ES2255446A1 - Independent determination of location of GNSS receiver, involves integrating residual combinations free from geometries or phases of two GNSS carriers after extracting estimation of ionosphere refraction - Google Patents

Independent determination of location of GNSS receiver, involves integrating residual combinations free from geometries or phases of two GNSS carriers after extracting estimation of ionosphere refraction

Info

Publication number
ES2255446A1
ES2255446A1 ES200402947A ES200402947A ES2255446A1 ES 2255446 A1 ES2255446 A1 ES 2255446A1 ES 200402947 A ES200402947 A ES 200402947A ES 200402947 A ES200402947 A ES 200402947A ES 2255446 A1 ES2255446 A1 ES 2255446A1
Authority
ES
Spain
Prior art keywords
ionospheric
combination
orientation
gnss
gnss receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
ES200402947A
Other languages
Spanish (es)
Other versions
ES2255446B1 (en
Inventor
Manuel Hernandez Pajares
Jose Miguel Juan Zornoza
Jaime Sanz Subirana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universitat Politecnica de Catalunya UPC
Original Assignee
Universitat Politecnica de Catalunya UPC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politecnica de Catalunya UPC filed Critical Universitat Politecnica de Catalunya UPC
Priority to ES200402947A priority Critical patent/ES2255446B1/en
Publication of ES2255446A1 publication Critical patent/ES2255446A1/en
Application granted granted Critical
Publication of ES2255446B1 publication Critical patent/ES2255446B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • G01S5/145Using a supplementary range measurement, e.g. based on pseudo-range measurements

Abstract

The method involves integrating residual combinations free from geometries or phases of at least two GNSS carriers, after estimation of ionosphere refraction is extracted.

Description

Procedimiento de determinación autónoma de la orientación de un receptor GNSS, con una sola antena, a partir de su información ionosférica.Procedure for the autonomous determination of orientation of a GNSS receiver, with a single antenna, from Your ionospheric information.

Descripción del inventoDescription of the invention

La presente invención se refiere a una procedimiento de determinación autónoma (sin necesidad de receptores/antenas adicionales) de la orientación de un receptor de navegación por satélite ("Global Navigation Satellite System" -GNSS- en general, GPS, Glonass y Galileo en particular) a partir de su información ionosférica. En efecto, la combinación libre de geometría de las fases de dos portadoras observadas en dos frecuencias distintas y desde un satélite dado, viene dada por el término de refracción ionosférica junto a la rotación de fase o "wind-up" (debido al movimiento del usuario), además del "wind-up" determinista (debido al movimiento del satélite) y de términos constantes (debidos a la ambigüedad de la portadora en el momento del enganche de la señal y al retraso instrumental entre frecuencias). Precisamente sustrayendo una estimación del término ionosférico, bien a partir de correcciones externas (proporcionadas por ejemplo por una red de estaciones de referencia usando, entre otras posibles, la técnica WARTK, ver por ejemplo Hernández-Pajares et al. 2000) [Hernández-Pajares M, J.M. Juan, J. Sanz, O. Colombo, Application of ionospheric tomography to real-time GPS carrier-phase ambiguities resolution, at scales of 400-1000 km and with high geomagnetic activity, Geophysical Research Letters, Vol. 27, No. 13, p. 2009-2012, 2000], o bien a partir de un filtro adaptativo, el término de rotación del usuario se aísla e integrado nos proporciona la orientación respecto de una valor inicial arbitrario.The present invention relates to an autonomous determination procedure (without the need for additional receivers / antennas) of the orientation of a satellite navigation receiver ("Global Navigation Satellite System" -GNSS- in general, GPS, Glonass and Galileo in particular ) from your ionospheric information. Indeed, the geometry-free combination of the phases of two carriers observed at two different frequencies and from a given satellite is given by the term ionospheric refraction next to the phase rotation or "wind-up" (due to the movement of the user), in addition to the deterministic "wind-up" (due to the movement of the satellite) and constant terms (due to the ambiguity of the carrier at the time of the signal hitch and the instrumental delay between frequencies). Precisely subtracting an estimate of the ionospheric term, either from external corrections (provided for example by a network of reference stations using, among other possible, the WARTK technique, see for example Hernández-Pajares et al . 2000) [Hernández-Pajares M, JM Juan, J. Sanz, O. Colombo, Application of ionospheric tomography to real-time GPS carrier-phase ambiguities resolution, at scales of 400-1000 km and with high geomagnetic activity, Geophysical Research Letters, Vol. 27, No 13, p. 2009-2012, 2000], or from an adaptive filter, the term of rotation of the user is isolated and integrated provides us with guidance regarding an arbitrary initial value.

