ES1286839U - Concrete resistance monitoring device in a structure (Machine-translation by Google Translate, not legally binding) - Google Patents

Concrete resistance monitoring device in a structure (Machine-translation by Google Translate, not legally binding) Download PDF

Info

Publication number
ES1286839U
ES1286839U ES202230012U ES202230012U ES1286839U ES 1286839 U ES1286839 U ES 1286839U ES 202230012 U ES202230012 U ES 202230012U ES 202230012 U ES202230012 U ES 202230012U ES 1286839 U ES1286839 U ES 1286839U
Authority
ES
Spain
Prior art keywords
data
concrete
sensor
monitoring device
translation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
ES202230012U
Other languages
Spanish (es)
Other versions
ES1286839Y (en
Inventor
Pérez Wladimiro Arce
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmos Engineering SL
Cosmos Eng S L
Original Assignee
Cosmos Engineering SL
Cosmos Eng S L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmos Engineering SL, Cosmos Eng S L filed Critical Cosmos Engineering SL
Priority to ES202230012U priority Critical patent/ES1286839Y/en
Publication of ES1286839U publication Critical patent/ES1286839U/en
Application granted granted Critical
Publication of ES1286839Y publication Critical patent/ES1286839Y/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

Concrete resistance monitoring device in a structure of those employed the maturity method characterized by allowing wireless transmission of at least one thermistor type sensor (3) fixed to the armature (4) of a structure and connected to at least one reading and transmission device (1) external to the formwork, of a wiring (2) that is anchored to the armor between sensor and transmitter, from at least one concentrator or gateway that sends the data through the Internet to a server where they are processed and stored in a database; This database contains the calibration parameters according to the maturity method, using software, these data are accessible through a computer, tablet or smartphone. (Machine-translation by Google Translate, not legally binding)

Description

Dispositivo de monitorización de la resistencia del hormigón en una estructuraConcrete strength monitoring device in a structure

De aplicación en el sector de la construcción.Application in the construction sector.

ObjetoObject

Obtener mediciones en tiempo real, de forma remota y no destructiva de la resistencia del hormigón.Obtain real-time, remote and non-destructive measurements of concrete strength.

Estado de la técnicaState of the art

Es conocido que para analizar la resistencia de un hormigón, los profesionales de la construcción cuando proyectan y más tarde ejecutan edificios u otras estructuras recurren a diferentes pruebas para conocer el comportamiento final de la estructura en base a la naturaleza específica de esta, variando los requerimientos por ejemplo para un uso residencial, o un edificio de pública concurrencia entre otros. Es habitual que la resistencia a la compresión se mida tomando diferentes probetas, para determinar que las propiedades de la mezcla de hormigón suministrada satisfacen los requerimientos exigidos. Estos ensayos realizados en laboratorios especializados requieren en general de al menos dos pruebas de resistencia curadas de manera convencional, que en la mayoría de los casos es de 28 días.It is known that in order to analyze the strength of concrete, construction professionals, when designing and later executing buildings or other structures, resort to different tests to determine the final behavior of the structure based on its specific nature, varying the requirements. for example for residential use, or a public building among others. It is common for the compressive strength to be measured by taking different specimens, to determine that the properties of the supplied concrete mix meet the required requirements. These tests carried out in specialized laboratories generally require at least two conventionally cured resistance tests, which in most cases is 28 days.

Desafortunadamente, diferentes desastres constructivos motivaron a los investigadores a perfeccionar una técnica que permitiera a los equipos de construcción estimar la resistencia del hormigón in situ, midiendo la temperatura a la que se cura el hormigón frente a las muestras curadas en laboratorio, determinado en el método de la madurez. La madurez se calcula mediante el seguimiento de cambios en la temperatura del hormigón fresco con el tiempo. Dado que cada mezcla de hormigón tiene su propia relación madurez-resistencia, se puede utilizar la madurez para estimar la resistencia de esa mezcla en cualquier momento después de ser vertida. Cuando se conoce la madurez de un determinado hormigón, se puede utilizar esa relación específica para hacer una estimación fiable de su resistencia. Este método fue por primera vez especificado en 1987 bajo la norma ASTM C 1074.Unfortunately, different construction disasters motivated researchers to perfect a technique that would allow construction teams to estimate the strength of concrete in situ, by measuring the temperature at which the concrete cures compared to samples cured in the laboratory, determined in the method of maturity. Maturity is calculated by monitoring changes in fresh concrete temperature over time. Since each concrete mix has its own maturity-strength relationship, the maturity can be used to estimate the strength of that mix at any time after it is poured. When the maturity of a given concrete is known, that specific relationship can be used to make a reliable estimate of its strength. This method was first specified in 1987 under ASTM C 1074.

Son conocidos dispositivos empleados para conocer la temperatura del hormigón. Actualmente estos constituyen una unidad que integra un sensor junto con un transmisor, estos dispositivos se introducen por completo en el hormigón, que al tratarse de un elemento acuoso y con cambios en sus constantes dieléctricas, hacen que los sistemas como mucho, sino manuales, sean de extracción de datos de corta distancia, por lo general no más de 5 metros, requiriendo por tanto de intervención humana constante. Además, el embeber por completo un dispositivo de transmisión y no solo un sensor, crea una cámara bastante grande alrededor de la armadura, que disminuye las capacidades estructurales del material conforme a más sensores se instalen; en el caso que por su ubicación se puedan extraer se requiere de una intervención posterior, ya que los elementos instalados dejan desperfectos en la estructura, obligando al uso de morteros de reparación en los puntos de instalación del sistema. De otro lado la cámara necesaria para albergar el sensor y su transmisor implica que no se esté realmente midiendo en el medio ya que la cámara de aire y la propia carcasa alteran los resultados. Otras soluciones para evitar estos desperfectos y evitar los efectos en la estructura que crean estas oquedades son su instalación superficial, con lo cual las medidas se hacen sin penetrar demasiado en la estructura no siendo representativas. Devices used to know the temperature of the concrete are known. Currently these constitute a unit that integrates a sensor together with a transmitter, these devices are completely inserted into the concrete, which, being an aqueous element and with changes in its dielectric constants, make the systems, at best, if not manual, be short-distance data extraction, generally no more than 5 meters, therefore requiring constant human intervention. Furthermore, fully embedding a transmitting device and not just a sensor creates a fairly large chamber around the armor, which decreases the structural capabilities of the material as more sensors are installed; In the event that, due to their location, they can be extracted, a subsequent intervention is required, since the installed elements leave damage to the structure, forcing the use of repair mortars at the system installation points. On the other hand, the chamber necessary to house the sensor and its transmitter implies that it is not really being measured in the middle, since the air chamber and the casing itself alter the results. Other solutions to avoid these damages and avoid the effects on the structure that these cavities create are its surface installation, with which the measurements are made without penetrating too much into the structure, not being representative.

Próximos al campo de la invención y lo descrito se conocen diferentes desarrollos: la patente ES294986A1 cuyo titular es el Consejo superior de investigaciones científicas, describe un sistema de monitoreo en el que se emplea un sensor ultrasónico, un sensor de temperatura y otro de medición de la humedad relativa, estos dos últimos situados en una cámara, con lo cual como ya se ha comentado los sensores no están en contacto directo con el hormigón, también se concibe para el procesado y visualización en obra. La patente ES2365356 solicitada por Smart Structures, Inc (US) utiliza mediciones de conductividad y temperatura para obtener el grado de secado de materiales y de nuevo el sistema de medición es local, los sensores son conectados por cable a un sistema indicador que muestra la medición. También es conocido un procedimiento para formar un pilar con capacidad de monitorización como recoge el documento de patente ES2410864 de nuevo del solicitante Smart Structures, Inc (US), en cuyo caso la sensorización es realizada mediantes galgas extensiométricas.Close to the field of the invention and what has been described, different developments are known: patent ES294986A1 whose owner is the Higher Council for Scientific Research, describes a monitoring system in which an ultrasonic sensor, a temperature sensor and another for measurement of temperature are used. relative humidity, these last two located in a chamber, with which, as already mentioned, the sensors are not in direct contact with the concrete, is also conceived for on-site processing and visualization. Patent ES2365356 requested by Smart Structures, Inc (US) uses conductivity and temperature measurements to obtain the degree of drying of materials and again the measurement system is local, the sensors are connected by cable to an indicator system that shows the measurement . A procedure for forming a pillar with monitoring capacity is also known, as stated in patent document ES2410864, again by the applicant Smart Structures, Inc (US), in which case the sensorization is carried out by means of strain gauges.

No son conocidos sistemas de sensores inalámbricos conectados a un nodo principal y de este a un dispositivo inteligente externo conectado a internet, recurriendo a un ordenador localizado en la obra, desaprovechando las tecnologías como el internet de las cosas o las metodologías BIM (Building Information Modeling).There are no known wireless sensor systems connected to a main node and from there to an external smart device connected to the Internet, using a computer located on the construction site, not taking advantage of technologies such as the Internet of Things or BIM (Building Information Modeling) methodologies. ).

No son conocidos en el estado de la técnica dispositivos que superen estas desventajas como el preconizado.There are no known devices in the state of the art that overcome these disadvantages like the one recommended.

Descripción detallada de la invenciónDetailed description of the invention

La resistencia del hormigón se obtiene actualmente mediante la realización de pruebas de compresión destructivas sobre probetas en un laboratorio. Estas probetas, a pesar de dar información sobre el hormigón empleado, no representan al 100% el estado de hormigón en la obra, ya que han sido curadas en condiciones distintas al permanecer en una cámara con temperatura y humedad controladas.Concrete strength is currently obtained by performing destructive compression tests on specimens in a laboratory. These specimens, despite providing information on the concrete used, do not represent 100% the state of the concrete in the work, since they have been cured under different conditions by remaining in a chamber with controlled temperature and humidity.

El dispositivo de monitorización de la resistencia del hormigón en una estructura preconizado, provee datos que son representativos del elemento que se está monitoreando, y de forma continua, para ello comprende de al menos un sensor del tipo termistor (Thermally Sensitive Resistor) que es colocado en el punto de la armadura que se precise analizar,en su configuración tipo PTC (Positive Temperature Coefficient) o NTC (Negative Temperature Coefficient), de al menos una unidad de transmisión que es externa a la estructura y por tanto removible, de un cableado entre el sensor y el dispositivo de transmisión. Comprende así mismo de al menos un concentrador o Gateway (no representado) que envía los datos a través de internet a un a un servidor donde se procesan y almacenan en una base de datos; esta base de datos contiene los parámetros de calibrado de acuerdo al método de madurez. Mediante un software, estos datos son accesibles a través de un ordenador, tablet o teléfono inteligente.The concrete resistance monitoring device in a recommended structure provides data that is representative of the element being monitored, and continuously, for this it comprises at least one thermistor-type sensor (Thermally Sensitive Resistor) that is placed at the point of the armor to be analyzed, in its PTC (Positive Temperature Coefficient) or NTC (Negative Temperature Coefficient) type configuration, of at least one transmission unit that is external to the structure and therefore removable, from a wiring between the sensor and the transmitting device. It also includes at least one concentrator or Gateway (not shown) that sends the data through the Internet to a server where it is processed and stored in a database; This database contains calibration parameters according to the maturity method. Through software, these data are accessible through a computer, tablet or smartphone.

El dispositivo presenta además claras ventajas económicas pues solo es desechado el sensor y no así su elemento de transmisión.The device also has clear economic advantages since only the sensor is discarded and not its transmission element.

Descripción de los dibujosDescription of the drawings

Para la mejor comprensión de cuanto queda descrito en la presente memoria, se acompañan unos dibujos en los que, a título de ejemplo, se representa una relación de las figuras de la invención propuesta.For a better understanding of what is described in this report, some drawings are attached in which, by way of example, a list of the figures of the proposed invention is represented.

La figura 1 muestra en una vista isométrica y forma esquemática una estructura convencional, en este caso un pilar y un forjado, en el que puede apreciarse el dispositivo de transmisión (1) externo a la estructura, en este caso el pilar, en línea discontinua el cableado (2), y el sensor (3) fijado en la armadura (4).Figure 1 shows a schematic isometric view of a conventional structure, in this case a pillar and a slab, in which the transmission device (1) external to the structure can be seen, in this case the pillar, in broken line the wiring (2), and the sensor (3) fixed on the frame (4).

Realización preferidapreferred embodiment

Se cita a modo de ejemplo una forma de realización preferida siendo independiente del objeto de la invención los materiales empleados en su fabricación, así como los métodos de aplicación y todos los detalles accesorios que puedan presentarse, siempre y cuando no afecten a su esencialidad.By way of example, a preferred embodiment is cited, the materials used in its manufacture being independent of the object of the invention, as well as the application methods and all the accessory details that may occur, as long as they do not affect its essentiality.

El dispositivo de esta realización preferida comprende de al menos un sensor (4) del tipo termistor (Thermally Sensitive Resistor) en su configuración tipo PTC (Positive Temperature Coefficient) o NTC (Negative Temperature Coefficient), este sensor es fijado a la armadura (4) de una estructura, figura 1, y cableado (2) hasta un dispositivo transmisor (1), externo al encofrado y por tanto recuperable. Los diferentes sensores y sus correspondientes transmisores son activados previos al vertido del hormigón, al menos un concentrador o Gateway (no representado) recopila los datos de los diferentes dispositivos los cuales son enviados vía internet a un servidor donde se procesan y almacenan en una base de datos; esta base de datos contiene los parámetros de calibrado de acuerdo al método de madurez. Mediante un software, estos datos son accesibles a través de un ordenador, tablet o teléfono inteligente.The device of this preferred embodiment comprises at least one sensor (4) of the thermistor type (Thermally Sensitive Resistor) in its configuration type PTC (Positive Temperature Coefficient) or NTC (Negative Temperature Coefficient), this sensor is fixed to the armature (4 ) of a structure, figure 1, and wiring (2) to a transmitter device (1), external to the formwork and therefore recoverable. The different sensors and their corresponding transmitters are activated before the concrete is poured, at least one concentrator or Gateway (not shown) collects the data from the different devices, which are sent via the Internet to a server where they are processed and stored in a database. data; this database contains the calibration parameters according to the maturity method. Through software, these data are accessible through a computer, tablet or smartphone.

La gráfica 1 muestra un ejemplo de visualización de los datos que se expone para aportar claridad a la invención, en la zona I puede verse un mayor calor aportado por la reacción química (calor de hidratación) donde se presenta un crecimiento rápido de la resistencia debido a las temperaturas altas: En la zona II el calor de hidratación es mínimo y el crecimiento de la resistencia es más lento como muestra la pendiente de la curva siendo la temperaturas del hormigón próximas a la temperatura ambiente. Graph 1 shows an example of visualization of the data that is exposed to provide clarity to the invention, in zone I you can see a greater heat provided by the chemical reaction (heat of hydration) where there is a rapid growth of resistance due to at high temperatures: In zone II, the heat of hydration is minimal and the growth of resistance is slower, as shown by the slope of the curve, with the concrete temperatures close to room temperature.

Figure imgf000005_0001
Figure imgf000005_0001

Gráfica 1 Graph 1

El dispositivo permite monitorear en tiempo real, de forma remota y no destructiva, este flujo de datos y su interpretación otorga información objetiva a utilizar durante la toma de decisiones en el proceso constructivo, evitando tiempos de espera innecesarios. Además, proporciona no sólo datos en tiempo real sino que también predicciones futuras sobre la evolución de la resistencia. Las ventajas que ofrece la implantación de este dispositivo en las empresas es muy significativa por conseguir un ahorro de costes indirectos de la obra, al reducir hasta un 20% los tiempos de desencofrado convencionales. Así como la reducción de la huella de carbono en 50 Kg CO2 Eq/m3 de hormigón debido al incremento de la eficiencia constructiva. The device allows monitoring in real time, remotely and non-destructively, this data flow and its interpretation provides objective information to be used during decision-making in the construction process, avoiding unnecessary waiting times. Furthermore, it provides not only real-time data but also future predictions on the evolution of resistance. The advantages offered by the implementation of this device in companies are very significant for achieving savings in indirect costs of the work, by reducing conventional stripping times by up to 20%. As well as the reduction of the carbon footprint by 50 Kg CO2 Eq/m3 of concrete due to the increase in construction efficiency.

Claims (3)

