ES2264361A1 - Near-field lens for electromagnetic waves - Google Patents

Near-field lens for electromagnetic waves

Info

Publication number
ES2264361A1
ES2264361A1 ES200402998A ES200402998A ES2264361A1 ES 2264361 A1 ES2264361 A1 ES 2264361A1 ES 200402998 A ES200402998 A ES 200402998A ES 200402998 A ES200402998 A ES 200402998A ES 2264361 A1 ES2264361 A1 ES 2264361A1
Authority
ES
Spain
Prior art keywords
lens
electromagnetic waves
field lens
resonators
rings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
ES200402998A
Other languages
Spanish (es)
Other versions
ES2264361B1 (en
Inventor
Manuel Jose Freire Rosales
Ricardo Marques Sillero
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad de Sevilla
Original Assignee
Universidad de Sevilla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad de Sevilla filed Critical Universidad de Sevilla
Priority to ES200402998A priority Critical patent/ES2264361B1/en
Priority to PCT/ES2005/000670 priority patent/WO2006061451A2/en
Publication of ES2264361A1 publication Critical patent/ES2264361A1/en
Application granted granted Critical
Publication of ES2264361B1 publication Critical patent/ES2264361B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/04Refracting or diffracting devices, e.g. lens, prism comprising wave-guiding channel or channels bounded by effective conductive surfaces substantially perpendicular to the electric vector of the wave, e.g. parallel-plate waveguide lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/0026Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices having a stacked geometry or having multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/02Details
    • H01Q19/04Means for collapsing H-antennas or Yagi antennas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • A61N1/403Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/02Radiation therapy using microwaves

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

The lens focuses electromagnetic microwave field within specific region of tissue, without affecting the surrounding tissue. The temperature of the specific region is increased.

Description

Lente de campo cercano para ondas electromagnéticas.Near field lens for waves electromagnetic

La presente invención consiste en una lente que concentra o focaliza el campo cercano generado por una fuente de ondas electromagnéticas. La focalización da lugar a una imagen de la fuente que posee una resolución espacial inferior a la longitud de onda. Esta lente puede ser muy útil para la terapia médica de hipertermia por microondas. Esta terapia se basa en el incremento de temperatura que experimentan los tejidos orgánicos al absorber la radiación de microondas. Dado que la lente puede concentrar el campo electromagnético de microondas en una región muy concreta del espacio, puede ser utilizada para elevar la temperatura de una determinada región de un tejido sin afectar al tejido circundante. También puede ser útil, en general, para cualquier proceso que exija calentamiento localizado mediante aplicación de microondas o por cualquier otro medio. La invención puede ser empleada también para focalizar campos a la frecuencia de los megahercios o los terahercios.The present invention consists of a lens that concentrates or focuses the near field generated by a source of electromagnetic waves. Targeting results in an image of the source that has a spatial resolution less than the length cool. This lens can be very useful for medical therapy of microwave hyperthermia This therapy is based on the increase of temperature that organic tissues experience when absorbing microwave radiation Since the lens can concentrate the microwave electromagnetic field in a very specific region of space, can be used to raise the temperature of a certain region of a tissue without affecting the surrounding tissue. It can also be useful, in general, for any process that demand localized heating by microwave application or by any other means. The invention can also be used. to focus fields at the frequency of megahertz or terahertz

