ES2279658B1 - ELECTRICITY GENERATION PROCEDURE FROM SOLAR THERMAL ENERGY AND BIOMASS. - Google Patents
ELECTRICITY GENERATION PROCEDURE FROM SOLAR THERMAL ENERGY AND BIOMASS. Download PDFInfo
- Publication number
- ES2279658B1 ES2279658B1 ES200401807A ES200401807A ES2279658B1 ES 2279658 B1 ES2279658 B1 ES 2279658B1 ES 200401807 A ES200401807 A ES 200401807A ES 200401807 A ES200401807 A ES 200401807A ES 2279658 B1 ES2279658 B1 ES 2279658B1
- Authority
- ES
- Spain
- Prior art keywords
- solar
- thermal energy
- generating electricity
- biomass
- hot air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002028 Biomass Substances 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 20
- 230000005611 electricity Effects 0.000 title claims abstract description 19
- 239000012530 fluid Substances 0.000 claims abstract description 15
- 238000002485 combustion reaction Methods 0.000 claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 230000005855 radiation Effects 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- 238000010248 power generation Methods 0.000 claims abstract description 3
- 239000000446 fuel Substances 0.000 claims description 13
- 239000007787 solid Substances 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 16
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 238000013461 design Methods 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 4
- 239000000567 combustion gas Substances 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/06—Devices for producing mechanical power from solar energy with solar energy concentrating means
- F03G6/064—Devices for producing mechanical power from solar energy with solar energy concentrating means having a gas turbine cycle, i.e. compressor and gas turbine combination
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/06—Devices for producing mechanical power from solar energy with solar energy concentrating means
- F03G6/065—Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
- F03G6/067—Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/006—Methods of steam generation characterised by form of heating method using solar heat
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Sustainable Development (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
La invención consiste en un nuevo procedimiento de generación de electricidad a partir de energía térmica solar y biomasa empleando un ciclo de vapor de agua, que es aplicable a plantas de generación eléctrica híbridas sol-biomasa de pequeña o media potencia. La invención propuesta se caracteriza porque la caldera del ciclo de vapor se alimenta con un flujo de aire caliente obtenido a partir de la energía solar y con un flujo de aire caliente obtenido a partir de la energía térmica de la combustión de la biomasa, retornándose el aire de salida de la caldera a los sistemas de calentamiento de aire con energía solar y biomásica. El concepto propuesto se integra perfectamente con sistemas de captación de energía solar basados en el receptor volumétrico de aire, que recibe la radiación solar procedente de un campo de heliostatos. También puede aplicarse ventajosamente con sistemas de captación lineales (parabólicos, tipo fresnel, etc.) en los que un fluido térmico absorbe la energía térmica dela radiación solar.The invention consists of a new method of generating electricity from solar thermal energy and biomass using a water vapor cycle, which is applicable to small or medium power hybrid sol-biomass power generation plants. The proposed invention is characterized in that the steam cycle boiler is fed with a flow of hot air obtained from solar energy and with a flow of hot air obtained from the thermal energy of biomass combustion, returning the Boiler outlet air to solar and biomasic air heating systems. The proposed concept integrates perfectly with solar energy collection systems based on the volumetric air receiver, which receives solar radiation from a heliostat field. It can also be applied advantageously with linear collection systems (parabolic, fresnel type, etc.) in which a thermal fluid absorbs the thermal energy of solar radiation.
Description
Procedimiento de generación de electricidad a partir de energía térmica solar y biomasa.Electricity generation procedure a from solar thermal energy and biomass.
La invención consiste en un nuevo procedimiento de generación de electricidad a partir de energía térmica solar y biomasa empleando un ciclo de vapor de agua, que es aplicable a plantas de generación eléctrica híbridas sol-biomasa de pequeña o media potencia.The invention consists of a new procedure of generating electricity from solar thermal energy and biomass using a water vapor cycle, which is applicable to sol-biomass hybrid power generation plants of small or medium power.
