ES2282036B2 - PROCEDURE FOR OBTAINING NANOMETRIC SIZE CORINDON POWDER. - Google Patents

PROCEDURE FOR OBTAINING NANOMETRIC SIZE CORINDON POWDER. Download PDF

Info

Publication number
ES2282036B2
ES2282036B2 ES200600564A ES200600564A ES2282036B2 ES 2282036 B2 ES2282036 B2 ES 2282036B2 ES 200600564 A ES200600564 A ES 200600564A ES 200600564 A ES200600564 A ES 200600564A ES 2282036 B2 ES2282036 B2 ES 2282036B2
Authority
ES
Spain
Prior art keywords
corundum
aluminum
powder
gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES200600564A
Other languages
Spanish (es)
Other versions
ES2282036A1 (en
Inventor
Pilar Rey Rodriguez
Alejandro Souto Serantes
Francisco Guitian Rivera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidade de Santiago de Compostela
Original Assignee
Universidade de Santiago de Compostela
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade de Santiago de Compostela filed Critical Universidade de Santiago de Compostela
Priority to ES200600564A priority Critical patent/ES2282036B2/en
Priority to PCT/ES2007/000099 priority patent/WO2007096447A1/en
Publication of ES2282036A1 publication Critical patent/ES2282036A1/en
Application granted granted Critical
Publication of ES2282036B2 publication Critical patent/ES2282036B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/42Preparation of aluminium oxide or hydroxide from metallic aluminium, e.g. by oxidation
    • C01F7/422Preparation of aluminium oxide or hydroxide from metallic aluminium, e.g. by oxidation by oxidation with a gaseous oxidator at a high temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/005Fusing
    • B01J6/007Fusing in crucibles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/42Preparation of aluminium oxide or hydroxide from metallic aluminium, e.g. by oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Abstract

Procedimiento de obtención de polvo de corindón de tamaño nanométrico por reacción en fase vapor entre compuestos gaseosos de aluminio, Al(g) y Al{sub,2}O(g), y un gas oxidante, tal como H{sub,2}O, O{sub,2} o H{sub,2}O{sub,2}. La presión parcial de oxidante debe mantenerse en condiciones de oxidación activa del aluminio; las temperaturas están generalmente comprendidas entre 1200°C y 1800°C, y se usan mezclas de polvo de corindón y aluminio con relaciones molares comprendidas entre 1:1 y 1:10. Las partículas de polvo de corindón obtenidas son de aplicación en procesos de catálisis, fabricación de biomateriales, herramientas de corte, y cerámicas de altas propiedades mecánicas.Process for obtaining corundum powder of nanometric size by vapor phase reaction between gaseous compounds of aluminum, Al (g) and Al {sub, 2} O (g), and an oxidizing gas, such as H {sub, 2} O, O {sub, 2} or H {sub, 2} O {sub, 2}. The partial oxidant pressure must be maintained under conditions of active oxidation of aluminum; temperatures are generally between 1200 ° C and 1800 ° C, and mixtures of corundum and aluminum powder with molar ratios between 1: 1 and 1:10 are used. The corundum dust particles obtained are applicable in catalysis processes, biomaterials manufacturing, cutting tools, and ceramics of high mechanical properties.

Description

Procedimiento de obtención de polvo de corindón de tamaño nanométrico.Procedure for obtaining corundum powder of nanometric size.

