EP4635009A1 - Single cell of a fuel cell and associated fuel cell - Google Patents
Single cell of a fuel cell and associated fuel cellInfo
- Publication number
- EP4635009A1 EP4635009A1 EP23822040.4A EP23822040A EP4635009A1 EP 4635009 A1 EP4635009 A1 EP 4635009A1 EP 23822040 A EP23822040 A EP 23822040A EP 4635009 A1 EP4635009 A1 EP 4635009A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- frame
- compartment
- wall
- unit cell
- sealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0273—Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/028—Sealing means characterised by their material
- H01M8/0284—Organic resins; Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0297—Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/242—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- TITLE Fuel cell unit cell and associated fuel cell
- the present invention relates to a fuel cell unit cell as well as a fuel cell comprising such a unit cell.
- a fuel cell is a device for generating electricity by electrochemical reaction between a fuel, for example di-hydrogen - also known simply as hydrogen -, and an oxidant, for example di-oxygen - also known simply as oxygen - contained in the air.
- a fuel for example di-hydrogen - also known simply as hydrogen -
- an oxidant for example di-oxygen - also known simply as oxygen - contained in the air.
- each unit cell comprises two separators, also called polar plates, between which a solid electrolyte in the form of a proton exchange membrane is interposed.
- the membrane is made for example of a sulfonated perfluorinated polymer material.
- each separator defines a reactive compartment with the corresponding membrane.
- One of the two reactive compartments houses a cathode element, while the other reactive compartment houses an anode element.
- the cells are stacked so as to alternate cathode and anodic elements.
- a separator from one of the two cells is found back to back with a separator from the other cell.
- These two separators together form a bipolar separator, also called a bipolar plate.
- a cooling compartment in which a cooling fluid such as brine circulates, is generally arranged between the two separators of the bipolar separator.
- the same separator is shared by two neighboring cells and the cell therefore does not have a cooling compartment.
- Hydrogen, air and any coolant are so-called “operating” fluids, which are supplied to the fuel cell during operation.
- the supply of one or more of the operating fluids is carried out continuously or intermittently.
- each bipolar separator ensures on one side the fuel supply to the cell adjacent to this side and on the other side the oxidant supply to the cell adjacent to this other side, the supplies provided by the bipolar separators being done in parallel.
- the fuel cell thus comprises an electrical insulation device, designed to prevent current leaks between two neighboring cells and between each cell and the external environment, as well as a sealing device to prevent leaks of operating fluids, in particular to prevent the fluid circulating in a reactive compartment from contaminating a neighboring reactive compartment.
- EP-3 618 157-A1 describes, for example, a redox cell, the fuel and the oxidant of which are electrolytes, that is to say liquids.
- the redox cell comprises frames, which are made of polypropylene and which are arranged around the bipolar plates and the electrodes, so as to reduce current leakage.
- the frames are pierced to provide channels for the circulation of electrolytes. Sealing is ensured by O-rings, which are placed in grooves machined in the thickness of the frames and which are held in compression by a clamping flange.
- O-rings which are placed in grooves machined in the thickness of the frames and which are held in compression by a clamping flange.
- such a structure is not suitable for the passage of gaseous fluids, in particular air or hydrogen, used with a fuel cell. The installation and checking of each joint are also tedious operations.
- JP-5 330 135-B2 describes, for its part, a fuel cell unit cell comprising a sealing structure composed of frames and separators in the shape of a square, the frames and separators being stacked and assembled by elements adhesives. Passages between the manifolds and the internal compartments of the unit cell are hollowed out in the square separators, which requires a specific machining step and complicates the assembly of the sealing structure.
- the invention particularly intends to remedy, by proposing a fuel cell stack that is easy to assemble and has both good electrical insulation and good sealing.
- the invention relates to a unit cell of a fuel cell stack, in which:
- the unit cell comprises several walls, which are each continuous and watertight and which are stacked on top of each other along a stacking axis, these walls delimiting compartments of the unit cell and including:
- the first separator delimits with the membrane a first reactive compartment, the first reactive compartment being configured to receive a first operating fluid of the fuel cell,
- the second separator delimits with the membrane a second reactive compartment, the second reactive compartment being configured to receive a second operating fluid of the fuel cell
- the compartments of the unit cell include the first reactive compartment and the second reactive compartment
- the cell also comprises a sealing structure, the sealing structure comprising frames, which are each made of a polymer material and which are stacked according to the stacking axis, the frames being arranged on the periphery of the walls and compartments.
- the frames of the sealing structure include:
- each wall frame which is coplanar with the corresponding wall and which surrounds this wall, an internal edge of each wall frame being arranged facing an external edge of this wall, the internal edge of the wall frame and the edge external of the wall being facing each other and being separated by a peripheral gap, each wall frame preferably having a thickness substantially equal to a thickness of the corresponding wall,
- a compartment frame which is arranged on the periphery of the corresponding compartment, the compartment frame comprising an internal edge, which is oriented towards the corresponding compartment and which delimits this compartment radially to the stacking axis, and an external edge, opposite the internal edge, the internal edge having an internal contour, while the external edge has an external contour,
- the internal contour of the compartment frame is included, in projection along the stacking axis, in an external contour of the wall, so that a portion annular wall faces, along the stacking axis, a complementary portion of the compartment frame and forms a first covering of the compartment frame on the wall
- an internal contour of the wall frame is included, in projection along the stacking axis, in the external contour of the compartment frame, so that an annular portion of the wall frame faces a complementary portion of the compartment frame and forms a second overlap of the compartment frame on the wall frame
- the adhesive layers include a first layer portion, which extends facing the first overlap between the compartment frame and the adjacent wall, so as to sealably fix the compartment frame to the wall
- the layers of adhesives include a second layer portion, which extends facing the second overlap between the compartment frame and the adjacent
- the frames of the sealing structure are assembled to each other by means of layers of adhesives, making the assembly of the unit cell practical and quick to carry out.
- the first compartment frame has an internal contour included in the external contour of the membrane, the first portion of adhesive layer, interposed between the internal face of the first compartment frame and the external face of the adjacent membrane, prevents leakage of the operating fluid circulating in the first reactive compartment to the second reactive compartment.
- the internal contour of the first compartment frame is included in the external contour of the first separator
- the second portion of adhesive layer interposed between the internal face of the first compartment frame and the external face of the adjacent separator, prevents leaks to the cooling compartment.
- the first and second portions of adhesive layers provide sealing over all of the covering surfaces, preventing the passage of operating fluids, both liquid and gaseous, between the elements assembled by these adhesive layers.
- layers of repositionable and/or pressure-sensitive adhesives which makes it possible to offer a removable cell.
- such a unit cell can incorporate one or more of the following characteristics taken in isolation or in any technically admissible combination: - the first separator is configured to sealingly separate the first reactive compartment from a first cooling compartment, which is configured to receive a third operating fluid of the fuel cell, while the compartments of the unit cell include, in addition the first reactive compartment and the second reactive compartment, the first cooling compartment.
- the first portion of adhesive layer and the second portion of adhesive layer are part of the same adhesive layer, which extends continuously over one face of the compartment frame, so as to close the gap device adjacent to the compartment frame.
- the first covering has a leakage length, which is equal to a minimum distance, measured parallel to the average plane, between any two points belonging respectively to the internal edge of the corresponding compartment frame and to the external edge of the corresponding adjacent wall
- the second covering has a leakage length, which is equal to a minimum distance, measured parallel to the mean plane, between any two points belonging respectively to the external edge of the corresponding compartment frame and to the internal edge of the corresponding adjacent wall frame, and that each leak length is greater than or equal to 1 mm, preferably greater than or equal to 2 mm, more preferably greater than or equal to 3 mm.
- this compartment frame comprises a transfer frame which provides two fluid passages, the two passages being provided for the circulation of the associated operating fluid between the corresponding compartment and the exterior of the unit cell,
- each passage opens into the associated compartment through an internal mouth, which is provided on the internal edge of the transfer frame, and
- Each passage includes an internal portion, which opens through the internal mouth into the compartment, the internal portion of the passage being provided in the thickness of the transfer frame.
- the external mouth is provided on the external edge of the transfer frame.
- At least one of the two passages houses fins for guiding the associated operating fluid
- the fins are formed by cutting this transfer frame and are distributed at a distance from each other within the corresponding passage, so as to direct the flow of the associated operating fluid
- the compartment frame comprises:
- a first adhesive film which is inserted between the first sealing frame and the transfer frame, while the first sealing frame is, on the one hand, fixed to the first wall and to the wall frame in view by the layer of adhesive associated with the first wall and, on the other hand, fixed to the transfer frame by the first adhesive film.
- the compartment frame comprises, in addition to the first sealing frame:
- the adhesive film associated with this sealing frame is coated, continuously, on one face of this sealing frame.
- this sealing frame is made of a polymer material, for example PET, and has a thickness, measured parallel to the stacking axis, of between 10 pm and 20 pm, preferably equal to 12 pm,
- the adhesive film interposed between this sealing frame and the corresponding transfer frame has a thickness, measured parallel to the stacking axis, of between 6 pm and 30 pm, preferably between 8 pm and 20 pm , preferably between 10 pm and 15 pm.
- the peripheral gap associated with this wall is closed, on at least one of the faces of this wall, by a sealing frame.
- this transfer frame is made of a polymer material, for example PET, and has a thickness, measured parallel to the stacking axis, of between 50 pm and 200 pm, preferably between 80 pm and 150 pm, preferably still equal to 100 pm,
- each of the first portion of adhesive layer and each of the second portion of adhesive layer has a thickness, measured parallel to the stacking axis, of between 15 pm and 30 pm, preferably between 18 pm and 25 pm pm, preferably equal to 20 pm.
- the invention also relates to a fuel cell, comprising a stack formed of several unit cells stacked along the stack axis, each unit cell conforming to any one of the preceding claims, and a jacket, which provides an internal volume in which the stack is housed, in which: the frames of the sealing structure of each of the unit cells each have a clean external edge, with an associated external contour, the external contours of all the frames of each sealing structure are superimposed on each other along the stack axis, the external edges of all the frames of all the sealing structures together forming an external surface of the stack, which has the shape of a cylinder centered on the axis d stack, the external surface of the stack provides holding members, which are configured to cooperate with complementary members provided in the internal volume of the jacket, so as to maintain the stack within the internal volume and to provide a peripheral volume between the stack and the jacket, and - the holding members and the complementary members are designed to divide the peripheral volume into several conduits for circulating the operating fluids of the fuel cell.
- the associated compartment frame comprises a transfer frame which provides two fluid passages, the two passages being provided for the circulation of the associated operating fluid between the corresponding compartment and the exterior of the cell unitary, while each passage opens into the associated compartment through an internal mouth, which is provided on the internal edge of the transfer frame, and each passage opens outside the compartment through an external mouth.
- the external mouth is provided on the external edge of the transfer frame, while:
- the fuel cell provides two first pairs of circulation conduits, which are respectively associated with the first and second operating fluids of the fuel cell, the unit cells being as defined previously,
- each of the two compartments chosen from the first reactive compartment and the second reactive compartment is associated with a pair of the first respective conduits
- the compartment frames associated with each of the two reactive compartments of this unit cell each comprise a transfer frame with two passages each, the external mouth of each passage being provided on an external edge of the corresponding transfer frame, the two passages of the same transfer frame each open into a separate conduit among the two circulation conduits of the associated pair of conduits.
- the first separator is configured to sealingly separate the first reactive compartment from a first cooling compartment, which is configured to receive a third operating fluid of the fuel cell, the fuel cell also cleans the first two pairs of conduits circulation, a third pair of circulation conduits, the circulation conduits of the third pair being associated with the third operating fluid, while for each unit cell:
- each of the three compartments chosen from the first reactive compartment, the second reactive compartment and the first cooling compartment is associated with a respective pair among the three pairs of conduits
- the compartment frames associated with each of the three compartments of this unit cell each comprise a transfer frame with two passages each, the external mouth of each passage being provided on an external edge of the corresponding transfer frame,
- Figure 1 is a perspective view of a fuel cell according to the invention.
- Figure 2 represents, on two inserts a) and b), two schematic views of the fuel cell of Figure 1, observed respectively in partially exploded perspective and in top view, certain parts being hidden;
- Figure 3 represents respectively, on two inserts a) and b), a jacket and a unit cell of the fuel cell of Figure 1, the unit cell conforming to one embodiment;
- Figure 4 is an exploded perspective view of the unit cell of Figure 3, with certain parts being hidden;
- Figure 5 represents, on two inserts a) and b), a partial and exploded perspective of a first compartment of the unit cell of Figure 3, observed at two different scales and in section on the insert b);
- Figure 6 represents, on two inserts a) and b), a partial and exploded perspective of a unit cell conforming to another embodiment, observed at two different scales and in section on insert b ), - [Fig 7] Figure 7 represents an exploded and partial perspective of a unit cell conforming to another embodiment;
- Figure 8 represents a partial and exploded perspective of a second compartment of the unit cell of Figure 3;
- Figure 9 represents respectively, on two inserts a) and b), a partial and exploded perspective of a unit cell conforming to two other embodiments of the invention
- Figure 10 represents, schematically, a partial cross section of an embodiment of the unit cell of Figure 3;
- Figure 1 1 represents, schematically, a partial cross section of a unit cell conforming to another embodiment
- Figure 12 is a perspective view of a first irrigation spacer of the unit cell of Figure 3;
- Figure 13 represents respectively, on three inserts a), b) and c), a detail XI I la of the irrigation spacer of Figure 12, this same detail observed in exploded perspective and a diagram illustrating an operating principle of the irrigation spacer of Figure 12;
- Figure 14 is a perspective view of a second irrigation spacer of the unit cell of Figure 3.
- Figure 15 is a larger scale and exploded perspective view of a detail XV in Figure 14.
- a fuel cell 20 is shown in Figure 1.
- the fuel cell 20, also simply called “cell 20” in the following, comprises a housing 22, which comprises a jacket 24.
- the jacket 24 has the shape of a hollow cylinder, which extends along a pile axis A20 and which here has a substantially rectangular section.
- the jacket 24 provides an internal volume V24 with two opposite openings, the openings being closed by two covers 26A and 26B.
- the jacket 24 and the covers 26A and S6B are preferably made of an electrically insulating material, such as a polymer material or a fiber-reinforced polymer material, or are covered, at least on one internal face, with an electrically insulating material.
- Fluid conduits are provided through the housing 22 to allow the passage of operating fluids of the battery 20.
- the operating fluids here comprise three fluids, therefore two gaseous fluids, here air and di-hydrogen, and a dielectric heat transfer fluid, for example liquid, here glycol water.
- the fluid conduits are materialized by fluid connectors, which are provided here on the cover 26A, located at the top of Figures 1 and 2. Alternatively, all or part of the fluid connections are provided on the cover 26B. Alternatively, all or part of the fluidic connections are installed on the jacket 24.
- the stack 20 thus comprises three pairs of fluid connections, each pair being intended for the circulation of a clean operating fluid.
- the three pairs of fluid connectors include a first pair of connectors 28A, a second pair of connectors 28B, and a third pair of connectors 28C.
- one of the fittings called the “inlet fitting” is intended for the admission of the corresponding operating fluid, while the other fitting called the “outlet fitting” is intended for the extraction of the operating fluid corresponding.
- the direction of circulation of the operating fluids is represented schematically by arrows oriented arbitrarily, knowing that it may be otherwise in reality.
- the battery 20 is shown schematically in exploded perspective, the cover 26A being distant from the jacket 24.
- the connections 28A, 28B and 28C are represented schematically by openings passing through the cover 26A.
- the jacket 24 is shown in isolation in Figure 3 a).
- the internal volume V24 of the jacket 24 houses a stack 50.
- the stack 50 comprises an external surface S50, which has the shape of a cylinder centered on a stack axis A50 and with a generally rectangular section.
- the stack axis A50 coincides with the stack axis A20.
- the stack 50 is formed of several unit cells 100, which are stacked along the stacking axis A50.
- a unit cell 100 is shown in isolation in Figure 3 b), and in exploded perspective in Figure 4.
- Each unit cell 100 has a flattened shape, which extends along a mean plane P50 orthogonal to the stacking axis A50.
- the average plane P50 is a plane transverse to the stacking axis A50.
- Each unit cell 100 - also simply called "cell 100" in the following - presents, in projection on the average plane P50, an external contour C100. We understand that the section of the external surface S50 of the stack 50 corresponds to the external contour C100 of each unit cell 100.
- the external surface S50 of the stack 50 provides holding members 52, which are configured to cooperate with complementary members 30 provided in the internal volume V24 of the jacket 24, so as to maintain the stack 50 within the internal volume V24 and to provide a peripheral volume V50 between the stack 50 and the jacket 24.
- the peripheral volume V50 is therefore a portion of the internal volume V24, which is distributed around the stack 50.
- the holding members 52 and the complementary members 30 are provided, respectively, along the external surface S50 parallel to the stacking axis A50, and along the jacket 24 parallel to the stack axis A20 and include sealing elements, so as to divide the peripheral volume V50 into several circulation conduits for the operating fluids of the fuel cell 20.
- the holding members 52 and the complementary members 30 provide electrical insulation between the stack 50 and shirt 24.
- Each circulation conduit is fluidly connected to a respective connector 28A, 28B or 28C, so as to ensure the circulation of operating fluids around the stack 50, and therefore around each unit cell 100.
- the fuel cell 20 here provides six circulation conduits, which are respectively associated in pairs with the three operating fluids of the fuel cell. These six circulation conduits thus include a first pair of conduits 38A, which are fluidly connected to the first pair of connectors 28A, a second pair of conduits 38B, which are fluidly connected to the second pair of connectors 28B, and a third pair of conduits 38C, which are fluidly connected to the third pair of connectors 28C.
- Each circulation conduit 38A, 38B or 38C is thus separated, in a sealed manner, from neighboring conduits.
- tight is meant tight to any of the operating fluids, liquid or gaseous, of the fuel cell 20, in particular tight to hydrogen, which has the greatest tendency to leak in view of of its small molecular size and low viscosity compared to other operating fluids.
- the jacket 24 is therefore an external wall of the stack 20, the jacket 24 delimiting the circulation conduits 38A, 38B or 38C in which a fluid circulates under a pressure greater than atmospheric pressure. Even if this pressure is generally less than 5 absolute bars, or even less than 3 absolute bars, it is necessary to take into account the pressure difference with the atmospheric pressure which reigns outside the jacket 24, taking care in particular so that the jacket 24 does not deform (in particular by bulging) to the point of compromising the seal between the circulation conduits 38A, 38B or 38C. In the example illustrated, to limit deformation by bulging, in particular of the largest faces of the liner 24, external reinforcements have been provided.
- the external reinforcements are independent of the shirt 24, are therefore attached to the shirt and are fixed to the outside of the shirt 24, each resting on one face (here a flat exterior face) of the shirt 24
- Each external reinforcement extends along the pile axis. A20 between two ends. In the example, each end is fixed, for example by screwing, on the corresponding cover 26A, 26B.
- the external reinforcement(s) are fixed exclusively on the shirt 24, or are even fixed on one side on the shirt 24 and on the other side on only one of the two covers.
- Each external reinforcement comprises a central body resting on the corresponding external face of the jacket 24. In the example illustrated, only two external reinforcements are provided, one on each of the two opposite faces of the jacket 24 which have the largest surface area.
- the central body of an external reinforcement has a transverse width, in a direction orthoradial to the stack axis A20 and parallel to the corresponding external face of the jacket 24, which is preferably greater than or equal to 50% of the transverse width of said corresponding external face on which it is supported, so that only one External reinforcement is necessary for the corresponding external face.
- the external reinforcement has stiffeners, here in a single piece with the central body, forming an extra thickness on the central body in a radial direction perpendicular to the pile axis A20 and perpendicular to the corresponding external face of the jacket 24.
- the stiffener(s) have a radial thickness, in the radial direction, which evolves along the direction of the pile axis A20, with a lesser radial thickness at both ends, and on the contrary a radial thickness higher than the center in this direction. This makes it possible to optimize the stiffness of the stiffener by adapting it to the stresses suffered by the jacket 24, at different points thereof, due to the pressure inside the conduits.
- the external reinforcement(s) added are preferably made of metal, for example aluminum or aluminum alloy, for example in the form of a molded part made of aluminum alloy.
- the external reinforcement(s) added are made of polymer material, preferably then of composite material combining a polymer resin and reinforcements, for example in the form of glass, carbon and/or aramid fibers.
- similar reinforcements are integrated into the jacket 24, in other words made in one piece with the jacket, therefore giving the jacket an optimized geometry to resist the forces due to the pressures of the fluids in the circulation conduits. 38A, 38B or 38C.
- the unit cells 100 of the stack 50 are preferably identical to each other. We now detail the unit cell 100.
- the cell 100 comprises several walls 102, which are continuous and waterproof and which are stacked on top of each other along the stacking axis A50.
- the walls 102 include a first separator 110, a second separator 120 and a proton exchange membrane 130.
- the wall 102 formed by the membrane 130 is interposed between the first separator 110 and the second separator 120.
- the walls 102 delimit between them compartments V100 of the unit cell 100.
- the second separator 120 is shown schematically in dotted lines.
- the first separator 1 10 and the second separator 120 are preferably identical to each other and are here produced by cutting a metal sheet, for example a stainless steel sheet.
- the membrane 130 also called PEM for “Proton Exchange Membrane” in English, is here produced in the form of a polymer layer 130A.
- a gas diffusion layer 130B there is, on either side of the membrane 130, in each of the compartments V100 delimited by the membrane 130 on either side of the latter, a gas diffusion layer 130B, such that the membrane 130 is sandwiched between the two gas diffusion layers 130B.
- the polymer layer 130A is here made of a fluoropolymer material, for example known under the trade name National.
- the polymer layer 130A is covered on both sides with a layer of catalyst, the membrane 130 being called CCM for “Catalyst Coated Membrane” in English.
- the catalyst layers are not shown.
- the membrane 130, the gas diffusion layers 130A and 130B and the layers of associated catalysts together generally form a MEA, an acronym for “Membrane Electrode Assembly”.
- At least one of the catalyst layers is deposited on one or the other of two gas diffusion layers 130B, between the gas diffusion layer 130B and the polymer layer 130A which are adjacent.
- the polymer layer 130A is impermeable to reactive gases, hydrogen or oxygen, but allows the diffusion, through it, of H+ protons.
- the gas diffusion layers 130B also called GDL for “gas diffusion layer” in English, are porous for reactive gases and are for example made mainly of entangled and compressed carbon fibers.
- the gas diffusion layers 130B may optionally be coated on their face in contact with the membrane 130A with an ionomer which may be of the same nature as the material of the polymer layer 130A.
- the structure of the membrane 130 is not detailed further.
- the membrane 130 comprises a first face 132 and a second face 134 opposite the first face 132.
- the first face 132 and the second face 134 extend parallel to the mean plane P50.
- the first face 132 is oriented towards the first separator 110.
- the first separator 110 delimits with the membrane 130 a first reactive compartment V132, which is configured to receive a first operating fluid from the fuel cell 20.
- the first compartment reagent V132 is here for example an anode compartment of the unit cell 100, that is to say that the first operating fluid is hydrogen.
- the first operating fluid is a gaseous fluid.
- the first reactive compartment V132 is one of the V100 compartments of cell 100.
- the second face 134 is oriented towards the second separator 120.
- the second separator 120 delimits with the membrane 130 a second reactive compartment V134, which is configured to receive a second operating fluid of the fuel cell.
- the second reactive compartment V134 is for example here a cathode compartment of the unit cell 100, that is to say that the operating fluid circulating in this compartment is here air, which contains oxygen.
- the second operating fluid is a gaseous fluid.
- the second reactive compartment V134 is another of the V100 compartments of cell 100.
- the first separator 110 of the middle cell 100 and the second separator 120 of the top cell define between them a first cooling compartment V136 of the middle cell 100.
- the first cooling compartment V136 is therefore common to two neighboring cells 100.
- the second separator 120 of the middle cell 100 and the first separator 110 of the bottom cell 100 delimit between them a second cooling compartment V138 of the middle cell.
- the first cooling compartment V136 of the bottom cell is therefore, for the top cell, a second compartment V138.
- each cooling compartment V136 and V138 is configured to receive a third operating fluid of the fuel cell 20.
- the third operating fluid is here a cooling fluid such as liquid water glycolated.
- the third operating fluid here is a liquid fluid at the operating temperatures of the battery 20.
- the first separator 110 is configured to sealingly separate the first reactive compartment V132 from the first cooling compartment V136.
- each unit cell 100 therefore comprises three compartments V100, namely the first reactive compartment V132, the second reactive compartment V134, and the first cooling compartment V136.
- Each of these compartments V100 is respectively associated with an operating fluid of the fuel cell 20.
- the fuel cell 20 houses here, in each of the V100 compartments of the unit cell 100, an irrigation spacer. More precisely, the second reactive compartment V134 houses an irrigation spacer 600 of a first type, conforming to a first embodiment, while the first reactive compartment V132 houses an irrigation spacer 700 of a second type, conforming to another embodiment.
- the first V136 cooling housing also houses another example of the 700 spacer of the second type.
- the 600 or 700 irrigation spacers are configured to define the circulation, within each V100 compartment, of the corresponding operating fluid.
- the 600 and 700 irrigation spacers are described later in this description.
- the first separator 110, the second separator 120, the membrane 130, as well as the spacers 600 and 700 are supported on each other.
- the gas diffusion layers 130B are stacked, along the stacking axis 150, with axial clamping between an irrigation spacer 600 or 700 and the corresponding face of the membrane 130, so as to ensure good electrical conduction between these stacked elements.
- the unit cell 100 also includes a sealing structure 200 ( Figure 5).
- the sealing structure comprises frames 210, which are each made of a polymer material and which are stacked along the stacking axis A50.
- the frames 210 are arranged on the periphery of the walls 102 and the compartments V100 of the unit cell 100.
- the principles of the sealing structure 200 are described using Figure 5, where two walls 102 of the unit cell 100, delimiting a single compartment V100, are shown.
- the wall 102 on the top of Figure 5 a) is here the membrane 130, while the wall 102 on the bottom of Figure 5 a) is the second separator 120.
- the compartment shown is therefore the second reactive compartment V134, knowing that the principles described can be transposed to the other compartments V100 of the unit cell 100 and to the corresponding walls 102.
- the rest of the unit cell 100, in particular the irrigation spacer 600 or the diffusion layer 130B, is not shown so as not to overload the figures which aim to represent this sealing structure more particularly.
- the frames 210 of the sealing structure 200 include wall frames 220, each wall frame 220 being coplanar with a respective wall 102 and surrounding this wall 102.
- the frames of wall 220 and the associated walls are shown offset to facilitate the distinction between the parts, while in Figure 5 b), the wall frames 220 are shown coplanar with the respective walls 102, as in reality.
- Each wall frame 220 and the corresponding wall 102 are thus facing each other.
- each wall frame 220 has a thickness substantially equal, for example equal to ⁇ 10%, to a thickness of the corresponding wall 102, the thicknesses being measured parallel to the stacking axis A50.
- the frames 210 of the sealing structure 200 also include compartment frames 230.
- Each compartment frame 230 is arranged on the periphery of the corresponding compartment V100, here the second reactive compartment V134.
- a single compartment frame 230 is shown in Figure 5. In this embodiment of the sealing structure 200, each compartment frame 230 is formed in one piece.
- Each frame 210 of the sealing structure 200 generally has a ring shape, in the example a rectangular ring shape, and is formed in a plate of a waterproof material, for example by cutting.
- the wall frames 220 are made of an electrically insulating material, preferably a polymer material, for example polyethylene terephthalate, also called PET.
- Each frame 210 comprises two faces 213, which are opposite each other and which extend parallel to the mean plane P50, an internal edge 214, which connects the two faces 213 to each other and which is oriented towards an interior side of the unit cell 100, and an external edge 215, which is opposite the internal edge 214 and which connects the two faces 213 to each other.
- the internal edge 214 defines, in projection on the average plane P50, an internal contour of this frame 210
- the external edge 215 defines, in projection on the average plane P50, an external contour of this frame 210.
- the internal edge 214 extends opposite the corresponding wall 102.
- compartment frames 230 the internal edge 214 is oriented towards the corresponding compartment V100 and delimits this compartment V100 radially to the stacking axis A50.
- each wall 102 comprises two faces 103 which are opposite each other and which extend parallel to the mean plane P50 and an external edge 105 which connects the two faces 103 to each other.
- the corresponding external edge 105 is oriented towards the outside of the cell 100.
- the external edge 105 of each wall 102 defines, in projection on the average plane P50, an external contour of this wall 102.
- each wall frame 220 is arranged facing the external edge 105 of the associated wall 102, the internal edge 214 of the wall frame 220 and the external edge 105 of the facing wall 102 being separated, radially to the stacking axis A50, through a peripheral gap I220.
- Each wall 102 is therefore associated with a peripheral gap I220 specific to this wall 102 and to the corresponding facing wall frame 220. Consequently, each wall frame 220 is therefore associated with a peripheral gap I220 specific to this wall frame 220 and to the corresponding facing wall 102.
- the peripheral gap I220 is as small as possible.
- the peripheral gap I220 is typically between 0 mm (millimeter) and 0.2 mm. In reality, the peripheral gap I220 is not zero, in particular because of manufacturing tolerances and assembly clearances. In the example shown, I220 is equal to 0.1 mm.
- the sealing structure 200 also comprises layers of adhesives 240, which are interposed between each of the frames 210 of the sealing structure so as to securely fix the frames 210 to each other.
- Each layer of adhesive 240 is thus taken between two frames 210 and is therefore adjacent to each of these two frames 210.