La mayor parte de las plantas híbridas existentes o propuestas de generación de electricidad utilizando energía solar térmica y combustibles (renovables o fósiles) recurren al ciclo térmico de vapor de agua para convertir la energía térmica en energía mecánica. Para la aportación de la energía térmica de ambas fuentes al ciclo de vapor se han propuesto diversas alternativas, dependientes en gran medida del sistema de captación de la energía solar. En el caso del único sistema de captación solar comercial, el de colectores lineales parabólicos con fluido térmico como absorbedor de energía, el combustible se ha empleado en diversas formas, entre las que destacan la de aportar energía al fluido térmico como alternativa o complemento de la aportación solar y la de aportar energía directamente al ciclo de vapor, para sobrecalentar el vapor a temperaturas superiores a las alcanzadas con el fluido térmico. En aplicaciones propuestas con sistemas de captación de torre central la opción más extendida es la de receptor de vapor saturado empleando el combustible (en este caso gas natural) en una turbina de gas y en la postcombustión de la caldera de recuperación asociada a la misma, transfiriendo así finalmente la energía del combustible al ciclo de vapor. En aplicaciones propuestas con torre central y receptor volumétrico de aire los gases de combustión obtenidos a partir del combustible (biomasa u otros) alimentan directamente la caldera de vapor del ciclo, y se opera con muy alta temperatura del aire caliente generado en el receptor, por encima de 600°C.Most of the hybrid plants existing or proposed electricity generation using solar thermal energy and fuels (renewable or fossil) resort to the thermal cycle of water vapor to convert thermal energy in mechanical energy. For the contribution of thermal energy of both sources to the steam cycle have proposed various alternatives, largely dependent on the collection system of solar energy. In the case of the only solar collection system commercial, that of parabolic linear collectors with thermal fluid as an energy absorber, the fuel has been used in various ways, among which stand out to provide energy to thermal fluid as an alternative or complement to the solar contribution and to provide energy directly to the steam cycle, to superheat the steam at temperatures higher than those reached With the thermal fluid. In proposed applications with systems central tower pickup the most widespread option is that of saturated steam receiver using the fuel (in this case natural gas) in a gas turbine and in the afterburner of the recovery boiler associated with it, thus transferring finally the fuel energy to the steam cycle. In Proposed applications with central tower and volumetric receiver air combustion gases obtained from fuel (biomass or others) directly feed the steam boiler of the cycle, and it operates with very high hot air temperature generated in the receiver, above 600 ° C.
Una patente existente relativa a plantas híbridas sol-combustible es la n° DE19510006 (Hybrid powerstation steam-raiser unit), en la que la energía solar térmica se emplea para calentar el aire de combustión y el combustible de una caldera de combustión donde se consume éste último para transferir su energía a un ciclo de vapor.An existing plant patent Sun-fuel hybrids is No. DE19510006 (Hybrid powerstation steam-raiser unit), in which solar thermal energy is used to heat the air of combustion and fuel from a combustion boiler where it consumes the latter to transfer its energy to a cycle of steam.
Las plantas híbridas existentes o propuestas presentan diversos inconvenientes, dependiendo de cada tipo, entre los que pueden destacarse:Existing or proposed hybrid plants they present various drawbacks, depending on each type, between those that can stand out:
- \bullet?
- Limitaciones en la participación solar de la planta (propuestas con receptor de vapor saturado o la de la patente citada)Limitations on participation solar of the plant (proposals with saturated steam receiver or the of the cited patent)
- \bullet?
- Dificultades para disponer de un importante nivel de almacenamiento térmico, lo que limita el factor de utilización solar anual (propuestas con receptor de vapor saturado o de fluido térmico).Difficulties to have a important level of thermal storage, which limits the factor annual solar utilization (proposals with steam receiver saturated or thermal fluid).
- \bullet?
- Dificultades para disponer de un almacenamiento térmico flexible, aplicable asimismo a la energía térmica procedente del combustible, lo que impide alcanzar potencia nominal de generación con una instalación de combustión parcialmente dimensionada (todas ellas)Difficulties to have a flexible thermal storage, also applicable to energy thermal from the fuel, which prevents reaching power nominal generation with a combustion installation partially sized (all of them)
- \bullet?
- Reducción del rendimiento y de la disponibilidad en operación solar pura por las modificaciones de diseño requeridas para integrar la aportación del combustible y por el impacto del ensuciamiento de la caldera con los gases de combustión de la biomasa (propuestas con receptor volumétrico).Performance reduction and availability in pure solar operation due to modifications of design required to integrate fuel input and by the impact of fouling of the boiler with the gases of biomass combustion (proposals with receiver volumetric).
