el citado fluido un índice de refracción superior al del aire.1. Device for the use of solar energy of the photovoltaic type, of the type comprising a solar panel with a solar radiation reception surface characterized in that the device has means for interposing between the origin of the solar radiation to be used and the layer plate of fluid in motion that covers, at least partially, said reception surface, presenting, in said fluid, an index of refraction greater than that of air. 2. Dispositivo, según la reivindicación 1, caracterizado porque la densidad del citado fluido es superior a la del aire.2. Device according to claim 1, characterized in that the density of said fluid is greater than that of air. 3. Dispositivo, según la reivindicación 2, caracterizado porque el fluido es un líquido.3. Device according to claim 2, characterized in that the fluid is a liquid. 4. Dispositivo, según la reivindicación 3, caracterizado porque el fluido comprende agua.4. Device according to claim 3, characterized in that the fluid comprises water. 5. Dispositivo, según la reivindicación 4, caracterizado porque el agua es agua desionizada.5. Device according to claim 4, characterized in that the water is deionized water. 6. Dispositivo según cualquiera de las reivindicaciones 1 a 5, caracterizado porque el fluido está en contacto con la placa.Device according to any one of claims 1 to 5, characterized in that the fluid is in contact with the plate. 7. Dispositivo, según cualquiera de las reivindicaciones 1 a 6, caracterizado porque la capa de fluido se dispone cubriendo una superficie de protección de la placa fotovoltaica.Device according to any one of claims 1 to 6, characterized in that the fluid layer is arranged covering a protective surface of the photovoltaic plate. 8. Dispositivo, según cualquiera de las reivindicaciones 1 a 7, caracterizado porque el dispositivo dispone de medios de recirculación de la capa de fluido.Device according to any one of claims 1 to 7, characterized in that the device has means for recirculating the fluid layer. 9. Dispositivo, según cualquiera de las reivindicaciones 1 a 8, caracterizado porque, en uso, la capa fluida presenta una temperatura inferior a la de la superficie de recepción de energía solar.Device according to any one of claims 1 to 8, characterized in that, in use, the fluid layer has a temperature lower than that of the solar energy receiving surface. 10. Dispositivo, según cualquiera de las reivindicaciones 3 a 8, caracterizado porque el fluido presenta un espesor igual o superior a 2 mm.10. Device according to any of claims 3 to 8, characterized in that the fluid has a thickness equal to or greater than 2 mm. 11. Dispositivo, según cualquiera de las reivindicaciones 1 a 10, caracterizado porque adicionalmente, se dispone al menos una superficie transparente con índice de refracción superior al del aire de manera superior a la placa y formando un ángulo oblicuo con respecto a ésta para acercar rayos solares oblicuos a la perpendicular a la placa y dirigirlos hacia ésta.Device according to any one of claims 1 to 10, characterized in that, in addition, at least one transparent surface with an index of refraction greater than that of the air is provided in a manner superior to the plate and forming an oblique angle with respect to it to bring rays solar oblique to the perpendicular to the plate and direct them towards it. 12. Dispositivo, según la reivindicación 11, caracterizado porque la superficie presenta una densidad variable, siendo la densidad mayor en las zonas más alejadas de la placa.12. Device according to claim 11, characterized in that the surface has a variable density, the density being higher in the areas farthest from the plate. 13. Dispositivo, según la reivindicación 12, caracterizado porque la superficie presenta franjas contiguas de densidad creciente.13. Device according to claim 12, characterized in that the surface has adjacent strips of increasing density.
ES200702032A 2007-07-20 2007-07-20 "DEVICE FOR THE USE OF SOLAR ENERGY OF PHOTOVOLTAIC TYPE". Expired - Fee Related ES2294969B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES200702032A ES2294969B1 (en) 2007-07-20 2007-07-20 "DEVICE FOR THE USE OF SOLAR ENERGY OF PHOTOVOLTAIC TYPE".
ES200950006U ES1072483Y (en) 2007-07-20 2008-07-18 DEVICE FOR THE USE OF SOLAR ENERGY OF PHOTOVOLTAIC TYPE
PCT/ES2008/000508 WO2009013372A2 (en) 2007-07-20 2008-07-18 Photovoltaic device for making use of solar energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200702032A ES2294969B1 (en) 2007-07-20 2007-07-20 "DEVICE FOR THE USE OF SOLAR ENERGY OF PHOTOVOLTAIC TYPE".

Publications (2)

Publication Number Publication Date
ES2294969A1 true ES2294969A1 (en) 2008-04-01
ES2294969B1 ES2294969B1 (en) 2009-04-01

Family

ID=39167930

Family Applications (2)

Application Number Title Priority Date Filing Date
ES200702032A Expired - Fee Related ES2294969B1 (en) 2007-07-20 2007-07-20 "DEVICE FOR THE USE OF SOLAR ENERGY OF PHOTOVOLTAIC TYPE".
ES200950006U Expired - Fee Related ES1072483Y (en) 2007-07-20 2008-07-18 DEVICE FOR THE USE OF SOLAR ENERGY OF PHOTOVOLTAIC TYPE

Family Applications After (1)

Application Number Title Priority Date Filing Date
ES200950006U Expired - Fee Related ES1072483Y (en) 2007-07-20 2008-07-18 DEVICE FOR THE USE OF SOLAR ENERGY OF PHOTOVOLTAIC TYPE