El procedimiento consiste en la reacción en fase vapor entre compuestos gaseosos de aluminio y un agente oxidante a altas temperaturas, en el que los compuestos gaseosos de aluminio, Al(g) y Al_{2}O(g), se obtienen por reacción entre polvos de aluminio y corindón. La presión parcial de gas oxidante (H_{2}O, O_{2}, H_{2}O_{2}, o cualquier otro con capacidad para transformar el Al(g) y el Al_{2}O(g) en Al_{2}O_{3}) debe ser calculada y ajustada con precisión para asegurar que todo el proceso se desarrolle en condiciones de oxidación activa del aluminio. De esta forma se evita la pasivación del aluminio por formación de una capa superficial de corindón, que impediría la emisión de los compuestos gaseosos de aluminio necesarios para el proceso. Por su pequeño tamaño de partícula, el polvo de corindón resultante es un candidato muy adecuado para el procesamiento y sinterización de piezas y componentes de corindón.The procedure consists of the phase reaction vapor between gaseous aluminum compounds and an oxidizing agent a high temperatures, in which gaseous aluminum compounds, Al (g) and Al 2 O (g), are obtained by reaction between aluminum and corundum powders. The partial pressure of oxidizing gas (H 2 O, O 2, H 2 O 2, or any other with capacity to transform Al (g) and Al 2 O (g) into Al_ {2} O_ {3}) must be calculated and adjusted precisely for ensure that the whole process takes place in conditions of active oxidation of aluminum. In this way passivation is avoided of aluminum by forming a surface layer of corundum, which would prevent the emission of gaseous aluminum compounds necessary for the process. Because of its small particle size, the resulting corundum powder is a very suitable candidate for the processing and sintering of parts and components of corundum

Las cerámicas de corindón tienen un gran número de aplicaciones prácticas, debido a su elevada resistencia mecánica, su estabilidad térmica y alto punto de fusión, y su estabilidad frente a la gran mayoría de agentes químicos, tanto a bajas como a altas temperaturas. Usos muy habituales de estas cerámicas son como componentes estructurales, en la fabricación de herramientas de corte, en biomateriales, o como soportes catalíticos para procesos a alta temperatura.Corundum ceramics have a large number of practical applications, due to its high resistance mechanical, its thermal stability and high melting point, and its stability against the vast majority of chemical agents, both at Low as at high temperatures. Very common uses of these ceramics are like structural components, in the manufacture of cutting tools, in biomaterials, or as supports catalytic for high temperature processes.

El comportamiento de las cerámicas depende en gran medida de las propiedades de las materias primas empleadas en su fabricación. En general, cuanto menor sea el tamaño de partícula del polvo de partida y más estrecha su distribución de tamaños, mejores serán las propiedades del producto sinterizado. Esta dependencia explica la intensa investigación realizada en el desarrollo de nuevos procedimientos de síntesis de polvo de materia prima con tamaño de partícula controlado. En el caso del corindón, se han desarrollado distintos procedimientos de síntesis de polvo de pequeño tamaño de partícula y elevada pureza, muy adecuado para su posterior sinterización. Entre ellos, los más usados son rutas por vía húmeda, en las que el polvo es el resultado de reacciones de precipitación en el seno de disoluciones. Ejemplos de estos procedimientos se encuentran en J. Am. Ceram. Soc., 69 [8] 174-75 (1986); J. Am. Ceram. Soc., 72 [2] 352-53 (1989); J. Ceram Soc Jpn., 99 [10] 1036-46 (1991); J. Ceram Soc Jpn., 104 [5] 469-70 (1996); J. Am. Ceram. Soc., 86 [8] 1321-25 (2003).The behavior of ceramics depends largely on the properties of the raw materials used in its manufacture. In general, the smaller the particle size of the starting powder and the narrower its size distribution, the better the properties of the sintered product. This unit explains the intense research carried out in the development of new procedures for the synthesis of raw material powder with controlled particle size. In the case of corundum, different dust synthesis procedures of small particle size and high purity have been developed, very suitable for subsequent sintering. Among them, the most commonly used are wet routes, in which the dust is the result of precipitation reactions within solutions. Examples of these procedures are found in J. Am. Ceram. Soc ., 69 [8] 174-75 (1986); J. Am. Ceram. Soc ., 72 [2] 352-53 (1989); J. Ceram Soc Jpn ., 99 [10] 1036-46 (1991); J. Ceram Soc Jpn ., 104 [5] 469-70 (1996); J. Am. Ceram. Soc ., 86 [8] 1321-25 (2003).