La invención propuesta, que soslaya los inconvenientes expuestos, consiste en un procedimiento de generación de electricidad a partir de energía térmica solar y biomasa, empleando un ciclo de vapor de agua, caracterizado porque la caldera del ciclo de vapor se alimenta con un flujo de aire caliente de media temperatura obtenido a partir de la energía solar y con un flujo de aire caliente obtenido a partir de la energía térmica de la combustión de la biomasa, retornándose el aire de salida de la caldera a los sistemas de calentamiento de aire con energía solar y biomásica. Mediante dispositivos convencionales de regulación y control de los flujos de aire (ventiladores, compuertas) y de las aportaciones de energía solar y biomásica se puede alimentar la caldera de vapor con aire caliente de origen solar o biomásico de forma independiente o combinada, lo que permite regular la potencia eléctrica generada, compensando periodos con baja o nula disponibilidad de aire caliente de origen solar con el proveniente de la biomasa.The proposed invention, which ignores Exposed inconveniences, it consists of a generation procedure of electricity from solar thermal energy and biomass, using a water vapor cycle, characterized in that the boiler of the steam cycle is fed with a hot air flow of average temperature obtained from solar energy and with a hot air flow obtained from the thermal energy of the combustion of the biomass, returning the exhaust air of the boiler to solar-powered air heating systems and Biomass By conventional regulation devices and control of air flows (fans, dampers) and solar and biomass contributions can be fed the steam boiler with hot air of solar or biomasic origin of independently or in combination, allowing the power to be regulated Electric generated, compensating periods with low or zero availability of hot air of solar origin from of the biomass.
Los esquemas basados en esta invención pueden incorporar adicionalmente un almacenamiento de energía térmica de elementos sólidos estáticos, que puede cargarse asimismo con aire caliente de origen solar o biomásico, de forma independiente o simultánea, y generar aire caliente para alimentar el generador de vapor durante su proceso de descarga. Mediante dispositivos convencionales de regulación y control de los flujos de aire (ventiladores, compuertas) y de las aportaciones de energía solar y biomásica se puede alimentar el generador de vapor con aire caliente de origen solar o biomásico o del almacenamiento térmico, de forma independiente o combinando dos de las fuentes o las tres, lo que confiere al concepto una altísima flexibilidad operacional. El poder cargar asimismo el almacenamiento, si conviene, con el aire caliente de origen biomásico, permite poder instalar un sistema de generación de aire caliente a partir de biomasa de tamaño limitado y utilizarlo durante muchas horas o todo el día para cargar el almacenamiento y descargar éste durante un corto periodo de tiempo para generar una potencia eléctrica superior a la correspondiente al dimensionamiento del sistema de biomasa o, incluso, potencia nominal. El poder disponer con este concepto de un sistema de almacenamiento de alta capacidad permite diseñar plantas con múltiplos solares importantes, que, en combinación con el apoyo biomásico, conduce a poder ofrecer potencia de generación garantizada simultáneamente con altas tasas de participación solar.Schemes based on this invention can additionally incorporate a thermal energy storage of static solid elements, which can also be charged with air hot solar or biomasic origin, independently or Simultaneously, and generate hot air to power the generator steam during its discharge process. Through devices Conventional regulation and control of air flows (fans, dampers) and solar energy contributions and Bi-phase steam generator can be fed with air hot from solar or biomasic origin or from thermal storage, independently or by combining two of the sources or all three, which gives the concept a very high operational flexibility. Being able to also load the storage, if appropriate, with the Biomasic hot air, allows to install a hot air generation system from biomass in size limited and use it for many hours or all day to load storage and download it for a short period of time to generate an electrical power greater than corresponding to the sizing of the biomass system or, even nominal power. Being able to have with this concept a High capacity storage system allows you to design plants with significant solar multiples, which, in combination with support bi-phase, leads to be able to offer generation power guaranteed simultaneously with high participation rates solar.