Sector de la técnicaTechnical sector

El procedimiento de determinación autónoma de la orientación de un receptor GNSS, con una sola antena, a partir de su información ionosférica, se da en el contexto de la navegación electrónica precisa a través de señales de satélites (por ejemplo de los propios satélites GPS y de los futuros Galileo), que se ven refractadas por la Ionosfera y afectadas por la rotación del usuario (en el caso de la fase de la portadora).The procedure for autonomous determination of orientation of a GNSS receiver, with a single antenna, from its ionospheric information is given in the context of navigation precise electronics through satellite signals (for example from the GPS satellites themselves and the future Galileo), which are seen refracted by the Ionosphere and affected by the rotation of the user (in the case of the carrier phase).

Estado de la técnicaState of the art

Los usuarios GNSS utilizan típicamente un único receptor y antena GNSS para obtener su posición tridimensional. Y hasta ahora no era posible con ese equipo básico (usando por ejemplo la relación Señal-Ruido) obtener información de los cambios de orientación del usuario, en particular el del movimiento de rotación alrededor del eje de simetría (o "boresight") de la antena. Para ello se tenía que usar adicionalmente un sensor ad-hoc, como giróscopos y sensores inerciales, o alternativamente varios (al menos 3) receptores y antenas conectados entre sí. En cualquier caso el producto final queda encarecido sustancialmente tanto por el "hardware" adicional necesario como por el "software" de integración de sensores.GNSS users typically use a single GNSS receiver and antenna to obtain its three-dimensional position. Y until now it was not possible with that basic equipment (using by example the signal-to-noise ratio) get information of user orientation changes, in particular the rotational movement around the axis of symmetry (or "boresight") of the antenna. For this you had to use additionally an ad-hoc sensor, such as gyroscopes and inertial sensors, or alternatively several (at least 3) receivers and antennas connected to each other. In any case the final product is substantially increased both by the additional "hardware" required as per the "software" of sensor integration

El invento presentado en este documento viene a proporcionar una nueva funcionalidad a los receptores GNSS o "posicionadores" tridimensionales por satélite: la de giróscopos basados en la información libre de geometría, que contiene la orientación junto al retraso ionosférico, proporcionada por las fases de las portadoras en dos frecuencias. Es lo que llamaremos "giroscopio ionosférico", y no supone "hardware" adicional, siendo el software adicional necesario generalmente sencillo e integrado en el propio "software" de navegación del usuario.The invention presented in this document comes to provide new functionality to GNSS receivers or three-dimensional satellite "positioners": gyroscopes based on geometry-free information, which contains the orientation next to the ionospheric delay, provided by the phases of the carriers in two frequencies. It is what we will call "ionospheric gyroscope", and it does not mean additional "hardware", the additional software being necessary generally simple and integrated into the "software" itself User navigation

Descripción de la invenciónDescription of the invention

El procedimiento de determinación autónoma de la orientación de un receptor GNSS, con una sola antena, a partir de su información ionosférica, consiste en:The procedure for autonomous determination of orientation of a GNSS receiver, with a single antenna, from Your ionospheric information consists of:

1.one.
Adoptar la combinación libre de geometría (o combinación ionosférica) de las fases de dos portadoras observadas en dos frecuencias distintas desde un satélite dado.Adopt the free combination of geometry (or ionospheric combination) of the phases of two carriers observed on two different frequencies from a satellite dice.

2.2.
Sustraer los términos de refracción ionosférica y rotación de fase debido al movimiento del satélite, que constituyen la combinación ionosférica, junto a la rotación de fase o "wind-up" del usuario (nuestra incógnita principal) y junto a términos constantes, debidos a la ambigüedad de la portadora y al retraso instrumental entre frecuencias.Subtract the terms of refraction ionospheric and phase rotation due to satellite movement, which constitute the ionospheric combination, together with the rotation of phase or "wind-up" of the user (our main unknown) and together with constant terms, due to the carrier ambiguity and instrumental delay between frequencies

3.3.
Estimar la refracción ionosférica a sustraer bien a partir de correcciones externas (proporcionadas por ejemplo por una red de estaciones de referencia usando WARTK o cualquier otra técnica de determinación ionosférica, o alternativamente un modelo climático de la ionosfera, o una combinación de ambos), o bien internamente a partir de un filtro adaptativo.Estimate the ionospheric refraction to subtract well from external corrections (provided by example by a network of reference stations using WARTK or any other ionospheric determination technique, or alternatively a climate model of the ionosphere, or a combination of both), or internally from a filter adaptive