- two layers of adhesive 240 are represented, each layer of adhesive 240 being interposed between, on the one hand, the compartment frame 230 and, on the other hand, one of the walls 102 and the wall frame 220 associated with this wall 102.
- each layer of adhesive 240 is interposed between, d on the one hand, the corresponding compartment frame 230 and, on the other hand, the wall 102 and the wall frame 220 adjacent to this compartment frame 230.
- Each layer of adhesive 240 is made of a waterproof material, preferably a “contact” type adhesive, also known as PSA for “Pressure Sensitive Adhesive” in English.
- each layer of adhesive 240 is repositionable, so that the sealing structure 200 is removable, the unit cell 100 being by extension itself also removable.
- Non-limiting examples of adhesives include acrylic glues.
- Each layer of adhesive 240 is made of an electrically insulating material.
- each layer of adhesive 240 extends continuously over the surfaces of the frames 210 and/or walls 102 which this layer of adhesive 240 holds together.
- the adhesive layer 240 is applied by coating on one of the faces to be assembled, then the second face is pressed onto the adhesive layer 240.
- the two layers of adhesives 240 have a shape identical to the compartment frame 230 which is interposed between these two layers of adhesive 240.
- the compartment frame 230 is coated with adhesive on each of its two opposite faces before being cut out and assembled to the rest of the sealing structure 240.
- the compartment frame 230 is inserted, along the stacking axis A50, between two walls 102, and between the two wall frames 220 which are coplanar with the two walls 102.
- the compartment frame 230 is thus adjacent to these two wall frames 220.
- the internal contour of the compartment frame 230 is included, in projection along the stacking axis A50, in an external contour of the adjacent wall 102, so that a annular portion of the wall 102 faces, along the stacking axis 102, a complementary portion of the compartment frame 230 and forms a first covering S231 of the compartment frame 230 on this wall 102.
- the first covering S231 is a portion of a face 103 of the wall 102, which corresponds to the projection, parallel to the stacking axis A50, of the compartment frame 230 on the adjacent wall 102.
- an internal contour of the wall frame 220 is included, in projection along the stacking axis A50, in the external contour of the compartment frame 230, so that an annular portion of the wall frame 220 faces a complementary portion of the compartment frame 230 and forms a second covering S232 of the compartment frame 230 on this wall frame 220.
- the second covering S232 corresponds to the projection, parallel to the stacking axis A50, of the frame compartment 230 on the adjacent wall frame 220.
- the second covering 232 corresponds here to that of the faces 223 of the wall frame 220 which is oriented towards the compartment frame considered.
- the external contours of all the frames 210 of the sealing structure 200 are superimposed on each other along the stacking axis A50, the external edges of all the frames of all the sealing structures together forming a external surface S100 of the unit cell 100.
- the external surface S50 of the stack 50 corresponds to the union of the external surfaces S100 of the unit cells 100 which make up this stack 50.
- the outer surface S50 is ground after assembling the unit cells 100, so that the outer surface S50 is smooth.
- this layer of adhesive 240 comprises a first portion, called the first portion of layer 241, which extends facing the first covering S231 between the frame compartment 230 and the adjacent wall 102, so as to fix, in a sealed manner, this compartment frame 230 to the adjacent wall 102.
- this adhesive layer 240 comprises a second portion, called the second layer portion 242, which extends facing the second covering S232 between the compartment frame 230 and the adjacent wall frame 220, so as to fix, sealingly, this compartment frame 230 to this wall frame 220.
- the first layer portion 241 and the second layer portion 242 are arranged in the same plane transverse to the stacking axis A50.
- the first layer portion 241 is, in this transverse plane, surrounded by the second layer portion 242.
- the adhesive layer 240 comprises a third portion, called the third portion of layer 243, which is interposed radially, in the same plane transverse to the stacking axis A50, between the first portion of layer 241 and second portion of layer 242 and which therefore unites the first portion of layer 241 and second portion of layer 242 to one another.
- the third layer portion 243 of the adhesive layer is located opposite, along the stacking axis A50, the peripheral gap I220.
- the third portion of layer 243 of the adhesive layer 240 continuously connects the first layer 242 to the second portion of layer 242.
- the first portion of layer 241 of adhesive and the second portion of layer 242 of adhesive are part of the same continuous layer, here the adhesive layer 240, which extends over one face of the compartment frame 230, so as to cover the peripheral gap I220 opposite the compartment frame 230.
- the first covering S231 has a leakage length L231, which is equal to a minimum distance, measured parallel to the mean plane P50, between any two points belonging respectively to the internal edge 214 of the corresponding compartment frame 230 and to the external edge 105 of the wall 102 corresponding adjacent.
- the leakage length L231 is the length of the shortest path between the compartment V100 and the peripheral gap I220, passing between the compartment frame 230 and the adjacent wall 102 considered.
- the second covering S232 has a leakage length L232, which is equal to a minimum distance, measured parallel to the mean plane P50, between any two points belonging respectively to the external edge 215 of the corresponding compartment frame 230 and to the internal edge 214 of the corresponding adjacent wall frame 220.
- the leakage length L232 of the second cover S232 is the length of the shortest path between the peripheral gap I220 and the exterior of the unit cell 100, passing between the compartment frame 230 and the adjacent wall frame 220 considered.
- Each leak length L231 or L232 is greater than or equal to 1 mm, preferably greater than or equal to 2 mm, more preferably greater than or equal to 3 mm. This ensures a seal greater than a minimum value, on the one hand, between each of the V100 compartments and the exterior of the cell 100 and, on the other hand, between two neighboring V100 compartments.
- the compartment frame 230 and the two associated layers of adhesives 240 are manufactured by coating an adhesive material on both faces of the compartment frame 230, the compartment frame 230 thus coated being then cut to the desired shape , before being assembled with the other elements of the unit cell 100.
- the assembly formed by the compartment frame 230 coated with the two associated layers of adhesive 240 thus forms a frame called a “double-sided adhesive frame”.
- the compartment frame 230 thus forms a continuous and waterproof core of this double-sided adhesive frame.
- a double-sided adhesive plate is provided, this double-sided adhesive plate comprising a continuous waterproof core, here in PET, coated on both sides with an adhesive material.
- the adhesive material is, for example, deposited by a coating process on both sides of the core.
- This double-sided adhesive plate is then cut to the desired geometry, so as to form, in a single step, the compartment frame 230 and the two associated adhesive layers 240.
- Such a sealing structure 200 does not include a fluid inlet or outlet passage in the associated compartment V100. If such entry and/or exit of fluid must be provided in the compartment, it is necessary, with this sealing structure 200, to provide it elsewhere, for example in one of the walls 102 which delimit the compartment.
- a sealing structure 300 is shown in Figure 6.
- the sealing structure 300 differs from the sealing structure 200 described previously, in that the sealing structure 300 comprises a compartment frame which is produced in the form of a transfer frame 330 through which two fluid passages 332 are provided, so as to allow the operating fluid corresponding to compartment V100 to circulate.
- a single fluid passage 332 is shown in Figure 6.
- the transfer frames 330 are therefore part of the frames 210.
- each compartment frame 330 only includes the transfer frame .
- One of the two fluid passages 332 is an inlet for the operating fluid, while the other passage 332 is an outlet for the operating fluid, the notions of “inlet” and “outlet” depending on the direction of circulation of the fluid. operating fluid.
- the fluid passages 332 thus connect the compartment V100 and the exterior of the cell 100.
- the fluid passages 332 are provided during the cutting of the transfer frame 330, the transfer frame 330 being sandwiched between the two layers of adhesive 240, so as to secure, in a watertight manner, vis-à-vis screws from the outside, the transfer frame 330 to the adjacent wall frames 220 and to the associated walls 102.
- a fluid passage is formed by a partial disbursement, in the direction of the stacking axis A50, of the transfer frame, such disbursement having a depth in the stacking direction less than the thickness of the transfer frame and a circumferential extent.
- Each passage 332 opens into the associated compartment V100 via an internal mouth 334, which is provided on the internal edge 214 of the transfer frame 330. Each passage 332 opens outside the compartment V100 via an external mouth 335.
- Each passage 332 thus comprises an internal portion 334B, which opens through the internal mouth 334 into the corresponding compartment V100.
- the internal portion 334B of each passage 332 is provided in the thickness of the transfer frame 330.
- Such an arrangement thus makes it possible to economically provide the passages 332 in each of the transfer frames 330, so as to supply each compartment V100 with the corresponding operating fluid.
- the external mouth 335 of each passage 332 of the transfer frame 330 is advantageously provided on the external edge 215 of the transfer frame 335, so as to communicate fluidly with one of the circulation conduits 38A, 38B or 38C.
- One of the passages 332 of a transfer frame 330 thus communicates with one of the circulation conduits 38A, 38B or 38C while the other of the passages 332 of this same transfer frame 330 communicates with the other of the conduits circulation 38A, 38B or 38C which belongs to the same pair of conduits.
- the external mouth 335 associated with this passage 332 opens onto the external edge 215 of this transfer frame 330 in a distinct conduit among the circulation conduits of the associated pair.
- the external mouth 335 is arranged differently, for example oriented axially and is arranged on one of the faces 213 of the transfer frame 330, the external mouths then preferably being aligned along the stacking axis A50 so as to to form chimneys, which extend through the frames 210, these chimneys being provided for the circulation of operating fluids, using an arrangement known in the field of polar plates known as “internal manifold”.
- each passage 332 houses fins 336 for guiding the associated operating fluid.
- only one of the two passages 332 includes the fins 336.
- the fins 336 form pillars, which keep the two layers of adhesives 240 associated with the transfer frame 330 considered at a distance.
- Two neighboring fins 336 delimit a channel between them.
- Each fluid passage 332 is therefore formed from the union of the channels delimited between the fins 336.
- the shape of each fin 336 is chosen so as to interfere as little as possible with the flow of operating fluids passing through the passages 332, while ensuring the transfer of forces from the mechanical tightening forces of the stack 50, these tightening forces being parallel to the stack axis A50.
- the fins 336 are preferably formed, during the manufacture of the transfer frame 330, by cutting this transfer frame 330.
- the fins 336 thus have the same thickness as the rest of the transfer frame 330.
- the fins 336 are held by means of layers of adhesives arranged on either side of the transfer frame 330 considered, here the layers of adhesive 240, between which the transfer frame 330 is interposed.
- the fins 336 advantageously are distributed at a distance from each other within the corresponding passage 332, so to direct the flow of the associated operating fluid.
- the fins 336 are regularly distributed in the corresponding passage 332.
- a sealing structure 400 is shown in Figure 7.
- the sealing structure 400 differs from the sealing structure 300 described previously, in that the sealing structure 400 comprises a compartment frame 430 which includes, in addition to the transfer frame 330 interposed between the two corresponding adhesive layers 240, an additional frame, called first sealing frame 432, which is interposed between the transfer frame 330 and one of the layers of adhesive 240 associated with this transfer frame 330.
- the first sealing frame 432 is thus adjacent to a wall 102, to which this first sealing frame 432 is fixed by one of the layers of adhesive 240.
- the first sealing frame 432 is inserted between, on the one hand, the transfer frame 330 and, on the other hand, one of the two walls 102 adjacent to this transfer frame 330.
- the first sealing frame 432 is associated with the wall 102 and the wall frame 220 located at the bottom of the figure.
- the compartment frame 430 also includes an adhesive film 440, which is interposed between the first sealing frame 432 and the transfer frame 330, so as to attach the transfer frame 330 to the adjacent first sealing frame 432.
- the adhesive film 440 is here made of a sufficiently hard material, chosen so as to avoid adhesive creep, in particular between the fins 336, under the effect of pressure, and thus to avoid the obstruction of the fluidic passages 332.
- the adhesive film 440 here comprises tabs 441, which correspond to the fins 336 of the transfer frame 330.
- the tabs 441 here form a discontinuous portion of the adhesive film 440.
- the adhesive film 440 does not does not include a tab and is continuous in the circumferential direction around the stacking axis A50, like the layers of adhesive 240.
- the transfer frame 330, and in particular the fins 336, are thus fixed to the first sealing frame 432 by the first adhesive film 440, while this first sealing frame 432 is fixed in a sealed manner to the adjacent wall 102, and to the wall frame 220 facing this wall 102, by the corresponding layer of adhesive 240.
- the sealing frame 432 which extends continuously, in the radial direction and in the circumferential direction around the stacking axis A50, faces the peripheral gap I220 provided between this wall 102 and the sealing frame. facing wall 210, thus providing the adhesive layer 240 with continuous support, which improves the sealing of the corresponding compartment V100 compared to the situation without sealing frame 432.
- the presence of a sealing frame 432 is particularly advantageous in the case where the operating fluid circulating in compartment V100 is a gas, in other words in the case where the transfer frame 330 is provided around the first reactive compartment V132 or around the second reactive compartment V134, where hydrogen and air circulate respectively.
- the sealing frame 432 has the same shape, in the sense of the same internal and external contour, as the transfer frame of which it is a part.
- the adhesive film 440 has the same shape, in the sense of the same internal and external contour, as the first sealing frame 432 and the corresponding transfer frame.
- sealing frames 432 are preferably adjacent to the membrane 130, and to the wall frame facing the membrane 130, on the side where the operating fluid is hydrogen, to avoid the risk of hydrogen pollution. on the other side of the membrane 130. More preferably, sealing frames 432 are arranged in each of the reactive compartments V132 and V134, on either side of the membrane 130, so as to avoid gas transfers between the two reactive compartments V132 and V134.
- the sealing frame 432 and the associated adhesive layer 240 are manufactured by coating with an adhesive material on one of the two faces of the sealing frame 432, the sealing frame 432 thus coated being then cut to size. the desired shape, before being assembled with the other elements of the unit cell 100.
- the assembly formed by the sealing frame 432 coated with an associated layer of adhesive 240 thus forms a frame called a “single-sided adhesive frame”.
- the sealing frame 432 thus forms a continuous and waterproof core of this single-sided adhesive frame, this continuity being radial and circumferential.
- a single-sided adhesive plate is provided, this single-sided adhesive plate comprising a continuous waterproof core, here in PET, coated on one of its two faces with an adhesive material.
- the adhesive material is for example deposited by coating on one of the faces of the core.
- This single-sided adhesive plate is then cut to the desired geometry, so as to form, in a single step, the sealing frame 432 and the associated adhesive layer 240, both being continuous both radially and circumferentially over the entire surface. extent of the sealing frame 432.
- a sealing structure 500 is shown in Figure 8.
- the sealing structure 500 differs from the sealing structure 400 described previously, in that the sealing structure 500 comprises, for each transfer frame 330, two sealing frames 432, which are arranged on either side of the transfer frame 330.
- the sealing structure 500 also includes a second adhesive film 440, which is interposed between the second sealing frame 432 and the compartment frame 330.
- the surfaces of the adhesive films 440 oriented towards the fluid passages 332 are more reduced, which reduces the risk of pollution of the V100 compartment and the operating fluid circulating in this V100 compartment.
- the risk of obstruction of the fluid passages 332 by the creep of the adhesive films 442 is also reduced.
- the first sealing frame 432 and the second sealing frame 432 are each interposed between, on the one hand, the transfer frame 330 and, on the other hand, one of the two respective layers of adhesive 240.
- the second sealing frame 432 is, on the one hand, fixed to the corresponding wall 102 and wall frame 210 by the corresponding adhesive layer 240 and, on the other hand, fixed to the transfer frame 330 by means of the second adhesive film 440.
- the transfer frame 330, the two sealing frames 432 and the two adhesive films 440 together form a compartment frame 530 of this sealing structure.
- each of the two sealing frames 432 the associated adhesive layer 240 is coated on the sealing frame 432, so as to form a single-sided adhesive frame.
- each frame 432 and the associated adhesive layer 240 are formed during the same steps, by cutting a single-sided adhesive plate.
- each wall 102 of the unit cell 100 when the compartments located on each side of this wall 102 comprise transfer frames 330 taken between two adhesive films 440, it is particularly advantageous to seal the gap I220 , using a sealing frame 432 and an associated layer of adhesive 240, at least on one of the faces 103 of this wall 102, because the adhesive films 440 could not be sufficient to guarantee a sufficient sealing.
- the membrane 130 is preferably sealed on each of its two faces by a sealing frame 432 with the associated layer of adhesive 240, so as to maintain the membrane 130, which is here produced made of fluoropolymer and which is more fragile and more difficult to glue than the separators 1 10 and 120, which are here made of stainless steel.
- compartment V100 considered is delimited by two sealing frames 432 and by the associated adhesive layers 240, further improving the sealing of this V100 frame.
- compartment V100 where the operating fluid is hydrogen is preferably delimited by such a structure sealing frame comprising two sealing frames 432 on either side of the compartment frame 330.
- all the compartments V100 where gases circulate here the first reactive compartment V132 and the second reactive compartment V134, are each delimited by two sealing frames 432 on either side of a compartment frame 330 associated with this reactive compartment.
- Figure 9 illustrates, for a V100 compartment considered, respectively, on inserts a) and b), two alternative sealing structures 500' and 500" of the sealing structure 500 shown in Figure 8.
- one of the sealing frame 432 and the adhesive layer 240 associated with this sealing frame 432 are arranged on the other side of one of the walls 102 delimiting the compartment V100, here on the other side of the wall 102 located on the bottom of Figure 9 a), this sealing frame 432 therefore belonging, in a stack, to the compartment frame of the neighboring compartment of the compartment V100 considered, located on the other side of the wall 102 located at the bottom of Figure 9 a).
- the layer of adhesive 240 associated with this wall 102 is therefore interposed, on the other side of the wall 102 with respect to the compartment V100 considered, between the sealing frame 432 and the wall 102, so as to close the gap I220.
- the gap I220 is not shown in Figure 9.
- the two sealing frames 432 and the layers of adhesive 240 associated with each of these sealing frames 432 are arranged on the other side of the two walls 102 delimiting the compartment V100
- the transfer frame 330 associated with the compartment V100 of Figure 9 b) is inserted between the two wall frames. 220 which immediately frame it in the stacking direction A50, without the interposition of any sealing frame between this transfer frame 330 and these two wall frames 220.
- such sealing frames 432 are provided immediately in contact with each of these two wall frames 220 with, for each wall frame only interposition of a layer of adhesive 240 between the sealing frame 432 and the wall frame.
- sealing 432 therefore each belong respectively to one of the two compartment frames of the two neighboring compartments of the compartment V100 considered, located respectively on the other side of the wall 102 located on the bottom of Figure 9 b) and on the other side of the wall 102 located towards the top of Figure 9 b).
- the adhesive layer 240 which is therefore interposed between, on the one hand, the sealing frame, and, on the other hand, the wall 102 and the wall frame 220 associated with this wall, includes necessarily a first portion of layer, which extends facing the first covering between the compartment frame (here the sealing frame forming part of this compartment frame) and the wall, so as to fix, in a watertight manner, the frame compartment to the wall.
- This first portion of layer 241 is therefore in these cases facing and in contact with the sealing frame 432 and the wall.
- This same layer of adhesive 240 includes the second portion of layer 242, which extends facing the second covering between the compartment frame (here again the sealing frame forming part of this compartment frame) and the wall frame, so as to securely fix the compartment frame to the wall frame.
- This second portion of layer 242 is therefore in these cases facing and in contact with the sealing frame 432 and the wall frame 220.
- first portion of layer 241 of adhesive and the second portion of layer 242 of adhesive are preferably part of the same layer of adhesive 240, as in the illustrations, which extends continuously over one face of the compartment frame, in this case one face of the sealing frame 432, both first and second portions of adhesive layer 241 and 242 therefore being continuous both radially and circumferentially over the entire extent of the sealing frame 432, so as to close the peripheral gap I220 facing the compartment frame 220.
- the sealing structures 500, 500' and 500" shown in Figures 8 and 9 can thus be chosen, according to needs, for each of the compartments V100 of a unit cell 100, and by extension for the stack 50.
- each element of the sealing structures 200, 300, 400 or 500 namely the thicknesses of the wall frames 220, the compartment frames 220, the transfer frames 330, the sealing frames 432 , as well as the thicknesses of the adhesive layers 240 or the adhesive films 440, are adjusted according to the structure of each unit cell 100, in particular according to the nature of each wall 102 and the various elements received in each compartments V100 of unit cell 100.
- each sealing frame 432 is made of a polymer material, for example PET, and has a thickness, measured parallel to the stacking axis A50, of between 10 pm and 20 pm, preferably equal to 12 pm .
- the adhesive film 440 interposed between each sealing frame 432 and the corresponding transfer frame 330 has a thickness, measured parallel to the stacking axis A50, of between 6 pm and 30 pm, preferably between 8 pm and 20 pm. pm, preferably between 10 pm and 15 pm.
- Each transfer frame 330 is made of a polymer material, for example PET, and has a thickness, measured parallel to the stacking axis A50, of between 50 pm and 600 pm, preferably between 80 pm and 150 pm , preferably still equal to 100 pm.
- the first layer portion and the second layer portion each have a thickness, measured parallel to the stacking axis, of between 15 pm and 30 pm, preferably between 18 pm and 25 pm. pm, preferably equal to 20 pm.
- the thickness is identical for the first layer portion and the second layer portion.
- the unit cell 100 is shown schematically in section in Figure 10. As indicated in dotted lines, this unit cell is repeated in the stack.
- the first reactive compartment V132 here houses a copy of the 700 spacer of the second type.
- the frames 210 which form the compartment frame corresponding to this compartment comprise a transfer frame 330, which provides the two passages 332 associated with the first reactive compartment V132, and two sealing frames 432, one on each side of the transfer frame 330, which are each attached to the transfer frame 330 by a respective adhesive film 440.
- the second reactive compartment V134 here houses a copy of the 600 spacer of the first type.
- the frames 210 which form the compartment frame corresponding to this reactive compartment V134 comprise a transfer frame 330, which provides the two passages 332 associated with the second reactive compartment V132, and two sealing frames 432 , one on each side of the transfer frame 330, which are each attached to the transfer frame 330 by a respective adhesive film 440.
- the V136 cooling compartment here accommodates a second copy of the 700 spacer of the second type.
- the frames 210 which form the compartment frame corresponding to this compartment only include a transfer frame 330, which provides the two passages 332 associated with the reactive cooling compartment V132.
- passages 332 are represented schematically by dotted arrows.
- the passages 332 for each of the compartments V132, V134 and V136 are represented as if they were aligned along the stacking axis A50, this illustration being schematic.
- the location and extent in the circumferential direction of the passages 332 are adjusted depending on the type and orientation of the irrigation spacers 600 or 700.
- the passages 332 for each of the compartments V132, V134 and V136 of the same unit cell 100 are offset from each other on the perimeter of the cell, preferably being substantially diametrically opposed to each other relative to the other.
- the passages 332 of each of the first reactive compartments V132 of all the unit cells 100 of the stack are preferably aligned along the stack axis A50.
- the passages 332 of each of the second reactive compartments V134 of all the unit cells 100 of the stack are preferably aligned along the stacking axis A50
- the passages 332 of each of the cooling compartments V136 of all of the unit cells 100 of the stack are preferably aligned along the stack axis A50.
- the first reactive compartment V132 and the second reactive compartment V134 are each delimited by a compartment frame comprising two respective sealing frames 432, arranged on either side of a transfer frame 300, each sealing frame 432 being adjacent to a respective wall 102.
- the peripheral gap I220 associated with the wall 102 separating the two reactive compartments V132 and V134 in other words the gap I220 associated with the membrane 130, is closed, on both faces of the membrane 130, by a sealing frame 432 respectively.
- each sealing frame 432 is fixed to the transfer frame by an adhesive film 440.
- the compartment frame thus formed is associated with two layers of adhesive 240 arranged on either side of the compartment frame along the stacking axis A50.
- Each of these two layers of adhesive 240 is therefore interposed between, on the one hand, a sealing frame 432, and, on the other hand, the wall 102 and the wall frame 220 associated with this wall.
- the cooling compartment V136 is delimited by a compartment frame comprising only a transfer frame 330, without sealing frame 432.
- the peripheral gap I220 associated with the first separator 110 does not is closed by a sealing frame 432 on only one side of the first separator 110, and this sealing frame 432 is similar to the compartment frame of the neighboring compartment, namely here to the first reactive compartment V132.
- the peripheral gap I220 associated with the second separator 120 is only closed by a sealing frame 432 on one side of the first separator 110, this sealing frame 432 appearing to the compartment frame of the first reactive compartment V132.
- a compartment frame comprising a sealing frame on only one side of the transfer frame 330, or comprising two sealing frames, on each side of the transfer frame 330.
- a unit cell 200 according to an alternative embodiment is shown in Figure 11.
- the unit cell 200 includes the first reactive compartment V132 and the second reactive compartment V134, but does not include a cooling compartment.
- the cooling of the unit cell 200 is here ensured by the passage of air, which circulates here in the second reactive compartment V134.
- the second reactive compartment V134 is here delimited by a compartment frame comprising a single sealing frame 432.
- the peripheral gap I220 associated with the membrane 130 is closed on one side only by a sealing frame 432.
- the transfer frame 330 received in the second compartment reagent here has a thickness greater than the transfer frame 330 of the previous embodiment, so that the fluid passage 332 allows a greater flow rate of the associated operating fluid - here air -, which is used both for the electrochemical reaction of the fuel cell and the cooling of the cell.
- the peripheral gap I220 associated with this wall 102 is closed , on at least one of the faces of this wall 102, by a sealing frame 432, which is fixed to this wall by the associated adhesive layer 240.
- the peripheral gap I220 associated with this wall 102 is closed, on at least one of the faces of this wall, by a continuous frame over the entire circumference of this gap I220.
- the reactive compartment where the hydrogen circulates is delimited by a compartment frame comprising two sealing frames 432 arranged on either side of a transfer frame 330 along the axis stack A50, each of these sealing frames 432 closing a peripheral gap I220 associated with the two walls 201 delimiting this reactive compartment.
- Each sealing frame is attached to the transfer frame by a film of 440 adhesive.
- the sealing frame compartment thus formed is associated with two layers of adhesive 240 arranged on either side of the compartment frame along the stacking axis A50. Each of these two layers of adhesive 240 is therefore interposed between, on the one hand, a sealing frame 432, and, on the other hand, the wall 102 and the wall frame 220 associated with this wall.
- each sealing frame 432 and the associated adhesive layer 240 are produced by cutting a single-sided adhesive plate.
- each transfer frame 330 and the two associated adhesive films 440 are made by cutting a double-sided adhesive plate.
- the irrigation spacer 600 also simply called “spacer 600”, has a generally rectangular shape, with two large opposite sides and two small opposite sides, and is flat, which extends orthogonally to an axis of height A600.
- the height axis A600 is parallel to the stacking axis A50.
- the long sides extend parallel to a longitudinal axis X600 of the spacer 600, while the short sides extend parallel to a transverse axis Y600 of the spacer 600.
- the longitudinal axis the height axis A600 together form an orthogonal reference mark.
- the spacer 600 includes two distribution plates 602, including a first plate 602A and a second plate 602B.
- the distribution plates 602 each comprise two opposite faces, including a first face 604 and a second face 605.
- the two plates 602 are stacked flat on top of each other along the height axis A600, which is orthogonal to a mean plane P600 of the irrigation spacer 600.
- the average plane P600 of the irrigation spacer 600 is therefore orthogonal to the stacking axis A50, or even parallel to the average plane P50 of the corresponding unit cell 100.
- Each distribution plate 602 is manufactured by cutting from a metal sheet and has a thickness of between 30 pm and 300 pm, preferably between 50 pm and 100 pm, more preferably equal, to ⁇ 5%, to 75 pm. Preferably, the distribution plates 602 have the same thickness.
- Each distribution plate 602 comprises perforations 610, which are formed by cutting this distribution plate 602.
- the perforations 610 are through, that is to say that the perforations 610 open onto the two opposite faces 604 and 605 of this distribution plate 602.
- the perforations 602 are arranged so as to form a network 612 of channels when the two plates 602 are stacked, the network 612 of channels being configured to form a flow field of an operating fluid circulating in the compartment V100 where the irrigation spacer 600 is housed.
- the irrigation spacer 600 comprises a fluid inlet 613A and a fluid outlet 613B, the inlet 613A and the outlet 613B being fluidly connected to each other by the network of channels 612.
- the notions of " entry” and “outlet” are relative, and depend on the direction of circulation of the flowing fluid.
- the inlet 613A and the outlet 613B are respectively provided on the short sides of the spacer 600.
- each distribution plate 602 have an elongated shape, two neighboring perforations 610 extending along one another and being separated from one another by a strip 614 of material.
- Each perforation 610 is delimited by two opposite longitudinal edges 616, each of the two longitudinal edges 616 corresponding to one of the edges of the two strips 614 of material which delimit each perforation 610.
- Each distribution plate 602 also includes crosspieces 618, which extend through the perforations 610, in the thickness of the distribution plate 602, and which maintain the strips 614 at a distance from each other.
- Each crosspiece 618 thus connects the two longitudinal edges 616 of the perforation 610 to each other through which this crosspiece 618 extends.
- Each strip 614 of the first plate 602A is superimposed, along the height axis A600, with a respective strip 614 of second plate 602B, delimiting a first portion 620 of the network 612 of channels.
- each perforation 610 of the first plate 602A is aligned, along the height axis A600, with a respective perforation 610 of the second plate 602B, so as to form each channel of the network 612.
- the irrigation spacer 600 here only includes a single portion 620, in other words the first portion 620 represents the entire network 612 of channels.
- the first portion 620 of the network 612 is represented by a dotted box.
- the first portion 621 of this plate 602 therefore represents the entirety of this plate.