El concepto propuesto se integra perfectamente con sistemas de captación de energía solar basados en el receptor volumétrico de aire, que recibe la radiación solar procedente de un campo de heliostatos. En este caso el aire de salida de la caldera del ciclo de vapor se recircula al receptor, en el que se genera directamente el flujo de aire caliente de origen solar. El nivel térmico del aire caliente se limita a temperaturas inferiores a 600°C, preferentemente a valores del orden de 450°C, para no perjudicar el rendimiento del receptor y permitir la utilización de materiales de bajo coste. Dado que el aire de salida de caldera tiene un cierto nivel térmico que no conviene desaprovechar a efectos de alcanzar altos rendimientos de la planta, conviene que el receptor volumétrico tenga un alto rendimiento de recirculación, por lo que puede ser conveniente recurrir a un diseño del receptor volumétrico de tipo cavidad.The proposed concept integrates perfectly with receiver-based solar energy collection systems volumetric air, which receives solar radiation from a field of heliostats. In this case the boiler outlet air of the steam cycle is recirculated to the receiver, in which it is generated directly the flow of hot air of solar origin. Level Hot air thermal is limited to temperatures below 600 ° C, preferably at values of the order of 450 ° C, for not impair the performance of the receiver and allow the use of low cost materials. Since the boiler outlet air It has a certain thermal level that should not be missed effects of reaching high yields of the plant, it is convenient that The volumetric receiver has high recirculation performance, so it may be convenient to use a receiver design volumetric cavity type.
También es posible el empleo de receptores con captadores del tipo tubería caliente (heat pipe), que pueden indistintamente ser planos o de cavidad.It is also possible to use receivers with heat pipe type sensors, which can regardless of being flat or cavity.
No obstante lo anterior, el concepto propuesto también puede aplicarse ventajosamente con sistemas de captación lineales (parabólicos, tipo fresnel, etc.) en los que un fluido térmico absorbe la energía térmica de la radiación solar. En este caso el flujo de aire caliente se obtendría mediante un cambiador de calor alimentado por el fluido térmico procedente del campo de concentradores lineales, recirculándose a este cambiador el aire de salida de la caldera de vapor. El nivel térmico del aire caliente se limita aún más en este caso, a valores compatibles con el fluido térmico, del orden de 400°C.Notwithstanding the foregoing, the proposed concept It can also be applied advantageously with collection systems linear (parabolic, fresnel type, etc.) in which a fluid Thermal absorbs the thermal energy of solar radiation. In this In case the flow of hot air would be obtained through a heat exchanger heat fed by the thermal fluid from the field of linear concentrators, recirculating to this changer the air of steam boiler outlet. The thermal level of hot air is limited even more in this case, to values compatible with the fluid thermal, of the order of 400 ° C.
En el caso de aplicación con receptor volumétrico de aire puede recurrirse a la solución habitual, con un solo campo de heliostatos y un solo receptor, o a una solución novedosa consistente en dividir el sistema de captación, empleando dos o más campos de menor tamaño, cada uno con su receptor asociado, con objeto de tratar de optimizar el rendimiento del campo, de adaptarlo mejor al terreno o de moludarizar su diseño para reducir costes. En este último caso cada receptor dispondría preferentemente de su propio almacenamiento térmico de elementos sólidos estáticos, mientras que en principio sería normalmente más favorable disponer de una única caldera, a la que se conducirían los correspondientes conductos de aire caliente y de retorno desde cada receptor, así como de un generador único de aire caliente a partir de biomasa. No obstante también podrían adoptarse otras disposiciones de los diversos componentes si se demostraran sus ventajas, como la de instalar una caldera de vapor en cada receptor. En este caso, si se empleara un ciclo con recalentamiento de vapor, el recalentamiento individual conduciría a elevadas pérdidas de carga por lo que podría ser más conveniente centralizar el recalentamiento del vapor en la caldera del receptor más próximo a la turbina de vapor. Tampoco puede descartarse en este caso de división de los campos de captación, para evitar los conductos de aire o la multiplicidad de calderas, la utilización de un transmisor intermedio de calor (fluido térmico) entre el aire caliente generado en los receptores y el vapor, en cuyo caso el generador de aire caliente con biomasa podría sustituirse asimismo por un calentador de fluido térmico con biomasa.In the case of application with receiver volumetric air can be used to the usual solution, with a single heliostat field and a single receiver, or a solution novel consisting of dividing the collection system, using two or more smaller fields, each with its receiver associated, in order to try to optimize the performance of the field, to adapt it better to the terrain or to mold its design To reduce costs. In the latter case, each receiver would have preferably from its own thermal storage of elements static solids, while in principle it would normally be more favorable to have a single boiler, which would lead the corresponding hot and return air ducts from each receiver, as well as a single hot air generator to from biomass. However, others could also be adopted provisions of the various components if their advantages, such as installing a steam boiler in each receiver. In this case, if a cycle with steam reheating is used, individual overheating would lead to high losses of load so it might be more convenient to centralize the steam overheating in the receiver boiler closest to The steam turbine. Nor can it be ruled out in this case of division of the catchment fields, to avoid the conduits of air or boiler multiplicity, the use of a intermediate heat transmitter (thermal fluid) between the air hot generated in the receivers and steam, in which case the hot air generator with biomass could also be replaced by a thermal fluid heater with biomass.