Antecedentes de la invenciónBackground of the invention

La presente invención se basa en los medios artificiales conocidos como metamateriales. Los metamateriales se componen de elementos metálicos resonantes dispuestos de forma periódica y con dimensiones mucho menores que la longitud de onda a la frecuencia de resonancia. En un metamaterial, el índice de refracción es negativo para las ondas electromagnéticas que se propagan en un cierto intervalo de frecuencias. Esto se debe a que la permitividad dieléctrica y la permeabilidad magnética del metamaterial son negativas, simultáneamente, en ese intervalo de frecuencias. Está establecido teóricamente que un fragmento plano de un metamaterial puede actuar como una lente focalizando el campo electromagnético generado por una fuente en una imagen con una resolución espacial inferior a la longitud de onda. Esto ha sido comprobado experimentalmente mediante dispositivos meramente demostrativos que no tienen aplicación práctica, ya que están constituidos por modelos circuitales planos que obedecen las mismas o similares ecuaciones. También está establecido teóricamente que un medio plano con permitividad negativa pero permeabilidad positiva puede actuar como una lente focalizando el campo cercano de una fuente. Así, se ha sugerido que un metal puede actuar como lente para el campo cercano a frecuencias ópticas. El mecanismo por el cual el metal puede actuar como lente consiste en la excitación en ambas caras del metal de ondas de superficie electrónicas o plasmones de superficie que se acoplan con el campo eléctrico cercano de la fuente. Esto sin embargo, no ha sido comprobado experimentalmente.The present invention is based on the means artificial known as metamaterials. The metamaterials are they consist of resonant metallic elements arranged in a way periodically and with dimensions much smaller than the wavelength a Resonance frequency In a metamaterial, the index of refraction is negative for electromagnetic waves that They propagate in a certain frequency range. This is because the dielectric permittivity and magnetic permeability of metamaterial are negative, simultaneously, in that interval of frequencies It is theoretically established that a flat fragment of a metamaterial can act as a lens focusing the field electromagnetic generated by a source in an image with a spatial resolution less than wavelength. This has been tested experimentally by merely devices demonstratives that have no practical application, since they are constituted by flat circuit models that obey them or similar equations. It is also theoretically established that a flat medium with negative permittivity but permeability positive can act as a lens focusing the near field of a fountain. Thus, it has been suggested that a metal can act as near field lens at optical frequencies. The mechanism by which metal can act as a lens consists of excitation on both sides of the metal of electronic surface waves or surface plasmons that mate with the electric field close to the source. This however, has not been proven. experimentally.

La presente invención consiste en la realización práctica de una lente plana que focaliza el campo cercano de una fuente que opera a la frecuencia de microondas. El mecanismo de focalización es similar al propuesto para la lente metálica a frecuencias ópticas en el sentido de que la fuente excita ondas de superficie en las dos caras de la lente, pero no obstante, no se trata de plasmones de superficie sino de ondas magnetoinductivas. Las ondas magnetoinductivas se propagan en estructuras periódicas que se componen de elementos resonantes acoplados magnéticamente entre sí y sus propiedades han sido investigadas recientemente. Los elementos resonantes mencionados se hallan acoplados inductivamente, esto es, las líneas de campo magnético creadas por las corrientes en un elemento resonante abrazan los elementos resonantes vecinos induciendo un cierto voltaje en éstos, de ahí el término magnetoinductivo. Las ondas magnetoinductivas sólo se propagan en una banda de paso determinada por la frecuencia de resonancia y la autoinducción de los elementos resonantes, así como por el coeficiente de inducción mutua entre elementos resonantes vecinos y la distancia entre éstos en la estructura periódica. Son conocidos elementos resonantes con estas características que consisten en un par de anillos metálicos abiertos y concéntricos o bien un par de anillos dispuestos uno encima del otro con aberturas en algún punto de los mismos al efecto de conseguir una estructura resonante.The present invention consists in the embodiment practice of a flat lens that focuses on the near field of a source that operates at microwave frequency. The mechanism of targeting is similar to that proposed for the metal lens to optical frequencies in the sense that the source excites waves of surface on both sides of the lens, but nonetheless it deals with surface plasmons but with magnetoinductive waves. Magnetoinductive waves propagate in periodic structures which are composed of magnetically coupled resonant elements each other and their properties have been recently investigated. The mentioned resonant elements are inductively coupled, that is, the magnetic field lines created by the currents in a resonant element embrace the neighboring resonant elements inducing a certain voltage in these, hence the term magnetoinductive Magnetoinductive waves only propagate in a pass band determined by the resonant frequency and the self-induction of the resonant elements, as well as by the coefficient of mutual induction between neighboring resonant elements and the distance between them in the periodic structure. Are known resonant elements with these characteristics that consist of a pair of open and concentric metal rings or a pair of rings arranged one above the other with openings at some point thereof to the effect of achieving a resonant structure.