En la presente invención se describe un procedimiento alternativo de fabricación de polvo de corindón de elevada pureza y muy pequeño tamaño de partícula. El procedimiento se basa en la reacción en fase vapor entre compuestos gaseosos de aluminio y gases oxidantes. El resultado es un polvo de corindón de tamaño de partícula nanométrico, idóneo para su posterior uso en la fabricación de piezas cerámicas de corindón.In the present invention a alternative process of manufacturing corundum powder high purity and very small particle size. The procedure it is based on the vapor phase reaction between gaseous compounds of aluminum and oxidizing gases. The result is a corundum powder of nanometric particle size, suitable for later use in the manufacture of corundum ceramic pieces.

Descripción de la invenciónDescription of the invention

El procedimiento se basa en la evaporación de cantidades masivas de compuestos gaseosos de aluminio, seguida de una reacción en fase vapor que transforme dichos gases en partículas nanométricas de corindón. Como materia prima para la generación de los compuestos gaseosos se emplean mezclas de polvo de aluminio y corindón. Puede emplearse cualquier polvo comercial de aluminio y corindón, aunque son preferibles los de tamaño de partícula inferior a
100 \mum. El procedimiento se fundamenta en el diagrama de volatilidad del sistema Al-Al_{2}O_{3} (Figura 1). De acuerdo con este diagrama, los compuestos gaseosos predominantes en este sistema a altas temperaturas son Al(g) y Al_{2}O(g). La presión parcial de Al(g) es mayor que la de Al_{2}O(g) en todo el rango de composiciones salvo en un único punto (punto P en la Figura 1), donde ambas presiones se igualan.
The procedure is based on the evaporation of massive amounts of gaseous aluminum compounds, followed by a vapor phase reaction that transforms said gases into nanometric particles of corundum. As a raw material for the generation of gaseous compounds, mixtures of aluminum and corundum powder are used. Any commercial aluminum and corundum powder may be used, although particle sizes smaller than
100 µm. The procedure is based on the volatility diagram of the Al-Al 2 O 3 system (Figure 1). According to this diagram, the predominant gaseous compounds in this system at high temperatures are Al (g) and Al 2 O (g). The partial pressure of Al (g) is greater than that of Al 2 O (g) over the entire range of compositions except at a single point (point P in Figure 1), where both pressures equalize.