- the crosspieces 618 of the first plate 602A are offset, in the mean plane P600 of the spacer 600, relative to the crosspieces 618 of the second plate 602B, so as not to prevent the circulation of operating fluids in the channels of the first portion 620 of the network 612 of channels of the irrigation spacer 600.
- a detail of the spacer 600 is shown sandwiched between two elements of the cell 100, namely between the membrane 130 and the second separator 120.
- the circulation of the operating fluid is represented by an arrow F612.
- each channel of the network 612 flows along each channel while bypassing the crosspieces 618, which are offset from each other according to the direction of the channel, two crosspieces 618 of the spacer 600, which extend through a given channel and which do not belong to the same distribution plate 602, being therefore offset from one another in the direction of the channel.
- the strips 614 of each distribution plate 602 are preferably parallel to each other.
- the perforations 610, and therefore the channels of the network 612 are also parallel to each other, so as to reduce the pressure losses of the operating fluid circulating in the spacer 600.
- each strip 614 of material extends continuously from the fluid inlet 613A to the fluid outlet 613B. the spacer 600, so that each channel of the network 612 extends continuously from the input 613A to the output 613B.
- there is no bifurcation or junction of the perforations 610 so as to reduce the pressure losses of the operating fluid circulating in the spacer 600.
- the strips 614 of the irrigation spacer 600 are rectilinear in orthogonal projection on the mean plane P600 of the spacer 600.
- the channels of the first portion of the network channels are straight.
- the perforations 610 each have the same width £610, which is between 0.2 mm and 1.1 mm, while the strips 614 of material separating two perforations 610 neighboring each have a width £614 of between 0.2 mm and 0.7 mm. This ensures both good flow of the operating fluid, and good transfer of the compression forces, parallel to the height axis A600, which are exerted on the spacer 600 when the spacer 600 is received in a fuel cell 20.
- each crosspiece 618 has a height equal to a height of the strips 614 of material adjacent to the perforation 610 in which this crosspiece 618 is arranged, the height of the crosspieces and the height of the strips being measured parallel to the height axis.
- the manufacturing process is thus simplified, each distribution plate 602 being produced by simple cutting.
- each channel of the network 612 of channels is rectilinear from one end to the other, that is to say from the inlet 613A to the outlet 613B
- the spacer 700 of the second type comprises a network of channels 712, in which each channel is formed of several rectilinear portions, two consecutive portions not being aligned with each other.
- the spacer 700 includes an inlet 713A and an outlet 713B, which are each provided on one of the respective long sides of the rectangle.
- each channel of the network 712 extends continuously from the input 713A to the output 713B.
- the network 712 of channels includes several distinct portions. Within each portion, the perforations 610 are parallel to each other, two adjacent perforations 610 being separated from each other by a strip 614 of respective material
- the network 712 of channels comprises three consecutive portions, including a first portion 714A, a second portion 714B, and a third portion 714C, the contours of the three portions 714A, 741 B and 714C being materialized in dotted lines on the Figures 14 and 15. More generally, the number of portions is chosen according to the geometry of the spacer, the arrangement of the fluid inlet and the fluid outlet, etc. What is valid for the first and second portions 714A and 714B of the network 712 of channels is transposable to any two consecutive portions of the network 712 of the network of channels.
- the spacer 700 includes two distribution plates 702, including a first plate 702A and a second plate 702B.
- the portions 714A, 714B and 714C of the network 712 of channels are found, with the references 724A, 724B and 724C, on each of the plates 702.
- Figure 14 only the first and second portions 724A and 724B of each of the first and second distribution plates 702A and 702B are visible.
- the operating principle of the spacer 700 is described with reference to the first and second portions 714A and 714B of the network 712 of channels.
- the perforations 610 are parallel to each other, two adjacent perforations 610 being separated from each other by a strip 614 of respective subject.
- Each strip 614 of the second portion 724B of the first plate 702A is superimposed, along the height axis A600, with a respective strip 614 of the second portion 724B of the second plate 702B, so as to form channels of a second portion 714B of the network 712 of channels of the irrigation spacer 700, the channels of the second portion 714B of the network 712 of channels being parallel to each other.
- each strip 614 of the first portion 724A of this distribution plate extends, continuously, with a strip 614 of the second portion 724B of this same distribution plate.
- the strips 614 of the first portion 724A are rectilinear and parallel to each other, the channels of the first portion 714A of the network 712 extending along a first flow axis 716A, while the strips 614 of the second portion 724B are rectilinear and parallel to each other, the channels of the second portion 714B of the network 712 extending along a second flow axis 716B.
- the first flow axis 716A and the second flow axis 716B are each represented by a respective arrow in Figures 14 and 15.
- the first flow axis 716A is here parallel to the transverse axis Y600
- the second axis flow 716B is here parallel to the longitudinal axis X100.
- the first flow axis 716A and the second flow axis 716B are distinct, that is to say that the operating fluid circulating in each channel of the network 712 changes direction when passing from the first portion 714A to the second portion 714B.
- the first flow axis 716A and the second flow axis 716B form between them an angle of between 1 and 179°, preferably between 30° and 150°, more preferably between 60° and 120°. In the example illustrated, the first flow axis 716A and the second flow axis 716B form an angle between them equal to 90°.
- each of the compartments among the first reactive compartment V132, the second reactive compartment V134 and the first cooling compartment V126 houses an irrigation spacer 600 or 700 according to the invention.
- only one of the housings V100 of the unit cell 100 receives an irrigation spacer of another type, the two other housings V100 each receiving an irrigation spacer according to the invention.
- only one of the housings V100 of the unit cell 100 receives an irrigation spacer according to the invention, the two other housings V100 each receiving an irrigation spacer of another type.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
TITRE : Cellule unitaire de pile à combustible et pile à combustible associée TITLE: Fuel cell unit cell and associated fuel cell
La présente invention concerne une cellule unitaire de pile à combustible ainsi qu’une pile à combustible comprenant une telle cellule unitaire. The present invention relates to a fuel cell unit cell as well as a fuel cell comprising such a unit cell.
Une pile à combustible est un dispositif permettant de générer de l’électricité par réaction électrochimique entre un carburant, par exemple du di-hydrogène - dit aussi simplement hydrogène -, et un comburant, par exemple du di-oxygène - dit aussi simplement oxygène - contenu dans l’air. On s’intéresse ici aux piles à combustible du type à membrane échangeuse de protons à électrolyte solide - dite aussi PEMFC en anglais -, qui comprennent habituellement un empilement - dit « stack » en anglais - de cellules unitaires constituant chacune un générateur électrochimique. A fuel cell is a device for generating electricity by electrochemical reaction between a fuel, for example di-hydrogen - also known simply as hydrogen -, and an oxidant, for example di-oxygen - also known simply as oxygen - contained in the air. We are interested here in fuel cells of the solid electrolyte proton exchange membrane type - also called PEMFC in English -, which usually comprise a stack - called a "stack" in English - of unit cells each constituting an electrochemical generator.
Schématiquement, chaque cellule unitaire comprend deux séparateurs, dits aussi plaques polaires, entre lesquels est intercalé un électrolyte solide sous forme de membrane échangeuse de protons. La membrane est réalisée par exemple en un matériau polymère perfluoré sulfoné. Au sein de chaque cellule, chaque séparateur délimite avec la membrane correspondante un compartiment réactif. L’un des deux compartiments réactifs loge un élément cathodique, tandis que l’autre compartiment réactif loge un élément anodique. Schematically, each unit cell comprises two separators, also called polar plates, between which a solid electrolyte in the form of a proton exchange membrane is interposed. The membrane is made for example of a sulfonated perfluorinated polymer material. Within each cell, each separator defines a reactive compartment with the corresponding membrane. One of the two reactive compartments houses a cathode element, while the other reactive compartment houses an anode element.
Au sein de l’empilement, les cellules sont empilées de manière à alterner éléments cathodique et anodique. Dans de nombreux types de piles à combustible, pour deux cellules voisines, un séparateur d’une des deux cellules se retrouve dos à dos avec un séparateur de l’autre cellule. Ces deux séparateurs forment ensemble un séparateur bipolaire, aussi appelé plaque bipolaire. Un compartiment de refroidissement, dans lequel circule un fluide de refroidissement tel que de l’eau glycolée, est généralement aménagé entre les deux séparateurs du séparateur bipolaire. Dans d’autres types de piles à combustibles, notamment dans une pile sans refroidissement liquide, un même séparateur est partagé par deux cellules voisines et la pile ne comporte donc pas de compartiment de refroidissement. Within the stack, the cells are stacked so as to alternate cathode and anodic elements. In many types of fuel cells, for two neighboring cells, a separator from one of the two cells is found back to back with a separator from the other cell. These two separators together form a bipolar separator, also called a bipolar plate. A cooling compartment, in which a cooling fluid such as brine circulates, is generally arranged between the two separators of the bipolar separator. In other types of fuel cells, notably in a cell without liquid cooling, the same separator is shared by two neighboring cells and the cell therefore does not have a cooling compartment.
L’hydrogène, l’air et l’éventuel liquide de refroidissement sont des fluides dits « de fonctionnement », qui sont fournis à la pile à combustible pendant son fonctionnement. Selon les phases de fonctionnement de la pile à combustible, la fourniture d’un ou plusieurs des fluides de fonctionnement est faite de manière continue ou de manière intermittente. Hydrogen, air and any coolant are so-called “operating” fluids, which are supplied to the fuel cell during operation. Depending on the operating phases of the fuel cell, the supply of one or more of the operating fluids is carried out continuously or intermittently.
La pile à combustible ménage ainsi des ouvertures pour alimenter en fluides chacun des compartiments réactifs et les fluides entre deux cellules voisines. Ainsi, chaque séparateur bipolaire assure d’un côté l’alimentation en carburant de la cellule adjacente à ce côté et de l’autre côté l’alimentation en comburant de la cellule adjacente à cet autre côté, les alimentations assurées par les séparateurs bipolaires se faisant en parallèle. The fuel cell thus provides openings to supply fluids to each of the reactive compartments and fluids between two neighboring cells. Thus, each bipolar separator ensures on one side the fuel supply to the cell adjacent to this side and on the other side the oxidant supply to the cell adjacent to this other side, the supplies provided by the bipolar separators being done in parallel.
Lorsque la pile à combustible est en fonctionnement, la réaction électrochimique crée une différence de potentiel électrique entre les deux séparateurs de chaque cellule unitaire. La pile à combustible comprend ainsi un dispositif d’isolation électrique, prévu pour éviter les fuites de courant entre deux cellules voisines et entre chaque cellule et le milieu extérieur, ainsi qu’un dispositif d’étanchéité pour éviter les fuites des fluides de fonctionnement, notamment pour éviter que le fluide circulant dans un compartiment réactif ne contamine un compartiment réactif voisin. When the fuel cell is in operation, the electrochemical reaction creates an electrical potential difference between the two separators of each unit cell. The fuel cell thus comprises an electrical insulation device, designed to prevent current leaks between two neighboring cells and between each cell and the external environment, as well as a sealing device to prevent leaks of operating fluids, in particular to prevent the fluid circulating in a reactive compartment from contaminating a neighboring reactive compartment.
EP-3 618 157-A1 décrit, par exemple, une pile redox, dont le carburant et le comburant sont des électrolytes, c’est-à-dire des liquides. La pile redox comprend des cadres, qui sont réalisés en polypropylène et qui sont agencés autour des plaques bipolaires et des électrodes, de manière à réduire les fuites de courant. Les cadres sont percés pour ménager des canaux de circulation des électrolytes. L’étanchéité est assurée par des joints toriques, qui sont disposés dans des gorges usinées dans l’épaisseur des cadres et qui sont maintenus en compression par une bride de serrage. Une telle structure n’est cependant pas adaptée au passage des fluides gazeux, notamment l’air ou l’hydrogène, utilisés avec une pile à combustible. La mise en place et le contrôle de chaque joint sont en outre des opérations fastidieuses. EP-3 618 157-A1 describes, for example, a redox cell, the fuel and the oxidant of which are electrolytes, that is to say liquids. The redox cell comprises frames, which are made of polypropylene and which are arranged around the bipolar plates and the electrodes, so as to reduce current leakage. The frames are pierced to provide channels for the circulation of electrolytes. Sealing is ensured by O-rings, which are placed in grooves machined in the thickness of the frames and which are held in compression by a clamping flange. However, such a structure is not suitable for the passage of gaseous fluids, in particular air or hydrogen, used with a fuel cell. The installation and checking of each joint are also tedious operations.
JP-5 330 135-B2 décrit, quant à lui, une cellule unitaire de pile à combustible comprenant une structure d’étanchéité composée de cadres et de séparateurs en forme d’équerre, les cadres et les séparateurs étant empilés et assemblés par des éléments adhésifs. Des passages entre les manifolds et les compartiments internes de la cellule unitaire sont ménagés en creux dans les séparateurs en équerre, ce qui impose une étape d’usinage spécifique et complexifie l’assemblage de la structure d’étanchéité. JP-5 330 135-B2 describes, for its part, a fuel cell unit cell comprising a sealing structure composed of frames and separators in the shape of a square, the frames and separators being stacked and assembled by elements adhesives. Passages between the manifolds and the internal compartments of the unit cell are hollowed out in the square separators, which requires a specific machining step and complicates the assembly of the sealing structure.
C’est à ces problèmes qu’entend plus particulièrement remédier l’invention, en proposant un empilement de pile à combustible facile à assembler et présentant à la fois une bonne isolation électrique et une bonne étanchéité. It is these problems that the invention particularly intends to remedy, by proposing a fuel cell stack that is easy to assemble and has both good electrical insulation and good sealing.
À cet effet, l’invention concerne une cellule unitaire d’un empilement de pile à combustible, dans laquelle : To this end, the invention relates to a unit cell of a fuel cell stack, in which:
- la cellule unitaire comprend plusieurs parois, qui sont chacune continues et étanches et qui sont empilées les unes sur les autres selon un axe d’empilement, ces parois délimitant des compartiments de la cellule unitaire et incluant : - the unit cell comprises several walls, which are each continuous and watertight and which are stacked on top of each other along a stacking axis, these walls delimiting compartments of the unit cell and including:
• un premier séparateur, • a first separator,
• un deuxième séparateur, et • une membrane échangeuse de protons, qui est intercalée entre le premier séparateur et le deuxième séparateur, • a second separator, and • a proton exchange membrane, which is inserted between the first separator and the second separator,
- le premier séparateur délimite avec la membrane un premier compartiment réactif , le premier compartiment réactif étant configuré pour recevoir un premier fluide de fonctionnement de la pile à combustible, - the first separator delimits with the membrane a first reactive compartment, the first reactive compartment being configured to receive a first operating fluid of the fuel cell,
- le deuxième séparateur délimite avec la membrane un deuxième compartiment réactif, le deuxième compartiment réactif étant configuré pour recevoir un deuxième fluide de fonctionnement de la pile à combustible, - the second separator delimits with the membrane a second reactive compartment, the second reactive compartment being configured to receive a second operating fluid of the fuel cell,
- les compartiments de la cellule unitaire incluent le premier compartiment réactif et le deuxième compartiment réactif, la cellule comprend aussi une structure d’étanchéité, la structure d’étanchéité comprenant des cadres, qui sont chacun réalisés en un matériau polymère et qui sont empilés selon l’axe d’empilement, les cadres étant agencés en périphérie des parois et des compartiments. - the compartments of the unit cell include the first reactive compartment and the second reactive compartment, the cell also comprises a sealing structure, the sealing structure comprising frames, which are each made of a polymer material and which are stacked according to the stacking axis, the frames being arranged on the periphery of the walls and compartments.
Selon l’invention, pour au moins un des compartiments de la cellule unitaire, et pour au moins une des deux parois délimitant ce au moins un compartiment : les cadres de la structure d’étanchéité incluent : According to the invention, for at least one of the compartments of the unit cell, and for at least one of the two walls delimiting this at least one compartment: the frames of the sealing structure include:
• un cadre de paroi, qui est coplanaire à la paroi correspondante et qui entoure cette paroi, un bord interne de chaque cadre de paroi étant agencé en regard d’un bord externe de cette paroi, le bord interne du cadre de paroi et le bord externe de la paroi étant en regard l’un de l’autre et étant séparés par un interstice périphérique, chaque cadre de paroi présentant préférentiellement une épaisseur sensiblement égale à une épaisseur de la paroi correspondante, • a wall frame, which is coplanar with the corresponding wall and which surrounds this wall, an internal edge of each wall frame being arranged facing an external edge of this wall, the internal edge of the wall frame and the edge external of the wall being facing each other and being separated by a peripheral gap, each wall frame preferably having a thickness substantially equal to a thickness of the corresponding wall,
• un cadre de compartiment, qui est agencé en périphérie du compartiment correspondant, le cadre de compartiment comprenant un bord interne, qui est orienté vers le compartiment correspondant et qui délimite ce compartiment radialement à l’axe d’empilement, et un bord externe, opposé au bord interne, le bord interne présentant un contour interne, tandis que le bord externe présente un contour externe, • a compartment frame, which is arranged on the periphery of the corresponding compartment, the compartment frame comprising an internal edge, which is oriented towards the corresponding compartment and which delimits this compartment radially to the stacking axis, and an external edge, opposite the internal edge, the internal edge having an internal contour, while the external edge has an external contour,
• des couches d’adhésifs, qui sont intercalées chacune entre, d’une part, un cadre de compartiment, et, d’autre part, la paroi et le cadre de paroi adjacents à ce cadre de compartiment, de manière à fixer, de manière étanche, les cadres les uns aux autres, le contour interne du cadre de compartiment est inclus, en projection selon l’axe d’empilement, dans un contour externe de la paroi, de manière qu’une portion annulaire de la paroi fait face, selon l’axe d’empilement, à une portion complémentaire du cadre de compartiment et forme un premier recouvrement du cadre de compartiment sur la paroi, un contour interne du cadre de paroi est inclus, en projection selon l’axe d’empilement, dans le contour externe du cadre de compartiment, de manière qu’une portion annulaire du cadre de paroi fait face à une portion complémentaire du cadre de compartiment et forme un deuxième recouvrement du cadre de compartiment sur le cadre de paroi, les couches d’adhésifs incluent une première portion de couche, qui s’étend face au premier recouvrement entre le cadre de compartiment et la paroi adjacente, de manière à fixer, de manière étanche, le cadre de compartiment à la paroi, et les couches d’adhésifs incluent une deuxième portion de couche, qui s’étend face au deuxième recouvrement entre le cadre de compartiment et le cadre de paroi adjacent, de manière à fixer, de manière étanche, le cadre de compartiment au cadre de paroi. • layers of adhesives, which are each interposed between, on the one hand, a compartment frame, and, on the other hand, the wall and the wall frame adjacent to this compartment frame, so as to fix, of sealed manner, the frames to each other, the internal contour of the compartment frame is included, in projection along the stacking axis, in an external contour of the wall, so that a portion annular wall faces, along the stacking axis, a complementary portion of the compartment frame and forms a first covering of the compartment frame on the wall, an internal contour of the wall frame is included, in projection along the stacking axis, in the external contour of the compartment frame, so that an annular portion of the wall frame faces a complementary portion of the compartment frame and forms a second overlap of the compartment frame on the wall frame , the adhesive layers include a first layer portion, which extends facing the first overlap between the compartment frame and the adjacent wall, so as to sealably fix the compartment frame to the wall, and the layers of adhesives include a second layer portion, which extends facing the second overlap between the compartment frame and the adjacent wall frame, so as to sealably attach the compartment frame to the wall frame.
Grâce à l’invention, les cadres de la structure d’étanchéité sont assemblés les uns aux autres au moyen des couches d’adhésifs, rendant l’assemblage de la cellule unitaire pratique et rapide à réaliser. En outre, comme le cadre de premier compartiment présente un contour interne inclus dans le contour externe de la membrane, la première portion de couche d’adhésif, intercalée entre la face interne du cadre de premier compartiment et la face externe de la membrane adjacente, empêche les fuites du fluide de fonctionnement circulant dans le premier compartiment réactif vers le deuxième compartiment réactif. De manière analogue, comme le contour interne du cadre de premier compartiment est inclus dans le contour externe du premier séparateur, la deuxième portion de couche d’adhésif, intercalée entre la face interne du cadre de premier compartiment et la face externe du séparateur adjacent, empêche les fuites vers le compartiment de refroidissement. Les première et deuxième portions de couches d’adhésifs offrent une étanchéité sur l’ensemble des surfaces de recouvrement, empêchant le passage des fluides de fonctionnement, liquides comme gazeux, entre les éléments assemblés par ces couches d’adhésifs. En outre, il est possible d’utiliser des couches d’adhésifs repositionnables et/ou sensibles à la pression, ce qui permet de proposer une cellule démontable. Thanks to the invention, the frames of the sealing structure are assembled to each other by means of layers of adhesives, making the assembly of the unit cell practical and quick to carry out. Furthermore, as the first compartment frame has an internal contour included in the external contour of the membrane, the first portion of adhesive layer, interposed between the internal face of the first compartment frame and the external face of the adjacent membrane, prevents leakage of the operating fluid circulating in the first reactive compartment to the second reactive compartment. Analogously, as the internal contour of the first compartment frame is included in the external contour of the first separator, the second portion of adhesive layer, interposed between the internal face of the first compartment frame and the external face of the adjacent separator, prevents leaks to the cooling compartment. The first and second portions of adhesive layers provide sealing over all of the covering surfaces, preventing the passage of operating fluids, both liquid and gaseous, between the elements assembled by these adhesive layers. In addition, it is possible to use layers of repositionable and/or pressure-sensitive adhesives, which makes it possible to offer a removable cell.
Selon des aspects avantageux mais non obligatoires de l’invention, une telle cellule unitaire peut incorporer une ou plusieurs des caractéristiques suivantes prises isolément ou selon toute combinaison techniquement admissible : - le premier séparateur est configuré pour séparer de manière étanche le premier compartiment réactif d’un premier compartiment de refroidissement, qui est configuré pour recevoir un troisième fluide de fonctionnement de la pile à combustible, tandis que les compartiments de la cellule unitaire incluent, outre le premier compartiment réactif et le deuxième compartiment réactif, le premier compartiment de refroidissement. According to advantageous but not obligatory aspects of the invention, such a unit cell can incorporate one or more of the following characteristics taken in isolation or in any technically admissible combination: - the first separator is configured to sealingly separate the first reactive compartment from a first cooling compartment, which is configured to receive a third operating fluid of the fuel cell, while the compartments of the unit cell include, in addition the first reactive compartment and the second reactive compartment, the first cooling compartment.
La première portion de couche d’adhésif et la deuxième portion de couche d’adhésif font partie d’une même couche d’adhésif, qui s’étend de manière continue sur une face du cadre de compartiment, de manière à obturer l’interstice périphérique adjacent au cadre de compartiment. The first portion of adhesive layer and the second portion of adhesive layer are part of the same adhesive layer, which extends continuously over one face of the compartment frame, so as to close the gap device adjacent to the compartment frame.
Le premier recouvrement présente une longueur de fuite, qui est égale à une distance minimale, mesurée parallèlement au plan moyen, entre deux points quelconques appartenant respectivement au bord interne du cadre de compartiment correspondant et au bord externe de la paroi adjacente correspondante, tandis que le deuxième recouvrement présente une longueur de fuite, qui est égal à une distance minimale, mesurée parallèlement au plan moyen, entre deux points quelconques appartenant respectivement au bord externe du cadre de compartiment correspondant et au bord interne du cadre de paroi adjacent correspondant, et que chaque longueur de fuite est supérieure ou égale à 1 mm, de préférence supérieure ou égale à 2 mm, de préférence encore supérieure ou égale à 3 mm. Pour au moins un des cadres de compartiment : The first covering has a leakage length, which is equal to a minimum distance, measured parallel to the average plane, between any two points belonging respectively to the internal edge of the corresponding compartment frame and to the external edge of the corresponding adjacent wall, while the second covering has a leakage length, which is equal to a minimum distance, measured parallel to the mean plane, between any two points belonging respectively to the external edge of the corresponding compartment frame and to the internal edge of the corresponding adjacent wall frame, and that each leak length is greater than or equal to 1 mm, preferably greater than or equal to 2 mm, more preferably greater than or equal to 3 mm. For at least one of the compartment frames:
• ce cadre de compartiment comporte un cadre de transfert qui ménage deux passages de fluide, les deux passages étant prévus pour la circulation du fluide de fonctionnement associé entre le compartiment correspondant et l’extérieur de la cellule unitaire, • this compartment frame comprises a transfer frame which provides two fluid passages, the two passages being provided for the circulation of the associated operating fluid between the corresponding compartment and the exterior of the unit cell,
• chaque passage débouche dans le compartiment associé par une embouchure interne, qui est ménagée sur le bord interne du cadre de transfert, et • each passage opens into the associated compartment through an internal mouth, which is provided on the internal edge of the transfer frame, and
• chaque passage débouche à l’extérieur du compartiment par une embouchure externe. • each passage opens outside the compartment through an external mouth.
Chaque passage comprend une portion interne, qui débouche par l’embouchure interne dans le compartiment, la portion interne du passage étant ménagée dans l’épaisseur du cadre de transfert. Each passage includes an internal portion, which opens through the internal mouth into the compartment, the internal portion of the passage being provided in the thickness of the transfer frame.
L’embouchure externe est ménagée sur le bord externe du cadre de transfert. Pour au moins un cadre de transfert : The external mouth is provided on the external edge of the transfer frame. For at least one transfer frame:
• au moins un des deux passages loge des ailettes de guidage du fluide de fonctionnement associé, • at least one of the two passages houses fins for guiding the associated operating fluid,
• les ailettes sont formées par découpage de ce cadre de transfert et sont réparties à distance les unes des autres au sein du passage correspondant, de manière à orienter l’écoulement du fluide de fonctionnement associé,• the fins are formed by cutting this transfer frame and are distributed at a distance from each other within the corresponding passage, so as to direct the flow of the associated operating fluid,
• les ailettes sont maintenues au moyen des couches d’adhésifs entre lesquelles est intercalé le cadre de transfert correspondant. • the fins are held in place by means of layers of adhesives between which the corresponding transfer frame is inserted.
Pour au moins un des premier et deuxième compartiments réactifs, le cadre de compartiment comprend : For at least one of the first and second reactive compartments, the compartment frame comprises:
• le cadre de transfert, • the transfer framework,
• un premier cadre d’étanchéité, qui est intercalé entre, d’une part, le cadre de transfert et, d’autre part, une première des deux parois adjacente au cadre de compartiment et le cadre de paroi en regard de cette première paroi,• a first sealing frame, which is inserted between, on the one hand, the transfer frame and, on the other hand, a first of the two walls adjacent to the compartment frame and the wall frame facing this first wall ,
• un premier film d’adhésif, qui est intercalé entre le premier cadre d’étanchéité et le cadre de transfert, tandis que le premier cadre d’étanchéité est, d’une part, fixé à la première paroi et au cadre de paroi en regard par la couche d’adhésif associée à la première paroi et, d’autre part, fixé au cadre de transfert par le premier film d’adhésif.• a first adhesive film, which is inserted between the first sealing frame and the transfer frame, while the first sealing frame is, on the one hand, fixed to the first wall and to the wall frame in view by the layer of adhesive associated with the first wall and, on the other hand, fixed to the transfer frame by the first adhesive film.
Le cadre de compartiment comprend, outre le premier cadre d’étanchéité :The compartment frame comprises, in addition to the first sealing frame:
• un deuxième cadre d’étanchéité, le premier et le deuxième cadre d’étanchéité étant agencés de part et d’autre du cadre de transfert, le deuxième cadre d’étanchéité étant intercalé entre, d’une part, le cadre de transfert et, d’autre part, une deuxième des deux parois adjacente au cadre de compartiment et le cadre de paroi associé à cette deuxième paroi, la deuxième paroi étant différente de la première paroi, • a second sealing frame, the first and the second sealing frame being arranged on either side of the transfer frame, the second sealing frame being interposed between, on the one hand, the transfer frame and , on the other hand, a second of the two walls adjacent to the compartment frame and the wall frame associated with this second wall, the second wall being different from the first wall,
• un deuxième film adhésif, qui est intercalé entre le deuxième cadre d’étanchéité et le cadre de transfert, tandis que le deuxième cadre d’étanchéité est, d’une part, fixé à la deuxième paroi et au cadre de paroi en regard par la couche d’adhésif correspondante et, d’autre part, fixé au cadre de transfert par le deuxième film d’adhésif. • a second adhesive film, which is inserted between the second sealing frame and the transfer frame, while the second sealing frame is, on the one hand, fixed to the second wall and to the facing wall frame by the corresponding adhesive layer and, on the other hand, fixed to the transfer frame by the second adhesive film.
Pour au moins un cadre d’étanchéité, le film d’adhésif associé à ce cadre d’étanchéité est enduit, de manière continue, sur une face de ce cadre d’étanchéité. For at least one sealing frame, the adhesive film associated with this sealing frame is coated, continuously, on one face of this sealing frame.
Pour au moins un cadre d’étanchéité : • ce cadre d’étanchéité est réalisé en un matériau polymère, par exemple en PET, et présente une épaisseur, mesurée parallèlement à l’axe d’empilement, comprise entre 10 pm et 20 pm, de préférence égale à 12 pm,For at least one sealing frame: • this sealing frame is made of a polymer material, for example PET, and has a thickness, measured parallel to the stacking axis, of between 10 pm and 20 pm, preferably equal to 12 pm,
• le film d’adhésif intercalé entre ce cadre d’étanchéité et le cadre de transfert correspondant présente une épaisseur, mesurée parallèlement à l’axe d’empilement, comprise entre 6 pm et 30 pm, de préférence comprise entre 8 pm et 20 pm, de préférence comprise entre 10 pm et 15 pm. • the adhesive film interposed between this sealing frame and the corresponding transfer frame has a thickness, measured parallel to the stacking axis, of between 6 pm and 30 pm, preferably between 8 pm and 20 pm , preferably between 10 pm and 15 pm.