4.Four.
Aislar el término de rotación del usuario, sustrayendo la refracción ionosférica a la combinación ionosférica.Isolate the rotation term from user, subtracting ionospheric refraction to the combination ionospheric

5.5.
Integrar el término de rotación, para obtener la orientación, referida a la que tenía el usuario en el momento de la conexión del receptor.Integrate the rotation term, to get the orientation, referred to the one the user had in the moment of connection of the receiver.
Breve descripción de la figuraBrief description of the figure

Fig. 1. Se presenta un esquema del procedimiento de determinación autónoma de la orientación de un receptor GNSS, con una sola antena, a partir de su información ionosférica:Fig. 1. An outline of the procedure is presented for autonomous determination of the orientation of a GNSS receiver, with a single antenna, based on its ionospheric information:

1: Fase portadora GNSS No. 11: GNSS No. 1 carrier phase

2: Fase portadora GNSS No. 22: GNSS carrier phase No. 2

3: Combinación ionosférica3: ionospheric combination

4: Cambio de orientación de satélites GNSS (predicho)4: Change orientation of GNSS satellites (foretold)

5: Refracción ionosférica (predicha o estimada)5: Ionospheric refraction (predicted or Dear)

6: Orientación6: Orientation

Descripción de una realización preferidaDescription of a preferred embodiment

A continuación se describe una realización del procedimiento de determinación autónoma de la orientación de un receptor GNSS, con una sola antena, a partir de su información ionosférica. Procedimiento fácilmente implementable, en la práctica, con los equipos GPS y GLONASS actualmente disponibles, así como con los futuros equipos Galileo y GPS modernizados.An embodiment of the procedure for autonomous determination of the orientation of a GNSS receiver, with a single antenna, based on your information ionospheric Easily implementable procedure, in practice, with the GPS and GLONASS equipment currently available, as well as with the future modernized Galileo and GPS equipment.

1.one.
Se calculará la combinación libre de geometría (también llamada combinación ionosférica) de las fases de las portadoras medidas en dos frecuencias distintas para cada satélite a la vista, desde un receptor GNSS determinado.Be calculate the geometry free combination (also called ionospheric combination) of the carrier phases measured in two different frequencies for each satellite in sight, from a GNSS receiver determined.

2.2.
Se sustraerá al observable adoptado (la combinación ionosférica) la rotación de fase debida al cambio de orientación del satélite, fácilmente predecible a partir de sus elementos orbitales.Be subtract the observable adopted (the ionospheric combination) the phase rotation due to satellite orientation change, easily predictable from its orbital elements.

3.3.
Se modelará la dependencia ionosférica contenida en el observable adoptado en el anterior punto para, integrando el residuo resultante, obtener una estimación de la orientación, referida a la orientación inicial que el usuario tenía cuando conectó su receptor.Be will model the ionospheric dependence contained in the observable adopted in the previous point for, integrating the residue resulting, obtain an estimate of the orientation, referred to the initial orientation that the user had when he connected his receiver.

4.Four.
La dependencia ionosférica contenida en el combinación ionosférica se podrá obtener a partir de un modelo externo o de un modelado interno.The ionospheric dependence contained in the ionospheric combination is can be obtained from an external model or modeling internal.

5.5.
La dependencia ionosférica podrá obtenerse a partir de un modelado externo al del usuario, como por ejemplo a partir de medidas de estaciones de control o referencia de sistemas de aumentación (como WARTK, WADGPS, SBAS, multiestación RTK o VRS), o puede ser proporcionada por modelos climáticos como el IRI, PIM o NeQuick entre otros, o por una combinación de ambas estrategias.The ionospheric dependence can be obtained from modeling external to that of the user, such as from measures of control stations or augmentation system reference (such as WARTK, WADGPS, SBAS, multistation RTK or VRS), or it can be provided by weather models such as IRI, PIM or NeQuick among others, or by a combination of both strategies.

6.6.
La dependencia ionosférica también puede estimarse internamente por el usuario, en forma de un pequeño filtro adaptativo, gracias a la dependencia respecto de la distinta zona de la Ionosfera atravesada por el rayo observado para cada satélite y, sobre todo, gracias a la dependencia de su geometría (de la elevación en particular).The ionospheric dependence can also be estimated internally by the user, in the form of a small adaptive filter, thanks to the dependence on the different area of the Ionosphere crossed for the lightning observed for each satellite and, above all, thanks to the dependence of its geometry (on the elevation in particular).