La composición de la atmósfera reactiva puede controlarse modificando la composición de los precursores a partir de los cuales se generan los gases. El diagrama de volatilidad demuestra que dicha atmósfera puede estar constituida únicamente por Al(g) o mezclas de Al(g) y Al_{2}O(g). Es preferible emplear mezclas de Al y Al_{2}O(g), ya que en ellas la cantidad de gases reactivos es mayor y, en consecuencia, la producción polvo de corindón de tamaño nanométrico es superior. De acuerdo con la Figura 1, en el punto P se encuentran las máximas presiones parciales de Al(g) y Al_{2}O(g) posibles para este sistema a cada temperatura, puesto que es en este punto donde convergen las líneas de equilibrio que separan los campos de estabilidad de Al, Al_{2}O_{3}, Al(g) y Al_{2}O(g). De acuerdo con lo expuesto y con la Figura 1, para conseguir atmósferas reactivas de Al(g) y Al_{2}O(g) es necesario calentar mezclas de polvos de aluminio y corindón. El mezclado de ambas especies se realiza en un molino de ágata durante 1 hora. Estas condiciones aseguran un mezclado óptimo de ambos polvos, lo que resulta imprescindible para que su reacción a altas temperaturas sea máxima. Se han estudiado mezclas de polvo de corindón y aluminio con relaciones molares comprendidas entre 1:1 y 1:10. Los mejores rendimientos en cuanto a cantidad de polvo nanométrico de corindón formado se han conseguido partiendo de mezclas con relaciones comprendidas entre 1:3 y 1:8. La mezcla se coloca en crisoles de corindón, circona, o cualquier otro que sea estable en las condiciones de estos tratamientos, y se calienta en un horno de atmósfera controlada. Antes de iniciar el tratamiento térmico, se inertiza la cámara del horno con un gas noble, preferentemente Ar. El calentamiento se realiza bajo un flujo de gas inerte, generalmente no superior a 5 litros por minuto, y preferentemente inferiores a 1 litro por minuto. Las temperaturas de tratamiento están comprendidas entre 1200ºC y 1800ºC, aunque los mejores resultados se alcanzan entre 1300ºC y 1600ºC. Los tiempos de tratamiento son variables, aunque generalmente están comprendidos entre 1 y 6 horas.The composition of the reactive atmosphere can controlled by modifying the composition of the precursors from of which gases are generated. The volatility diagram demonstrates that said atmosphere may consist solely of Al (g) or mixtures of Al (g) and Al 2 O (g). Is it is preferable to use mixtures of Al and Al 2 O (g), since in they the quantity of reactive gases is greater and, consequently, the Production of corundum powder of nanometric size is superior. From according to Figure 1, the maximums are found at point P partial pressures of Al (g) and Al 2 O (g) possible for this system at each temperature, since it is at this point where the equilibrium lines that separate the fields of stability of Al, Al 2 O 3, Al (g) and Al 2 O (g). In accordance with the above and with Figure 1, to achieve reactive atmospheres of Al (g) and Al 2 O (g) it is necessary to heat mixtures of powders aluminum and corundum The mixing of both species is done in a agate mill for 1 hour. These conditions ensure a optimal mixing of both powders, which is essential for that your reaction at high temperatures is maximum. Have been studied mixtures of corundum and aluminum powder with molar ratios between 1: 1 and 1:10. The best yields in terms of amount of nanometric corundum powder formed have been achieved starting from mixtures with ratios between 1: 3 and 1: 8. The mixture is placed in corundum, zirconia, or any crucibles other that is stable in the conditions of these treatments, and heat in a controlled atmosphere oven. Before starting the heat treatment, the oven chamber is inerted with a gas noble, preferably Ar. The heating is carried out under a flow of inert gas, generally not exceeding 5 liters per minute, and preferably less than 1 liter per minute. Temperatures of treatment are between 1200ºC and 1800ºC, although the Better results are reached between 1300ºC and 1600ºC. The times of treatment are variable, although they are usually between 1 and 6 hours.

Además de elevadas presiones parciales de compuestos gaseosos de aluminio, para conseguir depositar polvo nanométrico de corindón, es imprescindible la coexistencia de elevadas presiones parciales de un gas oxidante en contacto con los gases de aluminio, como H_{2}O(g), H_{2}O_{2}(g), O_{2}(g), o cualquier otro con capacidad para oxidar el Al(g) y
Al_{2}O(g) a corindón. Estos gases se inyectan en la corriente de Ar en el momento en que se alcanza la máxima temperatura en la cámara del horno. De acuerdo con la Figura 1, el gas oxidante reacciona igualmente con el aluminio no evaporado presente en la mezcla de materias primas. La oxidación del aluminio puede tener lugar por dos mecanismos distintos y competitivos entre sí, denominados oxidación activa y oxidación pasiva. Mientras que en la oxidación activa la reacción es continua y el aluminio acaba volatilizándose en su totalidad en forma de Al_{2}O(g) y Al(g), en la oxidación pasiva se forma una capa superficial continua de corindón sobre la superficie del aluminio que inhibe totalmente la emisión de gases. La oxidación activa es el mecanismo dominante a bajas concentraciones de oxidante y la pasiva a altas. Existe, por tanto, un valor crítico en el que tiene lugar la transición entre ambos procesos, que es distinto para cada temperatura. De acuerdo con esta descripción, la presión parcial de gas oxidante es un factor de importancia critica, y debe ser ajustada de forma que sea lo más alta posible, pero siempre en condiciones de oxidación activa del aluminio En la Tabla I se muestran las máximas presiones parciales de H_{2}O(g), H_{2}O_{2}(g) y O_{2}(g) necesarias para la oxidación activa del aluminio en el intervalo de temperaturas entre 1200ºC y 1800ºC.
In addition to high partial pressures of gaseous aluminum compounds, in order to deposit nanometric corundum dust, the coexistence of high partial pressures of an oxidizing gas in contact with aluminum gases, such as H2O (g), H_, is essential {2} O2 (g), O2 (g), or any other capable of oxidizing Al (g) and
Al 2 O (g) to corundum. These gases are injected into the current of Ar at the moment when the maximum temperature is reached in the oven chamber. According to Figure 1, the oxidizing gas also reacts with the non-evaporated aluminum present in the mixture of raw materials. The oxidation of aluminum can take place by two different and competitive mechanisms, called active oxidation and passive oxidation. While in active oxidation the reaction is continuous and the aluminum ends up completely volatilizing in the form of Al 2 O (g) and Al (g), in the passive oxidation a continuous surface layer of corundum is formed on the surface of aluminum that totally inhibits the emission of gases. Active oxidation is the dominant mechanism at low concentrations of oxidant and the passive at high. There is, therefore, a critical value in which the transition between both processes takes place, which is different for each temperature. According to this description, the partial pressure of oxidizing gas is a factor of critical importance, and should be adjusted so as to be as high as possible, but always under conditions of active oxidation of aluminum. The maximum pressures are shown in Table I partial of H 2 O (g), H 2 O 2 (g) and O 2 (g) necessary for the active oxidation of aluminum in the temperature range between 1200 ° C and 1800 ° C.