Descripción de la invenciónDescription of the invention

La lente inventada consta de dos superficies planas y paralelas, separadas una distancia que constituye la anchura de la lente. En cada superficie se disponen resonadores de anillos metálicos 1 constituyendo una superficie bidimensional por la que pueden propagarse ondas magnetoinductivas. A una cierta distancia del centro de la lente se coloca una fuente de ondas electromagnéticas cuya frecuencia de operación se encuentre dentro del intervalo de frecuencias para las cuales se propagan las ondas magnetoinductivas en la lente. El campo próximo de esta fuente siempre puede expresarse como suma de armónicos de Fourier. Los armónicos de Fourier que son evanescentes y decaen exponencialmente en dirección a la lente excitan ondas magnetoinductivas en las dos superficies periódicas que constituyen la lente y se acoplan con ellas ya que el campo de las ondas magnetoinductivas es también evanescente en la dirección perpendicular a la lente. De esta manera las ondas magnetoiductivas restituyen las amplitudes que poseen los armónicos de Fourier evanescentes en el plano de la fuente en un plano situado en el lado opuesto al que se encuentra la fuente y que se denomina plano imagen. Los armónicos de Fourier que no son evanescentes, sino que se propagan sin atenuación en dirección a la lente, no excitan ondas magnetoinductivas y alcanzan el plano imagen sin que su fase haya variado apreciablemente. Ello se debe a que la distancia entre el plano fuente y el plano imagen es inferior a la longitud de onda. Esto último es la razón por la que la lente focaliza el campo cercano y no el campo lejano. Al disponer en el plano imagen de los armónicos de Fourier evanescentes con la misma amplitud que en el plano de la fuente y también los armónicos no evanescentes con la misma fase que en el plano de la fuente, el campo existente en el plano de la imagen es prácticamente el mismo que el existente en la fuente, por lo que se logra focalizar el campo de la fuente en el plano imagen, con una resolución espacial inferior a la longitud de onda.The invented lens consists of two surfaces flat and parallel, separated a distance that constitutes the lens width Resonators are arranged on each surface metal rings 1 constituting a two-dimensional surface by which can spread magnetoinductive waves. To a certain distance from the center of the lens is placed a source of waves electromagnetic whose operating frequency is within of the frequency range for which waves are propagated magnetoinductive lens. The next field of this source It can always be expressed as sum of Fourier harmonics. The Fourier harmonics that are evanescent and decay exponentially in the direction of the lens excite magnetoinductive waves in both periodic surfaces that constitute the lens and are coupled with them since the field of magnetoinductive waves is also evanescent in the direction perpendicular to the lens. In this way the magnetoductive waves restore the amplitudes that the Fourier harmonics evanescent in the plane of the source in a plane located on the opposite side of the source and which is called image plane. Fourier harmonics that are not evanescent, but propagate without attenuation in the direction of lens, do not excite magnetoinductive waves and reach the plane image without its phase having varied significantly. This is due to that the distance between the source plane and the image plane is less than the wavelength. The latter is the reason why the lens focuses on the near field and not the far field. To the arrange in the image plane of Fourier harmonics evanescent with the same amplitude as in the plane of the source and also non-evanescent harmonics with the same phase as in the source plane, the field existing in the image plane is practically the same as the one at the source, so it manages to focus the field of the source in the image plane, with a spatial resolution less than wavelength.

Breve descripción de los dibujosBrief description of the drawings

Para mayor comprensión de cuanto se ha expuesto, se acompañan unos dibujos en los que, esquemáticamente y solo a título de ejemplos no limitativos, se representan varias topologías de resonadores de anillos abiertos y una realización preferida de una lente plana de campo cercano para microondas.For more understanding of how much has been exposed, some drawings are accompanied in which, schematically and only to title of non-limiting examples, several topologies are represented of open ring resonators and a preferred embodiment of a flat near-field microwave lens.

En la figura 1 se muestran algunas topologías de resonadores de anillos abiertos (1a-1d), en espiral (1e) y rectangular (1f) que pueden ser utilizados para construir la lente.Figure 1 shows some topologies of open ring resonators (1a-1d), spiral (1e) and rectangular (1f) that can be used to build the lens

La figura 2 muestra la topología de una realización preferida para una lente plana de campo cercano para microondas junto con dos antenas para ilustrar el funcionamiento de la lente.Figure 2 shows the topology of a preferred embodiment for a flat near-field lens for microwave together with two antennas to illustrate the operation of the lens

La figura 3 muestra los resultados experimentales que corresponden a la medida del coeficiente de transmisión entre las dos antenas de la figura 2. Las medidas se muestran tanto en presencia como en ausencia de la lente para poner de manifiesto claramente el efecto localizador de la misma.Figure 3 shows the results experimental that correspond to the measure of the coefficient of transmission between the two antennas in figure 2. The measurements are show both in the presence and absence of the lens to put Clearly the localizing effect of it.