Pour chaque compartiment de la cellule unitaire et pour chacune des parois délimitant ce compartiment, l’interstice périphérique associé à cette paroi est obturé, sur au moins une des faces de cette paroi, par un cadre d’étanchéité.For each compartment of the unit cell and for each of the walls delimiting this compartment, the peripheral gap associated with this wall is closed, on at least one of the faces of this wall, by a sealing frame.
Pour au moins un cadre de transfert : For at least one transfer frame:
• ce cadre de transfert est réalisé en un matériau polymère, par exemple en PET, et présente une épaisseur, mesurée parallèlement à l’axe d’empilement, comprise entre 50 pm et 200 pm, de préférence comprise entre 80 pm et 150 pm, de préférence encore égale à 100 pm,• this transfer frame is made of a polymer material, for example PET, and has a thickness, measured parallel to the stacking axis, of between 50 pm and 200 pm, preferably between 80 pm and 150 pm, preferably still equal to 100 pm,
• chacune des première portion de couche d’adhésif et chacune des deuxièmes portion de couche d’adhésif présente une épaisseur, mesurée parallèlement à l’axe d’empilement, comprise entre 15 pm et 30 pm, de préférence comprise entre 18 pm et 25 pm, de préférence égale à 20 pm.• each of the first portion of adhesive layer and each of the second portion of adhesive layer has a thickness, measured parallel to the stacking axis, of between 15 pm and 30 pm, preferably between 18 pm and 25 pm pm, preferably equal to 20 pm.
L’invention concerne aussi une pile à combustible, comprenant un empilement formé de plusieurs cellules unitaires empilées selon l’axe d’empilement, chaque cellule unitaire étant conforme à l’une quelconque des revendications précédentes, et une chemise, qui ménage un volume interne dans lequel est logé l’empilement, dans laquelle : les cadres de la structure d’étanchéité de chacune des cellules unitaire présentent chacun un bord externe propre, avec un contour externe associé, les contours externes de tous les cadres de chaque structure d’étanchéité sont superposés les uns aux autres selon l’axe d’empilement, les bords externes de tous les cadres de toutes les structures d’étanchéité formant ensemble une surface externe de l’empilement, qui présente une forme de cylindre centré sur l’axe d’empilement, la surface externe de l’empilement ménage des organes de maintien, qui sont configurés pour coopérer avec des organes complémentaires ménagés dans le volume interne de la chemise, de manière à maintenir l’empilement au sein du volume interne et à ménager un volume périphérique entre l’empilement et la chemise, et - les organes de maintien et les organes complémentaires sont conçus pour diviser le volume périphérique en plusieurs conduits de circulation des fluides de fonctionnement de la pile à combustible. The invention also relates to a fuel cell, comprising a stack formed of several unit cells stacked along the stack axis, each unit cell conforming to any one of the preceding claims, and a jacket, which provides an internal volume in which the stack is housed, in which: the frames of the sealing structure of each of the unit cells each have a clean external edge, with an associated external contour, the external contours of all the frames of each sealing structure are superimposed on each other along the stack axis, the external edges of all the frames of all the sealing structures together forming an external surface of the stack, which has the shape of a cylinder centered on the axis d stack, the external surface of the stack provides holding members, which are configured to cooperate with complementary members provided in the internal volume of the jacket, so as to maintain the stack within the internal volume and to provide a peripheral volume between the stack and the jacket, and - the holding members and the complementary members are designed to divide the peripheral volume into several conduits for circulating the operating fluids of the fuel cell.
Avantageusement : Advantageously:
- pour chaque compartiment de chaque cellule unitaire, le cadre de compartiment associé comporte un cadre de transfert qui ménage deux passages de fluide, les deux passages étant prévus pour la circulation du fluide de fonctionnement associé entre le compartiment correspondant et l’extérieur de la cellule unitaire, tandis que caque passage débouche dans le compartiment associé par une embouchure interne, qui est ménagée sur le bord interne du cadre de transfert, et que chaque passage débouche à l’extérieur du compartiment par une embouchure externe. - for each compartment of each unit cell, the associated compartment frame comprises a transfer frame which provides two fluid passages, the two passages being provided for the circulation of the associated operating fluid between the corresponding compartment and the exterior of the cell unitary, while each passage opens into the associated compartment through an internal mouth, which is provided on the internal edge of the transfer frame, and each passage opens outside the compartment through an external mouth.
L’embouchure externe est ménagée sur le bord externe du cadre de transfert, alors que : The external mouth is provided on the external edge of the transfer frame, while:
• la pile à combustible ménage deux premières paires de conduits de circulation, qui sont respectivement associés aux premier et deuxième fluides de fonctionnement de la pile à combustible, les cellules unitaires étant telles que définies précédemment, • the fuel cell provides two first pairs of circulation conduits, which are respectively associated with the first and second operating fluids of the fuel cell, the unit cells being as defined previously,
• pour chaque cellule unitaire : chacun des deux compartiments choisi parmi le premier compartiment réactif et le deuxième compartiment réactif, est associé à une paire des premiers conduits respective, les cadres de compartiment associés à chacun des deux compartiments réactifs de cette cellule unitaire comprennent chacun un cadre de transfert avec deux passages chacun, l’embouchure externe de chaque passage étant ménagée sur un bord externe du cadre de transfert correspondant, les deux passages d’un même cadre de transfert, débouchent chacun dans un conduit distinct parmi les deux conduits de circulation de la paire de conduits associée. • for each unit cell: each of the two compartments chosen from the first reactive compartment and the second reactive compartment, is associated with a pair of the first respective conduits, the compartment frames associated with each of the two reactive compartments of this unit cell each comprise a transfer frame with two passages each, the external mouth of each passage being provided on an external edge of the corresponding transfer frame, the two passages of the same transfer frame each open into a separate conduit among the two circulation conduits of the associated pair of conduits.
Pour chaque cellule unitaire, le premier séparateur est configuré pour séparer de manière étanche le premier compartiment réactif d’un premier compartiment de refroidissement, qui est configuré pour recevoir un troisième fluide de fonctionnement de la pile à combustible, la pile à combustible ménage, outre les deux premières paires de conduits de circulation, une troisième paire de conduits de circulation, les conduits de circulation de la troisième paire étant associés au troisième fluide de fonctionnement, alors que pour chaque cellule unitaire : For each unit cell, the first separator is configured to sealingly separate the first reactive compartment from a first cooling compartment, which is configured to receive a third operating fluid of the fuel cell, the fuel cell also cleans the first two pairs of conduits circulation, a third pair of circulation conduits, the circulation conduits of the third pair being associated with the third operating fluid, while for each unit cell:
• chacun des trois compartiments choisi parmi le premier compartiment réactif, le deuxième compartiment réactif et le premier compartiment de refroidissement, est associé à une paire respective parmi les trois paires de conduits, • each of the three compartments chosen from the first reactive compartment, the second reactive compartment and the first cooling compartment, is associated with a respective pair among the three pairs of conduits,
• les cadres de compartiment associés à chacun des trois compartiments de cette cellule unitaire comprennent chacun un cadre de transfert avec deux passages chacun, l’embouchure externe de chaque passage étant ménagée sur un bord externe du cadre de transfert correspondant, • the compartment frames associated with each of the three compartments of this unit cell each comprise a transfer frame with two passages each, the external mouth of each passage being provided on an external edge of the corresponding transfer frame,
• les deux passages d’un même cadre de transfert, débouchent chacun dans un conduit distinct parmi les deux conduits de circulation de la paire de conduits associée. • the two passages of the same transfer frame each open into a separate conduit among the two circulation conduits of the associated pair of conduits.
L’invention sera mieux comprise, et d’autres avantages de celle-ci apparaîtront plus clairement à la lumière de la description qui va suivre, d’un mode de réalisation d’une cellule unitaire et d’une pile à combustible, conformes à son principe, donnée uniquement à titre d’exemple et faite en référence aux dessins annexés, dans lesquels : The invention will be better understood, and other advantages thereof will appear more clearly in the light of the description which follows, of an embodiment of a unit cell and a fuel cell, conforming to its principle, given solely by way of example and made with reference to the appended drawings, in which:
- [Fig 1 ] la figure 1 est une vue en perspective d’une pile à combustible conforme à l’invention ; - [Fig 1] Figure 1 is a perspective view of a fuel cell according to the invention;
- [Fig 2] la figure 2 représente, sur deux inserts a) et b), deux vues schématiques de la pile à combustible de la figure 1 , observée respectivement en perspective partiellement éclatée et en vue de dessus, certaines pièces étant cachées ; - [Fig 2] Figure 2 represents, on two inserts a) and b), two schematic views of the fuel cell of Figure 1, observed respectively in partially exploded perspective and in top view, certain parts being hidden;
- [Fig 3] la figure 3 représente respectivement, sur deux inserts a) et b), une chemise et une cellule unitaire de la pile à combustible de la figure 1 , la cellule unitaire étant conforme à un mode de réalisation ; - [Fig 3] Figure 3 represents respectively, on two inserts a) and b), a jacket and a unit cell of the fuel cell of Figure 1, the unit cell conforming to one embodiment;
- [Fig 4] la figure 4 est une vue en perspective éclatée de la cellule unitaire de la figure 3, certaines pièces étant cachées ; - [Fig 4] Figure 4 is an exploded perspective view of the unit cell of Figure 3, with certain parts being hidden;
- [Fig 5] la figure 5 représente, sur deux inserts a) et b), une perspective partielle et éclatée d’un premier compartiment de la cellule unitaire de la figure 3, observé à deux échelles différentes et en coupe sur l’insert b) ; - [Fig 5] Figure 5 represents, on two inserts a) and b), a partial and exploded perspective of a first compartment of the unit cell of Figure 3, observed at two different scales and in section on the insert b);
- [Fig 6] la figure 6 représente, sur deux inserts a) et b), une perspective partielle et éclatée d’une cellule unitaire conforme à un autre mode de réalisation, observée à deux échelles différentes et en coupe sur l’insert b), - [Fig 7] la figure 7 représente une perspective éclatée et partielle d’une cellule unitaire conforme à un autre mode de réalisation ; - [Fig 6] Figure 6 represents, on two inserts a) and b), a partial and exploded perspective of a unit cell conforming to another embodiment, observed at two different scales and in section on insert b ), - [Fig 7] Figure 7 represents an exploded and partial perspective of a unit cell conforming to another embodiment;
- [Fig 8] la figure 8 représente une perspective partielle et éclatée d’un deuxième compartiment de la cellule unitaire de la figure 3 ; - [Fig 8] Figure 8 represents a partial and exploded perspective of a second compartment of the unit cell of Figure 3;
- [Fig 9] la figure 9 représente respectivement, sur deux inserts a) et b), une perspective partielle et éclatée d’une cellule unitaire conforme à deux autres modes de réalisation de l’invention ; - [Fig 9] Figure 9 represents respectively, on two inserts a) and b), a partial and exploded perspective of a unit cell conforming to two other embodiments of the invention;
- [Fig 10] la figure 10 représente, de manière schématique, une coupe transversale partielle d’un mode de réalisation de la cellule unitaire de la figure 3 ; - [Fig 10] Figure 10 represents, schematically, a partial cross section of an embodiment of the unit cell of Figure 3;
- [Fig 1 1] la figure 1 1 représente, de manière schématique, une coupe transversale partielle d’une cellule unitaire conforme à un autre mode de réalisation ; - [Fig 1 1] Figure 1 1 represents, schematically, a partial cross section of a unit cell conforming to another embodiment;
- [Fig 12] la figure 12 est une vue en perspective d’une première entretoise d’irrigation de la cellule unitaire de la figure 3 ; - [Fig 12] Figure 12 is a perspective view of a first irrigation spacer of the unit cell of Figure 3;
- [Fig 13] la figure 13 représente respectivement, sur trois inserts a), b) et c), un détail XI I la de l’entretoise d’irrigation de la figure 12, ce même détail observé en perspective éclatée et un schéma illustrant un principe de fonctionnement de l’entretoise d’irrigation de la figure 12 ; - [Fig 13] Figure 13 represents respectively, on three inserts a), b) and c), a detail XI I la of the irrigation spacer of Figure 12, this same detail observed in exploded perspective and a diagram illustrating an operating principle of the irrigation spacer of Figure 12;
- [Fig 14] la figure 14 est une vue en perspective d’une deuxième entretoise d’irrigation de la cellule unitaire de la figure 3 ; et - [Fig 14] Figure 14 is a perspective view of a second irrigation spacer of the unit cell of Figure 3; And
- [Fig 15] la figure 15 est une vue à plus grande échelle et en perspective éclatée d’un détail XV à la figure 14. - [Fig 15] Figure 15 is a larger scale and exploded perspective view of a detail XV in Figure 14.
Une pile à combustible 20 est représentée à la figure 1. La pile à combustible 20, dite aussi simplement « pile 20 » dans la suite, comprend un boitier 22, qui comprend une chemise 24. La chemise 24 présente une forme de cylindre creux, qui s’étend selon un axe de pile A20 et qui présente ici une section sensiblement rectangulaire. La chemise 24 ménage un volume interne V24 avec deux ouvertures opposées, les ouvertures étant refermés par deux couvercles 26A et 26B. La chemise 24 et les couvercles 26A et S6B sont de préférence réalisés en matériau électriquement isolant, tel qu’un matériau polymère ou un matériau polymère renforcé de fibre, ou sont recouverts, au moins sur une face interne, d’un matériau électriquement isolant. A fuel cell 20 is shown in Figure 1. The fuel cell 20, also simply called "cell 20" in the following, comprises a housing 22, which comprises a jacket 24. The jacket 24 has the shape of a hollow cylinder, which extends along a pile axis A20 and which here has a substantially rectangular section. The jacket 24 provides an internal volume V24 with two opposite openings, the openings being closed by two covers 26A and 26B. The jacket 24 and the covers 26A and S6B are preferably made of an electrically insulating material, such as a polymer material or a fiber-reinforced polymer material, or are covered, at least on one internal face, with an electrically insulating material.
Des conduits fluidiques sont ménagés au travers du boitier 22 pour permettre le passage de fluides de fonctionnement de la pile 20. Les fluides de fonctionnement comprennent ici trois fluides, donc deux fluides gazeux, ici de l’air et du di-hydrogène, et un fluide caloporteur diélectrique, par exemple liquide, ici de l’eau glycolée. Les conduits fluidiques sont matérialisés par des raccords fluidiques, qui sont ménagés ici sur le couvercle 26A, situé sur le haut des figures 1 et 2. Alternativement, tout ou partie des raccords fluidiques est ménagé sur le couvercle 26B. Alternativement, tout ou partie des raccords fluidiques est implanté sur la chemise 24. Fluid conduits are provided through the housing 22 to allow the passage of operating fluids of the battery 20. The operating fluids here comprise three fluids, therefore two gaseous fluids, here air and di-hydrogen, and a dielectric heat transfer fluid, for example liquid, here glycol water. The fluid conduits are materialized by fluid connectors, which are provided here on the cover 26A, located at the top of Figures 1 and 2. Alternatively, all or part of the fluid connections are provided on the cover 26B. Alternatively, all or part of the fluidic connections are installed on the jacket 24.
La pile 20 comprend ainsi trois paires de raccord fluidiques, chaque paire étant destinée à la circulation d’un fluide de fonctionnement propre. Les trois paires de raccords fluidiques incluent une première paire de raccords 28A, une deuxième paire de raccords 28B et une troisième paire de raccords 28C. Pour chaque paire de raccords, un des raccords dit « raccord d’entrée » est destiné à l’admission du fluide de fonctionnement correspondant, tandis que l’autre raccord dit « raccord de sortie » est destiné à l’extraction du fluide de fonctionnement correspondant. Sur les figures, le sens de circulation des fluides de fonctionnement est représenté schématiquement par des flèches orientées de manière arbitraire, sachant qu’il peut en être autrement dans la réalité. The stack 20 thus comprises three pairs of fluid connections, each pair being intended for the circulation of a clean operating fluid. The three pairs of fluid connectors include a first pair of connectors 28A, a second pair of connectors 28B, and a third pair of connectors 28C. For each pair of fittings, one of the fittings called the “inlet fitting” is intended for the admission of the corresponding operating fluid, while the other fitting called the “outlet fitting” is intended for the extraction of the operating fluid corresponding. In the figures, the direction of circulation of the operating fluids is represented schematically by arrows oriented arbitrarily, knowing that it may be otherwise in reality.
Sur la figure 2, la pile 20 est représentée schématiquement en perspective éclatée, le couvercle 26A étant éloigné de la chemise 24. Les raccords 28A, 28B et 28C sont représentés schématiquement par des ouvertures traversant le couvercle 26A. La chemise 24 est représentée isolément à la figure 3 a). In Figure 2, the battery 20 is shown schematically in exploded perspective, the cover 26A being distant from the jacket 24. The connections 28A, 28B and 28C are represented schematically by openings passing through the cover 26A. The jacket 24 is shown in isolation in Figure 3 a).
Le volume interne V24 de la chemise 24 loge un empilement 50. L’empilement 50 comprend une surface externe S50, qui présente une forme de cylindre centré sur un axe d’empilement A50 et avec une section globalement rectangulaire. Lorsque l’empilement 50 est reçu dans le volume interne V24, l’axe d’empilement A50 est confondu avec l’axe de pile A20. The internal volume V24 of the jacket 24 houses a stack 50. The stack 50 comprises an external surface S50, which has the shape of a cylinder centered on a stack axis A50 and with a generally rectangular section. When the stack 50 is received in the internal volume V24, the stack axis A50 coincides with the stack axis A20.
L’empilement 50 est formé de plusieurs cellules unitaires 100, qui sont empilées selon l’axe d’empilement A50. Une cellule unitaire 100 est représentée isolément en figure 3 b), et en perspective éclatée à la figure 4. Chaque cellule unitaire 100 présente une forme aplatie, qui s’étend selon un plan moyen P50 orthogonal à l’axe d’empilement A50. Autrement dit le plan moyen P50 est un plan transversal à l’axe d’empilement A50. Chaque cellule unitaire 100 - dite aussi simplement « cellule 100 » dans la suite - présente, en projection sur le plan moyen P50, un contour externe C100. On comprend que la section de la surface externe S50 de l’empilement 50 correspond au contour externe C100 de chaque cellule unitaire 100. The stack 50 is formed of several unit cells 100, which are stacked along the stacking axis A50. A unit cell 100 is shown in isolation in Figure 3 b), and in exploded perspective in Figure 4. Each unit cell 100 has a flattened shape, which extends along a mean plane P50 orthogonal to the stacking axis A50. In other words, the average plane P50 is a plane transverse to the stacking axis A50. Each unit cell 100 - also simply called "cell 100" in the following - presents, in projection on the average plane P50, an external contour C100. We understand that the section of the external surface S50 of the stack 50 corresponds to the external contour C100 of each unit cell 100.
La surface externe S50 de l’empilement 50 ménage des organes de maintien 52, qui sont configurés pour coopérer avec des organes complémentaires 30 ménagés dans le volume interne V24 de la chemise 24, de manière à maintenir l’empilement 50 au sein du volume interne V24 et à ménager un volume périphérique V50 entre l’empilement 50 et la chemise 24. Le volume périphérique V50 est donc une portion du volume interne V24, qui est répartie autour de l’empilement 50. Les organes de maintien 52 et les organes complémentaires 30 sont ménagés, respectivement, le long de la surface externe S50 parallèlement à l’axe d’empilement A50, et le long de la chemise 24 parallèlement à l’axe de pile A20 et incluent des éléments d’étanchéité, de manière à diviser le volume périphérique V50 en plusieurs conduits de circulation pour les fluides de fonctionnement de la pile à combustible 20. Avantageusement, les organes de maintien 52 et les organes complémentaires 30 assurent une isolation électrique entre l’empilement 50 et la chemise 24. The external surface S50 of the stack 50 provides holding members 52, which are configured to cooperate with complementary members 30 provided in the internal volume V24 of the jacket 24, so as to maintain the stack 50 within the internal volume V24 and to provide a peripheral volume V50 between the stack 50 and the jacket 24. The peripheral volume V50 is therefore a portion of the internal volume V24, which is distributed around the stack 50. The holding members 52 and the complementary members 30 are provided, respectively, along the external surface S50 parallel to the stacking axis A50, and along the jacket 24 parallel to the stack axis A20 and include sealing elements, so as to divide the peripheral volume V50 into several circulation conduits for the operating fluids of the fuel cell 20. Advantageously, the holding members 52 and the complementary members 30 provide electrical insulation between the stack 50 and shirt 24.
Chaque conduit de circulation est fluidiquement relié à un raccord 28A, 28B ou 28C respectif, de manière à assurer la circulation des fluides de fonctionnement autour de l’empilement 50, et donc autour de chaque cellule unitaire 100. Each circulation conduit is fluidly connected to a respective connector 28A, 28B or 28C, so as to ensure the circulation of operating fluids around the stack 50, and therefore around each unit cell 100.
La pile à combustible 20 ménage ici six conduits de circulation, qui sont respectivement associés par paires aux trois fluides de fonctionnement de la pile à combustible. Ces six conduits de circulation incluent ainsi une première paire de conduits 38A, qui sont fluidiquement reliés à la première paire de raccords 28A, une deuxième paire de conduits 38B, qui sont fluidiquement reliés à la deuxième paire de raccords 28B, et une troisième paire de conduits 38C, qui sont fluidiquement reliés à la troisième paire de raccords 28C. The fuel cell 20 here provides six circulation conduits, which are respectively associated in pairs with the three operating fluids of the fuel cell. These six circulation conduits thus include a first pair of conduits 38A, which are fluidly connected to the first pair of connectors 28A, a second pair of conduits 38B, which are fluidly connected to the second pair of connectors 28B, and a third pair of conduits 38C, which are fluidly connected to the third pair of connectors 28C.
Chaque conduit de circulation 38A, 38B ou 38C est ainsi séparé, de manière étanche, des conduits voisins. Dans la présente description, par « étanche » on entend étanche à l’un quelconque des fluides de fonctionnement, liquide ou gazeux, de la pile à combustible 20, en particulier étanche à l’hydrogène, qui a le plus tendance à fuir au vu de sa faible taille moléculaire et de sa faible viscosité comparativement aux autres fluides de fonctionnement. Each circulation conduit 38A, 38B or 38C is thus separated, in a sealed manner, from neighboring conduits. In the present description, by “tight” is meant tight to any of the operating fluids, liquid or gaseous, of the fuel cell 20, in particular tight to hydrogen, which has the greatest tendency to leak in view of of its small molecular size and low viscosity compared to other operating fluids.
Dans l’exemple illustré plus particulièrement par les figures 1 et 3, la chemise 24 est donc une paroi externe de la pile 20, la chemise 24 délimitant les conduits de circulation 38A, 38B ou 38C dans lesquels circule un fluide sous une pression supérieure à la pression atmosphérique. Même si cette pression est généralement inférieure à 5 bars absolus, voire même inférieure à 3 bars absolus, il est nécessaire de tenir compte de l’écart de pression avec la pression atmosphérique qui règne à l’extérieur de la chemise 24, en veillant notamment à ce que la chemise 24 ne se déforme pas (notamment en bombement) au point de compromettre l’étanchéité entre les conduits de circulation 38A, 38B ou 38C. Dans l’exemple illustré, pour limiter une déformation par bombement, notamment des faces les plus grandes de la chemise 24, on a prévu des renforts externes. Dans l’exemple, les renforts externes sont indépendants de la chemise 24, sont donc rapportés sur la chemise et sont fixés à l’extérieur de la chemise 24, en appui chacun sur une face (ici une face extérieure plane) de la chemise 24. Chaque renfort externe s’étend le long de l’axe de pile A20 entre deux extrémités. Dans l’exemple, chaque extrémité est fixée, par exemple par vissage, sur le couvercle 26A, 26B correspondant. Alternativement, le ou les renforts externes sont fixés exclusivement sur la chemise 24, voire sont fixés d’un côté sur la chemise 24 et de l’autre côté sur un seul des deux couvercles. Chaque renfort externe comporte un corps central en appui sur la face externe correspondante de la chemise 24. Dans l’exemple illustré, on a prévu seulement deux renforts externes, un sur chacune des deux faces opposées de la chemise 24 qui présentent la plus grande surface, et donc présente le plus grand risque de déformation à cause de la pression dans les conduits de circulation 38A, 38B ou 38C. Cependant, on pourrait aussi prévoir des renforts externes pour chaque face externe, notamment pour chaque face externe plane de la chemise 24. Dans l’exemple illustré, le corps central d’un renfort externe présente une largeur transversale, selon une direction orthoradiale à l’axe de pile A20 et parallèle à la face externe correspondante de la chemise 24, qui est de préférence supérieure ou égale à 50 % de la largeur transversale de la ladite face externe correspondante sur laquelle il est en appui, de sorte qu’un seul renfort externe est nécessaire pour la face externe correspondante. Cependant, on pourrait prévoir, pour une face externe donnée de la chemise 24, plusieurs renforts individuels distincts, décalés les uns des autres selon la direction transversale, et donc chacun de faible largeur transversale. Dans l’exemple illustré, le renfort externe présente des raidisseurs, ici en une seule pièce avec le corps central, formant une surépaisseur sur le corps central selon une direction radiale perpendiculaire à l’axe de pile A20 et perpendiculaire à la face externe correspondante de la chemise 24. Avantageusement, le ou les raidisseurs présentent une épaisseur radiale, selon la direction radiale, qui évolue le long de la direction de l’axe de pile A20, avec une épaisseur radiale moindre aux deux extrémités, et au contraire une épaisseur radiale supérieure au centre selon cette direction. Cela permet d’optimiser la raideur du raidisseur en l’adaptant aux contraintes subis par la chemise 24, en différents points de celle-ci, du fait de la pression à l’intérieur de conduits. Le ou les renforts externes rapportés sont de préférence réalisés en métal, par exemple en aluminium ou alliage d’aluminium, par exemple sous la forme d’une pièce moulée en alliage d’aluminium. En variante, le ou les renforts externes rapportés sont réalisés en matériau polymère, de préférence alors en matériau composite associant une résine polymère et des renforts par exemple sous formes de fibres de verre, de carbone et/ou d’aramide. Selon encore une autre variante, des renforts similaires sont intégrés à la chemise 24, autrement dit réalisés d’une seule pièce avec la chemise, conférant donc à la chemise une géométrie optimisée pour résister aux efforts dus aux pressions des fluides dans les conduits de circulation 38A, 38B ou 38C. Les cellules unitaires 100 de l’empilement 50 sont de préférence identiques les unes aux autres. On détaille à présent la cellule unitaire 100. In the example illustrated more particularly by Figures 1 and 3, the jacket 24 is therefore an external wall of the stack 20, the jacket 24 delimiting the circulation conduits 38A, 38B or 38C in which a fluid circulates under a pressure greater than atmospheric pressure. Even if this pressure is generally less than 5 absolute bars, or even less than 3 absolute bars, it is necessary to take into account the pressure difference with the atmospheric pressure which reigns outside the jacket 24, taking care in particular so that the jacket 24 does not deform (in particular by bulging) to the point of compromising the seal between the circulation conduits 38A, 38B or 38C. In the example illustrated, to limit deformation by bulging, in particular of the largest faces of the liner 24, external reinforcements have been provided. In the example, the external reinforcements are independent of the shirt 24, are therefore attached to the shirt and are fixed to the outside of the shirt 24, each resting on one face (here a flat exterior face) of the shirt 24 Each external reinforcement extends along the pile axis. A20 between two ends. In the example, each end is fixed, for example by screwing, on the corresponding cover 26A, 26B. Alternatively, the external reinforcement(s) are fixed exclusively on the shirt 24, or are even fixed on one side on the shirt 24 and on the other side on only one of the two covers. Each external reinforcement comprises a central body resting on the corresponding external face of the jacket 24. In the example illustrated, only two external reinforcements are provided, one on each of the two opposite faces of the jacket 24 which have the largest surface area. , and therefore presents the greatest risk of deformation due to the pressure in the circulation conduits 38A, 38B or 38C. However, external reinforcements could also be provided for each external face, in particular for each flat external face of the shirt 24. In the example illustrated, the central body of an external reinforcement has a transverse width, in a direction orthoradial to the stack axis A20 and parallel to the corresponding external face of the jacket 24, which is preferably greater than or equal to 50% of the transverse width of said corresponding external face on which it is supported, so that only one External reinforcement is necessary for the corresponding external face. However, one could provide, for a given external face of the shirt 24, several distinct individual reinforcements, offset from each other in the transverse direction, and therefore each of small transverse width. In the example illustrated, the external reinforcement has stiffeners, here in a single piece with the central body, forming an extra thickness on the central body in a radial direction perpendicular to the pile axis A20 and perpendicular to the corresponding external face of the jacket 24. Advantageously, the stiffener(s) have a radial thickness, in the radial direction, which evolves along the direction of the pile axis A20, with a lesser radial thickness at both ends, and on the contrary a radial thickness higher than the center in this direction. This makes it possible to optimize the stiffness of the stiffener by adapting it to the stresses suffered by the jacket 24, at different points thereof, due to the pressure inside the conduits. The external reinforcement(s) added are preferably made of metal, for example aluminum or aluminum alloy, for example in the form of a molded part made of aluminum alloy. Alternatively, the external reinforcement(s) added are made of polymer material, preferably then of composite material combining a polymer resin and reinforcements, for example in the form of glass, carbon and/or aramid fibers. According to yet another variant, similar reinforcements are integrated into the jacket 24, in other words made in one piece with the jacket, therefore giving the jacket an optimized geometry to resist the forces due to the pressures of the fluids in the circulation conduits. 38A, 38B or 38C. The unit cells 100 of the stack 50 are preferably identical to each other. We now detail the unit cell 100.