El flujo de aire caliente de origen biomásico se puede obtener mediante tecnología convencional, por ejemplo con un cambiador tubular alimentado por gases de combustión de la biomasa o por gases de combustión de un gas de síntesis generado a partir de la gasificación de la biomasa, entre otras posibilidades. El aire de salida de la caldera de vapor se recircularía a la entrada de dicho cambiador. La energía residual de los gases de combustión puede recuperarse asimismo de forma convencional, dentro del propio sistema (calentamiento del aire de combustión, precalentamiento de condensado, etc.) o fuera de él (cogeneración, calefacción, etc.)The flow of hot air of biomasic origin is can be obtained by conventional technology, for example with a tubular exchanger powered by biomass combustion gases or by flue gas of a synthesis gas generated from of the gasification of biomass, among other possibilities. The air steam boiler outlet would be recirculated to the entrance of said changer. The residual energy of combustion gases it can also be recovered in a conventional way, within its own system (combustion air heating, preheating of condensate, etc.) or outside it (cogeneration, heating, etc.)
Otra posibilidad interesante consiste en emplear un combustible de origen biomásico (gas de síntesis, biogás, alcohol, etc.) o incluso gas natural en una máquina de combustión interna o en una célula de combustible y emplear el calor residual de estos equipos para generar el flujo de aire caliente, que sería de origen biomásico salvo en el caso de empleo de gas natural. También podría utilizarse directamente en el proceso el flujo de gases calientes exhaustado por dichos equipos, si su limpieza hiciera innecesario utilizar aire limpio como vector intermedio.Another interesting possibility is to use a biomasic fuel (synthesis gas, biogas, alcohol, etc.) or even natural gas in a combustion machine internal or in a fuel cell and use the residual heat of these equipment to generate the flow of hot air, which would be of biomasic origin except in the case of the use of natural gas. It could also be used directly in the process the flow of hot gases exhausted by such equipment, if cleaning it would be unnecessary to use clean air as an intermediate vector.
Como tres ejemplos posibles de aplicación de la invención propuesta se describen a continuación dos esquemas, representados en las Figuras 1, 2 y 3. Los dos primeros sólo se diferencian en el sistema de captación solar, de torre central y receptor volumétrico de aire en la Figura 1 y de colectores lineales parabólicos con fluido térmico en la Figura 2. El de la Figura 3, incorpora, en lugar de un apoyo con biomasa, un apoyo con la energía residual de los gases de escape de una turbina de gas.As three possible examples of application of the Two proposed schemes are described below, represented in Figures 1, 2 and 3. The first two are only they differ in the solar collection system, central tower and volumetric air receiver in Figure 1 and manifolds linear parabolic with thermal fluid in Figure 2. The one of the Figure 3, incorporates, instead of a support with biomass, a support with the residual energy of the exhaust gases of a turbine of gas.