TABLA ITABLE I

1one

El resultado del proceso es la deposición de partículas esféricas de corindón de tamaño nanométrico comprendidas entre 50 nm y 500 nm. La forma de estas partículas y su estrecha distribución de tamaños permiten el uso de este material en aplicaciones catalíticas, en la fabricación de cerámicas de elevadas prestaciones mecánicas y de biomateriales, en la obtención de filtros, etc.The result of the process is the deposition of spherical particles of corundum of nanometric size included between 50 nm and 500 nm. The shape of these particles and their narrow Size distribution allow the use of this material in catalytic applications, in the manufacture of ceramics of high mechanical and biomaterial performance, in obtaining of filters, etc.

Ejemplo Example

Como materias primas se usa una mezcla de polvos de corindón y aluminio en relación 1:6 molar. El aluminio utilizado es de Panreac (contenido en impurezas: compuestos de N: 0,005%, grasas: 1%, Cu: 0,05%, Fe: 1%). El corindón es SC-B/01 (San Ciprián, Lugo (España)), tamaño de partícula: 20 \mum. La mezcla Al_{2}O_{3}/Al, homogeneizada en un molino de ágata, se coloca en crisoles de corindón, en este caso de dimensiones 12x3x2 cm. El tamaño del crisol es función únicamente de las dimensiones de la cámara del horno. El tratamiento térmico se realiza en un horno Themolyne 35900, equipado con un tubo cilíndrico hueco de alúmina de 1,25 m de longitud y 4,5 cm de diámetro interno. Los extremos del tubo se cierran con unas tapas herméticas, en los que se han practicado unos orificios adecuados para la entrada y salida de gases. El ensayo se realiza bajo un flujo constante de 0.2 litros por minuto de Ar (Alphagaz^{TM}Ar\ding{192} de Air Liquide (H_{2}O < 3 ppm; O_{2} < 2 ppm; N_{2} < 5 ppm)), y consiste en un calentamiento de 3 horas a 1450ºC. Antes de iniciar el calentamiento, se purga con Ar el interior del tubo para asegurar la completa eliminación del O_{2}(g).As raw materials a mixture of powders is used of corundum and aluminum in 1: 6 molar ratio. The aluminum used is from Panreac (impurity content: compounds of N: 0.005%, fat: 1%, Cu: 0.05%, Fe: 1%). The corundum is SC-B / 01 (San Ciprián, Lugo (Spain)), size of particle: 20 µm. The H 2 O 3 / Al mixture, homogenized in an agate mill, it is placed in corundum pots, in this case dimensions 12x3x2 cm. The size of the crucible is a function only of the dimensions of the oven chamber. He Heat treatment is performed in a Themolyne 35900 oven, equipped with a hollow cylindrical alumina tube of 1.25 m length and 4.5 cm internal diameter. The ends of the tube are closed with hermetic covers, in which holes have been made suitable for the entry and exit of gases. The test is performed under a constant flow of 0.2 liters per minute of Ar (Alphagaz? Ar \ ding {192} of Air Liquide (H 2 O <3 ppm; O2 <2 ppm; N 2 <5 ppm)), and consists of a 3 hour heating at 1450 ° C. Before starting the heating, purge with Ar inside the tube to ensure  complete elimination of O2 (g).