Comme illustré à la figure 4, la cellule 100 comprend plusieurs parois 102, qui sont continues et étanches et qui sont empilées les unes sur les autres selon l’axe d’empilement A50. Les parois 102 incluent un premier séparateur 1 10, un deuxième séparateur 120 et une membrane 130 échangeuse de protons. La paroi 102 formée par la membrane 130 est intercalée entre le premier séparateur 1 10 et le deuxième séparateur 120. Les parois 102 délimitent entre elles des compartiments V100 de la cellule unitaire 100. As illustrated in Figure 4, the cell 100 comprises several walls 102, which are continuous and waterproof and which are stacked on top of each other along the stacking axis A50. The walls 102 include a first separator 110, a second separator 120 and a proton exchange membrane 130. The wall 102 formed by the membrane 130 is interposed between the first separator 110 and the second separator 120. The walls 102 delimit between them compartments V100 of the unit cell 100.
Toujours sur la figure 4, le deuxième séparateur 120 est représenté schématiquement en pointillés. Le premier séparateur 1 10 et le deuxième séparateur 120 sont de préférence identiques l’un à l’autre et sont ici réalisés par découpage d’une tôle métallique, par exemple une tôle d’acier inoxydable. Still in Figure 4, the second separator 120 is shown schematically in dotted lines. The first separator 1 10 and the second separator 120 are preferably identical to each other and are here produced by cutting a metal sheet, for example a stainless steel sheet.
La membrane 130, dite aussi PEM pour « Proton Exchange Membrane » en anglais, est ici réalisée sous la forme d’une couche polymère 130A. Généralement, on dispose, de part et d’autre de la membrane 130, dans chacun des compartiments V100 délimités par la membrane 130 de part et d’autre de celle-ci, une couche de diffusion de gaz 130B, de telle sorte que la membrane 130 se trouve prise en sandwich entre les deux couches de diffusion de gaz 130B. La couche polymère 130A est ici réalisée en un matériau polymère fluoré, par exemple connu sous le nom commercial de Nation. The membrane 130, also called PEM for “Proton Exchange Membrane” in English, is here produced in the form of a polymer layer 130A. Generally, there is, on either side of the membrane 130, in each of the compartments V100 delimited by the membrane 130 on either side of the latter, a gas diffusion layer 130B, such that the membrane 130 is sandwiched between the two gas diffusion layers 130B. The polymer layer 130A is here made of a fluoropolymer material, for example known under the trade name Nation.
Dans l’exemple illustré, la couche polymère 130A est recouverte sur ses deux faces d’une couche de catalyseur, la membrane 130 étant dite CCM pour « Catalyst Coated Membrane » en anglais. Les couches de catalyseurs ne sont pas représentées. La membrane 130, les couches de diffusion de gaz 130A et 130B et les couches de catalyseurs associés forment ensemble généralement appelé MEA, acronyme de l’anglais « Membrane Electrode Assembly ». In the example illustrated, the polymer layer 130A is covered on both sides with a layer of catalyst, the membrane 130 being called CCM for “Catalyst Coated Membrane” in English. The catalyst layers are not shown. The membrane 130, the gas diffusion layers 130A and 130B and the layers of associated catalysts together generally form a MEA, an acronym for “Membrane Electrode Assembly”.
En alternative non illustrée, une au moins des couches de catalyseur est déposée sur l’une ou l’autre de deux couches de diffusion de gaz 130B, entre la couche de diffusion de gaz 130B et la couche polymère 130A qui sont adjacentes. As an alternative not illustrated, at least one of the catalyst layers is deposited on one or the other of two gas diffusion layers 130B, between the gas diffusion layer 130B and the polymer layer 130A which are adjacent.
La couche polymère 130A est étanche aux gaz réactifs, hydrogène ou oxygène, mais permet la diffusion, à son travers, des protons H+. Les couches de diffusion de gaz 130B, dites aussi GDL pour « gas diffusion layer » en anglais, sont poreuses pour les gaz réactifs et sont par exemple réalisées pour l’essentiel en fibres de carbone enchevêtrées et compressées. Les couches de diffusion de gaz 130B peuvent éventuellement être enduites sur leur face au contact de la membrane 130A d’un ionomère qui peut être de même nature que le matériau de la couche polymère 130A. La structure de la membrane 130 n’est pas détaillée plus avant. La membrane 130 comprend une première face 132 et une deuxième face 134 opposée à la première face 132. La première face 132 et la deuxième face 134 s’étendent parallèlement au plan moyen P50. La première face 132 est orientée du côté du premier séparateur 1 10. Le premier séparateur 1 10 délimite avec la membrane 130 un premier compartiment réactif V132, qui est configuré pour recevoir un premier fluide de fonctionnement de la pile à combustible 20. Le premier compartiment réactif V132 est ici par exemple un compartiment anodique de la cellule unitaire 100, c’est-à-dire que le premier fluide de fonctionnement est de l’hydrogène. Ainsi le premier fluide de fonctionnement est un fluide gazeux. Le premier compartiment réactif V132 est un des compartiments V100 de la cellule 100. The polymer layer 130A is impermeable to reactive gases, hydrogen or oxygen, but allows the diffusion, through it, of H+ protons. The gas diffusion layers 130B, also called GDL for “gas diffusion layer” in English, are porous for reactive gases and are for example made mainly of entangled and compressed carbon fibers. The gas diffusion layers 130B may optionally be coated on their face in contact with the membrane 130A with an ionomer which may be of the same nature as the material of the polymer layer 130A. The structure of the membrane 130 is not detailed further. The membrane 130 comprises a first face 132 and a second face 134 opposite the first face 132. The first face 132 and the second face 134 extend parallel to the mean plane P50. The first face 132 is oriented towards the first separator 110. The first separator 110 delimits with the membrane 130 a first reactive compartment V132, which is configured to receive a first operating fluid from the fuel cell 20. The first compartment reagent V132 is here for example an anode compartment of the unit cell 100, that is to say that the first operating fluid is hydrogen. Thus the first operating fluid is a gaseous fluid. The first reactive compartment V132 is one of the V100 compartments of cell 100.
La deuxième face 134 est orientée du côté du deuxième séparateur 120. Le deuxième séparateur 120 délimite avec la membrane 130 un deuxième compartiment réactif V134, qui est configuré pour recevoir un deuxième fluide de fonctionnement de la pile à combustible. Le deuxième compartiment réactif V134 est par exemple ici un compartiment cathodique de la cellule unitaire 100, c’est-à-dire que le fluide de fonctionnement circulant dans ce compartiment est ici de l’air, qui contient de l’oxygène. Ainsi le deuxième fluide de fonctionnement est un fluide gazeux. Le deuxième compartiment réactif V134 est un autre des compartiments V100 de la cellule 100. The second face 134 is oriented towards the second separator 120. The second separator 120 delimits with the membrane 130 a second reactive compartment V134, which is configured to receive a second operating fluid of the fuel cell. The second reactive compartment V134 is for example here a cathode compartment of the unit cell 100, that is to say that the operating fluid circulating in this compartment is here air, which contains oxygen. Thus the second operating fluid is a gaseous fluid. The second reactive compartment V134 is another of the V100 compartments of cell 100.
On comprend que lorsque trois cellules unitaires 100 sont empilées l’une sur l’autre, avec une cellule 100 du bas, une cellule 100 du milieu et une cellule 100 du haut, le premier séparateur 110 de la cellule du milieu se retrouve adjacent au deuxième séparateur 120 de la cellule 100 du haut. It is understood that when three unit cells 100 are stacked one on top of the other, with a bottom cell 100, a middle cell 100 and a top cell 100, the first separator 110 of the middle cell is found adjacent to the second separator 120 of cell 100 at the top.
Dans l’exemple illustré, le premier séparateur 1 10 de la cellule 100 du milieu et le deuxième séparateur 120 de la cellule du haut délimitent entre eux un premier compartiment de refroidissement V136 de la cellule 100 du milieu. In the example illustrated, the first separator 110 of the middle cell 100 and the second separator 120 of the top cell define between them a first cooling compartment V136 of the middle cell 100.
Le premier compartiment de refroidissement V136 est donc commun à deux cellules 100 voisines. Le deuxième séparateur 120 de la cellule 100 du milieu et le premier séparateur 1 10 de la cellule 100 du bas délimitent entre eux un deuxième compartiment de refroidissement V138 de la cellule du milieu. Pour deux cellules unitaires 100 empilées, le premier compartiment de refroidissement V136 de la cellule du bas est donc, pour la cellule du haut, un deuxième compartiment V138. The first cooling compartment V136 is therefore common to two neighboring cells 100. The second separator 120 of the middle cell 100 and the first separator 110 of the bottom cell 100 delimit between them a second cooling compartment V138 of the middle cell. For two stacked unit cells 100, the first cooling compartment V136 of the bottom cell is therefore, for the top cell, a second compartment V138.
Plus généralement, pour la cellule 100 décrite, chaque compartiment de refroidissement V136 et V138 est configuré pour recevoir un troisième fluide de fonctionnement de la pile à combustible 20. Le troisième fluide de fonctionnement est ici un fluide de refroidissement tel que de l’eau liquide glycolée. Ainsi le troisième fluide de fonctionnement est ici un fluide liquide aux températures de fonctionnement de la pile 20. Plus généralement, le premier séparateur 110 est configuré pour séparer de manière étanche le premier compartiment réactif V132 du premier compartiment de refroidissement V136. More generally, for the cell 100 described, each cooling compartment V136 and V138 is configured to receive a third operating fluid of the fuel cell 20. The third operating fluid is here a cooling fluid such as liquid water glycolated. Thus the third operating fluid here is a liquid fluid at the operating temperatures of the battery 20. More generally, the first separator 110 is configured to sealingly separate the first reactive compartment V132 from the first cooling compartment V136.
Dans l’exemple illustré, chaque cellule unitaire 100 comprend donc trois compartiments V100, à savoir le premier compartiment réactif V132, le deuxième compartiment réactif V134, et le premier compartiment de refroidissement V136. Chacun de ces compartiment V100 est respectivement associé à un fluide de fonctionnement de la pile à combustible 20. In the example illustrated, each unit cell 100 therefore comprises three compartments V100, namely the first reactive compartment V132, the second reactive compartment V134, and the first cooling compartment V136. Each of these compartments V100 is respectively associated with an operating fluid of the fuel cell 20.
La pile à combustible 20 loge ici, dans chacun des compartiment V100 de la cellule unitaire 100, une entretoise d’irrigation. Plus précisément, le deuxième compartiment réactif V134 loge une entretoise d’irrigation 600 d’un premier type, conforme à un premier mode de réalisation, tandis que le premier compartiment réactif V132 loge une entretoise d’irrigation 700 d’un deuxième type, conforme à un autre mode de réalisation. Le premier logement de refroidissement V136 loge aussi un autre exemplaire de l’entretoise 700 du deuxième type. The fuel cell 20 houses here, in each of the V100 compartments of the unit cell 100, an irrigation spacer. More precisely, the second reactive compartment V134 houses an irrigation spacer 600 of a first type, conforming to a first embodiment, while the first reactive compartment V132 houses an irrigation spacer 700 of a second type, conforming to another embodiment. The first V136 cooling housing also houses another example of the 700 spacer of the second type.
Les entretoises d’irrigation 600 ou 700 sont configurées pour définir la circulation, au sein de chaque compartiment V100, du fluide de fonctionnement correspondant. Les entretoises d’irrigation 600 et 700 sont décrites plus loin dans la présente description. Lorsque la pile 20 est assemblée, le premier séparateur 110, le deuxième séparateur 120, la membrane 130, ainsi que les entretoises 600 et 700, sont en appui les uns sur les autres. De préférence, les couches de diffusion de gaz 130B sont empilées, selon l’axe d’empilement 150, avec un serrage axial entre une entretoise d’irrigation 600 ou 700 et la face correspondante de la membrane 130, de manière à assurer une bonne conduction électrique entre ces éléments empilés. The 600 or 700 irrigation spacers are configured to define the circulation, within each V100 compartment, of the corresponding operating fluid. The 600 and 700 irrigation spacers are described later in this description. When the stack 20 is assembled, the first separator 110, the second separator 120, the membrane 130, as well as the spacers 600 and 700, are supported on each other. Preferably, the gas diffusion layers 130B are stacked, along the stacking axis 150, with axial clamping between an irrigation spacer 600 or 700 and the corresponding face of the membrane 130, so as to ensure good electrical conduction between these stacked elements.
Selon un autre aspect, la cellule unitaire 100 comprend aussi une structure d’étanchéité 200 (figure 5). La structure d’étanchéité comprend des cadres 210, qui sont chacun réalisés en un matériau polymère et qui sont empilés selon l’axe d’empilement A50. Les cadres 210 sont agencés en périphérie des parois 102 et des compartiments V100 de la cellule unitaire 100. According to another aspect, the unit cell 100 also includes a sealing structure 200 (Figure 5). The sealing structure comprises frames 210, which are each made of a polymer material and which are stacked along the stacking axis A50. The frames 210 are arranged on the periphery of the walls 102 and the compartments V100 of the unit cell 100.
Les principes de la structure d’étanchéité 200 sont décrits à l’aide de la figure 5, où deux parois 102 de la cellule unitaire 100, délimitant un seul compartiment V100, sont représentées. La paroi 102 sur le haut de la figure 5 a) est ici la membrane 130, tandis que la paroi 102 sur le bas de la figure 5 a) est le deuxième séparateur 120. Le compartiment représenté est donc le deuxième compartiment réactif V134, sachant que les principes décrits peuvent être transposés aux autres compartiments V100 de la cellule unitaire 100 et aux parois 102 correspondantes. Le reste de la cellule unitaire 100, notamment l’entretoise d’irrigation 600 ou la couche de diffusion 130B, n’est pas représenté pour ne pas surcharger les figures qui visent à représenter plus particulièrement cette structure d’étanchéité. Pour les parties de la description qui concernent les éléments de la structure d’étanchéité 200, lorsque deux de ces éléments comprennent des surfaces qui se font face l’une à l’autre et qui sont orientées orthogonalement à l’axe d’empilement A50, ces surfaces (et par extension ces éléments) sont dites « adjacentes » l’une à l’autre, tandis que lorsque ces deux surfaces sont parallèles à l’axe d’empilement A50, ces surfaces sont dites « en regard » l’une de l’autre. The principles of the sealing structure 200 are described using Figure 5, where two walls 102 of the unit cell 100, delimiting a single compartment V100, are shown. The wall 102 on the top of Figure 5 a) is here the membrane 130, while the wall 102 on the bottom of Figure 5 a) is the second separator 120. The compartment shown is therefore the second reactive compartment V134, knowing that the principles described can be transposed to the other compartments V100 of the unit cell 100 and to the corresponding walls 102. The rest of the unit cell 100, in particular the irrigation spacer 600 or the diffusion layer 130B, is not shown so as not to overload the figures which aim to represent this sealing structure more particularly. For the parts of the description which concern the elements of the sealing structure 200, when two of these elements comprise surfaces which face each other and which are oriented orthogonal to the stacking axis A50 , these surfaces (and by extension these elements) are said to be “adjacent” to each other, while when these two surfaces are parallel to the stacking axis A50, these surfaces are said to be “facing” the one from the other.
Dans l’exemple illustré, les cadres 210 de la structure d’étanchéité 200 incluent des cadres de paroi 220, chaque cadre de paroi 220 étant coplanaire à une paroi 102 respective et entourant cette paroi 102. Sur la figure 5 a), les cadres de paroi 220 et les parois associées sont représentés décalés pour faciliter la distinction entre les pièces, tandis que sur la figure 5 b), les cadres de paroi 220 sont représentés coplanaires avec les parois 102 respectives, comme dans la réalité. Chaque cadre de paroi 220 et la paroi 102 correspondante sont ainsi en regard l’un de l’autre. Préférentiellement, chaque cadre de paroi 220 présente une épaisseur sensiblement égale, par exemple égale à ±10%, à une épaisseur de la paroi 102 correspondante, les épaisseurs étant mesurées parallèlement à l’axe d’empilement A50. In the example illustrated, the frames 210 of the sealing structure 200 include wall frames 220, each wall frame 220 being coplanar with a respective wall 102 and surrounding this wall 102. In Figure 5 a), the frames of wall 220 and the associated walls are shown offset to facilitate the distinction between the parts, while in Figure 5 b), the wall frames 220 are shown coplanar with the respective walls 102, as in reality. Each wall frame 220 and the corresponding wall 102 are thus facing each other. Preferably, each wall frame 220 has a thickness substantially equal, for example equal to ±10%, to a thickness of the corresponding wall 102, the thicknesses being measured parallel to the stacking axis A50.
Les cadres 210 de la structure d’étanchéité 200 incluent aussi des cadres de compartiment 230. Chaque cadre de compartiment 230 est agencé en périphérie du compartiment V100 correspondant, ici le deuxième compartiment réactif V134. Un seul cadre de compartiment 230 est représenté sur la figure 5. Dans ce mode de réalisation de la structure d’étanchéité 200, chaque cadre de compartiment 230 est formé d’une seule pièce. The frames 210 of the sealing structure 200 also include compartment frames 230. Each compartment frame 230 is arranged on the periphery of the corresponding compartment V100, here the second reactive compartment V134. A single compartment frame 230 is shown in Figure 5. In this embodiment of the sealing structure 200, each compartment frame 230 is formed in one piece.
Chaque cadre 210 de la structure d’étanchéité 200 présente globalement une forme d’anneau, dans l’exemple une forme d’anneau rectangulaire, et est ménagé dans une plaque d’un matériau étanche, par exemple par découpage. Les cadres de paroi 220 sont réalisés dans un matériau électriquement isolant, de préférence un matériau polymère, par exemple du polyéthylène téréphtalate, dit aussi PET. Each frame 210 of the sealing structure 200 generally has a ring shape, in the example a rectangular ring shape, and is formed in a plate of a waterproof material, for example by cutting. The wall frames 220 are made of an electrically insulating material, preferably a polymer material, for example polyethylene terephthalate, also called PET.
Chaque cadre 210 comprend deux faces 213, qui sont opposées l’une à l’autre et qui s’étendent parallèlement au plan moyen P50, un bord interne 214, qui relie l’un à l’autre les deux faces 213 et qui est orienté vers un côté intérieur de la cellule unitaire 100, et un bord externe 215, qui est opposé au bord interne 214 et qui relie l’un à l’autre les deux faces 213. Pour chaque cadre 210, le bord interne 214 définit, en projection sur le plan moyen P50, un contour interne de ce cadre 210, tandis que le bord externe 215 définit, en projection sur le plan moyen P50, un contour externe de ce cadre 210. Dans le cas des cadres de paroi 220, le bord interne 214 s’étend en regard de la paroi 102 correspondante. Dans le cas des cadres de compartiment 230, le bord interne 214 est orientée vers le compartiment V100 correspondant et délimite ce compartiment V100 radialement à l’axe d’empilement A50. Each frame 210 comprises two faces 213, which are opposite each other and which extend parallel to the mean plane P50, an internal edge 214, which connects the two faces 213 to each other and which is oriented towards an interior side of the unit cell 100, and an external edge 215, which is opposite the internal edge 214 and which connects the two faces 213 to each other. For each frame 210, the internal edge 214 defines, in projection on the average plane P50, an internal contour of this frame 210, while the external edge 215 defines, in projection on the average plane P50, an external contour of this frame 210. In the case of wall frames 220, the internal edge 214 extends opposite the corresponding wall 102. In the case of compartment frames 230, the internal edge 214 is oriented towards the corresponding compartment V100 and delimits this compartment V100 radially to the stacking axis A50.
De manière analogue, chaque paroi 102 comprend deux faces 103 qui sont opposées l’une à l’autre et qui s’étendent parallèlement au plan moyen P50 et un bord externe 105 qui relie l’un à l’autre les deux faces 103. Pour chaque paroi 102, le bord externe 105 correspondant est orienté vers l’extérieur de la cellule 100. Le bord externe 105 de chaque paroi 102 définit, en projection sur le plan moyen P50, un contour externe de cette paroi 102. Analogously, each wall 102 comprises two faces 103 which are opposite each other and which extend parallel to the mean plane P50 and an external edge 105 which connects the two faces 103 to each other. For each wall 102, the corresponding external edge 105 is oriented towards the outside of the cell 100. The external edge 105 of each wall 102 defines, in projection on the average plane P50, an external contour of this wall 102.
Le bord interne 214 de chaque cadre de paroi 220 est agencé en regard du bord externe 105 de la paroi 102 associée, le bord interne 214 du cadre de paroi 220 et le bord externe 105 de la paroi 102 en regard étant séparés, radialement à l’axe d’empilement A50, par un interstice périphérique I220. Chaque paroi 102 est donc associée à un interstice périphérique I220 propre à cette paroi 102 et au cadre de paroi 220 en regard correspondant. Par conséquent, chaque cadre de paroi 220 est donc associé à un interstice périphérique I220 propre à ce cadre de paroi 220 et à la paroi 102 en regard correspondante. The internal edge 214 of each wall frame 220 is arranged facing the external edge 105 of the associated wall 102, the internal edge 214 of the wall frame 220 and the external edge 105 of the facing wall 102 being separated, radially to the stacking axis A50, through a peripheral gap I220. Each wall 102 is therefore associated with a peripheral gap I220 specific to this wall 102 and to the corresponding facing wall frame 220. Consequently, each wall frame 220 is therefore associated with a peripheral gap I220 specific to this wall frame 220 and to the corresponding facing wall 102.
L’interstice périphérique I220 est le plus petit possible. L’interstice périphérique I220 est typiquement compris entre 0 mm (millimètre) et 0,2 mm. Dans la réalité, l’interstice périphérique I220 n’est pas nul, notamment à cause des tolérances de fabrication et des jeux d’assemblage. Dans l’exemple illustré, I220 est égal à 0,1 mm. The peripheral gap I220 is as small as possible. The peripheral gap I220 is typically between 0 mm (millimeter) and 0.2 mm. In reality, the peripheral gap I220 is not zero, in particular because of manufacturing tolerances and assembly clearances. In the example shown, I220 is equal to 0.1 mm.
La structure d’étanchéité 200 comprend aussi des couches d’adhésifs 240, qui sont intercalées entre chacun des cadres 210 de la structure d’étanchéité de manière à fixer, de manière étanche, les cadres 210 les uns aux autres. Chaque couche d’adhésif 240 est ainsi prise entre deux cadres 210 et est donc adjacente à chacun de ces deux cadres 210. Dans l’exemple de la figure 5, deux couches d’adhésif 240 sont représentées, chaque couche d’adhésif 240 étant intercalée entre, d’une part, le cadre de compartiment 230 et, d’autre part, une des parois 102 et le cadre de paroi 220 associé à cette paroi 102. Autrement dit, chaque couche d’adhésif 240 est intercalée entre, d’une part, le cadre de compartiment 230 correspondant et, d’autre part, la paroi 102 et le cadre de paroi 220 adjacents à ce cadre de compartiment 230. The sealing structure 200 also comprises layers of adhesives 240, which are interposed between each of the frames 210 of the sealing structure so as to securely fix the frames 210 to each other. Each layer of adhesive 240 is thus taken between two frames 210 and is therefore adjacent to each of these two frames 210. In the example of Figure 5, two layers of adhesive 240 are represented, each layer of adhesive 240 being interposed between, on the one hand, the compartment frame 230 and, on the other hand, one of the walls 102 and the wall frame 220 associated with this wall 102. In other words, each layer of adhesive 240 is interposed between, d on the one hand, the corresponding compartment frame 230 and, on the other hand, the wall 102 and the wall frame 220 adjacent to this compartment frame 230.
Chaque couche d’adhésif 240 est réalisée en un matériau étanche, de préférence un adhésif de type « contact », dit aussi PSA pour « Pressure Sensitive Adhesive » en anglais. Avantageusement, chaque couche d’adhésif 240 est repositionnable, de sorte que la structure d’étanchéité 200 est démontable, la cellule unitaire 100 étant par extension elle- aussi démontable. Des exemples non limitatifs d’adhésifs incluent des colles acryliques. Chaque couche d’adhésif 240 est réalisée en un matériau électriquement isolant. Ainsi la structure d’étanchéité 200, formée de l’assemblage des cadres 210 assemblés les uns aux autres par des couches d’adhésifs, assure non seulement l’étanchéité entre deux compartiments V100 voisins, mais aussi l’étanchéité et l’isolation électrique de chaque compartiment V100 vis-à-vis de l’extérieur de la cellule unitaire. Each layer of adhesive 240 is made of a waterproof material, preferably a “contact” type adhesive, also known as PSA for “Pressure Sensitive Adhesive” in English. Advantageously, each layer of adhesive 240 is repositionable, so that the sealing structure 200 is removable, the unit cell 100 being by extension itself also removable. Non-limiting examples of adhesives include acrylic glues. Each layer of adhesive 240 is made of an electrically insulating material. Thus the sealing structure 200, formed from the assembly of frames 210 assembled together by layers of adhesives, not only ensures sealing between two neighboring V100 compartments, but also sealing and electrical insulation of each V100 compartment vis-à-vis the exterior of the unit cell.
Avantageusement, chaque couche d’adhésif 240 s’étend de manière continue sur les surfaces des cadres 210 et/ou parois 102 que cette couche d’adhésif 240 solidarise. Par exemple, pour l’assemblage de deux faces, la couche d’adhésif 240 est appliquée par enduction sur une des faces à assembler, puis la deuxième face est pressée sur la couche d’adhésif 240. Sur la figure 5 a), les deux couches d’adhésifs 240 présentent une forme identique au cadre de compartiment 230 qui est intercalé entre ces deux couches d’adhésif 240. Advantageously, each layer of adhesive 240 extends continuously over the surfaces of the frames 210 and/or walls 102 which this layer of adhesive 240 holds together. For example, for the assembly of two faces, the adhesive layer 240 is applied by coating on one of the faces to be assembled, then the second face is pressed onto the adhesive layer 240. In Figure 5 a), the two layers of adhesives 240 have a shape identical to the compartment frame 230 which is interposed between these two layers of adhesive 240.
De préférence, le cadre de compartiment 230 subit une enduction d’adhésif sur chacune de ses deux faces opposées avant d'être découpé et assemblé au reste de la structure d’étanchéité 240. Preferably, the compartment frame 230 is coated with adhesive on each of its two opposite faces before being cut out and assembled to the rest of the sealing structure 240.
Dans l’exemple illustré, le cadre de compartiment 230 est intercalé, selon l’axe d’empilement A50, entre deux parois 102, et entre les deux cadres de paroi 220 qui sont coplanaires avec les deux parois 102. Le cadre de compartiment 230 est ainsi adjacent à ces deux cadres de paroi 220. In the example illustrated, the compartment frame 230 is inserted, along the stacking axis A50, between two walls 102, and between the two wall frames 220 which are coplanar with the two walls 102. The compartment frame 230 is thus adjacent to these two wall frames 220.
Pour chacune de ces parois 102 adjacente au cadre de compartiment 230, le contour interne du cadre de compartiment 230 est inclus, en projection selon l’axe d’empilement A50, dans un contour externe de la paroi 102 adjacente, de manière qu’une portion annulaire de la paroi 102 fait face, selon l’axe d’empilement 102, à une portion complémentaire du cadre de compartiment 230 et forme un premier recouvrement S231 du cadre de compartiment 230 sur cette paroi 102. Schématiquement, le premier recouvrement S231 est une portion d’une face 103 de la paroi 102, qui correspond à la projection, parallèlement à l’axe d’empilement A50, du cadre de compartiment 230 sur la paroi 102 adjacente. For each of these walls 102 adjacent to the compartment frame 230, the internal contour of the compartment frame 230 is included, in projection along the stacking axis A50, in an external contour of the adjacent wall 102, so that a annular portion of the wall 102 faces, along the stacking axis 102, a complementary portion of the compartment frame 230 and forms a first covering S231 of the compartment frame 230 on this wall 102. Schematically, the first covering S231 is a portion of a face 103 of the wall 102, which corresponds to the projection, parallel to the stacking axis A50, of the compartment frame 230 on the adjacent wall 102.
Pour chacun des cadres de paroi 220 associés aux parois 102 adjacentes au cadre de compartiment 230, un contour interne du cadre de paroi 220 est inclus, en projection selon l’axe d’empilement A50, dans le contour externe du cadre de compartiment 230, de manière qu’une portion annulaire du cadre de paroi 220 fait face à une portion complémentaire du cadre de compartiment 230 et forme un deuxième recouvrement S232 du cadre de compartiment 230 sur ce cadre de paroi 220. Le deuxième recouvrement S232 correspond à la projection, parallèlement à l’axe d’empilement A50, du cadre de compartiment 230 sur le cadre de paroi 220 adjacent. Ainsi le deuxième recouvrement 232 correspond ici à celle des faces 223 du cadre de paroi 220 qui est orientée vers le cadre de compartiment considéré. For each of the wall frames 220 associated with the walls 102 adjacent to the compartment frame 230, an internal contour of the wall frame 220 is included, in projection along the stacking axis A50, in the external contour of the compartment frame 230, so that an annular portion of the wall frame 220 faces a complementary portion of the compartment frame 230 and forms a second covering S232 of the compartment frame 230 on this wall frame 220. The second covering S232 corresponds to the projection, parallel to the stacking axis A50, of the frame compartment 230 on the adjacent wall frame 220. Thus the second covering 232 corresponds here to that of the faces 223 of the wall frame 220 which is oriented towards the compartment frame considered.