REIVINDICACIONES I.Dispositivo de monitorización de la resistencia del hormigón en una estructura de los que emplean el método de madurez caracterizado por permitir la transmisión inalámbrica de los datos de al menos un sensor tipo termistor (3) fijado a la armadura (4) de una estructura y conectado a al menos un dispositivo de lectura y transmisión (1) externo al encofrado, de un cableado (2) que se ancla a la armadura entre sensor y transmisor, de al menos un concentrador o gateway que envía los datos a través de internet a un servidor donde se procesan y almacenan en una base de datos; esta base de datos contiene los parámetros de calibrado de acuerdo al método de madurez, mediante un software, estos datos son accesibles a través de un ordenador, tablet o teléfono inteligente.I. Concrete resistance monitoring device in a structure that uses the maturity method characterized by allowing the wireless transmission of data from at least one thermistor-type sensor (3) fixed to the framework (4) of a structure and connected to at least one reading and transmission device (1) external to the formwork, to a cable (2) that is anchored to the framework between sensor and transmitter, to at least one hub or gateway that sends the data over the internet to a server where they are processed and stored in a database; This database contains the calibration parameters according to the maturity method, through software, these data are accessible through a computer, tablet or smartphone. 2. Dispositivo de acuerdo a la reivindicación primera caracterizado por ser el termistor del tipo PTC (Positive Temperature Coefficient).2. Device according to claim 1, characterized in that the thermistor is of the PTC (Positive Temperature Coefficient) type. 3. Dispositivo de acuerdo a la reivindicación primera caracterizado por ser el termistor del tipo NTC (Negative Temperature Coefficient). 3. Device according to claim 1, characterized in that the thermistor is of the NTC (Negative Temperature Coefficient) type.
ES202230012U 2022-01-04 2022-01-04 Concrete strength monitoring device in a structure Active ES1286839Y (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES202230012U ES1286839Y (en) 2022-01-04 2022-01-04 Concrete strength monitoring device in a structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES202230012U ES1286839Y (en) 2022-01-04 2022-01-04 Concrete strength monitoring device in a structure

Publications (2)

Publication Number Publication Date
ES1286839U true ES1286839U (en) 2022-02-21
ES1286839Y ES1286839Y (en) 2022-05-12

Family

ID=80271614

Family Applications (1)

Application Number Title Priority Date Filing Date
ES202230012U Active ES1286839Y (en) 2022-01-04 2022-01-04 Concrete strength monitoring device in a structure

Country Status (1)

Country Link
ES (1) ES1286839Y (en)

Also Published As

Publication number Publication date
ES1286839Y (en) 2022-05-12

Similar Documents

Publication Publication Date Title
CA3012002C (en) Sensing device, sensing device system, and methods for measuring a characteristic of a concrete mixture and for predicting a performance characteristic of a concrete mixture
US10067115B2 (en) Systems, apparatus and methods for obtaining measurements concerning the strength and performance of concrete mixtures
John et al. IoT enabled real-time monitoring system for early-age compressive strength of concrete
US20180045621A1 (en) Systems, apparatus and methods for obtaining measurements concerning the strength and performance of concrete mixtures
Chang et al. Implementing RFIC and sensor technology to measure temperature and humidity inside concrete structures
Riding Early age concrete thermal stress measurement and modeling
KR102463820B1 (en) Method and System for Controlling Curing Temperature of Concrete
KR101082737B1 (en) Evaluation method of compressive strength for structural concrete
Cucumo et al. A method for the experimental evaluation in situ of the wall conductance
Newell et al. Investigation of thermal behaviour of a hybrid precasted concrete floor using embedded sensors
John et al. An IoT device for striking of vertical concrete formwork
KR20120106190A (en) Device for meansuring the strain of substance to be measured
Debailleux Schmidt hammer rebound hardness tests for the characterization of ancient fired clay bricks
ES1286839U (en) Concrete resistance monitoring device in a structure (Machine-translation by Google Translate, not legally binding)
Katunský et al. Experimentally measured boundary and initial conditions for simulations
KR20110091185A (en) Concrete pouring cure management system using concrete heat value analysis simulation method
Qin et al. Simulating moisture distribution within concrete pavement slabs: model development and sensitivity study
Nguyen et al. Time lag in measuring pore humidity in concrete by a gage in finite cavity
Ha et al. Monitoring concrete compressive strength using IoT-based wireless sensor network
Yang et al. Integration of a prototype wireless communication system with micro-electromechanical temperature and humidity sensor for concrete pavement health monitoring
CN209311298U (en) A kind of centrifuge experiment device suitable for area's roadbed many years service state of trembling with fear
Davies et al. A low cost, accurate instrument to measure the moisture content of building envelopes in situ: a modelling study
Zervantonakis et al. Quality requirements of a thermal response test
Pulatovich et al. METHODS FOR INVESTIGATION OF THERMOPHYSICAL CHARACTERISTICS OF UNDERGROUND EXTERNAL BARRIER STRUCTURES OF BUILDINGS
Szczotka Non-invasive methods in diagnosis of wall dampness degree in sacral buildings

Legal Events

Date Code Title Description
CA1K Utility model application published

Ref document number: 1286839

Country of ref document: ES

Kind code of ref document: U

Effective date: 20220221

FG1K Utility model granted

Ref document number: 1286839

Country of ref document: ES

Kind code of ref document: Y

Effective date: 20220506