Claims (3)

1. Procedimiento de determinación autónoma de la orientación de un receptor GNSS, con una sola antena, a partir de su información ionosférica, caracterizado por comprender las siguientes etapas:1. Procedure for the autonomous determination of the orientation of a GNSS receiver, with a single antenna, based on its ionospheric information, characterized by comprising the following steps:
a.to.
Cálculo de la combinación libre de geometría (o combinación ionosférica) de las fases de dos portadoras observadas en dos frecuencias distintas desde un satélite dado,Calculation of the free combination of geometry (or ionospheric combination) of the phases of two carriers observed on two different frequencies from a satellite  dice,
b.b.
Sustracción de los términos de refracción ionosférica y rotación de fase debido al movimiento del satélite,Subtraction of the terms of ionospheric refraction and phase rotation due to the movement of the satelite,
c.C.
Estimación de la refracción ionosférica a sustraer,Ionospheric refraction estimation to subtract,
d.d.
Aislamiento del término de rotación del usuario, sustrayendo la refracción ionosférica a la combinación ionosférica,Isolation of the rotation term of the user, subtracting ionospheric refraction to the combination ionospheric,
e.and.
Integración del término de rotación, para obtener la orientación, referida a la que tenía el usuario en el momento de la conexión del receptor.Integration of the rotation term, to obtain the orientation, referred to the one the user had in the moment of connection of the receiver.
2. Procedimiento de determinación autónoma de la orientación de un receptor GNSS, con una sola antena, a partir de su información ionosférica según la reivindicación 1, caracterizado porque la dependencia ionosférica contenida en la combinación ionosférica se podrá obtener a partir de un modelado externo al del usuario, como por ejemplo a partir de medidas de estaciones de control o referencia de sistemas de aumentación (como WARTK, WADGPS, SBAS, multiestación RTK o VRS), o a partir de modelos climáticos como el IRI, PIM o NeQuick entre otros, o por una combinación de ambas estrate-
gias.
2. Procedure for the autonomous determination of the orientation of a GNSS receiver, with a single antenna, from its ionospheric information according to claim 1, characterized in that the ionospheric dependence contained in the ionospheric combination can be obtained from a modeling external to the of the user, such as from measurements of control stations or reference of augmentation systems (such as WARTK, WADGPS, SBAS, multi-station RTK or VRS), or from climatic models such as IRI, PIM or NeQuick among others, or by a combination of both strategies
gias
3. Procedimiento de determinación autónoma de la orientación de un receptor GNSS, con una sola antena, a partir de su información ionosférica según la reivindicación 1, caracterizado porque la dependencia ionosférica contenida en la combinación ionosférica se podrá obtener a partir de un modelado interno, en forma de un pequeño filtro adaptativo, gracias a la dependencia respecto de la distinta zona de la Ionosfera atravesada por el rayo observado para cada satélite y, sobre todo, gracias a la dependencia de su geometría (de la elevación en parti-
cular).
3. Procedure for the autonomous determination of the orientation of a GNSS receiver, with a single antenna, from its ionospheric information according to claim 1, characterized in that the ionospheric dependence contained in the ionospheric combination can be obtained from an internal modeling, in the form of a small adaptive filter, thanks to the dependence on the different zone of the Ionosphere crossed by the ray observed for each satellite and, above all, thanks to the dependence of its geometry (on the elevation in part
cular).
ES200402947A 2004-12-03 2004-12-03 PROCEDURE FOR AUTONOMOUS DETERMINATION OF THE ORIENTATION OF A GNSS RECEIVER, WITH A SINGLE ANTENNA, FROM IONOSPHERIC INFORMATION. Active ES2255446B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES200402947A ES2255446B1 (en) 2004-12-03 2004-12-03 PROCEDURE FOR AUTONOMOUS DETERMINATION OF THE ORIENTATION OF A GNSS RECEIVER, WITH A SINGLE ANTENNA, FROM IONOSPHERIC INFORMATION.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200402947A ES2255446B1 (en) 2004-12-03 2004-12-03 PROCEDURE FOR AUTONOMOUS DETERMINATION OF THE ORIENTATION OF A GNSS RECEIVER, WITH A SINGLE ANTENNA, FROM IONOSPHERIC INFORMATION.