El gas oxidante usado en este caso es vapor de agua. Para inyectar la cantidad adecuada de vapor de agua en la cámara de reacción, se desvía la corriente de Ar en el instante en que se alcanza la temperatura programada, y se la hace pasar a través de hielo antes de su entrada a la zona caliente del horno. La sublimación del hielo proporciona suficiente presión parcial de vapor de agua para la reacción de formación del humo de corindón evitando la pasivación del aluminio. El análisis por difracción de rayos X del polvo nanométrico de corindón así obtenido demuestra que la única fase cristalina presente es corindón (Figura 2). En la Figura 3 se muestra la microestructura del corindón producido en la reacción. En esta figura se aprecia que las partículas tienen un tamaño aproximado de 100 nm.The oxidizing gas used in this case is steam of Water. To inject the appropriate amount of water vapor into the reaction chamber, the Ar current is diverted at the instant in that the programmed temperature is reached, and it is passed to through ice before entering the hot zone of the oven. Ice sublimation provides enough partial pressure of water vapor for corundum smoke formation reaction avoiding the passivation of aluminum. The diffraction analysis of X-rays of the nanometric corundum powder thus obtained demonstrates that the only crystalline phase present is corundum (Figure 2). In the Figure 3 shows the microstructure of the corundum produced in the reaction. This figure shows that the particles have a approximate size of 100 nm.

Claims (6)