Country Status (2)

Country Link
ES (2) ES2294969B1 (en)
WO (1) WO2009013372A2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4045246A (en) * 1975-08-11 1977-08-30 Mobil Tyco Solar Energy Corporation Solar cells with concentrators
US4052228A (en) * 1976-07-12 1977-10-04 Russell Charles R Optical concentrator and cooling system for photovoltaic cells
US4169738A (en) * 1976-11-24 1979-10-02 Antonio Luque Double-sided solar cell with self-refrigerating concentrator
US5280557A (en) * 1989-07-10 1994-01-18 Nwasokwa Daniel C Nonmaterial deflector-enhanced collector (NDC)
US20010006066A1 (en) * 1998-07-27 2001-07-05 Matthew Cherney Solar energy systems and related hardware
WO2003001610A1 (en) * 2001-06-22 2003-01-03 Kunihide Tanaka Solar energy converter using optical concentration through a liquid
JP2004079900A (en) * 2002-08-21 2004-03-11 Matsushita Electric Works Ltd Solar cell cooling system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054456A3 (en) * 1999-05-17 2007-01-03 Dai Nippon Printing Co., Ltd. Protective sheet for solar battery module, method of fabricating the same and solar battery module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4045246A (en) * 1975-08-11 1977-08-30 Mobil Tyco Solar Energy Corporation Solar cells with concentrators
US4052228A (en) * 1976-07-12 1977-10-04 Russell Charles R Optical concentrator and cooling system for photovoltaic cells
US4169738A (en) * 1976-11-24 1979-10-02 Antonio Luque Double-sided solar cell with self-refrigerating concentrator
US5280557A (en) * 1989-07-10 1994-01-18 Nwasokwa Daniel C Nonmaterial deflector-enhanced collector (NDC)
US20010006066A1 (en) * 1998-07-27 2001-07-05 Matthew Cherney Solar energy systems and related hardware
WO2003001610A1 (en) * 2001-06-22 2003-01-03 Kunihide Tanaka Solar energy converter using optical concentration through a liquid
JP2004079900A (en) * 2002-08-21 2004-03-11 Matsushita Electric Works Ltd Solar cell cooling system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BASE DE DATOS WPI en EPOQUE & JP 2004079900 A (MATSUSHITA ELECTRIC WORKS LTD) 11.03.2004, resumen; dibujos *

Also Published As

Publication number Publication date
ES2294969B1 (en) 2009-04-01
ES1072483Y (en) 2010-10-18
WO2009013372A2 (en) 2009-01-29
WO2009013372A3 (en) 2009-03-19
ES1072483U (en) 2010-07-20

Similar Documents

Publication Publication Date Title
ES2493592T3 (en) System and method to thermally control an electronic display
ES2634506T3 (en) Thermally switched down conversion optical filter
ES2326456B1 (en) LOW SOLAR CONCENTRATION PLANT AND METHOD TO MAXIMIZE THE ELECTRICAL ENERGY PRODUCTION OF ITS PHOTOVOLTAIC MODULES.
TW201610378A (en) Synergistic solar powered water heater
CN103178146A (en) Solar cell module
WO2015101692A1 (en) Hybrid system comprising a thermosolar parametric cylinder and a photovoltaic receiver
ES2294969B1 (en) "DEVICE FOR THE USE OF SOLAR ENERGY OF PHOTOVOLTAIC TYPE".
ES2880445T3 (en) Water cooling unit for conditioning systems
ES2659349T3 (en) Solar collector
ES2377793B1 (en) PHOTOVOLTAIC-THERMAL HYBRID SOLAR COLLECTOR.
ES2378502T3 (en) Ventilated photovoltaic receiver
ES2222921T3 (en) SOLAR LIGHT ENERGY CASCADE.
DK2553353T3 (en) tempering system
ES2394605A1 (en) Geothermal refrigeration device of devices for the use of solar energy of photovoltaic type. (Machine-translation by Google Translate, not legally binding)
ES2347116B1 (en) REFRIGERATED SOLAR PHOTOVOLTAIC PANEL.
ES2650290B1 (en) PASSIVE PROTECTION SYSTEM AGAINST OVERHEATING THERMAL SOLAR PLATES
ES2713096A1 (en) THERMAL SOLAR INSTALLATION (Machine-translation by Google Translate, not legally binding)
ES1074724U (en) Heat absorbing device for solar panels (Machine-translation by Google Translate, not legally binding)
WO2011051503A1 (en) High-concentration photovoltaic module that can be used in high-performance solar energy installations
ES2262391B1 (en) AIR-CONDITIONING SYSTEM.
ES2570593B2 (en) Multi-mode solar concentrator
ES2304277B1 (en) SOLAR COLLECTOR.
ES2538926B1 (en) Solar and environmental thermal collector
Koohestani et al. Comprehensive review of state-of-the-art photovoltaic cooling technologies
ES2264316B1 (en) SOLAR ENERGY CONDENSER WITH MODULATED LIQUID LENS.

Legal Events

Date Code Title Description
EC2A Search report published

Date of ref document: 20080401

Kind code of ref document: A1

FG2A Definitive protection

Ref document number: 2294969B1

Country of ref document: ES

FD2A Announcement of lapse in spain

Effective date: 20180912