En la Figura 1 puede apreciarse como la radiación solar concentrada por el campo de heliostatos (1) en el receptor volumétrico (3) emplazado en una torre central (2) sirve para calentar un flujo recirculado de aire a presión prácticamente atmosférica (4), con lo que se genera un flujo de aire caliente (5), que en condiciones de sol nominal se bifurca hacia el almacenamiento térmico (6) y hacia la caldera de vapor (11). Un generador de aire caliente (7) a partir de la combustión de biomasa (8) con aire (9) permite generar un caudal adicional de aire caliente que también se aporta a la caldera de vapor (11). Los gases de combustión de escape (10) se evacuan, pudiendo utilizarse de diversas formas conocidas. La planta puede diseñarse para que con radiación solar nominal este generador de aire caliente con biomasa esté también en marcha, a carga parcial o total, o parado, mediante un adecuado dimensionamiento del ciclo de vapor. Los elementos de regulación y control indicados, ventiladores (21) y compuertas (22), permiten regular los caudales de aire e incluso el sentido de circulación en el caso del almacenamiento térmico. En este ejemplo se ha supuesto un ciclo de vapor con recalentamiento intermedio, sin perjuicio de que pueda emplearse asimismo un ciclo simple de vapor de agua o cualquier otro ciclo de vapor. El vapor de alta presión sobrecalentado (12) generado en la caldera (11) se conduce al cuerpo de alta presión de la turbina de vapor (13), donde se expande a una presión intermedia, a la que se recalienta en caldera, conduciéndose a continuación el vapor al cuerpo de baja de la turbina (14). Ambos cuerpos de turbina se muestran conectados a un alternador eléctrico (16) a través de un reductor (15). El vapor exhaustado por la turbina se conduce a un condensador (18) para su condensación con agua de refrigeración y el condensado se bombea mediante una bomba de condensado (19) al desaireador (17), que recibe vapor de la línea de presión intermedia. Desde el desaireador se bombea el agua de alimentación a la caldera (11) mediante la bomba de alimentación (20).In Figure 1 it can be seen as the solar radiation concentrated by the heliostat field (1) in the volumetric receiver (3) located in a central tower (2) serves to heat a recirculated flow of pressurized air practically atmospheric (4), which generates a flow of hot air (5), which in conditions of nominal sun forks towards the thermal storage (6) and towards the steam boiler (11). A hot air generator (7) from biomass combustion (8) with air (9) allows to generate an additional air flow hot which is also added to the steam boiler (11). The exhaust flue gases (10) are evacuated, and can be used in various known ways. The plant can be designed so that with nominal solar radiation this hot air generator with biomass is also running, at partial or total load, or stopped, by an adequate sizing of the steam cycle. The indicated regulation and control elements, fans (21) and gates (22), allow to regulate the air flows and even the direction of circulation in the case of thermal storage. In this example has assumed a steam cycle with overheating intermediate, notwithstanding that a cycle may also be used Simple water vapor or any other steam cycle. Steam High pressure superheated (12) generated in the boiler (11) is leads to the high pressure body of the steam turbine (13), where it expands to an intermediate pressure, which is reheated in boiler, then steaming the steam to the lower body of the turbine (14). Both turbine bodies are shown connected to an electric alternator (16) through a reducer (15). Steam exhausted by the turbine is conducted to a condenser (18) for its condensation with cooling water and the condensate is pumped by means of a condensate pump (19) to the deaerator (17), which receives steam from the intermediate pressure line. From the deaerator the feed water to the boiler (11) is pumped through the feed pump (20).
En la Figura 2 puede apreciarse como la radiación solar concentrada por el campo de colectores lineales parabólicos (23) sirve para calentar un fluido térmico (24) que se conduce a un calentador de aire (25), en el que se calienta un flujo recirculado de aire a presión prácticamente atmosférica (4), con lo que se genera un flujo de aire caliente (5). Tras el proceso de cesión de calor en el calentador de aire (25) el fluido térmico relativamente frío (26) se conduce a un tanque de expansión (27) y desde éste se bombea mediante la bomba de recirculación (28) al campo de colectores lineales parabólicos (23), completándose así el circuito del fluido térmico. El resto de la instalación representada como ejemplo en esta Figura 2 coincide exactamente con la parte correspondiente de la Figura 1.In Figure 2 it can be seen as the solar radiation concentrated by the field of linear collectors parabolic (23) serves to heat a thermal fluid (24) that is leads to an air heater (25), in which a flow is heated recirculated air at practically atmospheric pressure (4), with that a flow of hot air is generated (5). After the process of heat transfer in the air heater (25) thermal fluid relatively cold (26) leads to an expansion tank (27) and from it it is pumped by the recirculation pump (28) to field of parabolic linear collectors (23), thus completing the thermal fluid circuit The rest of the installation represented as an example in this Figure 2 exactly matches the part Figure 1.