De préférence, les contours externes de tous les cadres 210 de la structure d’étanchéité 200 sont superposés les uns aux autres selon l’axe d’empilement A50, les bords externes de tous les cadres de toutes les structures d’étanchéité formant ensemble une surface externe S100 de la cellule unitaire 100. La surface externe S50 de l’empilement 50 correspond à la réunion des surfaces externes S100 des cellules unitaires 100 qui composent cet empilement 50. Optionnellement, lors de l’assemblage de l’empilement 50, la surface externe S50 est rectifiée après l’assemblage des cellules unitaire 100, de sorte que la surface externe S50 est lisse. Preferably, the external contours of all the frames 210 of the sealing structure 200 are superimposed on each other along the stacking axis A50, the external edges of all the frames of all the sealing structures together forming a external surface S100 of the unit cell 100. The external surface S50 of the stack 50 corresponds to the union of the external surfaces S100 of the unit cells 100 which make up this stack 50. Optionally, during the assembly of the stack 50, the outer surface S50 is ground after assembling the unit cells 100, so that the outer surface S50 is smooth.
Pour la couche d’adhésif 240 intercalée entre le cadre de compartiment 230 et la paroi 102 adjacente, cette couche d’adhésif 240 comprend une première portion, dite première portion de couche 241 , qui s’étend face au premier recouvrement S231 entre le cadre de compartiment 230 et la paroi 102 adjacente, de manière à fixer, de manière étanche, ce cadre de compartiment 230 à la paroi 102 adjacente. For the layer of adhesive 240 interposed between the compartment frame 230 and the adjacent wall 102, this layer of adhesive 240 comprises a first portion, called the first portion of layer 241, which extends facing the first covering S231 between the frame compartment 230 and the adjacent wall 102, so as to fix, in a sealed manner, this compartment frame 230 to the adjacent wall 102.
De manière analogue, cette couche d’adhésif 240 comprend une deuxième portion, dite deuxième portion de couche 242, qui s’étend face au deuxième recouvrement S232 entre le cadre de compartiment 230 et le cadre de paroi 220 adjacent, de manière à fixer, de manière étanche, ce cadre de compartiment 230 à ce cadre de paroi 220. Analogously, this adhesive layer 240 comprises a second portion, called the second layer portion 242, which extends facing the second covering S232 between the compartment frame 230 and the adjacent wall frame 220, so as to fix, sealingly, this compartment frame 230 to this wall frame 220.
La première portion de couche 241 et la deuxième portion de couche 242 sont agencées dans un même plan transversal à l’axe d’empilement A50. La première portion de couche 241 , est, dans ce plan transversal, entourée par la deuxième portion de couche 242. The first layer portion 241 and the second layer portion 242 are arranged in the same plane transverse to the stacking axis A50. The first layer portion 241 is, in this transverse plane, surrounded by the second layer portion 242.
Avantageusement, la couche d’adhésif 240 comprend une troisième portion, dite troisième portion de couche 243, qui est intercalée radialement, dans le même plan transversal à l’axe d’empilement A50, entre les première portion de couche 241 et deuxième portion de couche 242 et qui unit donc les première portion de couche 241 et deuxième portion de couche 242 l’une à l’autre. La troisième portion de couche 243 de la couche d’adhésif est située en face, selon l’axe d’empilement A50, de l’interstice périphérique I220. La troisième portion de couche 243 de la couche d’adhésif 240 relie de manière continue la première couche 242 à la deuxième portion de couche 242. Autrement dit, la première portion de couche 241 d’adhésif et la deuxième portion de couche 242 d’adhésif font partie d’une même couche continue, ici la couche d’adhésif 240, qui s’étend sur une face du cadre de compartiment 230, de manière à recouvrir l’interstice périphérique I220 en face du cadre de compartiment 230. Le premier recouvrement S231 présente une longueur de fuite L231 , qui est égale à une distance minimale, mesurée parallèlement au plan moyen P50, entre deux points quelconques appartenant respectivement au bord interne 214 du cadre de compartiment 230 correspondant et au bord externe 105 de la paroi 102 adjacente correspondante. Dans l’exemple de la figure 5, la longueur de fuite L231 est la longueur du chemin le plus court entre le compartiment V100 et l’interstice périphérique I220, en passant entre le cadre de compartiment 230 et la paroi 102 adjacente considérés. Advantageously, the adhesive layer 240 comprises a third portion, called the third portion of layer 243, which is interposed radially, in the same plane transverse to the stacking axis A50, between the first portion of layer 241 and second portion of layer 242 and which therefore unites the first portion of layer 241 and second portion of layer 242 to one another. The third layer portion 243 of the adhesive layer is located opposite, along the stacking axis A50, the peripheral gap I220. The third portion of layer 243 of the adhesive layer 240 continuously connects the first layer 242 to the second portion of layer 242. In other words, the first portion of layer 241 of adhesive and the second portion of layer 242 of adhesive are part of the same continuous layer, here the adhesive layer 240, which extends over one face of the compartment frame 230, so as to cover the peripheral gap I220 opposite the compartment frame 230. The first covering S231 has a leakage length L231, which is equal to a minimum distance, measured parallel to the mean plane P50, between any two points belonging respectively to the internal edge 214 of the corresponding compartment frame 230 and to the external edge 105 of the wall 102 corresponding adjacent. In the example of Figure 5, the leakage length L231 is the length of the shortest path between the compartment V100 and the peripheral gap I220, passing between the compartment frame 230 and the adjacent wall 102 considered.
De manière analogue, le deuxième recouvrement S232 présente une longueur de fuite L232, qui est égal à une distance minimale, mesurée parallèlement au plan moyen P50, entre deux points quelconques appartenant respectivement au bord externe 215 du cadre de compartiment 230 correspondant et au bord interne 214 du cadre de paroi 220 adjacent correspondant. Dans l’exemple de la figure 5, la longueur de fuite L232 du deuxième recouvrement S232 est la longueur du chemin le plus court entre l’interstice périphérique I220 et l’extérieur de la cellule unitaire 100, en passant entre le cadre de compartiment 230 et le cadre de paroi 220 adjacent considérés. Analogously, the second covering S232 has a leakage length L232, which is equal to a minimum distance, measured parallel to the mean plane P50, between any two points belonging respectively to the external edge 215 of the corresponding compartment frame 230 and to the internal edge 214 of the corresponding adjacent wall frame 220. In the example of Figure 5, the leakage length L232 of the second cover S232 is the length of the shortest path between the peripheral gap I220 and the exterior of the unit cell 100, passing between the compartment frame 230 and the adjacent wall frame 220 considered.
Chaque longueur de fuite L231 ou L232 est supérieure ou égale à 1 mm, de préférence supérieure ou égale à 2 mm, de préférence encore supérieure ou égale à 3 mm. On assure ainsi une étanchéité supérieure à une valeur minimale, d’une part, entre chacun des compartiments V100 et l’extérieur de la cellule 100 et, d’autre part, entre deux compartiments V100 voisins. Each leak length L231 or L232 is greater than or equal to 1 mm, preferably greater than or equal to 2 mm, more preferably greater than or equal to 3 mm. This ensures a seal greater than a minimum value, on the one hand, between each of the V100 compartments and the exterior of the cell 100 and, on the other hand, between two neighboring V100 compartments.
De préférence, le cadre de compartiment 230 et les deux couches d’adhésifs 240 associées sont fabriquées par enduction d’un matériau adhésif sur les deux faces du cadre de compartiment 230, le cadre de compartiment 230 ainsi enduit étant ensuite découpé à la forme voulue, avant d’être assemblé aux autres éléments de la cellule unitaire 100. Preferably, the compartment frame 230 and the two associated layers of adhesives 240 are manufactured by coating an adhesive material on both faces of the compartment frame 230, the compartment frame 230 thus coated being then cut to the desired shape , before being assembled with the other elements of the unit cell 100.
L’ensemble formé par le cadre de compartiment 230 enduit des deux couches d’adhésif 240 associées forme ainsi un cadre dit « cadre adhésif double face ». Le cadre de compartiment 230 forme ainsi une âme continue et étanche de ce cadre adhésif double- face. Avantageusement, lors de la fabrication de la cellule unitaire 100, une plaque adhésive double-face est fournie, cette plaque adhésive double face comprenant une âme continue étanche, ici en PET, enduite sur ses deux faces d’un matériau adhésif. Le matériau adhésif est par exemple déposé par un procédé d’enduction sur les deux faces de l’âme. Cette plaque adhésive double face est ensuite découpée à la géométrie voulue, de manière à former, en une seule étape, le cadre de compartiment 230 et les deux couches d’adhésifs 240 associées. The assembly formed by the compartment frame 230 coated with the two associated layers of adhesive 240 thus forms a frame called a “double-sided adhesive frame”. The compartment frame 230 thus forms a continuous and waterproof core of this double-sided adhesive frame. Advantageously, during the manufacture of the unit cell 100, a double-sided adhesive plate is provided, this double-sided adhesive plate comprising a continuous waterproof core, here in PET, coated on both sides with an adhesive material. The adhesive material is, for example, deposited by a coating process on both sides of the core. This double-sided adhesive plate is then cut to the desired geometry, so as to form, in a single step, the compartment frame 230 and the two associated adhesive layers 240.
Une telle structure d’étanchéité 200 ne comporte pas de passage d’entrée ni de sortie de fluide dans le compartiment V100 associé. Si une telle entrée et/ou sorte de fluide doit être prévue dans le compartiment, il est nécessaire, avec cette structure d’étanchéité 200, de la ménager par ailleurs, par exemple dans l’une des parois 102 qui délimitent le compartiment. Such a sealing structure 200 does not include a fluid inlet or outlet passage in the associated compartment V100. If such entry and/or exit of fluid must be provided in the compartment, it is necessary, with this sealing structure 200, to provide it elsewhere, for example in one of the walls 102 which delimit the compartment.
Une structure d’étanchéité 300, conforme à un autre mode de réalisation, est représenté sur la figure 6. La structure d’étanchéité 300 diffère de la structure d’étanchéité 200 décrite précédemment, en ce que la structure d’étanchéité 300 comprend un cadre de compartiment qui est réalisé sous la forme d’un cadre de transfert 330 au travers duquel sont ménagés deux passages de fluide 332, de manière à laisser circuler le fluide de fonctionnement correspondant au compartiment V100. Un seul passage de fluide 332 est représenté sur la figure 6. Les cadres de transfert 330 font donc partie des cadres 210. Dans ce mode de réalisation de la structure d’étanchéité 300, chaque cadre de compartiment 330 ne comprend que le cadre de transfert. A sealing structure 300, according to another embodiment, is shown in Figure 6. The sealing structure 300 differs from the sealing structure 200 described previously, in that the sealing structure 300 comprises a compartment frame which is produced in the form of a transfer frame 330 through which two fluid passages 332 are provided, so as to allow the operating fluid corresponding to compartment V100 to circulate. A single fluid passage 332 is shown in Figure 6. The transfer frames 330 are therefore part of the frames 210. In this embodiment of the sealing structure 300, each compartment frame 330 only includes the transfer frame .
Un des deux passages 332 de fluide est une entrée pour le fluide de fonctionnement, tandis que l’autre passage 332 est une sortie pour le fluide de fonctionnement, les notions d’« entrée » et de « sortie » dépendant du sens de circulation du fluide de fonctionnement. Les passages de fluide 332 relient ainsi le compartiment V100 et l’extérieur de la cellule 100. One of the two fluid passages 332 is an inlet for the operating fluid, while the other passage 332 is an outlet for the operating fluid, the notions of “inlet” and “outlet” depending on the direction of circulation of the fluid. operating fluid. The fluid passages 332 thus connect the compartment V100 and the exterior of the cell 100.
De préférence, les passages de fluide 332 sont ménagés lors du découpage du cadre de transfert 330, le cadre de transfert 330 étant pris en sandwich entre les deux couches d’adhésif 240, de manière à solidariser, de manière étanche, vis-à-vis de l’extérieur, le cadre de transfert 330 aux cadres de paroi 220 adjacents et aux parois 102 associées. Preferably, the fluid passages 332 are provided during the cutting of the transfer frame 330, the transfer frame 330 being sandwiched between the two layers of adhesive 240, so as to secure, in a watertight manner, vis-à-vis screws from the outside, the transfer frame 330 to the adjacent wall frames 220 and to the associated walls 102.
En alternative non représentée, un passage de fluide est formé par un décaissement partiel, dans le sens de l’axe d'empilement A50, du cadre de transfert, un tel décaissement ayant une profondeur selon la direction d'empilement inférieure à l'épaisseur du cadre de transfert et une étendue circonférentielle. As an alternative not shown, a fluid passage is formed by a partial disbursement, in the direction of the stacking axis A50, of the transfer frame, such disbursement having a depth in the stacking direction less than the thickness of the transfer frame and a circumferential extent.
Chaque passage 332 débouche dans le compartiment V100 associé par une embouchure interne 334, qui est ménagée sur le bord interne 214 du cadre de transfert 330. Chaque passage 332 débouche à l’extérieur du compartiment V100 par une embouchure externe 335. Each passage 332 opens into the associated compartment V100 via an internal mouth 334, which is provided on the internal edge 214 of the transfer frame 330. Each passage 332 opens outside the compartment V100 via an external mouth 335.
Chaque passage 332 comprend ainsi une portion interne 334B, qui débouche par l’embouchure interne 334 dans le compartiment V100 correspondant. La portion interne 334B de chaque passage 332 est ménagée dans l’épaisseur du cadre de transfert 330. Un tel agencement permet ainsi de ménager de manière économique les passages 332 dans chacun des cadres de transfert 330, de manière à alimenter chaque compartiment V100 avec le fluide de fonctionnement correspondant. Dans l’exemple illustré, l’embouchure externe 335 de chaque passage 332 du cadre de transfert 330 est avantageusement ménagée sur le bord externe 215 du cadre de transfert 335, de manière à communiquer fluidiquement avec l’un des conduits de circulation 38A, 38B ou 38C. L’un des passages 332 d’un cadre de transfert 330 communique ainsi avec l’un des conduits de circulation 38A, 38B ou 38C tandis que l’autre des passages 332 de ce même cadre de transfert 330 communique avec l’autre des conduits de circulation 38A, 38B ou 38C qui appartient à la même paire de conduits. Each passage 332 thus comprises an internal portion 334B, which opens through the internal mouth 334 into the corresponding compartment V100. The internal portion 334B of each passage 332 is provided in the thickness of the transfer frame 330. Such an arrangement thus makes it possible to economically provide the passages 332 in each of the transfer frames 330, so as to supply each compartment V100 with the corresponding operating fluid. In the example illustrated, the external mouth 335 of each passage 332 of the transfer frame 330 is advantageously provided on the external edge 215 of the transfer frame 335, so as to communicate fluidly with one of the circulation conduits 38A, 38B or 38C. One of the passages 332 of a transfer frame 330 thus communicates with one of the circulation conduits 38A, 38B or 38C while the other of the passages 332 of this same transfer frame 330 communicates with the other of the conduits circulation 38A, 38B or 38C which belongs to the same pair of conduits.
Autrement dit, pour chacun des deux passages 332 d’un même cadre de transfert 330, l’embouchure externe 335 associée à ce passage 332 débouche sur le bord externe 215 de ce cadre de transfert 330 dans un conduit distinct parmi les conduits de circulation de la paire associée. In other words, for each of the two passages 332 of the same transfer frame 330, the external mouth 335 associated with this passage 332 opens onto the external edge 215 of this transfer frame 330 in a distinct conduit among the circulation conduits of the associated pair.
En variante non illustrée, l’embouchure externe 335 est agencée autrement, par exemple orientée axialement et est agencée sur une des faces 213 du cadre de transfert 330, les embouchures externes étant alors de préférence alignées selon l’axe d’empilement A50 de manière à former des cheminées, qui s’étendent au travers des cadres 210, ces cheminées étant prévues pour la circulation des fluides de fonctionnement, reprenant un agencement connu dans le domaine des plaques polaires dites à « manifold interne ». As a variant not shown, the external mouth 335 is arranged differently, for example oriented axially and is arranged on one of the faces 213 of the transfer frame 330, the external mouths then preferably being aligned along the stacking axis A50 so as to to form chimneys, which extend through the frames 210, these chimneys being provided for the circulation of operating fluids, using an arrangement known in the field of polar plates known as “internal manifold”.
Avantageusement, chaque passage 332 loge des ailettes 336 de guidage du fluide de fonctionnement associé. Alternativement, un seul des deux passage 332 comprend les ailettes 336. Au sein de chaque passage de fluide 332, les ailettes 336 forment des piliers, qui maintiennent à distance les deux couches d’adhésifs 240 associées au cadre de transfert 330 considéré. Deux ailettes voisines 336 délimitent entre elles un canal. Chaque passage de fluide 332 est donc formé de la réunion des canaux délimités entre les ailettes 336. La forme de chaque ailette 336 est choisie de manière à gêner le moins possible l'écoulement des fluides de fonctionnement passant par les passages 332, tout en assurant le transfert des efforts des efforts mécaniques de serrage de l’empilement 50, ces efforts de serrage étant parallèles à l’axe d’empilement A50. Advantageously, each passage 332 houses fins 336 for guiding the associated operating fluid. Alternatively, only one of the two passages 332 includes the fins 336. Within each fluid passage 332, the fins 336 form pillars, which keep the two layers of adhesives 240 associated with the transfer frame 330 considered at a distance. Two neighboring fins 336 delimit a channel between them. Each fluid passage 332 is therefore formed from the union of the channels delimited between the fins 336. The shape of each fin 336 is chosen so as to interfere as little as possible with the flow of operating fluids passing through the passages 332, while ensuring the transfer of forces from the mechanical tightening forces of the stack 50, these tightening forces being parallel to the stack axis A50.
Les ailettes 336 sont de préférence formées, lors de la fabrication du cadre de transfert 330, par découpage de ce cadre de transfert 330. Les ailettes 336 présentent ainsi une même épaisseur que le reste du cadre de transfert 330. Lorsque la cellule 100 est assemblée, les ailettes 336 sont maintenues au moyen des couches d’adhésifs agencées de part et d’autre du cadre de transfert 330 considéré, ici les couches d’adhésif 240, entre lesquelles est intercalé le cadre de transfert 330. Les ailettes 336 avantageusement sont réparties à distance les unes des autres au sein du passage 332 correspondant, de manière à orienter l’écoulement du fluide de fonctionnement associé. De préférence, les ailettes 336 sont régulièrement réparties dans le passage 332 correspondant. The fins 336 are preferably formed, during the manufacture of the transfer frame 330, by cutting this transfer frame 330. The fins 336 thus have the same thickness as the rest of the transfer frame 330. When the cell 100 is assembled , the fins 336 are held by means of layers of adhesives arranged on either side of the transfer frame 330 considered, here the layers of adhesive 240, between which the transfer frame 330 is interposed. The fins 336 advantageously are distributed at a distance from each other within the corresponding passage 332, so to direct the flow of the associated operating fluid. Preferably, the fins 336 are regularly distributed in the corresponding passage 332.
Une structure d’étanchéité 400, conforme à un autre mode de réalisation, est représenté sur la figure 7. La structure d’étanchéité 400 diffère de la structure d’étanchéité 300 décrite précédemment, en ce que la structure d’étanchéité 400 comprend un cadre de compartiment 430 qui inclut, outre le cadre de transfert 330 intercalé entre les deux couches d’adhésif 240 correspondantes, un cadre supplémentaire, dit premier cadre d’étanchéité 432, qui est intercalé entre le cadre de transfert 330 et l’une des couches d’adhésif 240 associées à ce cadre de transfert 330. Le premier cadre d’étanchéité 432 est ainsi adjacent à une paroi 102, à laquelle ce premier cadre d’étanchéité 432 est fixé par une des couches d’adhésif 240. Autrement dit le premier cadre d’étanchéité 432 est intercalé entre, d’une part, le cadre de transfert 330 et, d’autre part, une des deux parois 102 adjacente à ce cadre de transfert 330. Dans l’exemple de la figure 7, le premier cadre d’étanchéité 432 est associé à la paroi 102 et au cadre de paroi 220 situés sur le bas de la figure. A sealing structure 400, according to another embodiment, is shown in Figure 7. The sealing structure 400 differs from the sealing structure 300 described previously, in that the sealing structure 400 comprises a compartment frame 430 which includes, in addition to the transfer frame 330 interposed between the two corresponding adhesive layers 240, an additional frame, called first sealing frame 432, which is interposed between the transfer frame 330 and one of the layers of adhesive 240 associated with this transfer frame 330. The first sealing frame 432 is thus adjacent to a wall 102, to which this first sealing frame 432 is fixed by one of the layers of adhesive 240. In other words the first sealing frame 432 is inserted between, on the one hand, the transfer frame 330 and, on the other hand, one of the two walls 102 adjacent to this transfer frame 330. In the example of Figure 7, the first sealing frame 432 is associated with the wall 102 and the wall frame 220 located at the bottom of the figure.
Le cadre de compartiment 430 inclut aussi un film adhésif 440, qui est intercalé entre le premier cadre d’étanchéité 432 et le cadre de transfert 330, de manière à fixer le cadre de transfert 330 au premier cadre d’étanchéité 432 adjacent. The compartment frame 430 also includes an adhesive film 440, which is interposed between the first sealing frame 432 and the transfer frame 330, so as to attach the transfer frame 330 to the adjacent first sealing frame 432.
De préférence, le film adhésif 440 est ici réalisé dans un matériau suffisamment dur, choisi de manière à éviter les fluages d'adhésif, notamment entre les ailettes 336, sous l'effet de la pression, et ainsi d'éviter l'obstruction des passages fluidiques 332. Le film adhésif 440 comprend ici des languette 441 , qui correspondent aux ailettes 336 du cadre de transfert 330. Les languettes 441 forment ici une portion discontinue du film d’adhésif 440. En variante non représentée, le film adhésif 440 ne comprend pas de languette et est continu selon la direction circonférentielle autour de l’axe d’empilement A50, à la manière des couches d’adhésif 240. Preferably, the adhesive film 440 is here made of a sufficiently hard material, chosen so as to avoid adhesive creep, in particular between the fins 336, under the effect of pressure, and thus to avoid the obstruction of the fluidic passages 332. The adhesive film 440 here comprises tabs 441, which correspond to the fins 336 of the transfer frame 330. The tabs 441 here form a discontinuous portion of the adhesive film 440. In a variant not shown, the adhesive film 440 does not does not include a tab and is continuous in the circumferential direction around the stacking axis A50, like the layers of adhesive 240.
Le cadre de transfert 330, et en particulier les ailettes 336, sont ainsi fixées au premier cadre d’étanchéité 432 par le premier film adhésif 440, tandis que ce premier cadre d’étanchéité 432 est fixé de manière étanche à la paroi 102 adjacente, et au cadre de paroi 220 en regard de cette paroi 102, par la couche d’adhésif 240 correspondante. The transfer frame 330, and in particular the fins 336, are thus fixed to the first sealing frame 432 by the first adhesive film 440, while this first sealing frame 432 is fixed in a sealed manner to the adjacent wall 102, and to the wall frame 220 facing this wall 102, by the corresponding layer of adhesive 240.
Le cadre d’étanchéité 432, qui s’étend en continu, selon la direction radiale et selon la direction circonférentielle autour de l’axe d’empilement A50, fait face à l’interstice périphérique I220 ménagé entre cette paroi 102 et le cadre de paroi 210 en regard, offrant ainsi à la couche d’adhésif 240 un support continu, ce qui améliore l’étanchéité du compartiment V100 correspondant par rapport à la situation sans cadre d’étanchéité 432. La présence d’un cadre d’étanchéité 432 est particulièrement avantageuse dans le cas où le fluide de fonctionnement circulant dans le compartiment V100 est un gaz, autrement dit dans le cas où le cadre de transfert 330 est ménagé autour du premier compartiment réactif V132 ou autour du deuxième compartiment réactif V134, où circulent respectivement de l’hydrogène et de l’air. The sealing frame 432, which extends continuously, in the radial direction and in the circumferential direction around the stacking axis A50, faces the peripheral gap I220 provided between this wall 102 and the sealing frame. facing wall 210, thus providing the adhesive layer 240 with continuous support, which improves the sealing of the corresponding compartment V100 compared to the situation without sealing frame 432. The presence of a sealing frame 432 is particularly advantageous in the case where the operating fluid circulating in compartment V100 is a gas, in other words in the case where the transfer frame 330 is provided around the first reactive compartment V132 or around the second reactive compartment V134, where hydrogen and air circulate respectively.
De préférence, le cadre d’étanchéité 432 présente la même forme, au sens du même contour interne et externe, que le cadre de transfert dont il fait partie. De même, de préférence, de préférence, le film adhésif 440 présente la même forme, au sens du même contour interne et externe, que le premier cadre d’étanchéité 432 et que le cadre de transfert correspondants. Preferably, the sealing frame 432 has the same shape, in the sense of the same internal and external contour, as the transfer frame of which it is a part. Likewise, preferably, preferably, the adhesive film 440 has the same shape, in the sense of the same internal and external contour, as the first sealing frame 432 and the corresponding transfer frame.
Ainsi, les cadres d’étanchéité 432 sont de préférence adjacents à la membrane 130, et au cadre de paroi en regard de la membrane 130, du côté où le fluide de fonctionnement est de l’hydrogène, pour éviter les risques de pollution en hydrogène de l’autre côté de la membrane 130. De préférence encore, des cadres d’étanchéité 432 sont disposés dans chacun des compartiments réactifs V132 et V134, de part et d’autre de la membrane 130, de manière à éviter les transferts de gaz entre les deux compartiments réactifs V132 et V134. Thus, the sealing frames 432 are preferably adjacent to the membrane 130, and to the wall frame facing the membrane 130, on the side where the operating fluid is hydrogen, to avoid the risk of hydrogen pollution. on the other side of the membrane 130. More preferably, sealing frames 432 are arranged in each of the reactive compartments V132 and V134, on either side of the membrane 130, so as to avoid gas transfers between the two reactive compartments V132 and V134.
De préférence, le cadre d’étanchéité 432 et la couche d’adhésif 240 associée sont fabriquées par enduction d’un matériau adhésif sur une des deux faces du cadre d’étanchéité 432, le cadre d’étanchéité 432 ainsi enduit étant ensuite découpé à la forme voulue, avant d’être assemblé aux autres éléments de la cellule unitaire 100. Preferably, the sealing frame 432 and the associated adhesive layer 240 are manufactured by coating with an adhesive material on one of the two faces of the sealing frame 432, the sealing frame 432 thus coated being then cut to size. the desired shape, before being assembled with the other elements of the unit cell 100.
L’ensemble formé par le cadre d’étanchéité 432 enduit d’une couche d’adhésif 240 associée forme ainsi un cadre dit « cadre adhésif simple face ». Le cadre d’étanchéité 432 forme ainsi une âme continue et étanche de ce cadre adhésif simple-face, cette continuité étant radiale et circonférentielle. Avantageusement, lors de la fabrication de la cellule unitaire 100, une plaque adhésive simple-face est fournie, cette plaque adhésive simple face comprenant une âme continue étanche, ici en PET, enduite sur une de ses deux faces d’un matériau adhésif. Le matériau adhésif est par exemple déposé par enduction sur une des faces de l’âme. Cette plaque adhésive simple face est ensuite découpée à la géométrie voulue, de manière à former, en une seule étape, le cadre d’étanchéité 432 et la couche d’adhésif 240 associée, les deux étant continus tant radialement que circonférentiellement sur toute l’étendue du cadre d’étanchéité 432. The assembly formed by the sealing frame 432 coated with an associated layer of adhesive 240 thus forms a frame called a “single-sided adhesive frame”. The sealing frame 432 thus forms a continuous and waterproof core of this single-sided adhesive frame, this continuity being radial and circumferential. Advantageously, during the manufacture of the unit cell 100, a single-sided adhesive plate is provided, this single-sided adhesive plate comprising a continuous waterproof core, here in PET, coated on one of its two faces with an adhesive material. The adhesive material is for example deposited by coating on one of the faces of the core. This single-sided adhesive plate is then cut to the desired geometry, so as to form, in a single step, the sealing frame 432 and the associated adhesive layer 240, both being continuous both radially and circumferentially over the entire surface. extent of the sealing frame 432.
Une structure d’étanchéité 500, conforme à un autre mode de réalisation, est représentée sur la figure 8. La structure d’étanchéité 500 diffère de la structure d’étanchéité 400 décrite précédemment, en ce que la structure d’étanchéité 500 comprend, pour chaque cadre de transfert 330, deux cadres d’étanchéité 432, qui sont agencés de part et d’autre du cadre de transfert 330. La structure d’étanchéité 500 comprend aussi un deuxième film adhésif 440, qui est intercalé entre le deuxième cadre d’étanchéité 432 et le cadre de compartiment 330. A sealing structure 500, according to another embodiment, is shown in Figure 8. The sealing structure 500 differs from the sealing structure 400 described previously, in that the sealing structure 500 comprises, for each transfer frame 330, two sealing frames 432, which are arranged on either side of the transfer frame 330. The sealing structure 500 also includes a second adhesive film 440, which is interposed between the second sealing frame 432 and the compartment frame 330.