1. Procedimiento de obtención de polvo de corindón de tamaño nanométrico por un proceso simultáneo de equilibrios sólido-gas y gas-gas que consiste en:1. Procedure for obtaining dust from corundum of nanometric size by a simultaneous process of solid-gas and gas-gas balances that consists in:
a)to)
Volatilización de compuestos gaseosos de aluminio, Al(g) y Al_{2}O(g), provenientes de los equilibrios sólido-gas entre mezclas de polvo de corindón y aluminio a altas temperaturas; yVolatilization of gaseous compounds of aluminum, Al (g) and Al 2 O (g), from solid-gas balances between powder mixtures of corundum and aluminum at high temperatures; Y
b)b)
Deposición inmediata a altas temperaturas de polvo nanométrico de corindón por reacción de dichos gases con un agente oxidante gaseoso, inyectado en la cámara de reacción a una presión parcial calculada y ajustada con exactitud, para asegurar que todo el proceso se desarrolle en condiciones de oxidación activa de aluminio.Immediate deposition at discharge nanometric corundum powder temperatures by reaction of said gases with a gaseous oxidizing agent, injected into the chamber of reaction at a partial pressure calculated and adjusted exactly, to ensure that the whole process takes place in conditions of active oxidation of aluminum.
2. Procedimiento, según la reivindicación 1, caracterizado porque los compuestos gaseosos de aluminio se obtienen por reacción a temperaturas generalmente comprendidas entre 1200ºC y 1800ºC, y preferentemente entre 1300ºC y 1600ºC, de mezclas de polvo de corindón y aluminio con relaciones molares comprendidas entre 1:1 y 1:10, preferentemente comprendidas entre 1:3 y 1:8; y los tiempos de tratamiento son superiores a 1 hora e inferiores a 6.2. Method according to claim 1, characterized in that the gaseous aluminum compounds are obtained by reaction at temperatures generally between 1200 ° C and 1800 ° C, and preferably between 1300 ° C and 1600 ° C, of mixtures of corundum and aluminum powder with molar ratios between 1 : 1 and 1:10, preferably between 1: 3 and 1: 8; and treatment times are greater than 1 hour and less than 6. 3. Procedimiento, según la reivindicación 1, caracterizado porque como especie oxidante pueden emplearse distintos gases, tales como O_{2}(g), H_{2}O(g), H_{2}O_{2}(g), o cualquier otro con capacidad para transformar el Al(g) y el Al_{2}O(g) en Al_{2}O_{3}.3. A method according to claim 1, characterized in that as an oxidizing species different gases can be used, such as O2 (g), H2O (g), H2O2 (g), or any other with the capacity to transform Al (g) and Al 2 O (g) into Al 2 O 3. 4. Procedimiento, según las reivindicaciones anteriores, caracterizado porque las mezclas Al-Al_{2}O_{3} se colocan en crisoles de corindón, circona, o cualquier otro adecuado para estos tratamientos, y se introducen en hornos de atmósfera controlada. Los tratamientos se realizan bajo flujos generalmente inferiores a 5 litros por minuto y preferentemente inferiores a 1 litro por minuto, de un gas inerte, preferentemente Ar. Y la inyección del oxidante en la corriente de gases se realiza en el momento en que se alcanza la máxima temperatura en la cámara del horno.Method according to the preceding claims, characterized in that the Al-Al 2 O 3 mixtures are placed in crucibles of corundum, zirconia, or any other suitable for these treatments, and introduced into controlled atmosphere furnaces. The treatments are carried out under flows generally less than 5 liters per minute and preferably less than 1 liter per minute, of an inert gas, preferably Ar. And the injection of the oxidant in the gas stream is done at the moment when the maximum temperature in the oven chamber is reached. 5. Procedimiento, según las reivindicaciones anteriores, caracterizado porque la reacción entre los gases de aluminio y el gas oxidante provoca la deposición masiva de partículas esféricas de corindón de tamaño nanométrico, generalmente comprendido entre 50 y 500 nm.5. Method according to the preceding claims, characterized in that the reaction between the aluminum gases and the oxidizing gas causes massive deposition of spherical corundum particles of nanometric size, generally between 50 and 500 nm. 6. Uso y aplicación de las partículas nanométricas de polvo de corindón, obtenidas según el procedimiento de las reivindicaciones anteriores, en procesos de catálisis a altas temperaturas, la fabricación de filtros y de cerámicas de elevadas prestaciones mecánicas, o en procesos que precisen dichas partículas.6. Use and application of particles nanometers of corundum powder, obtained according to the procedure of the preceding claims, in high catalysis processes  temperatures, the manufacture of filters and high ceramics mechanical performance, or in processes that require such particles
ES200600564A 2006-02-23 2006-02-23 PROCEDURE FOR OBTAINING NANOMETRIC SIZE CORINDON POWDER. Active ES2282036B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES200600564A ES2282036B2 (en) 2006-02-23 2006-02-23 PROCEDURE FOR OBTAINING NANOMETRIC SIZE CORINDON POWDER.
PCT/ES2007/000099 WO2007096447A1 (en) 2006-02-23 2007-02-22 Method for obtaining nanometric corundum powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200600564A ES2282036B2 (en) 2006-02-23 2006-02-23 PROCEDURE FOR OBTAINING NANOMETRIC SIZE CORINDON POWDER.

Publications (2)

Publication Number Publication Date
ES2282036A1 ES2282036A1 (en) 2007-10-01
ES2282036B2 true ES2282036B2 (en) 2008-11-01

Family

ID=38436971

Family Applications (1)

Application Number Title Priority Date Filing Date
ES200600564A Active ES2282036B2 (en) 2006-02-23 2006-02-23 PROCEDURE FOR OBTAINING NANOMETRIC SIZE CORINDON POWDER.