Descripción de una realización preferidaDescription of a preferred embodiment

La figura 1 muestra algunos ejemplos de resonadores de anillos abiertos 1 que pueden ser utilizados para construir la lente. Los resonadores 1 se caracterizan por presentar dos anillos abiertos 2 metálicos, es decir, con aberturas 3 en algún punto.Figure 1 shows some examples of 1 open ring resonators that can be used to Build the lens The resonators 1 are characterized by presenting two open rings 2 metallic, that is, with openings 3 in some point

La topología 1a comprende dos anillos abiertos 2 metálicos concéntricos cada uno de ellos con una abertura 3, estando dispuestas dichas aberturas 3 a 180º.Topology 1a comprises two open rings 2  concentric metal each with an opening 3, said openings 3 being arranged at 180 °.

La topología 1b comprende dos anillos abiertos 1 metálicos concéntricos cada uno de ellos con dos aberturas 3 dispuestas a 180º entre sí, estando dispuestas dichas aberturas 3 en la misma posición y estando unidos un extremo del anillo abierto 2 metálico con el extremo opuesto del otro.Topology 1b comprises two open rings 1 concentric metal each with two openings 3 arranged at 180 ° to each other, said openings 3 being arranged in the same position and one end of the open ring being attached 2 metallic with the opposite end of the other.

La topología 1c comprende dos anillos abiertos 2 metálicos superpuestos en diferentes planos, cada uno de ellos con una abertura 3, estando dispuestas dichas aberturas 3 a 180º.Topology 1c comprises two open rings 2  metallic superimposed on different planes, each of them with an opening 3, said openings 3 being arranged at 180 °.

La topología 1d comprende dos anillos abiertos 2 metálicos concéntricos cada uno de ellos con dos aberturas 3 dispuestas a 180º entre sí, estando dispuestas las aberturas 3 de un anillo a 90º respecto de las del otro.The topology 1d comprises two open rings 2 concentric metal each with two openings 3 arranged at 180 ° to each other, the openings 3 of one ring at 90º from the other.

La topología 1e comprende dos anillos abiertos 2 metálicos concéntricos en espiral, cada uno de ellos con una abertura 3, estando dispuestas dichas aberturas 3 en la misma posición y estando unido un extremo del anillo abierto 2 metálico con el extremo opuesto del otro.Topology 1e comprises two open rings 2  concentric spiral metal, each with a opening 3, said openings 3 being arranged therein position and one end of the open metal ring 2 being attached with the opposite end of the other.

La topología 1f comprende dos anillos abiertos 2 con forma de U metálicos rectangulares y no concéntricos con una abertura 3 cada uno de ellos, estando dispuestas dichas aberturas 3 a 180º.Topology 1f comprises two open rings 2 U-shaped rectangular and non-concentric metal with a opening 3 each of them, said openings 3 being arranged at 180º.