En la Figura 3 puede apreciarse como los gases
de escape (31) de la turbina de gas (29) se mezclan con el flujo de
gases calientes (5) procedente de calentador de gases (25), antes de
la entrada del flujo mezcla de gases en la caldera de vapor (11).
La turbina de gas (29) opera con aire atmosférico (32) y consume gas
natural (30). Una parte del flujo de gases de salida de la caldera
(11) se deriva mediante un ventilador (21) al ambiente, para
equilibrar el circuito de gases. En este caso todo el circuito de
transmisión y almacenamiento de energía térmica operaría con gases
calientes en lugar de aire caliente. Todos los puntos restantes
coinciden con los de la Figura 2, con dicha
salvedad.In Figure 3 it can be seen how the exhaust gases (31) of the gas turbine (29) are mixed with the flow of hot gases (5) from the gas heater (25), before the flow mixture enters gases in the steam boiler (11). The gas turbine (29) operates with atmospheric air (32) and consumes natural gas (30). A part of the gas flow from the boiler (11) is derived by means of a fan (21) to the environment, to balance the gas circuit. In this case the entire thermal energy transmission and storage circuit would operate with hot gases instead of hot air. All the remaining points coincide with those of Figure 2, with said
disclaimer.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES200401807A ES2279658B1 (en) | 2004-07-22 | 2004-07-22 | ELECTRICITY GENERATION PROCEDURE FROM SOLAR THERMAL ENERGY AND BIOMASS. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES200401807A ES2279658B1 (en) | 2004-07-22 | 2004-07-22 | ELECTRICITY GENERATION PROCEDURE FROM SOLAR THERMAL ENERGY AND BIOMASS. |
Publications (2)
Publication Number | Publication Date |
---|---|
ES2279658A1 ES2279658A1 (en) | 2007-08-16 |
ES2279658B1 true ES2279658B1 (en) | 2008-08-01 |
Family
ID=38468478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES200401807A Expired - Fee Related ES2279658B1 (en) | 2004-07-22 | 2004-07-22 | ELECTRICITY GENERATION PROCEDURE FROM SOLAR THERMAL ENERGY AND BIOMASS. |
Country Status (1)
Country | Link |
---|---|
ES (1) | ES2279658B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104390236A (en) * | 2014-11-19 | 2015-03-04 | 辽宁科技大学 | Solar-assisted power type negative pressure biomass gasifier |
WO2017214749A1 (en) * | 2016-06-14 | 2017-12-21 | 周连惠 | Biomass power generation system |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2387173B1 (en) * | 2008-11-11 | 2013-08-20 | Josep Maria Manso I Camps | SMALL SCALE HYBRID THERMOELECTRIC SOLAR INSTALLATION |
CN101839225A (en) * | 2010-05-25 | 2010-09-22 | 郑斌 | Biomass-assisted solar generating device |
CN101956577A (en) * | 2010-09-15 | 2011-01-26 | 刘建光 | New energy moderate temperate water steam power generating system |
DE102012203805A1 (en) * | 2012-03-12 | 2013-09-12 | Man Diesel & Turbo Se | Thermal solar system and method for operating a solar thermal system |
AU2013235508B2 (en) * | 2012-03-21 | 2018-02-08 | Wilson 247Solar, Inc. | Multi-thermal storage unit systems, fluid flow control devices, and low pressure solar receivers for solar power systems, and related components and uses thereof |
ES2432472B1 (en) * | 2012-05-22 | 2014-12-05 | Universidad De Salamanca | METHOD AND MODULAR THERMOSOLAR PLANT FOR THE PRODUCTION OF ELECTRICAL ENERGY |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2553283A1 (en) * | 1975-11-27 | 1977-06-02 | Messerschmitt Boelkow Blohm | SOLAR THERMAL POWER PLANT |
DE4126038A1 (en) * | 1991-08-06 | 1993-02-11 | Siemens Ag | Gas and steam turbine plant with solar heated steam generator - has additional combustion chamber in exhaust gas line from gas turbine |
US5228293A (en) * | 1992-07-06 | 1993-07-20 | Mechanical Technology Inc. | Low temperature solar-to-electric power conversion system |
WO1995011371A1 (en) * | 1993-10-21 | 1995-04-27 | Compañia Sevillana De Electricidad, S.A. | Method for improving electric plants of combined cycle with solar support |
JPH10501600A (en) * | 1995-04-03 | 1998-02-10 | カンパーニャ セビラーナ デ エレクトリシダッド エス.エー. | Thermal power plant integrating solar energy |
DE19627425A1 (en) * | 1996-07-08 | 1998-01-15 | Asea Brown Boveri | Method of operating hybrid solar powered combined plant |
US5857322A (en) * | 1997-09-30 | 1999-01-12 | Electric Power Research Institute, Inc. | Hybrid solar and fuel fired electrical generating system |
DE10144841B9 (en) * | 2001-09-06 | 2004-10-21 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Solar thermal gas and steam power plant and process for converting thermal energy into electrical energy |
-
2004
- 2004-07-22 ES ES200401807A patent/ES2279658B1/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
K. THYAGARAJAN et al. Enhancing Energy Generation by Use of Efficient Control for Hybrid Energy Systems. Applied Energy, Volumen 52, 1995, páginas 255-263. Resumen; páginas 257,261; figura 2. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104390236A (en) * | 2014-11-19 | 2015-03-04 | 辽宁科技大学 | Solar-assisted power type negative pressure biomass gasifier |
WO2017214749A1 (en) * | 2016-06-14 | 2017-12-21 | 周连惠 | Biomass power generation system |
Also Published As
Publication number | Publication date |
---|---|
ES2279658A1 (en) | 2007-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2608490T3 (en) | Solar thermal power plants | |
AU2009312347B2 (en) | Solar thermal power plant and dual-purpose pipe for use therewith | |
ES2731134T3 (en) | Gas and steam power plant operated in solar hybrid form | |
US8544273B2 (en) | Solar thermal power plant | |
US7051529B2 (en) | Solar dish concentrator with a molten salt receiver incorporating thermal energy storage | |
RU2543361C2 (en) | Method of electric power generation from sun energy and system using biofuel boiler as additional heat source | |
ES2445640T3 (en) | Procedure and device for the selective elevation of the electric power generation of a solar thermal power plant | |
US20130139807A1 (en) | Thermal energy generation system | |
CN101876299A (en) | Method and system for combing solar energy thermal power generation with biomass power generation | |
KR20160140945A (en) | solar thermal and BIGCC-integrated hybrid power generation system | |
CN102400872A (en) | Solar energy and wind energy complementary energy storage thermal power generation device | |
CN102966495B (en) | Tower type solar energy-steam combustion gas combined cycle power generation system | |
US8752379B2 (en) | Hybrid solar/non-solar energy generation system and method | |
ES2279658B1 (en) | ELECTRICITY GENERATION PROCEDURE FROM SOLAR THERMAL ENERGY AND BIOMASS. | |
CN103618479A (en) | Power-generating and energy-storing system based on waste heat of diesel generating set of South-Pole astronomical observation station in South Pole | |
Jaber et al. | Domestic thermoelectric cogeneration drying system: Thermal modeling and case study | |
CN102278285A (en) | High-temperature heat-accumulating-type new energy utilizing system | |
PT856104E (en) | PROCESS FOR GENERATING ENERGY AND ELECTRICAL CENTRAL FOR PROCESSING | |
RU2352866C1 (en) | Power supply system for stand alone building | |
ES2677498T3 (en) | Controlled heating method of a process fluid through a solar thermal concentration plant and a heat transfer system and equipment | |
WO2018050075A1 (en) | Solar energy collector | |
CN106123040B (en) | The solar heat power generation system of integrated twin furnace biomass boiler | |
RU2032082C1 (en) | Modular solar-electric plant | |
WO2013180525A1 (en) | High temperature heat source apparatus of high efficiency using solar energy | |
CN204357641U (en) | Solar low-temperature heat collector and parabolic trough type solar thermal collector complementary power generation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FA2A | Application withdrawn |
Effective date: 20070126 |
|
EC2A | Search report published |
Date of ref document: 20070816 Kind code of ref document: A1 |
|
FG2A | Definitive protection |
Ref document number: 2279658B1 Country of ref document: ES |
|
FD2A | Announcement of lapse in spain |
Effective date: 20180809 |