Par rapport aux structures d’étanchéité 300 et 400 décrites précédemment en référence aux figures 6 et 7, dans le cas de la structure d’étanchéité 500 représentée sur la figure 8, les surfaces des films adhésifs 440 orientées vers les passages de fluide 332 sont plus réduites, ce qui réduit les risques de pollution du compartiment V100 et du fluide de fonctionnement circulant dans ce compartiment V100. Le risque d’obstruction des passages de fluide 332 par le fluage des films adhésifs 442 est lui aussi réduit. Compared to the sealing structures 300 and 400 described previously with reference to Figures 6 and 7, in the case of the sealing structure 500 shown in Figure 8, the surfaces of the adhesive films 440 oriented towards the fluid passages 332 are more reduced, which reduces the risk of pollution of the V100 compartment and the operating fluid circulating in this V100 compartment. The risk of obstruction of the fluid passages 332 by the creep of the adhesive films 442 is also reduced.
Le premier cadre d’étanchéité 432 et le deuxième cadre d’étanchéité 432 sont chacun intercalés entre, d’une part, le cadre de transfert 330 et, d’autre part, une des deux couches d’adhésif 240 respective. Le deuxième cadre d’étanchéité 432 est, d’une part, fixé à la paroi 102 et au cadre de paroi 210 correspondants par la couche d’adhésif 240 correspondante et, d’autre part, fixé au cadre de transfert 330 au moyen du deuxième film adhésif 440. Autrement dit, dans ce mode de réalisation de la structure d’étanchéité 500, le cadre de transfert 330, les deux cadres d’étanchéité 432 et les deux films d’adhésif 440 forment ensemble un cadre de compartiment 530 de cette structure d’étanchéité. The first sealing frame 432 and the second sealing frame 432 are each interposed between, on the one hand, the transfer frame 330 and, on the other hand, one of the two respective layers of adhesive 240. The second sealing frame 432 is, on the one hand, fixed to the corresponding wall 102 and wall frame 210 by the corresponding adhesive layer 240 and, on the other hand, fixed to the transfer frame 330 by means of the second adhesive film 440. In other words, in this embodiment of the sealing structure 500, the transfer frame 330, the two sealing frames 432 and the two adhesive films 440 together form a compartment frame 530 of this sealing structure.
Avantageusement, pour chacun des deux cadres d’étanchéité 432, la couche d’adhésif 240 associée est enduite sur le cadre d’étanchéité 432, de manière à former un cadre adhésif simple face. Lors de la fabrication, chaque cadre 432 et la couche d’adhésif 240 associée sont formées au cours des mêmes étapes, par découpage d’une plaque adhésive simple face. Advantageously, for each of the two sealing frames 432, the associated adhesive layer 240 is coated on the sealing frame 432, so as to form a single-sided adhesive frame. During manufacturing, each frame 432 and the associated adhesive layer 240 are formed during the same steps, by cutting a single-sided adhesive plate.
On comprend que pour chaque paroi 102 de la cellule unitaire 100, lorsque les compartiments situés de chaque côté de cette paroi 102 comprennent des cadres de transfert 330 pris entre deux films d’adhésifs 440, il est particulièrement avantageux d’étancher l’interstice I220, à l’aide d’un cadre d’étanchéité 432 et d’une couche d’adhésif 240 associée, au moins sur une des faces 103 de cette paroi 102, car les films d’adhésifs 440 pourraient ne pas suffire pour garantir une étanchéité suffisante. Lorsque la paroi 102 est la membrane 130, la membrane 130 est de préférence étanchée sur chacune de ses deux faces par un cadre d’étanchéité 432 avec la couche d’adhésif 240 associée, de manière à maintenir la membrane 130, qui est ici réalisée en polymère fluoré et qui est plus fragile et plus difficile à coller que les séparateurs 1 10 et 120, qui sont ici réalisés en acier inoxydable. It is understood that for each wall 102 of the unit cell 100, when the compartments located on each side of this wall 102 comprise transfer frames 330 taken between two adhesive films 440, it is particularly advantageous to seal the gap I220 , using a sealing frame 432 and an associated layer of adhesive 240, at least on one of the faces 103 of this wall 102, because the adhesive films 440 could not be sufficient to guarantee a sufficient sealing. When the wall 102 is the membrane 130, the membrane 130 is preferably sealed on each of its two faces by a sealing frame 432 with the associated layer of adhesive 240, so as to maintain the membrane 130, which is here produced made of fluoropolymer and which is more fragile and more difficult to glue than the separators 1 10 and 120, which are here made of stainless steel.
Dans l’exemple de la figure 8, le compartiment V100 considéré est délimité par deux cadres d’étanchéité 432 et par les couches d’adhésifs 240 associées, améliorant encore plus l’étanchéité de ce cadre V100. En particulier, le compartiment V100 où le fluide de fonctionnement est de l’hydrogène est de préférence délimité par une telle structure d’étanchéité comprenant deux cadres d’étanchéité 432 de part et d’autre du cadre de compartiment 330. In the example of Figure 8, the compartment V100 considered is delimited by two sealing frames 432 and by the associated adhesive layers 240, further improving the sealing of this V100 frame. In particular, compartment V100 where the operating fluid is hydrogen is preferably delimited by such a structure sealing frame comprising two sealing frames 432 on either side of the compartment frame 330.
De préférence encore, tous les compartiments V100 où circulent des gaz, soit ici le premier compartiment réactif V132 et le deuxième compartiment réactif V134, sont chacun délimités par deux cadres d’étanchéité 432 de part et d’autre d’un cadre de compartiment 330 associé à ce compartiment réactif. More preferably, all the compartments V100 where gases circulate, here the first reactive compartment V132 and the second reactive compartment V134, are each delimited by two sealing frames 432 on either side of a compartment frame 330 associated with this reactive compartment.
La figure 9 illustre, pour un compartiment V100 considéré, respectivement, sur les inserts a) et b), deux structures d’étanchéité 500' et 500" alternatives de la structure d’étanchéité 500 représentée sur la figure 8. Figure 9 illustrates, for a V100 compartment considered, respectively, on inserts a) and b), two alternative sealing structures 500' and 500" of the sealing structure 500 shown in Figure 8.
Par rapport à la structure d’étanchéité 500 représentée à la figure 8, dans le cas de la structure d’étanchéité 500' représentée à la figures 9 a), un des cadre d’étanchéité 432 et la couche d’adhésif 240 associée à ce cadre d’étanchéité 432 sont agencés de l’autre côté d’une des paroi 102 délimitant le compartiment V100, ici de l’autre côté de la paroi 102 située sur le bas de la figure 9 a), ce cadre d’étanchéité 432 appartenant donc, dans un empilement, au cadre de compartiment du compartiment voisin du compartiment V100 considéré, situé de l’autre côté de la paroi 102 située sur le bas de la figure 9 a). La couche d’adhésif 240 associée à cette paroi 102 est donc intercalée, de l’autre côté de la paroi 102 par rapport au compartiment V100 considéré, entre le cadre d’étanchéité 432 et la paroi 102, de manière à obturer l’interstice I220. L’interstice I220 n’est pas représenté sur la figure 9. Compared to the sealing structure 500 shown in Figure 8, in the case of the sealing structure 500 'shown in Figures 9 a), one of the sealing frame 432 and the adhesive layer 240 associated with this sealing frame 432 are arranged on the other side of one of the walls 102 delimiting the compartment V100, here on the other side of the wall 102 located on the bottom of Figure 9 a), this sealing frame 432 therefore belonging, in a stack, to the compartment frame of the neighboring compartment of the compartment V100 considered, located on the other side of the wall 102 located at the bottom of Figure 9 a). The layer of adhesive 240 associated with this wall 102 is therefore interposed, on the other side of the wall 102 with respect to the compartment V100 considered, between the sealing frame 432 and the wall 102, so as to close the gap I220. The gap I220 is not shown in Figure 9.
Par rapport à la structure d’étanchéité 500 représentée à la figure 8, dans le cas de la structure d’étanchéité 500" représentée à la figure 9 b), les deux cadres d’étanchéité 432 et les couches d’adhésif 240 associées à chacun de ces cadres d’étanchéité 432 sont agencés de l’autre côté des deux paroi 102 délimitant le compartiment V100. Autrement dit, le cadre de transfert 330 associé au compartiment V100 de la figure 9 b) est intercalé entre les deux cadres de parois 220 qui l’encadrent immédiatement dans la direction d’empilement A50, sans interposition d’aucun cadre d’étanchéité entre ce cadre de transfert 330 et ces deux cadres de parois 220. En revanche, de tels cadres d’étanchéité 432 sont prévus immédiatement au contact de chacun de ces deux cadres de parois 220 avec, pour chaque cadre de paroi seulement interposition d’une couche d’adhésif 240 entre le cadre d’étanchéité 432 et le cadre de paroi. Dans un empilement, ces deux cadres d’étanchéité 432 appartiennent donc chacun respectivement à l’un des deux cadres de compartiment des deux compartiments voisins du compartiment V100 considéré, situés respectivement de l’autre côté de la paroi 102 située sur le bas de la figure 9 b) et de l’autre côté de la paroi 102 située vers le haut de la figure 9 b). Dans tous les cas dans lesquels le cadre de compartiment comprend un cadre d’étanchéité 432, et notamment dans tous les cas où ce cadre d’étanchéité 432 est intercalé entre un cadre de transfert 330, appartenant au même cadre de compartiment, et un cadre de paroi 220, la couche d’adhésif 240, qui est donc interposée entre, d’une part, le cadre d’étanchéité, et, d’autre part, la paroi 102 et le cadre de paroi 220 associé à cette paroi, inclut nécessairement une première portion de couche, qui s’étend face au premier recouvrement entre le cadre de compartiment (ici le cadre d’étanchéité faisant partie de ce cadre de compartiment) et la paroi, de manière à fixer, de manière étanche, le cadre de compartiment à la paroi. Cette première portion de couche 241 est donc dans ces cas face au et au contact du cadre d’étanchéité 432 et de la paroi. Cette même couche d’adhésif 240 inclut la deuxième portion de couche 242, qui s’étend face au deuxième recouvrement entre le cadre de compartiment (ici encore le cadre d’étanchéité faisant partie de ce cadre de compartiment) et le cadre de paroi, de manière à fixer, de manière étanche, le cadre de compartiment au cadre de paroi. Cette deuxième portion de couche 242 est donc dans ces cas face au et au contact du cadre d’étanchéité 432 et du cadre de paroi 220. Bien entendu, la première portion de couche 241 d’adhésif et la deuxième portion de couche 242 d’adhésif font de préférence partie d’une même couche d’adhésif 240, comme dans les illustrations, qui s’étend de manière continue sur une face du cadre de compartiment, en l’occurrence une face du cadre d’étanchéité 432, les deux première et deuxième portions de couche d’adhésif 241 et 242 étant donc continues tant radialement que circonférentiellement sur toute l’étendue du cadre d’étanchéité 432, de manière à obturer l’interstice périphérique I220 en regard du cadre de compartiment 220. Compared to the sealing structure 500 shown in Figure 8, in the case of the sealing structure 500" shown in Figure 9 b), the two sealing frames 432 and the layers of adhesive 240 associated with each of these sealing frames 432 are arranged on the other side of the two walls 102 delimiting the compartment V100 In other words, the transfer frame 330 associated with the compartment V100 of Figure 9 b) is inserted between the two wall frames. 220 which immediately frame it in the stacking direction A50, without the interposition of any sealing frame between this transfer frame 330 and these two wall frames 220. On the other hand, such sealing frames 432 are provided immediately in contact with each of these two wall frames 220 with, for each wall frame only interposition of a layer of adhesive 240 between the sealing frame 432 and the wall frame. sealing 432 therefore each belong respectively to one of the two compartment frames of the two neighboring compartments of the compartment V100 considered, located respectively on the other side of the wall 102 located on the bottom of Figure 9 b) and on the other side of the wall 102 located towards the top of Figure 9 b). In all cases in which the compartment frame comprises a sealing frame 432, and in particular in all cases where this sealing frame 432 is inserted between a transfer frame 330, belonging to the same compartment frame, and a frame wall 220, the adhesive layer 240, which is therefore interposed between, on the one hand, the sealing frame, and, on the other hand, the wall 102 and the wall frame 220 associated with this wall, includes necessarily a first portion of layer, which extends facing the first covering between the compartment frame (here the sealing frame forming part of this compartment frame) and the wall, so as to fix, in a watertight manner, the frame compartment to the wall. This first portion of layer 241 is therefore in these cases facing and in contact with the sealing frame 432 and the wall. This same layer of adhesive 240 includes the second portion of layer 242, which extends facing the second covering between the compartment frame (here again the sealing frame forming part of this compartment frame) and the wall frame, so as to securely fix the compartment frame to the wall frame. This second portion of layer 242 is therefore in these cases facing and in contact with the sealing frame 432 and the wall frame 220. Of course, the first portion of layer 241 of adhesive and the second portion of layer 242 of adhesive are preferably part of the same layer of adhesive 240, as in the illustrations, which extends continuously over one face of the compartment frame, in this case one face of the sealing frame 432, both first and second portions of adhesive layer 241 and 242 therefore being continuous both radially and circumferentially over the entire extent of the sealing frame 432, so as to close the peripheral gap I220 facing the compartment frame 220.
Les structures d’étanchéité 500, 500' et 500" représentées aux figures 8 et 9 peuvent ainsi être choisies, selon les besoins, pour chacun des compartiments V100 d’une cellule unitaire 100, et par extension pour l’empilement 50. The sealing structures 500, 500' and 500" shown in Figures 8 and 9 can thus be chosen, according to needs, for each of the compartments V100 of a unit cell 100, and by extension for the stack 50.
De manière générale, les épaisseurs de chaque élément des structures d’étanchéité 200, 300, 400 ou 500, à savoir les épaisseurs des cadres de paroi 220, des cadres de compartiment 220, des cadres de transfert 330, des cadres d’étanchéité 432, ainsi que les épaisseurs des couches d’adhésif 240 ou des films d’adhésif 440, sont ajustées en fonction de la structure de chaque cellule unitaire 100, en particulier en fonction de la nature de chaque paroi 102 et des divers éléments reçus dans chacun des compartiments V100 de la cellule unitaire 100. Generally speaking, the thicknesses of each element of the sealing structures 200, 300, 400 or 500, namely the thicknesses of the wall frames 220, the compartment frames 220, the transfer frames 330, the sealing frames 432 , as well as the thicknesses of the adhesive layers 240 or the adhesive films 440, are adjusted according to the structure of each unit cell 100, in particular according to the nature of each wall 102 and the various elements received in each compartments V100 of unit cell 100.
Ainsi, chaque cadre d’étanchéité 432 est réalisé en un matériau polymère, par exemple en PET, et présente une épaisseur, mesurée parallèlement à l’axe d’empilement A50, comprise entre 10 pm et 20 pm, de préférence égale à 12 pm. Le film adhésif 440 intercalé entre chaque cadre d’étanchéité 432 et le cadre de transfert 330 correspondant présente une épaisseur, mesurée parallèlement à l’axe d’empilement A50, comprise entre 6 pm et 30 pm, de préférence comprise entre 8 pm et 20 pm, de préférence comprise entre 10 pm et 15 pm. Thus, each sealing frame 432 is made of a polymer material, for example PET, and has a thickness, measured parallel to the stacking axis A50, of between 10 pm and 20 pm, preferably equal to 12 pm . The adhesive film 440 interposed between each sealing frame 432 and the corresponding transfer frame 330 has a thickness, measured parallel to the stacking axis A50, of between 6 pm and 30 pm, preferably between 8 pm and 20 pm. pm, preferably between 10 pm and 15 pm.
Chaque cadre de transfert 330 est réalisé en un matériau polymère, par exemple en PET, et présente une épaisseur, mesurée parallèlement à l’axe d’empilement A50, comprise entre 50 pm et 600 pm, de préférence comprise entre 80 pm et 150 pm, de préférence encore égale à 100 pm. Each transfer frame 330 is made of a polymer material, for example PET, and has a thickness, measured parallel to the stacking axis A50, of between 50 pm and 600 pm, preferably between 80 pm and 150 pm , preferably still equal to 100 pm.
Pour chaque couche d’adhésif 240, la première portion de couche et la deuxième portion de couche présentent chacune une épaisseur, mesurée parallèlement à l’axe d’empilement, comprise entre 15 pm et 30 pm, de préférence comprise entre 18 pm et 25 pm, de préférence égale à 20 pm. De préférence, l’épaisseur est identique pour la première portion de couche et la deuxième portion de couche. For each layer of adhesive 240, the first layer portion and the second layer portion each have a thickness, measured parallel to the stacking axis, of between 15 pm and 30 pm, preferably between 18 pm and 25 pm. pm, preferably equal to 20 pm. Preferably, the thickness is identical for the first layer portion and the second layer portion.
La cellule unitaire 100 est représentée schématiquement en coupe sur la figure 10. Comme indiqué en pointillé, cette cellule unitaire est répétée dans l’empilement. The unit cell 100 is shown schematically in section in Figure 10. As indicated in dotted lines, this unit cell is repeated in the stack.
Le premier compartiment réactif V132 loge ici un exemplaire de l’entretoise 700 du deuxième type. En périphérie du premier compartiment réactif V132, les cadres 210 qui forment le cadre de compartiment correspondant à ce compartiment comprennent un cadre de transfert 330, qui ménage les deux passages 332 associés au premier compartiment réactif V132, et deux cadres d’étanchéité 432, un de chaque côté du cadre de transfert 330, qui sont chacun fixés au cadre de transfert 330 par un film d’adhésif 440 respectif. The first reactive compartment V132 here houses a copy of the 700 spacer of the second type. On the periphery of the first reactive compartment V132, the frames 210 which form the compartment frame corresponding to this compartment comprise a transfer frame 330, which provides the two passages 332 associated with the first reactive compartment V132, and two sealing frames 432, one on each side of the transfer frame 330, which are each attached to the transfer frame 330 by a respective adhesive film 440.
Le deuxième compartiment réactif V134 loge ici un exemplaire de l’entretoise 600 du premier type. En périphérie du deuxième compartiment réactif V134, les cadres 210 qui forment le cadre de compartiment correspondant à ce compartiment réactif V134 comprennent un cadre de transfert 330, qui ménage les deux passages 332 associés au deuxième compartiment réactif V132, et deux cadres d’étanchéité 432, un de chaque côté du cadre de transfert 330, qui sont chacun fixés au cadre de transfert 330 par un film d’adhésif 440 respectif. The second reactive compartment V134 here houses a copy of the 600 spacer of the first type. On the periphery of the second reactive compartment V134, the frames 210 which form the compartment frame corresponding to this reactive compartment V134 comprise a transfer frame 330, which provides the two passages 332 associated with the second reactive compartment V132, and two sealing frames 432 , one on each side of the transfer frame 330, which are each attached to the transfer frame 330 by a respective adhesive film 440.
Le compartiment de refroidissement V136 loge ici un deuxième exemplaire de l’entretoise 700 du deuxième type. En périphérie du compartiment de refroidissement V136, les cadres 210 qui forment le cadre de compartiment correspondant à ce compartiment comprennent uniquement un cadre de transfert 330, qui ménage les deux passages 332 associés au compartiment de refroidissement réactif V132. The V136 cooling compartment here accommodates a second copy of the 700 spacer of the second type. On the periphery of the cooling compartment V136, the frames 210 which form the compartment frame corresponding to this compartment only include a transfer frame 330, which provides the two passages 332 associated with the reactive cooling compartment V132.
On note cependant qu’une structure de d’étanchéité donnée peut être mise en œuvre quel que soit le type de l’entretoise contenue dans un compartiment donné. Sur la figure 10, les passages 332 sont représentés schématiquement par des flèches en pointillés. En particulier, les passages 332 pour chacun des compartiments V132, V134 et V136 sont représentés comme s’ils étaient alignés selon l’axe d’empilement A50, cette illustration étant schématique. Comme on le voit sur la figure 4, l’emplacement et l’étendue selon la direction circonférentielle des passages 332 sont ajustés en fonction du type et de l’orientation des entretoises d’irrigations 600 ou 700. De préférence, comme illustré sur la figure 4, les passages 332 pour chacun des compartiments V132, V134 et V136 d’une même cellule unitaire 100 sont décalés les uns des autres sur le périmètre de la cellule, de préférence en étant sensiblement diamétralement opposés l’un par rapport à l’autre. En revanche, les passages 332 de chacun des premiers compartiments réactifs V132 de l’ensemble des cellules unitaire 100 de l’empilement sont de préférence alignés selon l’axe d’empilement A50. De même, les passages 332 de chacun des deuxième compartiments réactifs V134 de l’ensemble des cellules unitaire 100 de l’empilement sont de préférence alignés selon l’axe d’empilement A50, et les passages 332 de chacun des compartiments de refroidissement V136 de l’ensemble des cellules unitaire 100 de l’empilement sont de préférence alignés selon l’axe d’empilement A50. Note, however, that a given sealing structure can be implemented regardless of the type of spacer contained in a given compartment. In Figure 10, the passages 332 are represented schematically by dotted arrows. In particular, the passages 332 for each of the compartments V132, V134 and V136 are represented as if they were aligned along the stacking axis A50, this illustration being schematic. As seen in Figure 4, the location and extent in the circumferential direction of the passages 332 are adjusted depending on the type and orientation of the irrigation spacers 600 or 700. Preferably, as illustrated in Figure Figure 4, the passages 332 for each of the compartments V132, V134 and V136 of the same unit cell 100 are offset from each other on the perimeter of the cell, preferably being substantially diametrically opposed to each other relative to the other. On the other hand, the passages 332 of each of the first reactive compartments V132 of all the unit cells 100 of the stack are preferably aligned along the stack axis A50. Likewise, the passages 332 of each of the second reactive compartments V134 of all the unit cells 100 of the stack are preferably aligned along the stacking axis A50, and the passages 332 of each of the cooling compartments V136 of all of the unit cells 100 of the stack are preferably aligned along the stack axis A50.
Dans l’exemple de la figure 10, le premier compartiment réactif V132 et le deuxième compartiment réactif V134 sont chacun délimités par un cadre de compartiment comprenant deux cadres d’étanchéité 432 respectifs, agencés de part et d’autre d’un cadre de transfert 300, chaque cadre d’étanchéité 432 étant adjacent à une 102 paroi respective. Ainsi l’interstice périphérique I220 associé à la paroi 102 séparant les deux compartiments réactifs V132 et V134, autrement dit l’interstice I220 associé à la membrane 130, est obturé, sur les deux faces de la membrane 130, par un cadre d’étanchéité 432 respectif. Pour chaque cadre de compartiment du premier compartiment réactif V132 et du deuxième compartiment réactif V134, chaque cadre d’étanchéité 432 est fixé au cadre de transfert par un film d’adhésif 440. Le cadre de compartiment ainsi formé est associé à deux couches d’adhésif 240 agencées de part et d’autre du cadre de compartiment selon l’axe d’empilement A50. Chacune de ces deux couches d’adhésif 240 est donc interposée entre, d’une part, un cadre d’étanchéité 432, et, d’autre part, la paroi 102 et le cadre de paroi 220 associé à cette paroi. In the example of Figure 10, the first reactive compartment V132 and the second reactive compartment V134 are each delimited by a compartment frame comprising two respective sealing frames 432, arranged on either side of a transfer frame 300, each sealing frame 432 being adjacent to a respective wall 102. Thus the peripheral gap I220 associated with the wall 102 separating the two reactive compartments V132 and V134, in other words the gap I220 associated with the membrane 130, is closed, on both faces of the membrane 130, by a sealing frame 432 respectively. For each compartment frame of the first reactive compartment V132 and the second reactive compartment V134, each sealing frame 432 is fixed to the transfer frame by an adhesive film 440. The compartment frame thus formed is associated with two layers of adhesive 240 arranged on either side of the compartment frame along the stacking axis A50. Each of these two layers of adhesive 240 is therefore interposed between, on the one hand, a sealing frame 432, and, on the other hand, the wall 102 and the wall frame 220 associated with this wall.
Dans l’exemple de la figure 10, le compartiment de refroidissement V136 est délimité par un cadre de compartiment comprenant seulement un cadre de transfert 330, sans cadre d’étanchéité 432. Ainsi, l’interstice périphérique I220 associé au premier séparateur 110 n’est obturé par un cadre d’étanchéité 432 que d’un seul côté du premier séparateur 110, et ce cadre d’étanchéité 432 apparentant au cadre de compartiment du compartiment voisin, à savoir ici au premier compartiment réactif V132. De même, par l’effet de motif dû à l’empilement de cellules identiques, l’interstice périphérique I220 associé au deuxième séparateur 120 n’est obturé par un cadre d’étanchéité 432 que d’un seul côté du premier séparateur 110, ce cadre d’étanchéité 432 apparentant au cadre de compartiment du premier compartiment réactif V132. Bien entendu, pour sécuriser l’étanchéité, on aurait pu prévoir, pour le compartiment de refroidissement V136, un cadre de compartiment comprenant un cadre d’étanchéité d’un seul côté du cadre de transfert 330, ou comprenant deux cadres d’étanchéité, de chaque côté, du cadre de transfert 330. In the example of Figure 10, the cooling compartment V136 is delimited by a compartment frame comprising only a transfer frame 330, without sealing frame 432. Thus, the peripheral gap I220 associated with the first separator 110 does not is closed by a sealing frame 432 on only one side of the first separator 110, and this sealing frame 432 is similar to the compartment frame of the neighboring compartment, namely here to the first reactive compartment V132. Likewise, by the effect pattern due to the stacking of identical cells, the peripheral gap I220 associated with the second separator 120 is only closed by a sealing frame 432 on one side of the first separator 110, this sealing frame 432 appearing to the compartment frame of the first reactive compartment V132. Of course, to secure the seal, one could have provided, for the cooling compartment V136, a compartment frame comprising a sealing frame on only one side of the transfer frame 330, or comprising two sealing frames, on each side of the transfer frame 330.
Une cellule unitaire 200 conforme à un mode de réalisation alternatif est représentée sur la figure 1 1. La cellule unitaire 200 comprend le premier compartiment réactif V132 et le deuxième compartiment réactif V134, mais ne comprend pas de compartiment de refroidissement. Le refroidissement de la cellule unitaire 200 est ici assuré par le passage de l’air, qui circule ici dans le deuxième compartiment réactif V134. A unit cell 200 according to an alternative embodiment is shown in Figure 11. The unit cell 200 includes the first reactive compartment V132 and the second reactive compartment V134, but does not include a cooling compartment. The cooling of the unit cell 200 is here ensured by the passage of air, which circulates here in the second reactive compartment V134.
À la différence de la cellule unitaire 100 du mode de réalisation précédent, le deuxième compartiment réactif V134 est ici délimité par un cadre de compartiment comprenant un seul cadre d’étanchéité 432. Dans l’exemple de la figure 11 , l’interstice périphérique I220 associé à la membrane 130 est obturé d’un seul côté par un cadre d’étanchéité 432. Pour compenser l’absence du cadre d’étanchéité sans que ne soit diminuée la hauteur du compartiment, le cadre de transfert 330 reçu dans le deuxième compartiment réactif présente ici une épaisseur supérieure au cadre de transfert 330 du mode de réalisation précédent, de sorte que le passage de fluide 332 autorise un débit supérieur du fluide de fonctionnement associé - ici l’air -, qui sert à la fois à la réaction électrochimique de la pile à combustible et au refroidissement de la pile. Unlike the unit cell 100 of the previous embodiment, the second reactive compartment V134 is here delimited by a compartment frame comprising a single sealing frame 432. In the example of the figure 11, the peripheral gap I220 associated with the membrane 130 is closed on one side only by a sealing frame 432. To compensate for the absence of the sealing frame without reducing the height of the compartment, the transfer frame 330 received in the second compartment reagent here has a thickness greater than the transfer frame 330 of the previous embodiment, so that the fluid passage 332 allows a greater flow rate of the associated operating fluid - here air -, which is used both for the electrochemical reaction of the fuel cell and the cooling of the cell.
Quel que soit le nombre de compartiments V100 de la cellule unitaire 100, avec ou sans compartiment de refroidissement V136, pour chaque compartiment V100, et pour chacune des parois 102 délimitant ce compartiment V100, l’interstice périphérique I220 associé à cette paroi 102 est obturé, sur au moins une des faces de cette paroi 102, par un cadre d’étanchéité 432, qui est fixé à cette paroi par la couche d’adhésif 240 associée. Dit autrement, l’interstice périphérique I220 associé à cette paroi 102 est obturé, sur au moins une des faces de cette paroi, par un cadre continu sur toute la circonférence de cet interstice I220. Whatever the number of compartments V100 of the unit cell 100, with or without cooling compartment V136, for each compartment V100, and for each of the walls 102 delimiting this compartment V100, the peripheral gap I220 associated with this wall 102 is closed , on at least one of the faces of this wall 102, by a sealing frame 432, which is fixed to this wall by the associated adhesive layer 240. In other words, the peripheral gap I220 associated with this wall 102 is closed, on at least one of the faces of this wall, by a continuous frame over the entire circumference of this gap I220.