Country Status (2)

Country Link
ES (1) ES2282036B2 (en)
WO (1) WO2007096447A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO337267B1 (en) 2014-02-10 2016-02-29 Elkem As Process for the production of alumina particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128081A (en) * 1989-12-05 1992-07-07 Arch Development Corporation Method of making nanocrystalline alpha alumina
US20030185746A1 (en) * 2002-01-16 2003-10-02 Sumitomo Chemical Company, Limited Calcined alumina, its production method and fine alpha-alumina powder obtained by using the calcined alumina
US20050201928A1 (en) * 2004-03-12 2005-09-15 Sumitomo Chemical Company, Limited Method for producing alpha-alumina particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128081A (en) * 1989-12-05 1992-07-07 Arch Development Corporation Method of making nanocrystalline alpha alumina
US20030185746A1 (en) * 2002-01-16 2003-10-02 Sumitomo Chemical Company, Limited Calcined alumina, its production method and fine alpha-alumina powder obtained by using the calcined alumina
US20050201928A1 (en) * 2004-03-12 2005-09-15 Sumitomo Chemical Company, Limited Method for producing alpha-alumina particle

Also Published As

Publication number Publication date
WO2007096447A1 (en) 2007-08-30
ES2282036A1 (en) 2007-10-01

Similar Documents

Publication Publication Date Title
ES2366917T3 (en) SYNTHESIS OF NANOPOLVES THROUGH INDUCTION PLASMA.
Wang et al. Mechanochemical synthesis of SrTiO 3− x F x with high visible light photocatalytic activities for nitrogen monoxide destruction
ES2439565T3 (en) Procedure to form phase 312 materials and procedure to sinter them
Liu et al. Low-temperature formation of nanocrystalline β-SiC with high surface area and mesoporosity via reaction of mesoporous carbon and silicon powder
NO316508B1 (en) Process for the preparation of multi-element metal oxide powders and the use of the process
JP2008502343A (en) Catalyst for oxidizing carbon monoxide in cigarette smoke
KR20030090684A (en) Oxygen enhanced cda modification to a cdo integrated scrubber
Wang et al. Synthesis and heat-insulating properties of yttria-stabilized ZrO2 hollow fibers derived from a ceiba template
KR20140006184A (en) Titania carrier for supporting catalyst, manganese oxide-titania catalyst comprising the same, apparatus and method for manufacturing the titania carrier and manganese oxide-titania catalyst, and method for removing nitrogen oxides
ES2369150T3 (en) LITHIUM CIRCONATE PRODUCTION PROCEDURE.
He et al. Molar ratio of In to urea directed formation of In2O3 hierarchical structures: cubes and nanorod-flowers
ES2282036B2 (en) PROCEDURE FOR OBTAINING NANOMETRIC SIZE CORINDON POWDER.
ES2207047T3 (en) PROCEDURE FOR THE PREPARATION OF HETEROGENEAS PULVERULENT SUBSTANCES.
WO2014170523A1 (en) Method for producing polymer carbon nitride in nanosheets
Mirzajany et al. Seed-assisted hydrothermally synthesized AACH as the alumina precursors
Macan et al. Porous zirconium titanate ceramics synthesized by sol–gel process
KR20140096181A (en) Apparatus and method for manufacturing the silica-titania catalyst having high thermal stability
Moriyoshi et al. B C N nanotubes prepared by a plasma evaporation method
Pitchimani et al. Thermodynamic analysis of pure and impurity doped pentaerythritol tetranitrate crystals grown at room temperature
Nikonova et al. X-ray diffraction and UV/Vis spectroscopic study on thermal stability of fullerenes/fullerites
Kulkarni et al. Growth of nano-particles of Al2O3, AlN and iron oxide with different crystalline phases in a thermal plasma reactor
JP4529293B2 (en) Method for manufacturing form transfer material
ES2212324T3 (en) PROCEDURE AND COMPOUND FOR THE SELECTIVE ABSORPTION OF NITROGEN OXIDES.
Kamyshnaya et al. Developing porous ceramics on the base of zirconia oxide with thin and permeable pores by crystallization of organic additive method
Chen et al. Synthesis of TiN-Si3N4 composites from rutile and quartz by carbothermal reduction nitridation

Legal Events

Date Code Title Description
EC2A Search report published

Date of ref document: 20071001

Kind code of ref document: A1

FG2A Definitive protection

Ref document number: 2282036B2

Country of ref document: ES