ES2267387A1 - Low intensity laser therapy apparatus uses two quantum interweaving photon beams interlaced with opposing polarizations by parametric loss conversion - Google Patents

Low intensity laser therapy apparatus uses two quantum interweaving photon beams interlaced with opposing polarizations by parametric loss conversion Download PDF

Info

Publication number
ES2267387A1
ES2267387A1 ES200501343A ES200501343A ES2267387A1 ES 2267387 A1 ES2267387 A1 ES 2267387A1 ES 200501343 A ES200501343 A ES 200501343A ES 200501343 A ES200501343 A ES 200501343A ES 2267387 A1 ES2267387 A1 ES 2267387A1
Authority
ES
Spain
Prior art keywords
therapy apparatus
quantum
low intensity
laser therapy
intensity laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
ES200501343A
Other languages
Spanish (es)
Other versions
ES2267387B1 (en
Inventor
Ramon Montes Molina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad de Alcala de Henares UAH
Original Assignee
Universidad de Alcala de Henares UAH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad de Alcala de Henares UAH filed Critical Universidad de Alcala de Henares UAH
Priority to ES200501343A priority Critical patent/ES2267387B1/en
Publication of ES2267387A1 publication Critical patent/ES2267387A1/en
Application granted granted Critical
Publication of ES2267387B1 publication Critical patent/ES2267387B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves

Abstract

The apparatus uses two quantum interweaving photon beams interlaced with opposing polarizations by parametric loss conversion. The beams are applied to an area to be treated using modality interference or by automatic sweeping.

Description

Aparato de terapia láser de baja intensidad mediante entrelazamiento cuántico fotónico.Low intensity laser therapy device by photonic quantum entanglement.

Sector de la técnicaTechnical sector

La presente invención se refiere a un aparato de terapia láser de baja intensidad generado mediante entrelazamiento cuántico fotónico para el tratamiento de patologías médicas.The present invention relates to an apparatus of low intensity laser therapy generated by entanglement Photonic quantum for the treatment of medical pathologies.

Estado de la técnicaState of the art

El láser de baja intensidad se utiliza como un amplio agente terapéutico en analgesia, antiinfiamación, antiedema, regeneración tisular y bioestimulación, basado en sus efectos fotoquímicos y fotobiológicos, al realizar una transferencia de energía a los tejidos patológicos y reestableciendo el equilibrio celular.The low intensity laser is used as a broad therapeutic agent in analgesia, anti-inflammation, anti-edema, tissue regeneration and biostimulation, based on its effects Photochemical and photobiological, when transferring energy to pathological tissues and restoring balance mobile.

En los aparatos de terapia láser clase IIIA, IIIB y IV la energía se aplica perpendicularmente sobre el área de tratamiento del paciente mediante una única o dos sondas, en modalidad continua o pulsátil, aplicado con sonda manual o mediante barrido automático, emitiendo una sola longitud de onda o de varias simultáneamente.In class IIIA laser therapy devices, IIIB and IV energy is applied perpendicularly over the area of patient treatment using a single or two probes, in continuous or pulsatile mode, applied with manual probe or by automatic scanning, emitting a single wavelength or several simultaneously.

Los fotones del láser terapéutico tienen las mismas características físicas entre sí: monocromaticidad, coherencia espacio-temporal, direccionalidad, intensidad y polarización.The photons of the therapeutic laser have the same physical characteristics with each other: monochromaticity, spatio-temporal coherence, directionality, intensity and polarization.

Erwin Schrödinger inventó la palabra entrelazamiento y fue el primero que describió este fenómeno cuántico que consiste en que dos sistemas de los que conocemos sus estados por su respectiva representación entran en interacción física temporal y tras un tiempo de influencia mutua se separan, entonces ya no puede ser descrito como un producto de los estados de los sistemas individuales. Las principales características del entrelazamiento son que la medición de uno de ellos influye en el otro, constituyen una sola entidad y esta unidad transciende el espacio y la distancia física entre ellos. (Amir D. Aczel: Entrelazamiento. Ed. Crítica, Barcelona, 2004).Erwin Schrödinger invented the word entanglement and was the first to describe this phenomenon quantum that consists of two systems of which we know their states by their respective representation come into interaction temporary physics and after a time of mutual influence they separate, then it can no longer be described as a product of the states of the individual systems. The main characteristics of entanglement are that the measurement of one of them influences the other, they constitute a single entity and this unit transcends the space and physical distance between them. (Amir D. Aczel: Entanglement Critical Ed., Barcelona, 2004).

Albert Einstein y sus colaboradores Nathan Rosen y Boris Podolsky consideraron en 1935 la posibilidad de la producción de entrelazamiento cuántico considerando que según la mecánica cuántica, la medición de una partícula podía cambiar instantáneamente las propiedades de otra partícula sin importar lo lejos que estuvieran entre sí. Sin embargo, Einstein creía que esta acción fantasmal a distancia era demasiado absurda para darse en la naturaleza y que lo que sucede en un lugar no podía estar ligado directa e instantáneamente con lo que sucede en un lugar diferente. A esto se le denominó paradoja EPR. (Einstein. A, Podolsky B & Rosen N. Can quantum mechanical description of physical reality be considered complete?. Physical Review Letters. 47, 777-780, 1935).Albert Einstein and his collaborators Nathan Rosen and Boris Podolsky considered in 1935 the possibility of quantum entanglement production considering that according to the quantum mechanics, the measurement of a particle could change Instantly the properties of another particle no matter what far from each other. However, Einstein believed that this ghostly action at a distance was too absurd to occur in the nature and that what happens in a place could not be linked Directly and instantly with what happens in a different place. This was called the EPR paradox. (Einstein. A, Podolsky B & Rosen N. Can quantum mechanical description of physical reality be considered complete ?. Physical Review Letters. 47, 777-780, 1935).

Jhon Stuart Bell en 1964 para poner a prueba los interrogantes planteados por la paradoja EPR formuló el principio de desigualdad. La prueba se basa en fotones correlacionados en los que se detecta la polarización de la luz. Los cambios en un fotón afectan al otro fotón correlacionado. (Bell, J. S.: On the Einstein Podolsky Rosen paradox. Physics 1.195-200, 1964).Jhon Stuart Bell in 1964 to test the questions raised by the EPR paradox formulated the principle of inequality The test is based on photons correlated in the that polarization of light is detected. Changes in a photon They affect the other correlated photon. (Bell, J. S .: On the Einstein Podolsky Rosen paradox. Physics 1,195-200, 1964).

Alain Aspect en 1982 verificó la violación de la desigualdad de Bell proporcionando una convincente y completa evidencia de la existencia del fenómeno del entrelazamiento. (Aspect, A, Dalibard. J. & Roger. G. Experimental test of Bell's inequalities using time-varying analyzers. Physical Review Letters. 49. 1804-1807,1982.).Alain Aspect in 1982 verified the violation of the Bell inequality providing a convincing and complete evidence of the existence of the entanglement phenomenon. (Aspect, A, Dalibard. J. & Roger. G. Experimental test of Bell's  inequalities using time-varying analyzers. Physical Review Letters 49. 1804-1807,1982.).

El entrelazamiento cuántico de fotones se produce principalmente mediante el método de conversión paramétrica espontánea a la baja. Con éste método al incidir un haz láser sobre un cristal no lineal se consiguen fotones entrelazados con polarización opuesta entre ellos vertical-horizontal, con la mitad de energía y de menor frecuencia. (Andrew G. White. Daniel F.V. James, Philippe H. Eberhard and Pul G. Kwiat: Nonmaximally entangled status: production, characterization and utilization. Physical Review Letters. 83(16)3103-3107,1999). Sin embargo existen otros métodos para producir fotones entrelazados como cascada atómica o mediante semiconductor.The quantum entanglement of photons is mainly produced by the parametric conversion method spontaneous down. With this method when affecting a laser beam on a non-linear crystal interlaced photons are achieved with opposite polarization between them vertical-horizontal, with half of energy and of less frequently (Andrew G. White. Daniel F.V. James, Philippe H. Eberhard and Pul G. Kwiat: Nonmaximally entangled status: production, characterization and utilization. Physical Review Letters 83 (16) 3103-3107, 1999). Without however there are other methods to produce interlaced photons as an atomic cascade or by semiconductor.

Los fotones entrelazados producen patrones de interferencia al superponerse entre si y bilocación. (B. Hessmo et al.: Experimental demonstration of single photon nonlocality. Physical Review Letters. 92, 180401, 2004), (M.W. Mitchell, J.S. Lundeen & A.M. Steinberg: Super-resolving phase measurements with a multiphoton entangled
state. Nature. 429.161, 2004), (Philip Walther et al.: De Broglie wavelength of a non-local four-photon state. Nature. 429,158, 2004).
Interlaced photons produce interference patterns by overlapping each other and bilocation. (B. Hessmo et al .: Experimental demonstration of single photon nonlocality. Physical Review Letters. 92, 180401, 2004), (MW Mitchell, JS Lundeen & AM Steinberg: Super-resolving phase measurements with a multiphoton entangled
state. Nature 429.161, 2004), (Philip Walther et al .: De Broglie wavelength of a non-local four-photon state. Nature. 429,158, 2004).

Las aplicaciones actuales del entrelazamiento cuántico son teletransporte cuántico, criptografía cuántica y computación cuántica. (D. Bouwmeester et al. : Experimental quantum teleportation. Nature 390, 6660. 575-579, 1997), (Jenewein, T et al.: Quantum cryptography with entangled photons. Physical Review Letters. 84. 4729-4732, 2000).Current applications of quantum entanglement are quantum teleportation, quantum cryptography and quantum computing. (D. Bouwmeester et al .: Experimental quantum teleportation. Nature 390, 6660. 575-579, 1997), (Jenewein, T et al .: Quantum cryptography with entangled photons. Physical Review Letters. 84. 4729-4732, 2000) .

Sin embargo no existe ningún aparato de terapia láser que utilice haces de fotones entrelazados como agente terapéutico.However, there is no therapy device laser that uses interlocking photon beams as an agent therapeutic.

Explicación de la invenciónExplanation of the invention.

La presente invención se refiere a un nuevo aparato de terapia láser de baja intensidad en el que una vez generado el haz láser se produce posteriormente entrelazamiento cuántico mediante el cual se generan dos haces de fotones entrelazados. Un medio de obtención del entrelazamiento cuántico fotónico es mediante el método de conversión paramétrica espontánea a la baja que consiste en irradiar el haz láser sobre un cristal no lineal dividiéndose el haz láser en dos haces de fotones, uno polarizado verticalmente y el otro horizontalmente. Posteriormente estos dos haces de fotones entrelazados se pueden aplicar al área de tratamiento del enfermo mediante dos modalidades diferentes: una recogiendo ambos haces láser mediante sendos acopladores hacia dos sondas de fibra óptica para su aplicación en terapia láser interferencial y otra irradiando el tejido con los dos haces láser en paralelo en modalidad automática en barrido.The present invention relates to a new low intensity laser therapy apparatus in which once generated the laser beam is subsequently entangled quantum by which two beams of photons are generated intertwined A means of obtaining quantum entanglement photonic is by the spontaneous parametric conversion method downward that consists in irradiating the laser beam on a glass not linear dividing the laser beam into two beams of photons, one polarized vertically and the other horizontally. Later these two interwoven photon beams can be applied to the area of treatment of the patient through two different modalities: one collecting both laser beams through two couplers towards two fiber optic probes for application in laser therapy interferential and other irradiating the tissue with the two laser beams in parallel in automatic scanning mode.

Este nuevo aparato supone en relación con los existentes que la interacción entre los haces de fotones entrelazados no disminuye con la distancia, operan instantáneamente a mayor velocidad que la luz y conecta distintos lugares sin atravesar el espacio. La terapia láser mediante entrelazamiento cuántico permite la interferencia en el tejido de dos haces de láser de fotones entrelazados y permite irradiar sobre el tejido dos haces de láser de fotones entrelazados en paralelo mediante barrido automático.This new device assumes in relation to existing than the interaction between the photon beams interlaced does not decrease with distance, they operate instantly faster than light and connects different places without cross space. Laser therapy through entanglement quantum allows the interference in the tissue of two laser beams of interwoven photons and allows two beams to radiate on the tissue photon laser interlaced in parallel by scanning automatic.

Descripción de los dibujosDescription of the drawings

Figura 1 Descripción esquemática de un aparato para generar terapia láser mediante entrelazamiento cuántico fotónico mediante conversión paramétrica espontánea a la baja.Figure 1 Schematic description of an apparatus to generate laser therapy by quantum entanglement photonic by spontaneous parametric downward conversion.

Modo de realizaciónEmbodiment

La presente invención se refiere a un aparato de terapia láser de baja intensidad mediante un conjunto de dispositivos ópticos para generar entrelazamiento cuántico fotónico procedente de una única fuente de láser. El haz láser (1) incide perpendicularmente en un cristal no lineal (2) emitiendo dos haces de fotones entrelazados en dos direcciones distintas y mediante dos acopladores ópticos independientes (3 y 4) dirigen cada haz (5 y 6) a cada fibra óptica correspondiente (7 y 8), generando dos sondas láser independientes de fotones entrelazados (9 y 10).The present invention relates to an apparatus of low intensity laser therapy using a set of optical devices to generate photonic quantum entanglement from a single laser source. The laser beam (1) affects perpendicularly in a nonlinear crystal (2) emitting two beams of interwoven photons in two different directions and by two independent optical couplers (3 and 4) direct each beam (5 and 6) to each corresponding optical fiber (7 and 8), generating two probes interlaced photon independent lasers (9 and 10).

Aplicación industrialIndustrial application

En el área de electromedicina, fisioterapia, electroterapia, rehabilitación, estética, veterinaria y odontología.In the area of electromedicine, physiotherapy, electrotherapy, rehabilitation, aesthetics, veterinary and odontology.

Claims (4)

1. Aparato de terapia láser de baja intensidad caracterizado porque utiliza el método de conversión paramétrica espontánea a la baja mediante el cual el haz de láser (1) incide perpendicularmente en el centro de un cristal no lineal (2) y se producen dos haces de fotones entrelazados con polarización lineal opuesta vertical-horizontal (3 y 4) que son conducidos mediante acopladores (5 y 6) a cada fibra óptica (7 y 8) y que generan dos sondas láser independientes (9 y 10).1. Low intensity laser therapy apparatus characterized in that it uses the spontaneous downward parametric conversion method whereby the laser beam (1) perpendicularly affects the center of a nonlinear crystal (2) and two beams of interlaced photons with opposite vertical-horizontal linear polarization (3 and 4) that are driven by couplers (5 and 6) to each optical fiber (7 and 8) and that generate two independent laser probes (9 and 10). 2. Aparato de terapia láser según la reivindicación 1 caracterizado porque los dos haces de fotones entrelazados se pueden aplicar de manera manual o dirigir en paralelo a la superficie de tratamiento mediante barrido automático.2. Laser therapy apparatus according to claim 1 characterized in that the two interwoven photon beams can be applied manually or directed in parallel to the treatment surface by automatic scanning. 3. Aparato de terapia láser de baja intensidad según la reivindicación 1 caracterizado porque el método de obtención de haces de fotones entrelazados puede ser realizada mediante diferentes métodos.3. Low intensity laser therapy apparatus according to claim 1 characterized in that the method of obtaining interwoven photon beams can be performed by different methods. 4. Aparato de terapia láser de baja intensidad según la reivindicación 1 caracterizado porque el láser incidente (1) puede estar comprendido en la región del espectro electromagnético ultravioleta, luz visible o infrarrojos.4. Low intensity laser therapy apparatus according to claim 1 characterized in that the incident laser (1) can be comprised in the region of the ultraviolet electromagnetic spectrum, visible light or infrared.
ES200501343A 2005-06-03 2005-06-03 LASER THERAPY PROCEDURE AND APPLIANCE OF LOW INTENSITY THROUGH PHOTONIC QUANTICO INTERCHARGE. Active ES2267387B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES200501343A ES2267387B1 (en) 2005-06-03 2005-06-03 LASER THERAPY PROCEDURE AND APPLIANCE OF LOW INTENSITY THROUGH PHOTONIC QUANTICO INTERCHARGE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200501343A ES2267387B1 (en) 2005-06-03 2005-06-03 LASER THERAPY PROCEDURE AND APPLIANCE OF LOW INTENSITY THROUGH PHOTONIC QUANTICO INTERCHARGE.

Publications (2)

Publication Number Publication Date
ES2267387A1 true ES2267387A1 (en) 2007-03-01
ES2267387B1 ES2267387B1 (en) 2007-12-01

Family

ID=38293527

Family Applications (1)

Application Number Title Priority Date Filing Date
ES200501343A Active ES2267387B1 (en) 2005-06-03 2005-06-03 LASER THERAPY PROCEDURE AND APPLIANCE OF LOW INTENSITY THROUGH PHOTONIC QUANTICO INTERCHARGE.

Country Status (1)

Country Link
ES (1) ES2267387B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796477A (en) * 1997-02-27 1998-08-18 Trustees Of Boston University Entangled-photon microscopy, spectroscopy, and display
NL1013929C1 (en) * 1999-12-22 2001-06-25 Univ Groningen Remote sensing of optical absorption coefficient of object, e.g. patient's body part, uses separated beams of entangled pair photons
US6424665B1 (en) * 1999-04-30 2002-07-23 The Regents Of The University Of California Ultra-bright source of polarization-entangled photons
US20040042512A1 (en) * 2002-08-27 2004-03-04 Antia Lamas-Linares Method and apparatus for production of entangled states of photons
US20040042513A1 (en) * 2000-11-30 2004-03-04 Teich Malvin C. High-flux entangled photon generation via parametric processes in a laser cavity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796477A (en) * 1997-02-27 1998-08-18 Trustees Of Boston University Entangled-photon microscopy, spectroscopy, and display
US6424665B1 (en) * 1999-04-30 2002-07-23 The Regents Of The University Of California Ultra-bright source of polarization-entangled photons
NL1013929C1 (en) * 1999-12-22 2001-06-25 Univ Groningen Remote sensing of optical absorption coefficient of object, e.g. patient's body part, uses separated beams of entangled pair photons
US20040042513A1 (en) * 2000-11-30 2004-03-04 Teich Malvin C. High-flux entangled photon generation via parametric processes in a laser cavity
US20040042512A1 (en) * 2002-08-27 2004-03-04 Antia Lamas-Linares Method and apparatus for production of entangled states of photons

Also Published As

Publication number Publication date
ES2267387B1 (en) 2007-12-01

Similar Documents

Publication Publication Date Title
Nousch et al. Pair production in short laser pulses near threshold
Thompson et al. Modeling of light absorption in tissue during infrared neural stimulation
Casale et al. Pain and electrophysiological parameters are improved by combined 830-1064 high-intensity LASER in symptomatic carpal tunnel syndrome versus Transcutaneous Electrical Nerve Stimulation. A randomized controlled study.
Mosley et al. Direct measurement of the spatial-spectral structure of waveguided parametric down-conversion
Simon A guided tour of light beams: From lasers to optical knots
Pitkänen Are dark photons behind biophotons
ES2267387B1 (en) LASER THERAPY PROCEDURE AND APPLIANCE OF LOW INTENSITY THROUGH PHOTONIC QUANTICO INTERCHARGE.
Remizov et al. Parametrically driven hybrid qubit-photon systems: Dissipation-induced quantum entanglement and photon production from vacuum
KR20130055157A (en) Medical mask device using optical fiber
Wu et al. Generation of polarization-entangled photon pairs in a cold atomic ensemble
Huang et al. Simulation study on the optimization of photon energy delivered to the prefrontal cortex in low-level-light therapy using red to near-infrared light
Georgiev Mind efforts, quantum Zeno effect and environmental decoherence
Pereira Electromagnetic radiation, a living cell and the soul: A collated hypothesis
WO2022024406A1 (en) Ultraviolet light irradiation system
Holmes et al. Testing the limits of human vision with quantum states of light: past, present, and future experiments
Abd Elrashid et al. Effect of orange polarized light on post burn pediatric scar: a single blind randomized clinical trial
Law et al. Geometric stabilization of extended S= 2 vortices in two-dimensional photonic lattices: Theoretical analysis, numerical computation, and experimental results
Raymer The enabling role of optics and photonics in the national quantum initiative
Kawano 3D microtube and 2D flexible film waveguide devices
Victora et al. Measuring temporal integration in human vision with single photons
Paz et al. Propagation of the Four-Wave Mixing signal in a molecular system: stochastic considerations of the thermal bath.
Tavala et al. Measuring mouse retina response near the detection threshold to direct stimulation of photons with sub-poisson statistics
Rafeedi et al. Use of dye sensitizers for increased photoacoustic mechanosensation
Liao et al. Exploring the Intersection of Brain–Computer Interfaces and Quantum Sensing: A Review of Research Progress and Future Trends
Dong et al. Optical Waveguide Mode Selection Based Pattern-adjustable Optrode for Optogenetics

Legal Events

Date Code Title Description
EC2A Search report published

Date of ref document: 20070301

Kind code of ref document: A1

FG2A Definitive protection

Ref document number: 2267387B1

Country of ref document: ES