La figura 2 muestra a modo de ejemplo el esquema de una realización preferida para una lente plana de campo cercano de microondas 4. La lente 4 se realiza en la práctica disponiendo paralelamente uno frente a otro dos sustratos dieléctricos 4 cuadrados y planos de lado 7 cm, espesor h=0.254 mm y permitividad dieléctrica \varepsilon_{r}=10. La distancia de separación entre ambos sustratos es d=4 mm y esta distancia constituye la anchura de la lente. En cada uno de estos dos sustratos 4 se fotograba un conjunto de resonadores de anillos abiertos 1c de radio r=2 mm de tal manera que se tienen anillos abiertos 2 superpuestos en las dos caras de cada sustrato. Los resonadores 1c se disponen de forma periódica en ambos sustratos. La razón por la que se utilizan resonadores del tipo 1c es porque presentan un tamaño más reducido que otros resonadores para la misma frecuencia de resonancia. Para ilustrar el modo de funcionamiento de esta lente se muestran dos antenas en la Figura 2, una antena emisora 5 y una antena receptora 6. Ambas antenas 5 y 6 consisten en espiras cuadradas de lado 1 cm que se disponen una a cada lado de la lente. La antena emisora 5 se dispone a una distancia de 2 mm del sustrato 4 de la izquierda en la Figura 2 y es alimentada con una corriente cuya frecuencia es de 3.24 GHz, estando esta frecuencia dentro de la banda de frecuencias en la que se propagan las ondas magnetoinductivas en los
resonadores 1.
Figure 2 shows, by way of example, the scheme of a preferred embodiment for a flat microwave near-field lens 4. The lens 4 is practiced in practice by laying parallel to each other two dielectric substrates 4 square and flat 7 cm sideways , thickness h = 0.254 mm and dielectric permittivity \ varepsilon_ {r} = 10. The separation distance between both substrates is d = 4 mm and this distance constitutes the width of the lens. On each of these two substrates 4 a set of open ring resonators 1c of radius r = 2 mm was photographed such that open rings 2 are superimposed on both sides of each substrate. The resonators 1c are periodically arranged in both substrates. The reason why type 1c resonators are used is because they have a smaller size than other resonators for the same resonance frequency. To illustrate the mode of operation of this lens, two antennas are shown in Figure 2, a transmitting antenna 5 and a receiving antenna 6. Both antennas 5 and 6 consist of square turns of side 1 cm that are arranged one on each side of the lens. The transmitting antenna 5 is arranged at a distance of 2 mm from the substrate 4 on the left in Figure 2 and is fed with a current whose frequency is 3.24 GHz, this frequency being within the frequency band in which the magnetoinductive waves in the
resonators 1.

La Figura 3 muestra la medida del módulo del coeficiente de transmisión entre ambas antenas realizada desplazando la antena receptora 6 a lo largo de las direcciones X e Y mostradas en la Figura 2. Las medidas se han efectuado tanto en presencia de la lente como en ausencia de la misma para poner de manifiesto más claramente el efecto que produce la lente. Las medidas efectuadas con la lente muestran que el coeficiente de transmisión alcanza su valor máximo (más de 0.45) cuando la antena receptora 6 se encuentra en un punto situado a 2 mm del centro de la lente (en concreto el punto X=0 mm e Y=2 mm en la Figura 3), esto es, la misma distancia a la que se encuentra la antena emisora 5 de la lente 4. Además, el coeficiente de transmisión decae tanto a distancias mayores de Y=2 mm como a distancias menores a lo largo del eje Y, así como también decae lateralmente a lo largo del eje X alrededor de X=0 mm. Esto demuestra que la lente focaliza el campo de la antena emisora 5 en el punto X=0 mm, Y=2 mm. Si se compara además el valor del coeficiente de transmisión en este punto (de más de 0.45) con el que se mide en el mismo punto en ausencia de la lente (0.05) se constata que la potencia transmitida a ese punto es 10 veces mayor en presencia de la lente que en ausencia de la misma.Figure 3 shows the measurement of the module of the transmission coefficient between both antennas performed moving the receiving antenna 6 along the directions X and And shown in Figure 2. The measurements have been made both in presence of the lens as in the absence of it to put more clearly manifests the effect that the lens produces. The measurements made with the lens show that the coefficient of transmission reaches its maximum value (more than 0.45) when the antenna receiver 6 is located at a point 2 mm from the center of the lens (specifically the point X = 0 mm and Y = 2 mm in Figure 3), this is, the same distance at which the transmitting antenna 5 of lens 4. In addition, the transmission coefficient decays so much to distances greater than Y = 2 mm as at smaller distances along of the Y axis, as well as laterally decays along the X axis around X = 0 mm. This shows that the lens focuses the field of the transmitting antenna 5 at the point X = 0 mm, Y = 2 mm. If compared also the value of the transmission coefficient at this point (of more of 0.45) with which it is measured at the same point in the absence of lens (0.05) it is verified that the power transmitted to that point is 10 times greater in the presence of the lens than in the absence of the same.

Claims (6)

1. Lente de campo cercano para ondas electromagnéticas caracterizada por incorporar dos superficies paralelas separadas una cierta distancia que constituye la anchura de la lente, en cada una de las cuales se disponen resonadores de anillos metálicos (la, 1b, 1c, 1d, 1e, 1f) de manera que constituyen una estructura bidimensional en cada de las dos superficies paralelas, estando los resonadores acoplados magnéticamente entre sí en cada superficie.1. Near-field lens for electromagnetic waves characterized by incorporating two separate parallel surfaces a certain distance constituting the width of the lens, in each of which metal ring resonators are arranged (la, 1b, 1c, 1d, 1e, 1f) so that they constitute a two-dimensional structure on each of the two parallel surfaces, the resonators being magnetically coupled to each other on each surface. 2. Lente de campo cercano para ondas electromagnéticas según la reivindicación 1, caracterizada por el hecho de que la geometría de los resonadores puede tener variaciones tales que no afecten a su principio de funcionamiento, como el número de vueltas en las espirales o la forma de los anillos que pueden ser cuadrados o de otra forma poliédrica.2. Near-field lens for electromagnetic waves according to claim 1, characterized in that the geometry of the resonators can have variations such that they do not affect its operating principle, such as the number of turns in the spirals or the shape of the rings that can be square or otherwise polyhedral. 3. Lente de campo cercano para ondas electromagnéticas según las reivindicaciones 1 y 2, caracterizada por el hecho de que las superficies paralelas son metálicas y los resonadores consisten en ranuras practicadas en los planos de masa metálico, acoplados eléctricamente entre sí.3. Near-field lens for electromagnetic waves according to claims 1 and 2, characterized in that the parallel surfaces are metallic and the resonators consist of slots made in the planes of metallic mass, electrically coupled to each other. 4. Lente de campo cercano para ondas electromagnéticas según las reivindicaciones anteriores, caracterizada por el hecho de que las superficies paralelas en las que se disponen los anillos son planas.4. Near-field lens for electromagnetic waves according to the preceding claims, characterized in that the parallel surfaces on which the rings are arranged are flat. 5. Lente de campo cercano para ondas electromagnéticas según las reivindicaciones 1, 2 y 3, caracterizada por el hecho de que las superficies paralelas en las que se disponen los anillos son curvas.5. Near-field lens for electromagnetic waves according to claims 1, 2 and 3, characterized in that the parallel surfaces on which the rings are arranged are curved. 6. Lente de campo cercano para ondas electromagnéticas según las reivindicaciones anteriores, caracterizada por el hecho de que la frecuencia de operación de la lente puede estar en la banda de los megahercios, gigahercios o terahercios.6. Near-field lens for electromagnetic waves according to the preceding claims, characterized in that the frequency of operation of the lens may be in the megahertz, gigahertz or terahertz band.
ES200402998A 2004-12-10 2004-12-10 NEARBY FIELD LENS FOR ELECTROMAGNETIC WAVES. Active ES2264361B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES200402998A ES2264361B1 (en) 2004-12-10 2004-12-10 NEARBY FIELD LENS FOR ELECTROMAGNETIC WAVES.
PCT/ES2005/000670 WO2006061451A2 (en) 2004-12-10 2005-12-09 Near-field lens for electromagnetic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200402998A ES2264361B1 (en) 2004-12-10 2004-12-10 NEARBY FIELD LENS FOR ELECTROMAGNETIC WAVES.

Publications (2)

Publication Number Publication Date
ES2264361A1 true ES2264361A1 (en) 2006-12-16
ES2264361B1 ES2264361B1 (en) 2008-01-01

Family

ID=36578277

Family Applications (1)

Application Number Title Priority Date Filing Date
ES200402998A Active ES2264361B1 (en) 2004-12-10 2004-12-10 NEARBY FIELD LENS FOR ELECTROMAGNETIC WAVES.

Country Status (2)

Country Link
ES (1) ES2264361B1 (en)
WO (1) WO2006061451A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010018247A1 (en) * 2008-08-05 2010-02-18 Universidad De Sevilla Device for improving the sensitivity of receiver coils in medical magnetic resonance imaging
ES2344391A1 (en) * 2008-08-05 2010-08-25 Universidad De Sevilla Device for improving the sensitivity of receiving coils medical enimagenes by magnetic resonance. (Machine-translation by Google Translate, not legally binding)
CN110380223A (en) * 2019-07-10 2019-10-25 浙江大学 A kind of omnidirectional's perfect matching transparent material meeting uniaxial perfect matching layer model

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201017980A (en) * 2008-10-16 2010-05-01 Univ Tatung Antenna radome, and microstrip patch antenna comprising the antenna radome
DE102016104662A1 (en) * 2016-03-14 2017-09-14 Technische Universität Darmstadt Microwave applicator, system and method for minimally invasive treatment of biological tissue

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071774A2 (en) * 2000-03-17 2001-09-27 The Regents Of The University Of California Left handed composite media
WO2004020186A2 (en) * 2002-08-29 2004-03-11 The Regents Of The University Of California Indefinite materials
US20040151876A1 (en) * 2003-01-31 2004-08-05 Tanielian Minas H. Fabrication of electromagnetic meta-materials and materials made thereby

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071774A2 (en) * 2000-03-17 2001-09-27 The Regents Of The University Of California Left handed composite media
WO2004020186A2 (en) * 2002-08-29 2004-03-11 The Regents Of The University Of California Indefinite materials
US20040151876A1 (en) * 2003-01-31 2004-08-05 Tanielian Minas H. Fabrication of electromagnetic meta-materials and materials made thereby

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010018247A1 (en) * 2008-08-05 2010-02-18 Universidad De Sevilla Device for improving the sensitivity of receiver coils in medical magnetic resonance imaging
ES2344391A1 (en) * 2008-08-05 2010-08-25 Universidad De Sevilla Device for improving the sensitivity of receiving coils medical enimagenes by magnetic resonance. (Machine-translation by Google Translate, not legally binding)
CN110380223A (en) * 2019-07-10 2019-10-25 浙江大学 A kind of omnidirectional's perfect matching transparent material meeting uniaxial perfect matching layer model
CN110380223B (en) * 2019-07-10 2020-10-16 浙江大学 Omnidirectional perfect matching transparent material conforming to uniaxial perfect matching layer model

Also Published As

Publication number Publication date
WO2006061451A2 (en) 2006-06-15
ES2264361B1 (en) 2008-01-01
WO2006061451A3 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
Marinov et al. Toroidal metamaterial
Song et al. Smart table based on a metasurface for wireless power transfer
US8878741B2 (en) Tunable negative permeability based devices
ES2652213T3 (en) Antennas system and method to determine the passage of a movable object through a detection plane
ES2292491T3 (en) ANTENNA EQUIPPED WITH AN ASSEMBLY OF FILTER MATERIALS.
US10014903B2 (en) Non-reciprocal transmission apparatus with different backward and forward propagation constants, provided for circularly polarized wave antenna apparatus
US20140354498A1 (en) Slotted waveguide antenna for near-field focalization of electromagnetic radiation
WO2006061451A2 (en) Near-field lens for electromagnetic waves
JP5355584B2 (en) Antenna apparatus and magnetic resonance inspection apparatus
TWI491106B (en) Wireless communication antenna and wireless communication device
Aboualalaa et al. Experimental study of effectiveness of metasurface for efficiency and misalignment enhancement of near-field WPT system
KR102154338B1 (en) Slot waveguide assembly for temperature control and dryer system including same
ES2344391B1 (en) DEVICE FOR IMPROVING THE SENSITIVITY OF THE RECEIVING COILS MEDICAL IMAGES BY MAGNETIC RESONANCE.
Aziz A novel plasmonic waveguide for extraordinary field enhancement of spoof surface plasmon polaritons with low-loss feature
Khromova et al. Harnessing magneto-inductive waves for wireless power transfer
WO2022210696A1 (en) Diamond magneto-optical sensor
JP6998595B2 (en) Orbital angular momentum mode Pseudo-progressive wave resonator and orbital angular momentum antenna device
Li et al. A new insight into the radiation mechanism of fast and slow traveling waves
Ludwig et al. Focusing and steering for medical applications with magnetic near-field arrays and metasurfaces
Nguyen et al. A suboptimal approach to Huygens’ metasurfaces for wide-angle refraction
CN206758621U (en) Artificial surface plasmon coupling resonance cavity waveguide
ES2926348T3 (en) Antenna with partially saturated dispersive ferromagnetic substrate
US7777583B2 (en) Mode selective coupler for whispering-gallery dielectric resonator
Saha et al. Mode-splitting Phenomena and Enhanced Notch Depth in Microstrip Transmission Line Loaded with Two Similar Square-shaped Split Ring Resonators
KR101420260B1 (en) Wireless Power Transfer Apparatus using Artificial Perfect Magnetic Conductor

Legal Events

Date Code Title Description
EC2A Search report published

Date of ref document: 20061216

Kind code of ref document: A1

FG2A Definitive protection

Ref document number: 2264361B1

Country of ref document: ES