Publications (2)

Publication Number Publication Date
ES2255446A1 true ES2255446A1 (en) 2006-06-16
ES2255446B1 ES2255446B1 (en) 2007-07-01

Family

ID=36593297

Family Applications (1)

Application Number Title Priority Date Filing Date
ES200402947A Active ES2255446B1 (en) 2004-12-03 2004-12-03 PROCEDURE FOR AUTONOMOUS DETERMINATION OF THE ORIENTATION OF A GNSS RECEIVER, WITH A SINGLE ANTENNA, FROM IONOSPHERIC INFORMATION.

Country Status (1)

Country Link
ES (1) ES2255446B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1017621C1 (en) * 2001-03-16 2002-09-17 Datawell Nv Signal analysis system which is used to compensate for errors in global positioning system, caused by atmospheric conditions
EP1243940A2 (en) * 2001-03-19 2002-09-25 Saab Ericsson Space AB Apparatus and method for performing open loop tracking of a signal
WO2003069366A1 (en) * 2002-02-13 2003-08-21 Sirf Technology, Inc. Ionospheric error prediction and correction in satellite positioning systems
RU2237257C2 (en) * 2002-01-25 2004-09-27 Закрытое акционерное общество "Конструкторское бюро навигационных систем" Method for elimination of influence of troposheric and ionospheric errors of measurement in single-frequency receivers of satellite navigation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1017621C1 (en) * 2001-03-16 2002-09-17 Datawell Nv Signal analysis system which is used to compensate for errors in global positioning system, caused by atmospheric conditions
EP1243940A2 (en) * 2001-03-19 2002-09-25 Saab Ericsson Space AB Apparatus and method for performing open loop tracking of a signal
RU2237257C2 (en) * 2002-01-25 2004-09-27 Закрытое акционерное общество "Конструкторское бюро навигационных систем" Method for elimination of influence of troposheric and ionospheric errors of measurement in single-frequency receivers of satellite navigation
WO2003069366A1 (en) * 2002-02-13 2003-08-21 Sirf Technology, Inc. Ionospheric error prediction and correction in satellite positioning systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RU 2237257 C2 27.09.2004, resumen. 1-3 *

Also Published As

Publication number Publication date
ES2255446B1 (en) 2007-07-01

Similar Documents

Publication Publication Date Title
CN105911567B (en) A kind of GNSS system integrity appraisal procedure and device
EP2570823B1 (en) Method and apparatus for differential global positioning system (DGPS) - based real time attitude determination (RTAD)
TW591241B (en) Improved positioning and data integrating method and system thereof
US7292185B2 (en) Attitude determination exploiting geometry constraints
US8203482B2 (en) Method for autonomous determination of protection levels for GNSS positioning based on navigation residuals and an isotropic confidence ratio
CN206002114U (en) A kind of hybrid navigation equipment based on Multi-source Information Fusion
US10234565B2 (en) Global navigation satellite system receiver convergence selection
US11525926B2 (en) System and method for position fix estimation using two or more antennas
He GNSS kinematic position and velocity determination for airborne gravimetry
Wang et al. GPS/INS/Pseudolite integration: Concepts, simulation and testing
KR100938731B1 (en) Self-Positioning System of Two-way Pseudolite
Grejner-Brzezinska et al. Positioning and tracking approaches and technologies
ES2255446B1 (en) PROCEDURE FOR AUTONOMOUS DETERMINATION OF THE ORIENTATION OF A GNSS RECEIVER, WITH A SINGLE ANTENNA, FROM IONOSPHERIC INFORMATION.
Ma et al. Positional accuracy of GPS satellite almanac
Lim et al. Land vehicle positioning in urban area by integrated GPS/BeiDou/OBD-II/MEMS IMU
Ding Optimal integration of GPS with inertial sensors: Modelling and implementation
KR20140142610A (en) Location measurement device and method
Kirkko-Jaakkola et al. Improving TTFF by two-satellite GNSS positioning
Tran et al. Heading Estimation for Autonomous Robot Using Dual-Antenna GPS
Traugott et al. Conceptual approach for precise relative positioning with miniaturized GPS loggers and experimental results
Wang et al. Research on the incomplete constellation GPS positioning algorithm aided by altitude
TW536637B (en) Improved positioning and data integrating method and system thereof
GUERMAH Avis de soutenance de thèse
Nagarajoo DGPS positional improvement by mitigating the ionospheric horizontal gradient using GPSurvey
Opaluwa et al. The Effect of Gps Satellite Geometry on The Precision Of DGPS Positioning İn Minna, Nigeria

Legal Events

Date Code Title Description
EC2A Search report published

Date of ref document: 20060616

Kind code of ref document: A1

FG2A Definitive protection

Ref document number: 2255446B1

Country of ref document: ES