De préférence, le compartiment réactif où circule l’hydrogène, ici le premier compartiment V132, est délimité par un cadre de compartiment comprenant deux cadres d’étanchéité 432 agencés de part et d’autre d’un cadre de transfert 330 selon l’axe d’empilement A50, chacun de ces cadres d’étanchéité 432 obturant un interstice périphérique I220 associé aux deux parois 201 délimitant ce compartiment réactif. Chaque cadre d’étanchéité est fixé au cadre de transfert par un film d’adhésif 440. Le cadre de compartiment ainsi formé est associé à deux couches d’adhésif 240 agencées de part et d’autre du cadre de compartiment selon l’axe d’empilement A50. Chacune de ces deux couches d’adhésif 240 est donc interposée entre, d’une part, un cadre d’étanchéité 432, et, d’autre part, la paroi 102 et le cadre de paroi 220 associé à cette paroi. Preferably, the reactive compartment where the hydrogen circulates, here the first compartment V132, is delimited by a compartment frame comprising two sealing frames 432 arranged on either side of a transfer frame 330 along the axis stack A50, each of these sealing frames 432 closing a peripheral gap I220 associated with the two walls 201 delimiting this reactive compartment. Each sealing frame is attached to the transfer frame by a film of 440 adhesive. The sealing frame compartment thus formed is associated with two layers of adhesive 240 arranged on either side of the compartment frame along the stacking axis A50. Each of these two layers of adhesive 240 is therefore interposed between, on the one hand, a sealing frame 432, and, on the other hand, the wall 102 and the wall frame 220 associated with this wall.
De préférence, chaque cadre d’étanchéité 432 et la couche d’adhésif 240 associée sont réalisés par découpage d’une plaque adhésive simple face. Preferably, each sealing frame 432 and the associated adhesive layer 240 are produced by cutting a single-sided adhesive plate.
De préférence, chaque cadre de transfert 330 et les deux films adhésifs 440 associés sont réalisés par découpage d’une plaque adhésive double face. Preferably, each transfer frame 330 and the two associated adhesive films 440 are made by cutting a double-sided adhesive plate.
On décrit à présent l’entretoise d’irrigation 600 du premier type à l’aide des figures 12 et 13. We now describe the irrigation spacer 600 of the first type using Figures 12 and 13.
L’entretoise d’irrigation 600, dite aussi simplement « entretoise 600 », présente une forme globalement rectangulaire, avec deux grands côtés opposés et deux petits côtés opposés, et plane, qui s’étend orthogonalement à un axe de hauteur A600. Lorsque l’entretoise 600 est reçue dans le compartiment V100 correspondant, l’axe de hauteur A600 est parallèle à l’axe d’empilement A50. Les grands côtés s’étendent parallèlement à un axe longitudinal X600 de l’entretoise 600, tandis que les petits côtés s’étendent parallèlement à un axe transversal Y600 de l’entretoise 600. L’axe longitudinal X600, l’axe transversal Y600 et l’axe de hauteur A600 forment ensemble un repère orthogonal. The irrigation spacer 600, also simply called “spacer 600”, has a generally rectangular shape, with two large opposite sides and two small opposite sides, and is flat, which extends orthogonally to an axis of height A600. When the spacer 600 is received in the corresponding compartment V100, the height axis A600 is parallel to the stacking axis A50. The long sides extend parallel to a longitudinal axis X600 of the spacer 600, while the short sides extend parallel to a transverse axis Y600 of the spacer 600. The longitudinal axis the height axis A600 together form an orthogonal reference mark.
L’entretoise 600 comprend deux plaques de distribution 602, incluant une première plaque 602A et une deuxième plaque 602B. Les plaques de distribution 602 comprennent chacune deux faces opposées, incluant une première face 604 et une deuxième face 605. The spacer 600 includes two distribution plates 602, including a first plate 602A and a second plate 602B. The distribution plates 602 each comprise two opposite faces, including a first face 604 and a second face 605.
Les deux plaques 602 sont empilées à plat l’une sur l’autre selon l’axe de hauteur A600, qui est orthogonal à un plan moyen P600 de l’entretoise d’irrigation 600. Lorsque l’entretoise 600 est reçue dans le compartiment V100, le plan moyen P600 de l’entretoise d’irrigation 600 est donc orthogonal à l’axe d’empilement A50, ou encore parallèle au plan moyen P50 de la cellule unitaire 100 correspondante. The two plates 602 are stacked flat on top of each other along the height axis A600, which is orthogonal to a mean plane P600 of the irrigation spacer 600. When the spacer 600 is received in the compartment V100, the average plane P600 of the irrigation spacer 600 is therefore orthogonal to the stacking axis A50, or even parallel to the average plane P50 of the corresponding unit cell 100.
Chaque plaque de distribution 602 est fabriquée par découpage dans une tôle métallique et présente une épaisseur comprise entre 30 pm et 300 pm, de préférence comprise entre 50 pm et 100 pm, de préférence encore égale, à ±5%, à 75 pm. De préférence, les plaques de distribution 602 présentent la même épaisseur. Each distribution plate 602 is manufactured by cutting from a metal sheet and has a thickness of between 30 pm and 300 pm, preferably between 50 pm and 100 pm, more preferably equal, to ±5%, to 75 pm. Preferably, the distribution plates 602 have the same thickness.
Chaque plaque de distribution 602 comprend des perforations 610, qui sont formées par découpage de cette plaque de distribution 602. Les perforations 610 sont traversantes, c’est-à-dire que les perforations 610 débouchent sur les deux faces opposées 604 et 605 de cette plaque de distribution 602. Each distribution plate 602 comprises perforations 610, which are formed by cutting this distribution plate 602. The perforations 610 are through, that is to say that the perforations 610 open onto the two opposite faces 604 and 605 of this distribution plate 602.
Les perforations 602 sont agencées de manière à former un réseau 612 de canaux lorsque les deux plaques 602 sont empilées, le réseau 612 de canaux étant configuré pour former un champ d’écoulement d’un fluide de fonctionnement circulant dans le compartiment V100 où l’entretoise d’irrigation 600 est logée. The perforations 602 are arranged so as to form a network 612 of channels when the two plates 602 are stacked, the network 612 of channels being configured to form a flow field of an operating fluid circulating in the compartment V100 where the irrigation spacer 600 is housed.
L’entretoise d’irrigation 600 comprend une entrée 613A de fluide et une sortie 613B de fluide, l’entrée 613A et la sortie 613B étant fluidiquement reliées l’une à l’autre par le réseau de canaux 612. Les notions d’« entrée » et de « sortie » sont relatives, et dépendent du sens de circulation du fluide d’écoulement. Dans l’exemple illustré, l’entrée 613A et la sortie 613B sont respectivement ménagés sur les petits côtés de l’entretoise 600. The irrigation spacer 600 comprises a fluid inlet 613A and a fluid outlet 613B, the inlet 613A and the outlet 613B being fluidly connected to each other by the network of channels 612. The notions of " entry” and “outlet” are relative, and depend on the direction of circulation of the flowing fluid. In the example illustrated, the inlet 613A and the outlet 613B are respectively provided on the short sides of the spacer 600.
Les perforations 610 de chaque plaque de distribution 602 présentent une forme allongée, deux perforations voisines 610 s’étendant le long l’une de l’autre et étant séparées l’une de l’autre par une bande 614 de matière. Chaque perforation 610 est délimitée par deux bords longitudinaux 616 opposés, chacun des deux bords longitudinaux 616 correspondant l'un de bord des deux bandes 614 de matière qui délimitent chaque perforation 610. The perforations 610 of each distribution plate 602 have an elongated shape, two neighboring perforations 610 extending along one another and being separated from one another by a strip 614 of material. Each perforation 610 is delimited by two opposite longitudinal edges 616, each of the two longitudinal edges 616 corresponding to one of the edges of the two strips 614 of material which delimit each perforation 610.
Chaque plaque de distribution 602 comprend aussi des traverses 618, qui s’étendent à travers les perforations 610, dans l’épaisseur de la plaque de distribution 602, et qui maintiennent les bandes 614 à distance les unes des autres. Chaque traverse 618 relie ainsi l’un à l’autre les deux bords longitudinaux 616 de la perforation 610 à travers de laquelle s’étend cette traverse 618. Each distribution plate 602 also includes crosspieces 618, which extend through the perforations 610, in the thickness of the distribution plate 602, and which maintain the strips 614 at a distance from each other. Each crosspiece 618 thus connects the two longitudinal edges 616 of the perforation 610 to each other through which this crosspiece 618 extends.
Chaque bande 614 de la première plaque 602A est superposée, selon l’axe de hauteur A600, avec une bande 614 respective de deuxième plaque 602B, délimitant une première portion 620 du réseau 612 de canaux. Dit autrement, dans la première portion 620 du réseau 612 de canaux, chaque perforation 610 de la première plaque 602A est alignée, selon l’axe de hauteur A600, avec une perforation 610 respective de la deuxième plaque 602B, de manière à former chaque canal du réseau 612. L’entretoise d’irrigation 600 ne comprend ici qu’une seule portion 620, autrement dit la première portion 620 représente l’entièreté du réseau 612 de canaux. La première portion 620 du réseau 612 est représentée par un cadre en pointillés. Each strip 614 of the first plate 602A is superimposed, along the height axis A600, with a respective strip 614 of second plate 602B, delimiting a first portion 620 of the network 612 of channels. In other words, in the first portion 620 of the network 612 of channels, each perforation 610 of the first plate 602A is aligned, along the height axis A600, with a respective perforation 610 of the second plate 602B, so as to form each channel of the network 612. The irrigation spacer 600 here only includes a single portion 620, in other words the first portion 620 represents the entire network 612 of channels. The first portion 620 of the network 612 is represented by a dotted box.
À la première portion 620 du réseau 612 de canaux correspond, sur chacune des plaques de distribution 602, une première portion 621 de ces plaques de distribution 602. Pour chaque plaque 602 de distribution de l’entretoise d’irrigation 600 du premier type, la première portion 621 de cette plaque 602 représente donc l’entièreté de cette plaque. To the first portion 620 of the network 612 of channels corresponds, on each of the distribution plates 602, a first portion 621 of these distribution plates 602. For each distribution plate 602 of the irrigation spacer 600 of the first type, the first portion 621 of this plate 602 therefore represents the entirety of this plate.
Les traverses 618 de la première plaque 602A sont décalées, dans le plan moyen P600 de l’entretoise 600, par rapport aux traverses 618 de la deuxième plaque 602B, de manière à ne pas empêcher la circulation des fluides de fonctionnement dans les canaux de la première portion 620 du réseau 612 de canaux de l’entretoise d’irrigation 600. Sur l’insert c) de la figure 13, un détail de l’entretoise 600 est représenté pris en sandwich entre deux éléments de la cellule 100, à savoir entre la membrane 130 et le deuxième séparateur 120. La circulation du fluide de fonctionnement est représentée par une flèche F612. On comprend que le fluide circulant dans chaque canal du réseau 612 s’écoule le long de chaque canal tout en contournant les traverses 618, qui sont décalées les unes des autres selon la direction du canal, deux traverses 618 de l’entretoise 600, qui s’étendent à travers un canal donné et qui n’appartiennent pas à une même plaque de distribution 602, étant donc décalées l’une de l’autre selon la direction du canal. The crosspieces 618 of the first plate 602A are offset, in the mean plane P600 of the spacer 600, relative to the crosspieces 618 of the second plate 602B, so as not to prevent the circulation of operating fluids in the channels of the first portion 620 of the network 612 of channels of the irrigation spacer 600. On insert c) of Figure 13, a detail of the spacer 600 is shown sandwiched between two elements of the cell 100, namely between the membrane 130 and the second separator 120. The circulation of the operating fluid is represented by an arrow F612. It is understood that the fluid circulating in each channel of the network 612 flows along each channel while bypassing the crosspieces 618, which are offset from each other according to the direction of the channel, two crosspieces 618 of the spacer 600, which extend through a given channel and which do not belong to the same distribution plate 602, being therefore offset from one another in the direction of the channel.
Dans la première portion 620 du réseau de canaux, les bandes 614 de chaque plaque de distribution 602 sont de préférence parallèles les unes aux autres. En résultat, les perforations 610, et donc les canaux du réseau 612, sont aussi parallèles les uns aux autres, de manière à réduire les pertes de charge du fluide de fonctionnement circulant dans l’entretoise 600. In the first portion 620 of the channel network, the strips 614 of each distribution plate 602 are preferably parallel to each other. As a result, the perforations 610, and therefore the channels of the network 612, are also parallel to each other, so as to reduce the pressure losses of the operating fluid circulating in the spacer 600.
Avantageusement, pour chacune des plaques de distribution 602 pour l’entretoise d’irrigation 600 d’un compartiment donné, chaque bande 614 de matière s’étend de manière continue de l’entrée 613A de fluide jusqu’à la sortie 613B de fluide de l’entretoise 600, de sorte que chaque canal du réseau 612 s’étend de manière continue de l’entrée 613A jusqu’à la sortie 613B. Autrement dit, il n’y a pas de bifurcation ou de jonction des perforations 610, de manière à réduire les pertes de charge du fluide de fonctionnement circulant dans l’entretoise 600. Advantageously, for each of the distribution plates 602 for the irrigation spacer 600 of a given compartment, each strip 614 of material extends continuously from the fluid inlet 613A to the fluid outlet 613B. the spacer 600, so that each channel of the network 612 extends continuously from the input 613A to the output 613B. In other words, there is no bifurcation or junction of the perforations 610, so as to reduce the pressure losses of the operating fluid circulating in the spacer 600.
De préférence, dans la première portion 620 du réseau 612 de canaux, les bandes 614 de l’entretoise d’irrigation 600 sont rectilignes en projection orthogonale sur le plan moyen P600 de l’entretoise 600. Ainsi les canaux de la première portion du réseau de canaux sont rectilignes. Preferably, in the first portion 620 of the network 612 of channels, the strips 614 of the irrigation spacer 600 are rectilinear in orthogonal projection on the mean plane P600 of the spacer 600. Thus the channels of the first portion of the network channels are straight.
De préférence, dans la première portion 620 du réseau 612 de canaux, les perforations 610 présentent chacune une même largeur £610, qui est comprise entre 0,2 mm et 1 ,1 mm, tandis que les bandes 614 de matière séparant deux perforations 610 voisines présentent chacune une largeur £614 comprise entre 0,2 mm et 0,7 mm. On assure ainsi à la fois un bon écoulement du fluide de fonctionnement, et un bon transfert des forces de compression, parallèles à l’axe de hauteur A600, qui s’exercent sur l’entretoise 600 lorsque l’entretoise 600 est reçue dans une pile à combustible 20. Preferably, in the first portion 620 of the network 612 of channels, the perforations 610 each have the same width £610, which is between 0.2 mm and 1.1 mm, while the strips 614 of material separating two perforations 610 neighboring each have a width £614 of between 0.2 mm and 0.7 mm. This ensures both good flow of the operating fluid, and good transfer of the compression forces, parallel to the height axis A600, which are exerted on the spacer 600 when the spacer 600 is received in a fuel cell 20.
De préférence, dans la première portion 620 du réseau 612 de canaux, chaque traverse 618 présente une hauteur égale à une hauteur des bandes 614 de matière adjacentes à la perforation 610 dans laquelle cette traverse 618 est disposée, la hauteur des traverses et la hauteur des bandes étant mesurée parallèlement à l’axe de hauteur. Le procédé de fabrication est ainsi simplifié, chaque plaque de distribution 602 étant produite par simple découpage. Preferably, in the first portion 620 of the network 612 of channels, each crosspiece 618 has a height equal to a height of the strips 614 of material adjacent to the perforation 610 in which this crosspiece 618 is arranged, the height of the crosspieces and the height of the strips being measured parallel to the height axis. The manufacturing process is thus simplified, each distribution plate 602 being produced by simple cutting.
On décrit à présent l’entretoise d’irrigation 700 du deuxième type à l’aide des figures 14 et 15. Les éléments identiques à ceux de l’entretoise d’irrigation 600 du premier type portent les mêmes références. We now describe the irrigation spacer 700 of the second type using Figures 14 and 15. The elements identical to those of the irrigation spacer 600 of the first type bear the same references.
Alors que pour l’entretoise 600 du premier type, chaque canal du réseau 612 de canaux est rectiligne d’un bout à l’autre, c’est-à-dire de l’entrée 613A jusqu’à la sortie 613B, l’entretoise 700 du deuxième type comprend un réseau de canaux 712, dans lesquels chaque canal est formé de plusieurs portions rectilignes, deux portions consécutives n’étant pas alignées entre elles. Whereas for the spacer 600 of the first type, each channel of the network 612 of channels is rectilinear from one end to the other, that is to say from the inlet 613A to the outlet 613B, the spacer 700 of the second type comprises a network of channels 712, in which each channel is formed of several rectilinear portions, two consecutive portions not being aligned with each other.
L’entretoise 700 comprend une entrée 713A et une sortie 713B, qui sont chacune ménagée sur un des grands côtés respectifs du rectangle. Avantageusement, chaque canal du réseau 712 s’étend de manière continue de l’entrée 713A jusqu’à la sortie 713B. The spacer 700 includes an inlet 713A and an outlet 713B, which are each provided on one of the respective long sides of the rectangle. Advantageously, each channel of the network 712 extends continuously from the input 713A to the output 713B.
Le réseau 712 de canaux comprend plusieurs portions distinctes. Au sein de chaque portion, les perforations 610 sont parallèles entre elles, deux perforations 610 adjacentes étant séparées l’une de l’autre par une bande 614 de matière respective The network 712 of channels includes several distinct portions. Within each portion, the perforations 610 are parallel to each other, two adjacent perforations 610 being separated from each other by a strip 614 of respective material
Dans l’exemple illustré, le réseau 712 de canaux comprend trois portions consécutives, incluant une première portion 714A, une deuxième portion 714B, et une troisième portion 714C, les contours des trois portions 714A, 741 B et 714C étant matérialisés en pointillés sur les figures 14 et 15. Plus généralement, le nombre de portions est choisi en fonction de la géométrie de l’entretoise, de l’agencement de l’entrée de fluide et de la sortie de fluide, etc. Ce qui est valable pour les première et deuxième portions 714A et 714B du réseau 712 de canaux est transposable à deux portions consécutives quelconques du réseau 712 du réseau de canaux. In the example illustrated, the network 712 of channels comprises three consecutive portions, including a first portion 714A, a second portion 714B, and a third portion 714C, the contours of the three portions 714A, 741 B and 714C being materialized in dotted lines on the Figures 14 and 15. More generally, the number of portions is chosen according to the geometry of the spacer, the arrangement of the fluid inlet and the fluid outlet, etc. What is valid for the first and second portions 714A and 714B of the network 712 of channels is transposable to any two consecutive portions of the network 712 of the network of channels.
L’entretoise 700 comprend deux plaques de distribution 702, incluant une première plaque 702A et une deuxième plaque 702B. Les portions 714A, 714B et 714C du réseau 712 de canaux se retrouvent, avec les références 724A, 724B et 724C, sur chacune des plaques 702. Sur la figure 14, seules les première et deuxième portions 724A et 724B de chacune des première et deuxième plaques de distribution 702A et 702B sont visibles. On décrit le principe de fonctionnement de l’entretoise 700 en référence aux première et deuxième portions 714A et 714B du réseau 712 de canaux. The spacer 700 includes two distribution plates 702, including a first plate 702A and a second plate 702B. The portions 714A, 714B and 714C of the network 712 of channels are found, with the references 724A, 724B and 724C, on each of the plates 702. In Figure 14, only the first and second portions 724A and 724B of each of the first and second distribution plates 702A and 702B are visible. The operating principle of the spacer 700 is described with reference to the first and second portions 714A and 714B of the network 712 of channels.
Pour chacune des première et deuxième plaques de distribution 702A et 702B, dans chacune des première et deuxièmes portions 724A et 724B, les perforations 610 sont parallèles entre elles, deux perforations 610 adjacentes étant séparées l’une de l’autre par une bande 614 de matière respective. Chaque bande 614 de la deuxième portion 724B de la première plaque 702A est superposée, selon l’axe de hauteur A600, avec une bande 614 respective de la deuxième portion 724B de la deuxième plaque 702B, de manière à former des canaux d’une deuxième portion 714B du réseau 712 de canaux de l’entretoise d’irrigation 700, les canaux de la deuxième portion 714B du réseau 712 de canaux étant parallèles entre eux. For each of the first and second distribution plates 702A and 702B, in each of the first and second portions 724A and 724B, the perforations 610 are parallel to each other, two adjacent perforations 610 being separated from each other by a strip 614 of respective subject. Each strip 614 of the second portion 724B of the first plate 702A is superimposed, along the height axis A600, with a respective strip 614 of the second portion 724B of the second plate 702B, so as to form channels of a second portion 714B of the network 712 of channels of the irrigation spacer 700, the channels of the second portion 714B of the network 712 of channels being parallel to each other.
Pour chaque plaque de distribution 702A ou 702B, chaque bande 614 de la première portion 724A de cette plaque de distribution se prolonge, de manière continue, avec une bande 614 de la deuxième portion 724B de cette même plaque de distribution. For each distribution plate 702A or 702B, each strip 614 of the first portion 724A of this distribution plate extends, continuously, with a strip 614 of the second portion 724B of this same distribution plate.
Pour chaque plaque de distribution 702A ou 702B, les bandes 614 de la première portion 724A sont rectilignes et parallèles les unes aux autres, les canaux de la première portion 714A du réseau 712 s’étendant selon un premier axe d’écoulement 716A, tandis que les bandes 614 de la deuxième portion 724B sont rectilignes et parallèles les unes aux autres, les canaux de la deuxième portion 714B du réseau 712 s’étendant selon un deuxième axe d’écoulement 716B. Le premier axe d’écoulement 716A et le deuxième axe d’écoulement 716B sont chacun représentés par une flèche respective aux figures 14 et 15. Le premier axe d’écoulement 716A est ici parallèle à l’axe transversal Y600, tandis que le deuxième axe d’écoulement 716B est ici parallèle à l’axe longitudinal X100. For each distribution plate 702A or 702B, the strips 614 of the first portion 724A are rectilinear and parallel to each other, the channels of the first portion 714A of the network 712 extending along a first flow axis 716A, while the strips 614 of the second portion 724B are rectilinear and parallel to each other, the channels of the second portion 714B of the network 712 extending along a second flow axis 716B. The first flow axis 716A and the second flow axis 716B are each represented by a respective arrow in Figures 14 and 15. The first flow axis 716A is here parallel to the transverse axis Y600, while the second axis flow 716B is here parallel to the longitudinal axis X100.
Le premier axe d’écoulement 716A et le deuxième axe d’écoulement 716B sont distincts, c’est-à-dire que le fluide de fonctionnement circulant dans chaque canal du réseau 712 change de direction au passage de la première portion 714A à la deuxième portion 714B. The first flow axis 716A and the second flow axis 716B are distinct, that is to say that the operating fluid circulating in each channel of the network 712 changes direction when passing from the first portion 714A to the second portion 714B.
Le premier axe d’écoulement 716A et le deuxième axe d’écoulement 716B forment entre eux un angle compris entre 1 et 179°, de préférence compris entre 30°et 150°, de préférence encore compris entre 60° et 120°. Dans l’exemple illustré, le premier axe d’écoulement 716A et le deuxième axe d’écoulement 716B forment entre eux un angle égal à 90°. The first flow axis 716A and the second flow axis 716B form between them an angle of between 1 and 179°, preferably between 30° and 150°, more preferably between 60° and 120°. In the example illustrated, the first flow axis 716A and the second flow axis 716B form an angle between them equal to 90°.
Dans les exemples illustrés, chacun des compartiments parmi le premier compartiment réactif V132, le deuxième compartiment réactif V134 et le premier compartiment de refroidissement V126 loge une entretoise d’irrigation 600 ou 700 conforme à l’invention. In the examples illustrated, each of the compartments among the first reactive compartment V132, the second reactive compartment V134 and the first cooling compartment V126 houses an irrigation spacer 600 or 700 according to the invention.
En variante non représentée, un seul des logements V100 de la cellule unitaire 100 reçoit une entretoise d’irrigation d’un autre type, les deux autres logements V100 recevant chacun une entretoise d’irrigation conforme à l’invention. Selon une autre variante non représentée, un seul des logements V100 de la cellule unitaire 100 reçoit une entretoise d’irrigation conforme à l’invention, les deux autres logements V100 recevant chacun une entretoise d’irrigation d’un autre type. Les modes de réalisation et les variantes mentionnées ci-dessus peuvent être combinés entre eux pour générer de nouveaux modes de réalisation de l’invention. In a variant not shown, only one of the housings V100 of the unit cell 100 receives an irrigation spacer of another type, the two other housings V100 each receiving an irrigation spacer according to the invention. According to another variant not shown, only one of the housings V100 of the unit cell 100 receives an irrigation spacer according to the invention, the two other housings V100 each receiving an irrigation spacer of another type. The embodiments and variants mentioned above can be combined with each other to generate new embodiments of the invention.
Claims
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR2213370A FR3143881A1 (en) | 2022-12-14 | 2022-12-14 | Fuel cell unit cell and associated fuel cell |
| PCT/EP2023/085538 WO2024126563A1 (en) | 2022-12-14 | 2023-12-13 | Single cell of a fuel cell and associated fuel cell |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP4635009A1 true EP4635009A1 (en) | 2025-10-22 |
Family
ID=85726837
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP23822040.4A Pending EP4635009A1 (en) | 2022-12-14 | 2023-12-13 | Single cell of a fuel cell and associated fuel cell |
Country Status (6)
| Country | Link |
|---|---|
| EP (1) | EP4635009A1 (en) |
| JP (1) | JP2025540868A (en) |
| KR (1) | KR20250126022A (en) |
| CN (1) | CN120787381A (en) |
| FR (1) | FR3143881A1 (en) |
| WO (1) | WO2024126563A1 (en) |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007095669A (en) * | 2005-08-31 | 2007-04-12 | Nissan Motor Co Ltd | Electrolyte membrane-electrode assembly |
| JP5330135B2 (en) * | 2009-07-22 | 2013-10-30 | 株式会社東芝 | Fuel cell |
| DE102017220354B4 (en) * | 2017-11-15 | 2025-06-12 | Audi Ag | Fuel cell device |
| FR3085548B1 (en) | 2018-09-03 | 2020-11-27 | Kemiwatt | STACKING OF ELECTROCHEMICAL REDOX CELLS IN FLUX WITH REDUCED SHUNT |
| DE102018125788A1 (en) * | 2018-09-10 | 2020-03-12 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Electrochemical energy conversion device |
-
2022
- 2022-12-14 FR FR2213370A patent/FR3143881A1/en active Pending
-
2023
- 2023-12-13 JP JP2025534914A patent/JP2025540868A/en active Pending
- 2023-12-13 WO PCT/EP2023/085538 patent/WO2024126563A1/en not_active Ceased
- 2023-12-13 EP EP23822040.4A patent/EP4635009A1/en active Pending
- 2023-12-13 CN CN202380092085.8A patent/CN120787381A/en active Pending
- 2023-12-13 KR KR1020257022881A patent/KR20250126022A/en active Pending
Also Published As
| Publication number | Publication date |
|---|---|
| WO2024126563A1 (en) | 2024-06-20 |
| FR3143881A1 (en) | 2024-06-21 |
| KR20250126022A (en) | 2025-08-22 |
| JP2025540868A (en) | 2025-12-16 |
| CN120787381A (en) | 2025-10-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1672726B1 (en) | Bipolar plate for fuel cell | |
| EP3360987B1 (en) | Electrolyser spacer and electrolyser provided with such a spacer | |
| EP1528614B1 (en) | Fuel cell assembly | |
| EP3019779B1 (en) | Seal for an electrolyser cell and electrolyser cell provided with such a seal | |
| WO2019186051A1 (en) | Bipolar plate with undulating channels | |
| EP3136492A1 (en) | Stack of electrochemical cells distributed into separate groups comprising a homogenisation compartment | |
| FR3023981A1 (en) | BIPOLAR PLATE FOR ELECTROCHEMICAL REACTOR HAVING A COMPACT AND LOW DIFFERENTIAL PRESSURE REGION | |
| EP1358691B1 (en) | Method for making light bipolar plates for fuel cell | |
| EP4635009A1 (en) | Single cell of a fuel cell and associated fuel cell | |
| FR3143879A3 (en) | Irrigation spacer for a fuel cell unit cell, associated unit cell and fuel cell | |
| FR2819343A1 (en) | FUEL CELL HAVING IDENTICAL POLAR PLATES WITH INTERNAL CIRCULATION OF FUEL AND REFRIGERANT | |
| EP1859500B1 (en) | Bipolar plate for fuel cell with deformed metal distribution plate metal | |
| CA2841157C (en) | Fuel cell plate and fuel cell | |
| FR3026232A1 (en) | FLUID FLOWING GUIDE PLATE FOR ELECTROCHEMICAL REACTOR AND ASSEMBLY COMPRISING SAID PLATE | |
| EP1938409B1 (en) | Tubular fuel cell module and the sealing device thereof | |
| EP3499623A1 (en) | Electrochemical reactor with high temperature proton exchange membrane suitable for low temperature storage | |
| EP4295423A1 (en) | Electrochemical cell with improved peripheral sealing | |
| EP4150685B1 (en) | Bipolar separator plate for a fuel cell, associated fuel cell and manufacturing method | |
| EP1941571B1 (en) | Sealed fuel cell stack | |
| FR3163499A1 (en) | Electrochemical device, assembly comprising two electrochemical devices, motor vehicle and assembly method | |
| WO2021014104A1 (en) | Polymer electrolyte membrane fuel cell | |
| WO2025141075A1 (en) | Peripheral seal, polar separator comprising such a seal, electrochemical cell comprising such a separator, fuel cell comprising such an electrochemical cell, and vehicle comprising such a fuel cell | |
| WO2025172238A1 (en) | Electrochemical cell bipolar plate for reducing short-circuit flows around headers | |
| FR2816448A1 (en) | Bipolar element with two metal plates and corrugated structure for fuel cell | |
| WO2024231640A1 (en) | Electrolysis cell |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| 17P | Request for examination filed |
Effective date: 20250616 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |