EP4412623A1 - Chitosan-based swelling gel - Google Patents
Chitosan-based swelling gelInfo
- Publication number
- EP4412623A1 EP4412623A1 EP22797426.8A EP22797426A EP4412623A1 EP 4412623 A1 EP4412623 A1 EP 4412623A1 EP 22797426 A EP22797426 A EP 22797426A EP 4412623 A1 EP4412623 A1 EP 4412623A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- chitosan
- composition
- composition according
- solution
- hydrogel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L5/00—Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
- C08L5/08—Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/0006—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
- C08B37/0024—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
- C08B37/0027—2-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
- C08B37/003—Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/225—Mixtures of macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/28—Polysaccharides or their derivatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/44—Medicaments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/60—Liquid-swellable gel-forming materials, e.g. super-absorbents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
- A61L24/0031—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/04—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
- A61L24/043—Mixtures of macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/042—Polysaccharides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/145—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/252—Polypeptides, proteins, e.g. glycoproteins, lipoproteins, cytokines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/258—Genetic materials, DNA, RNA, genes, vectors, e.g. plasmids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/404—Biocides, antimicrobial agents, antiseptic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/41—Anti-inflammatory agents, e.g. NSAIDs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/416—Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/02—Applications for biomedical use
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/12—Applications used for fibers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
Definitions
- the present invention falls within the field of compositions comprising a polymer carrying a chelating group which can chelate one or more metals, and their various uses.
- the present invention relates to compositions which may be in the form of a gel, comprising a polysaccharide carrying a chelating group, as well as the yarns obtained from these gels.
- Polysaccharides are polymers derived from plant, fungal, animal or bacterial biomass. These polymers have very varied physicochemical properties and can be shaped for a wide range of biomedical applications because they are often resorbable, biocompatible or even bioactive.
- the chemical modification of polysaccharides makes it possible to adapt their physicochemical properties, in particular their solubility in an aqueous medium at pH close to neutrality.
- Their functionalization by highly specific chelating agents also allows specific applications in the biomedical field. For example, after grafting these motifs onto the structure of polysaccharides, the polymer could be used in the composition of a detoxifying biomedical device to purify living organisms of pathogenic metals as part of maintaining homeostasis.
- a wire alone can also be advantageous in the event that the implantation must be combined with a minimally invasive strategy.
- the supply of a wire to capture metal cations to locally restore metal homeostasis when there is an accumulation of metals in the body would therefore be particularly interesting.
- one object of the invention is to provide a composition that can chelate one or more metals.
- Another object of the invention is to provide a wire which can chelate one or more metals.
- Another object of the invention is to provide a yarn having good mechanical properties, and which can thus be woven or knitted in the form of a textile.
- the invention relates firstly to a composition
- a composition comprising: a. At least one chitosan A, and b. At least one random copolysaccharide B with a weight-average molecular mass of between 100 kDa and 1000 kDa of formula I:
- each Rc independently represents a group comprising a chelating agent
- each Z independently represents a binder which may be a single bond or a hydrocarbon chain comprising between 1 and 12 carbon atoms, said chain possibly being linear or branched and possibly comprising one or more unsaturations and possibly comprising one or more heteroatoms, preferably chosen among nitrogen, oxygen, sulfur and atoms of the halogen family,
- - y is between 0.05 and 0.5
- the y/x ratio being greater than 0.2, preferably greater than 1,
- the sum x + y being greater than 0.1, and less than 10% of the groups comprising a chelating agent of the Rc type being chelated by a cation of a transition element chosen from among the elements of block d or f, and c . possibly water.
- this composition could swell on contact with a biological fluid in significant proportions. This swelling promotes the diffusion and capture of the metal species to be captured, and therefore improves the efficiency of the material.
- the invention also relates to a yarn comprising a gel or a lyophilisate of the composition according to the invention.
- the invention also relates to a textile material comprising yarns according to the invention.
- the invention also relates to a medical device comprising the composition according to the invention, the medical device preferably being a dressing, an implant or a dermal filler.
- the invention also relates to the composition according to the invention for its use for the capture of at least one metal, preferably for its use for the capture of at least one metal in the treatment or prevention of endometriosis, fungal infections, bacterial infections, chronic wounds, neurodegenerative diseases, nervous system damage, hemochromatosis, Wilson's disease or lead poisoning.
- the invention also relates to a method for preparing a composition according to the invention, comprising the following steps:
- step 4 optionally, treatment of the solution obtained in step 3 in a basic aqueous bath to obtain the composition in the form of a gel, and
- step 5 optionally, washing, drying and/or sterilization of the gel obtained in step 4, preferably by autoclave.
- FIG. 1 shows a photo of the hydrogels in disk form obtained according to Example 4, top left: composition 9 according to the invention (HG-5-5), bottom left: composition 12 according to the invention (HG -8-8), bottom right: composition 10 according to the invention (HG-5-10), top right: composition 11 according to the invention (HG-5-15).
- FIG. 2 shows a photo of the hydrogels in the form of a cylinder obtained according to example 4. This is the comparative composition 2 (Ref-HG-8-0).
- FIG. 3 shows a photo of the hydrogels in the form of a cylinder obtained according to example 4. This is composition 10 according to the invention (HG-5-10).
- FIG. 4 shows an optical microscope photo of a thread having a knot according to example 5.
- FIG. 5 shows a photo under an optical microscope of a braiding of two threads according to example 5.
- FIG. 6 shows a photo of the dried gel according to Example 6.
- FIG. 7 shows a photo of the swollen gel according to example 6.
- FIG. 8 shows an optical microscope photo of a wire that has been half immersed in water according to example 6.
- FIG. 9 shows an optical microscope photo of a wire according to example 6, of which a drop of water has been deposited on only one portion.
- FIG. 10 shows a photo of the formation of a gel according to example 12, after injection of composition 23 according to the invention (IS-1,7-3,3) in 10 mM PBS.
- FIG. 1 1 shows MRI images (7.1T) of a gel formed just after injection (day 0) and after 15 days and 30 days according to example 14.
- FIG. 12 shows MRI images (7.1 T) of the gel formed just after injection according to example 14.
- chitosan is meant a natural polymer of the co-polysaccharide type, consisting of a random distribution (random copolysaccharide) or not (block or block copolysaccharides) of D-glucosamine ( GIcN) and N-acetyl-D-glucosamine (GIcNAc), or even exclusively D-glucosamine, linked by type 0(1 ->4) glycosidic bonds.
- Chitosan is not very present in the native state in the biomass, it is mainly obtained by chemical modification of chitin, of which it is a derivative.
- Chitin has a structural role, it is mainly found in certain fungi of which it constitutes the cell wall (Basidiomycetes ex: agariscus campestris, agariscus bisporus, Ascomycetes, Zygomycetes, and Deuteromycetes), but it also forms the exoskeleton of arthropods (crustaceans, insects) especially in shrimp or crab and the endoskeleton of cephalopods such as squid or cuttlefish.
- the transition from chitin to chitosan takes place by deacetylation, that is to say by alkaline hydrolysis of the acetyl groups to generate primary amine groups.
- Chitosan is a biodegradable and biocompatible polymer, exhibiting bacteriostatic and fungistatic properties.
- gel is meant a non-fluid polymer network which is swollen by a solvent.
- the polymer network is a network made up of cross-linked polymer chains.
- the interactions responsible for polymer crosslinking can be physical or chemical.
- the gels consist exclusively of chitosan A, of copolysaccharide B, and, optionally, of water and/or of an active pharmaceutical ingredient.
- hydrogel is meant a viscoelastic material comprising at least 60% by mass of water, and preferably at least 80% by mass of water.
- the hydrogel according to the invention contains, in general, from 0.1% to 40% and preferably from 0.5 to 20% by mass of the mixture of chitosan A and copolysaccharide B.
- the hydrogel is said to be physical, because the interactions responsible for the inter-chain cross-linking giving its cohesion to the hydrogel are of the physical type, and are in particular hydrogen bonds and/or hydrophobic interactions, as opposed to a so-called chemical hydrogel (also called cross-linked hydrogel), in which the inter-chain interactions are of the covalent bond type.
- No chemical crosslinking agent is present in a purely physical hydrogel.
- the physical hydrogels consist exclusively of water, chitosan A, copolysaccharide B, and optionally an active pharmaceutical ingredient, and preferably contain more than 80% ( m/m) of water.
- hydrogels contain neither collagen, neither polycaprolactone nor toxic chemical cross-linking agent (such as glutaraldehyde, formaldehyde, epichlorohydrin, etc.).
- Having a physical hydrogel has advantages because a chemical hydrogel is poorly resorbable due to the stability of the covalent bonds, whereas the physical hydrogel of chitosan A and copolysaccharide B according to the present invention is resorbable in a physiological medium, especially in slightly acidic conditions.
- xerogel is meant a material obtained by drying, in particular drying of a hydrogel, comprising less than 60% by mass of water, preferably less than 50% by mass of water and more preferentially, less than 20% water.
- the xerogel according to the invention contains, in general, at least 40% by mass of the mixture of chitosan A and of copolysaccharide B, preferably between 40 and 100%, preferentially between 50 and 99.9% of the mixture, and more preferentially between 80 and 99.5% of the mixture.
- airgel we mean a material structurally similar to a hydrogel but whose water has been replaced by gas by a process avoiding the impact of the capillary forces of the solvent on the material (cf. Mike Robitzer, Laurent David, Cyrille Rochas, Francesco Di Renzo and Institute Quignard Nanostructure of calcium alginate aerogels obtained from multistep solvent exchange route, Langmuir 2008, 24, 12547-12552, and Mike Robitzer, Laurent David, Cyrille Rochas, Francesco Di Renzo and Institute Quignard, Supercritically -dried alginate aerogels retain the fibrillar structure of the hydrogels, Macromol. Symp. 2008, 273, 80-84).
- the mass-average molar masses Mw of chitosan A and of copolysaccharide B are determined by steric exclusion chromatography, the experimental conditions of which are described in the publication “Physico-chemical studies of the gelation of chitosan in a hydroalcoholic medium” A. MONTEMBAULT, C. VITON, A. DOMARD, Biomaterials, 26(8), 933-943, 2005.
- DA degree of acetylation
- the degree of crystallinity represents the proportion of material found in the crystalline state.
- polysaccharides it is often determined by X-ray diffraction (Alexander, LE, 'X-ray Diffraction Methods in Polymer Science', Wiley-Interscience, New York, 1969, p. 137) because many polysaccharides degrade at lower temperatures at the melting temperature of the crystalline phase, which does not allow the use of differential scanning calorimetry. It is therefore this method which is to be considered within the scope of the invention.
- Other spectroscopic methods are possible but must be adapted in each case (Infra-Red Spectrometry with Fourier Transform, Raman Spectroscopy).
- the determination of the density by a gradient column makes it possible in principle to calculate the degree of crystallinity knowing the density of the amorphous phase and the crystalline phase of the polymer, but many polysaccharides can swell and absorb the solvents used for the gradient columns density, which again limits the use of this method.
- the size of the crystallites can be determined by studying the width of the diffraction peaks obtained by the powder method, using the Laue-Scherrer relationship (Alexander, L. E., ' X-ray Diffraction Methods in Polymer Science', Wiley-interscience, New York, 1969, p. 137).
- the invention relates firstly to a composition
- a composition comprising: a. At least one chitosan A, and b. At least one random copolysaccharide B with a weight-average molecular mass of between 100 kDa and 1000 kDa of formula I:
- each Rc independently represents a group comprising a chelating agent
- each Z independently represents a binder which may be a single bond or a hydrocarbon chain comprising between 1 and 12 carbon atoms, said chain possibly being linear or branched and possibly comprising one or more unsaturations and possibly comprising one or more heteroatoms, preferably chosen among nitrogen, oxygen, sulfur and atoms of the halogen family,
- - y is between 0.05 and 0.5
- the y/x ratio being greater than 0.2, preferably greater than 1,
- the sum x + y being greater than 0.1, and less than 10% of the groups comprising a chelating agent of Rc type being chelated by a cation of a transition element chosen from the elements of block d and f, and c. possibly water.
- the mass ratio between A and B is between 2:1 and 1:10, preferably between 1:1 and 1:5.
- composition may also comprise at least one active pharmaceutical ingredient, preferably chosen from anticancer agents, antibacterial agents, antifungal agents, anti-inflammatories, messenger RNAs, proteins and antigens.
- active pharmaceutical ingredient preferably chosen from anticancer agents, antibacterial agents, antifungal agents, anti-inflammatories, messenger RNAs, proteins and antigens.
- active pharmaceutical ingredient any compound having a therapeutic or preventive effect.
- this composition has good swelling properties makes it possible to effectively capture and then release the active pharmaceutical ingredients. It is in fact possible to bring the composition into contact with the active pharmaceutical ingredient, for example with a solution comprising the active pharmaceutical ingredient, and the composition then captures this ingredient. Then, this ingredient can be salted out, for example by immersing the composition in another medium. This advantageously occurs when the composition is in the form of a gel.
- composition can be in several forms: aqueous solution, lyophilizate or gel.
- the composition is an aqueous solution, preferably comprising at least 10 g/L, preferably at least 50 g/L, of the mixture of chitosan A and copolysaccharide B.
- the composition may be injectable.
- the concentration of the mixture of chitosan A and of copolysaccharide B can be between 10 g/L and 500 g/L, preferably between 40 g/L and 160 g/L.
- the aqueous solution may have a Newtonian viscosity between 0.1 and 50,000 Pa.s, preferably between 50 and 25,000 Pa.s, and more preferably between 100 and 10,000 Pa.s.
- the aqueous solution is a gellable solution. It can gel when brought into contact with a coagulation bath at basic pH. The gelation takes place at basic pH after neutralization of the initially protonated amines (NH 2 ) (NH 3 + ) present in the solution.
- the state of entanglement of the chains resulting from the high initial viscosity is fixed by the formation of interchain interaction sites (crystallites, hydrophobic interactions, interactions by hydrogen bonds) and thus ensures obtaining a stable physical hydrogel and sufficient mechanical properties to be manipulated or stretched.
- the resulting hydrogels are reversible by acid solution treatment and dissociate from chemical hydrogels where gelation is provided by the formation of irreversible covalent chemical bonds. They can be dried and rehydrated reversibly.
- the solution can also be lyophilized.
- composition can also be in the form of a lyophilizate or a gel, preferably in the form of a hydrogel, a xerogel or an airgel.
- the hydrogel according to the invention may contain from 0.1% to 40% and preferably from 0.5 to 20% by mass of the mixture of chitosan A and copolysaccharide B.
- the xerogel according to the invention may contain at least 40% by weight of the mixture of chitosan A and copolysaccharide B, preferably between 40 and 100%, preferably between 50 and 99.9% of the mixture, and more preferably between 80 and 99.5% of the mixture.
- the xerogel may result from the at least partial drying of a hydrogel.
- the xerogel when in contact with an aqueous medium or a biological tissue for a period of at least 1 hour, swells to form a hydrogel, said hydrogel having a volume at least 2 times greater , preferably at least 5 times greater than the volume of reference xerogel before contact with the aqueous medium or the biological tissue.
- the swelling can be quantified by measuring the mass of the initial xerogel and the mass of the resulting hydrogel.
- a biological tissue is a set of differentiated or undifferentiated cells, organized according to a characteristic architecture, in association with a network of natural macromolecules or extracellular matrix (ECM) and contributing to exert the same function.
- ECM extracellular matrix
- the cellular tissue is naturally hydrated, which allows the xerogel to swell.
- the hydrogel obtained by rehydrating a xerogel can then be dried again to reform a xerogel. It is possible to carry out several drying-inflating cycles with this composition.
- the gels according to the invention have good mechanical properties. It is thus possible to make threads thereof, for example by extruding the composition according to the invention through a die in a coagulation bath. These threads can then be used to prepare a textile material.
- the wire may have a diameter of between 50 ⁇ m and 700 ⁇ m, preferably between 80 ⁇ m and 500 ⁇ m.
- the composition according to the invention, and in particular the threads and/or the textile materials can be used in medical devices, thanks to their good properties of swelling and metal uptake.
- the threads and/or the textile materials can be degraded by the organism or explanted to eliminate the chelated metals.
- the medical device in question is preferably a dressing, an implant or a dermal filler.
- the medical device comprises a yarn and/or a textile material according to the invention.
- a dermal filler in the form of a thread, preferably said thread being in the form of a xerogel which can swell on contact with an aqueous medium or a biological tissue to form a hydrogel.
- the dermal filler can also be a solution according to the invention which can then be injected.
- the good metal-capturing properties of the composition make it possible to use it for the capture of at least one metal in the treatment or prevention of endometriosis, fungal infections, bacterial infections, chronic wounds ( bedsores, diabetic wounds) neurodegenerative diseases (Parkinson's disease, Alzheimer's disease, etc.), hemochromatosis, Wilson's disease, or lead poisoning.
- the metal is preferably a metal cation.
- the metal belongs to the group consisting of copper, iron, lead, zinc, aluminum, gadolinium and manganese and more preferably, to the group consisting of copper, iron and Lead.
- the invention also relates to the use of the composition according to the invention for capturing at least one metal, optionally for the treatment or prevention of a disease.
- the invention also relates to a method for treating or preventing endometriosis, fungal infections, bacterial infections, chronic wounds (bedsores, diabetic wounds), neurodegenerative diseases (Parkinson's disease, Alzheimer's disease, ...), hemochromatosis, Wilson's disease, or lead poisoning, said method comprising the use of the composition according to the invention for the capture of at least one metal.
- the invention also relates to a method for preparing a composition according to the invention comprising the following steps:
- step 4 optionally, treatment of the solution obtained in step 3 in a basic aqueous bath to obtain the composition in the form of a gel, and
- step 5 optionally, washing, drying and/or sterilization of the gel obtained in step 4, preferably by autoclave.
- the acid is added in stoichiometric proportion with respect to the non-functionalized primary amine type functions of the chitosan A and of the copolysaccharide B.
- the acid is preferably organic.
- the solution comprising the composition preferably has a viscosity of between 0.1 and 50,000 Pa.s.
- the basic aqueous bath in step 4 is a coagulation bath which allows the solution to gel.
- This coagulation bath is preferably an alkaline solution, for example of sodium hydroxide, ammonia or potash, at a concentration which can be between 0.5 and 10 M, preferably between 1 and 5 M.
- the coagulation bath can also be a coagulation chamber where alkaline vapors are used, such as ammonia vapors.
- step 4 it is possible, during step 4, to extrude the composition according to the invention through a die (or extrusion cone). The extrudate is then introduced into the coagulation bath. It is also possible to extrude the composition directly into the coagulation bath.
- Step 5 can comprise one or more washing steps, the washing being able to be carried out with water or with a buffer.
- Step 5 can also include one or more solvent exchange steps, for example to replace the water with ethanol.
- Step 5 may comprise one or more drying steps.
- the drying in step 5 can be carried out in the open air, at ambient temperature, or at a temperature comprised between 30 and 250°C, for example in hot air at a temperature comprised between 100 and 200°C.
- the drying is carried out after exchange of water with ethanol by successive baths gradually concentrated in alcohol, then after exchange of ethanol with liquid CO 2 in a pressurized enclosure, then after expansion in medium supercritical CO 2 , which makes it possible to form an airgel.
- Any sterilization technique well known to those skilled in the art may be used, in particular steam sterilization by autoclave, gamma or beta irradiation.
- composition according to the invention comprises a chitosan A.
- composition may have;
- the level of crystallinity reduced to chitosan A can be between 10 and 25%.
- the crystallites of chitosan A play the role of physical cross-linking nodes essential to the constitution of a gel.
- the size of the crystallites can for example be between 1 and 20 nm.
- chitosan A has an average molecular weight Mw of between 100 kg/mol and 1000 kg/mol, preferably between 200 kg/mol and 700 kg/mol.
- chitosan A has a degree of acetylation x of less than 40%, preferably less than 10%, for example between 0% and 10%.
- the composition comprises a random copolysaccharide B with a weight-average molecular mass of between 100 kDa and 1000 kDa of formula I.
- Rc groups may be present in the polysaccharide. These Rc groups can be identical to or different from each other. They are all independently chosen from the groups carrying a chelating agent.
- Z binders several Z binders may be present, and they may be identical or different from each other.
- the copolysaccharide B can be of formula II:
- - Rci and RC 2 are different, and are groups containing a chelating agent, - Zi and Z 2 , which are identical or different, are binders which may be a single bond or a hydrocarbon chain comprising between 1 and 12 carbon atoms, said chain possibly being linear or branched and possibly comprising one or more unsaturations and possibly comprising one or more several heteroatoms, preferably chosen from nitrogen, oxygen, sulfur and atoms of the halogen family,
- - x is between 0.01 and 0.5, preferably between 0.01 and 0.1, and preferably between 0.05 and 0.1,
- - y is between 0.01 and 0.5, preferably between 0.05 and 0.2,
- - z is between 0 and 0.2, and less than 10% of the groups comprising a chelating agent of Rc1 and Rc2 type being chelated by a cation of a transition element chosen from among the elements of block d and f.
- Rc-type group means the Rc groups in the polysaccharide of formula I, and the Rci and Rc 2 groups, when the Rc 2 group is present, in the polysaccharide of formula II.
- less than 10% of the groups of Rc type are chelated by a cation, in particular a metal cation.
- a cation in particular a metal cation.
- the fact that the Rc-type groups are in free form allows good uptake of metals.
- Copolysaccharide B also exhibits high hydrophilicity, which induces good swelling properties.
- the groups Rc, Rci and Rc 2 are chelating agents.
- the groups Rc, Rci and Rc 2 make it possible to chelate one or more metals by forming a complex.
- Each of the groups Rc, Rci and Rc 2 can contain one or more coordination sites.
- the coordination site is a nitrogen or oxygen atom.
- each of the groups Rc, Rci and Rc 2 comprises between 4 and 8 coordination sites, more advantageously between 6 and 8 coordination sites and even more advantageously each of the groups Rc, Rci and Rc 2 comprises 8 coordinating sites.
- coordination site means a single function capable of binding to a metal.
- an amine function represents a coordination site by the formation of a dative bond between the nitrogen atom and the metal and a hydroxamic acid function also represents a coordination site by the formation of a dative bond between the oxygen of the carbonyl unit and by a covalent bond with the oxygen of the dioxide unit the coordination site thus forming a five-membered ring.
- each Rc group is independently chosen from the group consisting of DOTA (1,4,7,10-tetraazacyclododecane-N,N',N ”,N'”-teracetic acid), NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid), NODAGA (1,4,7-triazacyclononane-1-glutaric-4,7-diacetic acid ), DOTAGA (2-(4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecan-1-yl)pentanedioic acid), DOTAM (1,4,7,10-tetrakis(carbamoylmethyl) -1,4,7,10 tetraazacyclododecane), NOTAM (1,4,7-tetrakis(carbamoylmethyl)-1,4,7-triazacyclononane), DOTP
- Rci and RC 2 are independently chosen from the group consisting of DOTA, NOTA, NODAGA, DOTAGA, DOTAM, NOTAM, DOTP, NOTP, TETA, TETAM, DTPA and DFO, preferably from the group consisting of DOTAGA, DFO, DOTAM and DTPA.
- the Rci group is DOTAGA and the Rc 2 group is DFO
- Z-type binder means the Z binders in the polysaccharide of formula I, and the Zi and Z 2 binders, when the Z 2 binder is present, in the polysaccharide of formula II.
- binders Z, Zi and Z 2 in formulas I and II essentially depends on the Rc, Rci and Rc 2 groups and on the metal to be chelated. Indeed, for steric reasons in particular, the Rc, Rci and Rc 2 groups may be more or less close to the 6-membered ring of the nitrogen of the glucosamine unit.
- each Z is independently a single bond or a hydrocarbon chain comprising between 1 and 12 carbon atoms, said chain possibly being linear or branched and possibly comprising one or more unsaturations and possibly comprising one or more heteroatoms, preferably chosen from nitrogen, oxygen, sulfur and atoms of the halogen family.
- each Z is independently selected from the group consisting of: a bond, a linear or branched alkyl chain comprising between 1 and 12 carbon atoms, and a linear or branched alkenyl chain comprising between 2 and 12 carbon atoms, said alkyl and alkenyl chains possibly being interrupted by one or more C 6 -Cio aryl groups, and/or by one or more heteroatoms or groups selected from the group consisting of -O-, - S-, -C(O)-, -NR'-, -C(O)NR'-, -NR'-C(O)-, -NR'-C(O)-NR'-, -NR' -C(O)-O-, -OC(O)NR', -C(S)NR'-, -NR'-C(S)-, -NR'-C(S)-NR' said alkyl chains and alkenyl which may be substituted by one or more groups selected
- each Z is independently selected from the group consisting of: a bond and a linear or branched alkyl chain comprising between 1 and 12 carbon atoms, said alkyl chain possibly being interrupted by one or more groups C 6 -Cio aryl, and/or by one or more heteroatoms or groups selected from the group consisting of -O-, -S-, -C(O)-, -NR'-, -C(O)NR' -, -NR'-C(O)-, -C(S)NR'-, -NR'-C(S)-, -NR'-C(S)-NR', each R' is independently H or a Ci-C 6 alkyl,
- each Z is an alkyl chain comprising between 1 and 12 carbon atoms.
- each Z is a polyethylene glycol (PEG) segment.
- Zi and Z 2 are independently a single bond or a hydrocarbon chain comprising between 1 and 12 carbon atoms, said chain possibly being linear or branched and possibly comprising one or more unsaturations and possibly comprising one or more heteroatoms, preferably chosen from nitrogen, oxygen, sulfur and atoms of the halogen family.
- Zi and Z 2 are independently selected from the group consisting of: a bond, a linear or branched alkyl chain comprising between 1 and 12 carbon atoms, and a linear alkenyl chain or branched containing between 2 and 12 carbon atoms, said alkyl and alkenyl chains possibly being interrupted by one or more C 6 -Cio aryl groups, and/or by one or more heteroatoms or groups selected from the group consisting of -O-, -S-, -C(O)-, -NR'-, -C(O)NR '-, -NR'-C(O)-, -NR'-C(O)-NR'-, -NR'-C(O)-O-, -OC(O)NR', -C(S )NR'-, -NR'-C(S)-, -NR'-C(S)-NR', said alkyl and alkenyl chains possibly being substituted by one or
- Zi and Z 2 are independently selected from the group consisting of: a bond and a linear or branched alkyl chain comprising between 1 and 12 carbon atoms, said alkyl chain possibly being interrupted by one or several C 6 -Cio aryl groups, and/or by one or more heteroatoms or groups selected from the group consisting of -O-, -S-, -C(O)-, -NR'-, -C(O) NR'-, -NR'-C(O)-, -C(S)NR'-, -NR'-C(S)-, -NR'-C(S)-NR', each R' is independently H or a Ci-C 6 alkyl,
- Zi and/or Z 2 is an alkyl chain comprising between 1 and 12 carbon atoms.
- Zi and/or Z 2 is a polyethylene glycol (PEG).
- z is between 0 and 0.2.
- the C-type units can be exclusively units comprising as binder Zi and as group carrying a chelating agent Rci.
- the polysaccharide according to the invention has a weight-average molecular mass of between 100 kDa and 1000 kDa, advantageously, the weight-average molecular mass of the polysaccharide according to the invention is between 200 kDa and 750 kDa, more advantageously between 250 kDa and 500 kDa and even more advantageously between 300 kDa and 400 kDa.
- the copolysaccharide B is chosen from the following polysaccharides:
- Rci is DOTAGA and Zi is a bond
- Rc 2 is DFO and Z 2 is selected from the group consisting of: a bond and a linear or branched alkyl chain comprising between 1 and 12 carbon atoms, said alkyl chain possibly being interrupted by one or more C 6 -Cio aryl groups, and/or by one or more heteroatoms or groups selected from the group consisting of -O-, -S- , -C(O)-, -NR'-, -C(O)NR'-, -NR'-C(O)-, -C(S)NR'-, -NR'-C(S)- , -NR'-C(S)-NR', each R' is independently H or C1- C6 alkyl,
- copolysaccharide B can be obtained according to a process comprising the following three successive steps:
- Step 1 solubilization of a chitosan in an acid solution at a pH between 4 and 5;
- Step 2 partial acetylation of the amine functions of the chitosan dissolved in step 1 (formation of acetylated units);
- Step 3 functionalization of at least some of the amine functions still present at the end of step 2 (formation of units comprising the Rc group).
- Stage 3 can be subdivided into several sub-stages, in particular when the binder Z is a hydrocarbon chain as defined previously.
- step 3 may include a sub-step 3-1 consisting in grafting said hydrocarbon chain onto at least some of the amine functions still present at the end of step 2, then a sub-step 3-2 consisting in the grafting of the Rc group on said hydrocarbon chain.
- step 3 does not include a sub-step.
- said hydrocarbon chain is coupled with the Rc group prior to step 3, said step 3 is then carried out with a molecule comprising the Rc group and said hydrocarbon chain.
- the copolysaccharide B can be obtained from a chitosan having the desired acetylation rate, thus, in this embodiment the acetylated units are already present and do not need to be formed.
- the process for obtaining copolysaccharide B comprises at least the following two successive steps:
- Step 1b solubilization of a partially acetylated chitosan in an acid solution at a pH between 4 and 5;
- Step 2b functionalization of at least some of the amine functions of said partially acetylated chitosan dissolved in step 1b (formation of units comprising the Rc group).
- step 2b can be subdivided into several sub-steps, in particular when the binder Z is a hydrocarbon chain as defined above.
- step 2b may comprise a sub-step 2b-1 consisting in linking said hydrocarbon chain on at least part of the amine functions, then a under step 2b-2 consisting in the grafting of the Rc group on said hydrocarbon chain.
- step 2b does not include a sub-step.
- said hydrocarbon chain is coupled with the Rc group prior to step 2b, said step 2b is then carried out with a molecule comprising the Rc group and said hydrocarbon chain.
- the degree of acetylation (DA) of compounds B1 and B2 is obtained as follows:
- the 1 H NMR spectra of the products to be analyzed are obtained using an Avance III HD 400 MHz NanoBay spectrometer from Bruker .
- the phase is corrected manually using the water peak located at 4.7 ppm.
- the integration of the peaks is done manually by integrating the bulk of the peaks between 4.1 and 2.9 ppm and by integrating the peak at 2.00 ppm between 2.02 and 1.90 ppm.
- the percentage DA is directly obtained by normalizing the integration of the peak mass to 200.
- the degree of substitution in DOTAGA is obtained as follows: Different samples of the product to be analyzed are obtained by redispersion of the freeze-dried product in an acetate buffer (0.1 M acetic acid and 0.1 M ammonium acetate ) to obtain a final mass concentration of polymer of 0.1%. Different volumes of a copper nitrate solution are added in order to obtain copper concentrations in each sample ranging from 0 to 1 mM, then each sample is stirred. The absorbance of the resulting solutions is then measured using a Varian Cary® 50 UV-Visible spectrophotometer. The determination of the DS is carried out by plotting the absorbance at 295 nm (maximum of absorption of DOTA-GA) in function of the copper concentration, the break corresponding to the quantity of DOTAGA for 1 g of product.
- the purity of compounds B1 and B2 is checked as follows: The HPLC-SEC-UV chromatograms of the products to be analyzed were recorded on samples at a mass concentration of polymer of 1% with a Shimadzu Prominence HPLC system.
- the SEC column used is a PolySep-GFC-P 4000 column and an acetate buffer is used as eluent (0.1 M acetic acid and 0.1 M ammonium acetate).
- the operating temperature is 30°C and the absorption wavelength is 295 nm.
- the eluent flow rate is 0.8 mL/min.
- the purity of the product is checked by integration of the peak of free DOTA-GA on the integration of the peak of chitosan grafted with DOTA-GA.
- the chitosan precursor of the polysaccharide MEX-CD2 (B1) is of medical quality and of animal origin.
- the degree of acetylation (proportion of N-acetyl-D-glucosamine unit) of such crude chitosan was determined by 1H NMR spectroscopy by Hirai's method (Asako Hirai et al., Determination of degree of deacetylation of chitosan by 1 H NMR spectroscopy, Polymer Bulletin, 1991, 26, 87-94) and is estimated at 6 ⁇ 0.5%.
- chitosan 60 g of chitosan are introduced into a 10 L reactor with 4 L of ultrapure water and 50 mL of acetic acid, then the mixture is placed under mechanical stirring at 500 RPM. After complete dissolution of the chitosan (3 h), 4 L of 1,2-propanediol are added to the medium and the mixture is kept under stirring until homogenization (2 h). 120g of DOTA-GA anhydride are then introduced and the mixture is kept under shaking overnight until completely dissolved.
- the synthesis product is then purified by tangential filtration using the Sartoflow® Advanced device with a Sartocon® Slice PESU cassette (polyethersulfone membranes; cut-off threshold: 100 kDa; filtration area: 0.1 m 2 ) according to a model of diafiltration-concentration against 200L of a 0.1 M acetic acid solution then 200L of a 5 mM acetic acid solution. Purification is followed by size exclusion chromatography coupled with a UV detector until less than 5% of free DOTA-GA is obtained. The product is then freeze-dried and the degree of acetylation (DA) and the degree of substitution (DS) are determined respectively by 1 H NMR and by the copper chelation method described above. Purity was checked by HPLC as mentioned above.
- DA degree of acetylation
- DS degree of substitution
- chitosan 60 g of chitosan, 4 L of ultra-pure water and 45 mL of glacial acetic acid are introduced into a 10 L reactor and stirred for 16 hours at a pH of 4.5 ⁇ 0.5.
- 1.2 L of propane-1,2-diol are added to the solution and stirring is maintained for 1 hour.
- a solution composed of 14 mL of acetic anhydride dissolved in 600 mL of propane-1,2-diol is then added slowly over 30 min, the reaction medium is kept under stirring for 4 h.
- 120 g of DOTA-GA anhydride 120 g of DOTA-GA anhydride are then weighed and added to the reactor, then 2 L of propane-1,2-diol are added and stirring is maintained for 16 h.
- the solution is purified by tangential filtration using a 100 kDa membrane.
- the synthesis product is then purified by tangential filtration in the same way as described in Example 1, against 200 L of a 0.1 M acetic acid solution then 200 L of ultrapure water. Purification is followed by size exclusion chromatography coupled with a UV detector until less than 5% of free DOTA-GA is obtained.
- the product is then freeze-dried at a concentration of 7 g/L and the degree of acetylation (DA) and the degree of substitution (DS) are determined respectively by 1 H NMR and by the copper chelation method described above.
- DA degree of acetylation
- DS degree of substitution
- a volume of 720 mL of purified chitosan-DOTAGA at a concentration of 7 g/L is introduced into a 2 L flask. This solution (pH between 6 and 6.5) is supplemented with ultra-high water. pure to reach a total volume of 900 mL.
- 143.1 mg of p-NCS-Bz-DFO are weighed and dissolved in 100 mL of DMSO. This solution is then added dropwise to the chitosan-DOTAGA solution. The solution is kept under stirring and heated at 40° C. overnight.
- 500 mL of this solution are diluted to 5 L with ultrapure water then reconcentrated to 1 L by cross-flow filtration using the Sartoflow® Smart device with two Sartocon® Slice PESU cassettes (polyethersulfone membranes; cut-off threshold: 100 kDa; surface of filtration: 0.02 m 2 ). Filtration is continued at constant concentration against 4L of ultrapure water then the solution is reconcentrated to 500 mL.
- HPLC-SEC-UV analysis of the product makes it possible to confirm the grafting of the DFO and the elimination of the residual p-NCS-Bz-DFO.
- the comparison of the HPLC-SEC-UV analyzes of chitosan-DOTAGA and chitosan-DOTAGA-DFO shows an increase in the absorption of the polymer peak (around 7 min) when the p-NCS-Bz-DFO is grafted.
- MEX-CDDFO1 B2
- the copper chelation method was applied to the product before functionalization with DFO and made it possible to determine a DS in DOTAGA of 8.6%.
- a method analogous to that of copper chelation made it possible to determine the DS in DFO.
- Increasing concentrations of iron (III) are added to a solution of MEX-CDDFO1 (B2) at 0.1 g/L in an acetate buffer at pH 4.5 (0.1 M ammonium acetate and 0.1 M acetic acid ).
- 170 mL of ultra-pure water and 2.25 mL of glacial acetic acid are introduced into a 1 L reactor and placed with stirring until the chitosan is completely dissolved.
- 50 mL of propane-1,2-diol are added to the solution.
- a solution composed of 785 ⁇ L of acetic anhydride dissolved in 25 mL of propane-1,2-diol is then added slowly, the reaction medium is kept under stirring for 4 h.
- 250 mL of this solution are diluted by 5 in 0.1 M acetic acid then it is reconcentrated to 500 mL by tangential filtration using the Sartoflow® Smart device with two Sartocon® Slice PESU cassettes (polyethersulfone membranes; cutoff: 100 kDa; filtration area: 0.02 m 2 ). Filtration is continued at constant concentration against 5 L of acetic acid and 2.5 L of ultrapure water then the solution is reconcentrated to 250 mL.
- the 1 H NMR analysis makes it possible to confirm the grafting of the DFO and the DS thanks to the characteristic peaks of the DFO. According to the NMR spectrum, the DS is equal to 2.9%. Also it is possible to determine the DA with this same spectrum. The DA to find is 41%.
- Example 4 Compositions according to the invention (Aqueous solutions)
- a non-functionalized chitosan A of low DA which can be 250 kDa or 650 kDa is mixed with a copolysaccharide B according to a ratio o/% where a is the mass concentration of chitosan A and 0 the mass concentration of copolysaccharide B in the formulation considered (Table 2).
- Different quantities of chitosan A (a) and copolysaccharide B (P) in freeze-dried form are introduced into a 50 mL reactor and are redispersed with gentle stirring in an adequate volume of water.
- Acetic acid is added in stoichiometric proportion with respect to the non-functionalized primary amine functions present in the medium. The mixture is left under agitation until complete solubilization of the product.
- composition 10 according to the invention takes place as follows: 3.0 g of B1 (MEX-CD2) and 1.5 g of chitosan A1 are dispersed in 28.93 mL of ultrapure water and 1.07 mL of ultrapure acetic acid are added with mechanical stirring at 100 RPM in a 50 mL reactor. The mixture is left stirring for 24 hours until complete dissolution and homogenization of the medium.
- the solution obtained is recovered and introduced into a suitable fluid dispenser, then centrifuged at 4000 RPM for 10 minutes to obtain a solution without air bubbles comprising the composition.
- the Newtonian viscosities of each solution were determined using an AR200 rheometer from TA Instruments. Each solution obtained was also tested to see if it is possible to produce a gel and/or a thread. The results are presented below (Table 3).
- hydrogels were obtained by gelation of solutions obtained in Example 3. Gelation of the solution occurs after immersion in a 3 mol/L sodium hydroxide bath.
- the hydrogels obtained according to the invention are characterized as physical hydrogels where gelation takes place at basic pH after neutralization of the initially protonated amines (NH 2 ) (NH 3 + ) present in the solution.
- the state of entanglement of the chains resulting from the high initial viscosity is fixed by the formation of the nodes of interchain physical interactions and thus ensures the obtaining of a stable physical hydrogel and of sufficient mechanical properties to be manipulated or stretched.
- the resulting hydrogels are reversible by acid solution treatment and dissociate from chemical hydrogels where gelation is provided by the formation of irreversible covalent chemical bonds. They can be dried and rehydrated reversibly.
- the mold containing the solution is introduced into a bath of sodium hydroxide (NaOH) at 3 mol/L for 1 hour 30 minutes.
- NaOH sodium hydroxide
- the hydrogel disc thus formed is removed from the mold and placed in a water bath for 30 minutes.
- the disc is then rinsed a second time in another bath of ultrapure water for 30 minutes.
- the hydrogels obtained in the form of a disc are presented in FIG.
- comparative composition 2 and composition 10 according to the invention are connected to a compressed air system (Nordson UltimusTM) allowing the solution to be extruded.
- a compressed air system Nedson UltimusTM
- a 5 mm diameter extrusion tube is fitted to the dispenser's syringe and the solution is extruded directly into a 3 mol/L soda bath.
- the extrusion pressure is adapted to the initial viscosity of the precursor solution and is between 1 and 3 bars.
- the hydrogel thus formed is left immersed in the sodium hydroxide bath for 1 hour 30 minutes.
- the cylinder is removed and placed in an ultrapure water bath for 30 minutes.
- the tube is then rinsed a second time in another bath of ultrapure water for 30 minutes.
- the hydrogel is then rinsed in a phosphate buffer at pH 7.4 for 24 hours. It is finally introduced with phosphate buffer into a glass bottle and sterilized for 20 minutes at 121°C in an autoclave.
- the hydrogels obtained in the form of a cylinder are presented in figures 2 and 3.
- the hydrogel obtained from chitosan A alone has an opaque white appearance and is relatively rigid to handle.
- Yarns comprising the composition according to the invention are obtained in the following way: some of the solutions obtained in Example 3 are introduced into a suitable fluid dispenser (or doser), then centrifuged. The fluid dispenser containing the solution is then connected to a compressed air system. An extrusion cone which can be 254 ⁇ m, 406 ⁇ m, or 584 ⁇ m is fitted to the dispenser then the solution is extruded under a constant pressure which can range from 150 kPa to 400 kPa in a bath of concentrated sodium hydroxide at 3 mol/ I. The hydrogel obtained is neutralized in two water baths and then dried at a temperature which can range from 100° C. to 200° C. using a thermo-regulated air blower.
- the dry yarn is collected and wound into spools.
- the preparation of yarn from composition 10 according to the invention takes place as follows: 3.0 g of copolysaccharide B1 and 1.5 g of chitosan A1 are dispersed in 28, 93 mL of ultra-pure water and 1.07 mL of ultra-pure acetic acid with gentle mechanical stirring at 100 RPM in a 50 mL reactor. The mixture is left stirring for 24 hours until complete dissolution and homogenization of the medium. The solution obtained is recovered and introduced into a suitable fluid dispenser, then centrifuged at 4000 RPM for 10 minutes. The fluid dispenser containing the solution is then connected to a compressed air system and a 406 ⁇ m extrusion cone is fitted to the system.
- a constant pressure of 200 kPa is delivered until complete extrusion of the starting solution.
- the solution is extruded directly into a 3 mol/L sodium hydroxide bath and gelled directly to form a hydrogel.
- the hydrogel obtained in the form of a fine cylinder is drawn into a coil circuit and is successively neutralized in two ultrapure water baths each containing 5L of water.
- the hydrogel is then dried under hot air at 150° C. using a thermoregulated air blower.
- the yarn obtained after drying is wound on a spool located at the end of the spinning circuit.
- the yarn obtained is shown in Figures 4 and 5. These figures show that it is possible to tie knots and braid several yarns together.
- the mean diameter of the wires was determined under an optical microscope by measuring different portions of the wire. On average, 5 portions of the wire were studied in order to establish an average diameter as representative as possible of the entire structure.
- the linear density of the different yarns was also determined by weighing different lengths of yarn on a precision balance.
- the mechanical properties of the yarns obtained were determined by tensile tests using a Shimadzu Autograph AG-X plus system. On average, five tensile tests are carried out on each wire in order to check the repeatability of each measurement. The results are shown in Table 4.
- the threads according to the invention have satisfactory mechanical properties comparable to those of threads of chitosan A alone.
- the yarns according to the invention have mechanical properties suitable for shaping the yarns by braiding several yarns or by weaving or knitting.
- the gels and yarns according to the invention described in the preceding sections all have unique swelling capacities in the presence of aqueous fluids.
- the capacity and the drying and swelling kinetics of the gels were determined according to the initial formulation. After neutralization of the pH of the hydrogels by successive rinsing, the gel is left in the open air for 1 week until complete drying in xerogel. The mass of the hydrogel was measured on a precision balance before drying and at regular time intervals during drying. The drying kinetics of the hydrogels are listed in Table 6. Since chitosan A is more hydrophobic than copolysaccharides B, the drying rate is slower when the quantity of copolysaccharide B contained in the gel is high.
- freezing reference chitosan A alone (comparative composition 2) reaches a stable mass after 30 hours, composition 9 according to the invention (HG-5-5) after 52 hours, composition 12 according to the invention (HG- 8-8) after 72 hours, and compositions 10 and 11 according to the invention (HG-5-10 and HG-5-15) after 144 hours.
- composition 11 according to the invention The gels before and after hydration are presented in FIGS. 6 and 7 (composition 11 according to the invention).
- the swelling capacity of the threads according to the invention was also evaluated during their rehydration by immersion in an ultrapure water bath.
- threads according to the invention were cut and then immersed in ultrapure water for 15 minutes.
- the initial mass of each thread, as well as the mass of the thread at regular time intervals, was measured using a precision balance.
- the swelling kinetics for the yarns are transcribed in Table 7. A slight difference in swelling is noted for a given formulation as a function of the diameter of the initial yarn. With an identical formulation, the swelling values obtained from the yarns are relatively similar to those obtained with the hydrogels.
- the reference yarn based on chitosan A exhibits a slight maximum swelling of the order of 2 times its initial volume after 15 minutes .
- the yarn obtained with composition 11 according to the invention (HG-5-15) containing the most copolysaccharide B has a swelling capacity equivalent to the hydrogel of the same formulation, up to 21 times its initial volume after 15 minutes of immersion.
- the rehydration observed with threads is very rapid and results from a much higher surface area to volume ratio for threads than for bulk hydrogels.
- a microscopic observation of the yarn swelling phenomenon was also carried out by immersing part of a yarn obtained with composition 11 according to the invention (HG-5-15) in ultrapure water for 5 minutes. In the same way, the influence of a drop of water deposited on a portion of wire was observed.
- the wires are shown in figure 8 and 9.
- compositions according to the invention have a much higher swelling capacity than the yarns with only chitosan A.
- the lead, copper, cadmium and iron extraction capacity of certain wires according to the invention was evaluated precisely by ICP-MS analysis after immersion of the wires in dilute solutions of metals.
- a metal solution containing three metal cations Cu 2+ , Pb 2+ , Cd 2+ .
- 10 mL of metal solutions composed of the three metals Cu, Pb and Cd at 0 ppb, 10 ppb and 100 ppb respectively were prepared in pure water from a reference solution of each metal at 500 ppb.
- composition 12 according to the invention (HG-8-8) and therefore consists of 50% by weight of chitosan A and 50% by weight of copolysaccharide B.
- the yarn has been immersed in a metal solution of 10,000 times its own volume and is capable of efficiently extracting copper, lead and cadmium by concentrating the metals more than 1000 times in its volume compared to the surrounding solution.
- the wire is also capable of effectively extracting the three metals for dilute metal solutions of the order of ten ppb.
- a metal extraction study was also conducted in a biological medium on reconstituted and heavily hemolyzed pig blood in order to assess the iron extraction capacity of the wires.
- 10 mL of a solution of haemolyzed pig blood are prepared by redispersion at 10 g/L of the dried blood powder in ultrapure water.
- the three wires are capable of extracting iron from the medium.
- copolysaccharide B in the composition makes it possible to increase the chelation capacities of the wire with respect to iron after one hour and significantly after 2 hours. This increase is particularly significant when the composition according to the invention comprises 2 chelating agents of different Rc type.
- the iron extraction capacity according to the invention against different iron (III) chelators was precisely evaluated by ICP-MS analysis after immersion of the xerogel pellets in iron solutions. (2 ppm iron) containing iron chelators in proportions to have one iron cation per complex (11 citrate/1 iron; 1.1 NTA/1 iron; 4 Deferiprone/1 iron).
- the solutions are buffered at pH 7.4 with 0.1 M PBS for the solutions having citrate or deferiprone, for the solutions having NTA the buffer used is 0.05 M Tris HCl.
- a xerogel pellet of known mass was immersed in a volume of 20 ml of metallic solution for a period of 24 hours in the case of the experiment with deferiprone and 90 hours for the experiments with NTA and citrate.
- the control pellets were immersed in the buffer solution (PBS or Tris-HCl) for a time corresponding to the experiment considered.
- Samples were taken from the solutions at t: 0 and t: final. These samples are then analyzed using an ICP-MS Nexion 2000 spectrophotometer from Perkin-Elmer.
- the gel pellets are recovered and mineralized in a Multiwave 5000 microwave from Anton Paar according to the method presented previously. Thus the resulting solutions are analyzed by ICP-MS.
- the results obtained for inventions 10, 16, 17, 15, 18 of respective compositions HG-5-10; HG-5-9.5-0.5; HG-5-9.2-0.8; HG-5-9-1; HG-5-8-2 are shown in Table 11.
- [Table 11 ] comprising iron chelates having relatively low complexation constants such as citrate or NTA.
- the gels comprising DFO are capable of extracting iron, which corresponds to inventions 16, 17, 15, 18 Invention 18 (HG-5-8-2) having the most MEX-CDFO (B3) polymer in its composition has the best iron extracting capacity compared to deferiprone.
- HG-5-9-1; HG-5-8-2 are shown in Table 12.
- the loading capacity of the yarn with the substance of interest and their controlled release into another solution or another medium have been demonstrated.
- the wire is then immersed in 20 mL of ultrapure water and a sample of 2 mL of this solution is taken after 0, 1, 2, 5, 10, 15, 30, 45 minutes and after 15 hours and is analyzed using a Cary Eclipse fluorescence spectrometer from Agilent (Table 11).
- miconazole which is an imidazole antifungal molecule commonly used in various medical devices (topical spray, creams, lotions, etc.) to cure the fungal infections.
- 100 mL of a 0.1 g/L miconazole solution is prepared by dissolving miconazole in ultrapure water.
- a thread obtained from composition 10 according to the invention (HG-5-10) of 0.9 mg (10 cm) is then cut and weighed on a precision balance before being immersed in the miconazole solution for 10 minutes . The threads are then removed from the solution and hung on a glass rod to dry for 3 hours at room temperature.
- the wire is then immersed directly in 3 mL of ultrapure water contained in a plastic spectrophotometer cuvette and an analysis of the medium is carried out at regular time intervals by fluorescence analysis using a Cary Eclipse fluorescence spectrometer from Agilent (Table 12).
- the same experiment was carried out by loading the threads with penicillin, which is an antibiotic.
- 100 mL of a penicillin solution at 0.1 g/L is prepared by dissolving the penicillin in ultrapure water.
- a thread obtained from composition 10 according to the invention (HG-5-10) of 0.9 mg (10 cm) is then cut and weighed on a precision balance before being immersed in the penicillin solution for 5 minutes.
- the threads are then removed from the solution and hung on a glass rod to dry for 3 hours at room temperature.
- the wire is then immersed in 10 mL of ultrapure water and samples are taken after 1 h, 2 h and 22 h. THE samples are then analyzed by UV-visible absorbance using a
- compositions according to the invention can be loaded with active pharmaceutical ingredient, and can also release them.
- the pH values obtained on the aqueous solutions of MEX-CD2 without addition of acid are relatively low. This is explained by the prior presence of acetic acid in the MEX-CD2 lyophilisate to ensure its solubility during the purification step.
- the acetic acid contained in the MEX-CD2 lyophilisate is also osmotically active and contributes to an increase in osmolarity.
- the viscosity of each solution was measured using a HAAKE RheoStress 600 rheometer equipped with a C35/ 20 Ti L plane cone geometry.
- the values of the Newtonian viscosities are presented in Table 15. It is noted that the viscosity directly depends on the total polymer concentration, the lower the concentration, the lower the viscosity. In the same way, at an equal total polymer concentration, a larger mass fraction of MEX-CD2 contributes to reducing the viscosity.
- each composition was precisely measured using a Shimadzu AG-X plus force machine.
- Each solution was introduced into a BD HylokTM 1 mL pre-fillable glass syringe fitted with a Sterican 27G needle (0.4x12 mm).
- Injectability was determined as the force in Newtons required to eject the solution at a constant piston velocity of 1 mm/s.
- the injectability of the system mainly depends on the viscosity of the solution and therefore depends on the total polymer concentration and to a lesser extent on the mass fraction of MEX-CD2 in the composition considered.
- the solutions are readily injectable at 3% (w/w), moderately injectable at 5% (w/w), difficult to inject at 7% (w/w), and non-injectable at 10% (w/w) ( T. E. Robinson et al., Filling the Gap: A Correlation between Objective and Subjective Measures of Injectability, Adv. Healthc. Mater., vol. 9, no 5, p. 1901521 , 2020).
- Example 11 Determination of the mass fraction of MEX-CD2 suitable for a gelling solution for injection
- the 5% (w/v) formulated samples are all moderately injectable at 27G with ejection forces ranging from 19 N for a 100% MEX-CD2 formulation to 38 N for a standard 100% chitosan formulation.
- the impact of sterilization on the viscosity of the formulation strongly depends on the mass fraction of MEX-CD2.
- the formulations comprising a mass fraction of MEX-CD2 greater than or equal to 67% see their viscosities little or not affected during the sterilization of the mixture.
- This example aims to precisely determine the physico-chemical and rheological properties of two formulations of MEX-CD2-I (gelling injectable solution) selected from the results of the preceding examples.
- MEX-CD2-I gelling injectable solution
- the 67% MEX-CD2 formulation was synthesized at two slightly different pHs to assess the impact of pH on the rheological properties of the formulation.
- Each of these two formulations was also prepared at 10% (w/w) in order to envisage a mixture of these more concentrated precursor solutions with molecules of interest according to a 1:1 ratio.
- Each of these formulations was sterilized for 20 minutes at 121°C in an autoclave to study the impact of sterilization on their properties.
- pH, osmolarity and viscosity were measured and are shown in Table 19.
- injectability was also determined using different needles.
- the injectability of the formulations mainly depends on the Newtonian viscosity of the solution, the internal radius of the needle and, to a lesser extent, the length of the needle used.
- a formulation at 5% (w/w) with a mass fraction of MEX-CD2 of 67% it is observed that a reduction in the pH generates a significant increase in the injectability after sterilization of the mixture. This is in agreement with the observation made on the viscosity of the system.
- the 5% (w/w) formulation with 100% MEX-CD2 is easier to inject than the 67% MEX-CD2/CTS formulation, regardless of the needle used.
- the system does not seem to be manually injected with a 30 G needle.
- the two formulations can be injected manually by a practitioner with a 27 G needle or less.
- the IS-1,7-3,3 and IS-0-5 compositions are capable of gelling spontaneously by immersion in a physiological medium having a pH greater than 6.2 and an osmolarity greater than 285 mOsm/L [Fig .10].
- a physiological medium having a pH greater than 6.2 and an osmolarity greater than 285 mOsm/L [Fig .10].
- 2 mL of the composition IS-1,7-3,3 are introduced into a mold under disc shape 25 mm in diameter.
- the mold is immersed in 20 mL of 10 mM PBS and left for 2 hours.
- the storage modulus (G') and the loss modulus (G") of the formed hydrogel were recorded on an ARES rheometer from TA Instruments using a 25 mm plane/plane geometry. Before the measurement, the deviation The apparatus is zeroed with the mold empty.
- a sweep with a constant strain of 1% and a frequency of 10 Hz was performed on the formed hydrogel after placing the mold containing the hydrogel on the geometry.
- hydrogel begins to form spontaneously after immersion in PBS and a progressive gelation front can be observed.
- the gel obtained has values of G' and G" greater than 10 2 Pa for a high oscillation frequency, which corresponds to a very flexible gel.
- the value of G' is higher than that of G" which means that the resulting material is indeed closer to a gel than to a solution.
- G' and G" decrease with frequency which seems to put in evidence of a significant relaxation phenomenon (flow/relaxation/chain mobility, viscoelastic effect) due to a weakly cross-linked gel.
- Example 13 In-vivo tolerance study of the implantation in the peritoneal cavity of a xerogel HG-5-10
- This xerogel has was implanted into the peritoneum of 10 male C57BI/6 mice to assess the biocompatibility and tolerance of the implant.
- Parameters assessed in this study include lifetime observations and measurements (including morbidity/mortality, clinical signs, body weight, food consumption), hematology before and after treatment, and blood chemistry and organ weights after treatment and autopsy.
- Half of the mice were sacrificed on D7 and the other half on D56.
- xerogel HG-5-10 administered as an implantable medical device in the peritoneum, in C57BI/6 male mice, did not induce systemic signs of toxicity.
- Intra-abdominal implantation of xerogel HG-5-10 did not cause microscopic changes in the liver or changes in liver weight.
- Example 14 In-vivo MRI study of the degradability of the gelling injectable solution IS-1,7-3,3 by subcutaneous administration
- the volume occupied by the formed gel decreased to approximately 50% of the initial volume in 30 days of monitoring, while the Ti measured in the same area increased approximately 6 times. .
- implant heterogeneity began to increase due to cell infiltration. This infiltration is demonstrated by the increase in the standard deviations in Ti measured from day 15 to day 30.
- the starting volumes of the implants in the 3 mice were respectively 304, 348 and 216 mm 3 . Tiw signal intensities in liver, kidney and spleen did not increase over the time range studied.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Hematology (AREA)
- Surgery (AREA)
- Dispersion Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Inorganic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Medicinal Preparation (AREA)
- Materials For Medical Uses (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
Description
Description Description
Titre : Gel gonflant à base de chitosane Title: Chitosan-based swelling gel
Domaine technique Technical area
[0001 ] La présente invention relève du domaine des compositions comprenant un polymère porteur d’un groupe chélatant pouvant chélater un ou plusieurs métaux, et leurs utilisations diverses. En particulier, la présente invention concerne des compositions pouvant être sous forme de gel, comprenant un polysaccharide porteur d’un groupe chélatant, ainsi que les fils obtenus à partir de ces gels. The present invention falls within the field of compositions comprising a polymer carrying a chelating group which can chelate one or more metals, and their various uses. In particular, the present invention relates to compositions which may be in the form of a gel, comprising a polysaccharide carrying a chelating group, as well as the yarns obtained from these gels.
Technique antérieure Prior technique
[0002] Les polysaccharides sont des polymères issus de la biomasse végétale, fongique, animale ou bactérienne. Ces polymères possèdent des propriétés physicochimiques très variées et peuvent être mis en forme pour un large éventail d’applications biomédicales car ils sont souvent résorbables, biocompatibles voire bioactifs. La modification chimique des polysaccharides permet d’adapter leurs propriétés physicochimiques, en particulier leur solubilité en milieu aqueux à des pH proches de la neutralité. Leur fonctionnalisation par des agents chélatants hautement spécifiques permet également des applications particulières dans le domaine biomédical. Par exemple, après greffage de ces motifs sur la structure de polysaccharides, le polymère pourrait être utilisé dans la composition d’un dispositif biomédical détoxifiant pour purifier les organismes vivants de métaux pathogènes comme dans le cadre du maintien de l’homéostasie. [0002] Polysaccharides are polymers derived from plant, fungal, animal or bacterial biomass. These polymers have very varied physicochemical properties and can be shaped for a wide range of biomedical applications because they are often resorbable, biocompatible or even bioactive. The chemical modification of polysaccharides makes it possible to adapt their physicochemical properties, in particular their solubility in an aqueous medium at pH close to neutrality. Their functionalization by highly specific chelating agents also allows specific applications in the biomedical field. For example, after grafting these motifs onto the structure of polysaccharides, the polymer could be used in the composition of a detoxifying biomedical device to purify living organisms of pathogenic metals as part of maintaining homeostasis.
[0003] Le maintien de l’homéostasie du milieu intérieur de l’organisme, c’est-à-dire de l’ensemble des liquides ou fluides biologiques de l’organisme, est nécessaire au bon fonctionnement de ce dernier. Dans de nombreuses pathologies, des dysrégulations systémiques ou locales de l’homéostasie des métaux ont été mises en évidence. Des thérapies de chélation, visant à diminuer la concentration en ions métalliques sont déjà utilisées depuis de nombreuses années dans les cas d’intoxications aigues. Ainsi, un certain nombre de chélatants sont déjà acceptés chez l’homme, chacun étant associé à un groupe de métaux particuliers (G. Crisponi et al., Coordination Chemistry Reviews, 2015). The maintenance of the homeostasis of the internal environment of the organism, that is to say of all the liquids or biological fluids of the organism, is necessary for the proper functioning of the latter. In many pathologies, systemic or local dysregulations of metal homeostasis have been demonstrated. Chelation therapies aimed at reducing the concentration of metal ions have already been used for many years in cases of acute poisoning. Thus, a number of chelating agents are already accepted in humans, each associated with a particular group of metals (G. Crisponi et al., Coordination Chemistry Reviews, 2015).
[0004] De plus en plus d’études scientifiques mettent en avant le rôle important que pourraient avoir les métaux dans nombre d’atteintes neurologiques, notamment le fer, mais également le cuivre, le zinc, le manganèse et même l’aluminium et le plomb (E. J. McAllum et al., J. Mol. Neurosci., 2016). [0005] Ainsi, il existe déjà des dispositifs médicaux pouvant être utilisés pour la captation des métaux. Néanmoins, il est toujours bénéfique d’améliorer les résultats obtenus à ce jour, notamment pour diminuer les effets secondaires desdits traitements. [0004] More and more scientific studies are highlighting the important role that metals could have in a number of neurological disorders, in particular iron, but also copper, zinc, manganese and even aluminum and lead (EJ McAllum et al., J. Mol. Neurosci., 2016). [0005] Thus, there are already medical devices that can be used for capturing metals. Nevertheless, it is always beneficial to improve the results obtained to date, in particular to reduce the side effects of said treatments.
[0006] Par ailleurs, il est également souhaitable d’avoir une diversité de forme pour les dispositifs médicaux, par exemple un fil mono ou multibrin pouvant être tissé ou tricoté sous forme d’un textile et permettant d’obtenir un dispositif médical de type pansement ou implant pariétal. Un fil seul peut également être avantageux dans le cas où l’implantation doit être combinée avec une stratégie mini-invasive. La fourniture d’un fil permettant de capter des cations métalliques pour restaurer localement l’homéostasie métallique lorsque qu’il y a accumulation de métaux dans l’organisme serait donc particulièrement intéressante. [0006] Furthermore, it is also desirable to have a variety of shapes for medical devices, for example a single or multi-strand yarn which can be woven or knitted in the form of a textile and makes it possible to obtain a medical device of the dressing or parietal implant. A wire alone can also be advantageous in the event that the implantation must be combined with a minimally invasive strategy. The supply of a wire to capture metal cations to locally restore metal homeostasis when there is an accumulation of metals in the body would therefore be particularly interesting.
[0007] Ainsi, un objectif de l’invention est de proposer une composition pouvant chélater un ou plusieurs métaux. Un autre objectif de l’invention est de fournir un fil pouvant chélater un ou plusieurs métaux. Un autre objectif de l’invention est de fournir un fil ayant de bonnes propriétés mécaniques, et qui peut ainsi être tissé ou tricoté sous forme d’un textile. [0007] Thus, one object of the invention is to provide a composition that can chelate one or more metals. Another object of the invention is to provide a wire which can chelate one or more metals. Another object of the invention is to provide a yarn having good mechanical properties, and which can thus be woven or knitted in the form of a textile.
Résumé Summary
[0008] L’invention concerne en premier lieu une composition comprenant : a. Au moins un chitosane A, et b. Au moins un copolysaccharide statistique B de masse moléculaire moyenne en poids comprise entre 100 kDa et 1000 kDa de formule I : [0008] The invention relates firstly to a composition comprising: a. At least one chitosan A, and b. At least one random copolysaccharide B with a weight-average molecular mass of between 100 kDa and 1000 kDa of formula I:
Formule I dans laquelle : Formula I in which:
- chaque Rc représente indépendamment un groupement comportant un agent chélatant, - each Rc independently represents a group comprising a chelating agent,
- chaque Z représente indépendamment un liant pouvant être une simple liaison ou une chaine hydrocarbonée comportant entre 1 et 12 atomes de carbone, ladite chaine pouvant être linéaire ou ramifiée et pouvant comporter une ou plusieurs insaturations et pouvant comporter un ou plusieurs hétéroatomes, de préférence choisis parmi l’azote, l’oxygène, le soufre et les atomes de la famille des halogènes, - each Z independently represents a binder which may be a single bond or a hydrocarbon chain comprising between 1 and 12 carbon atoms, said chain possibly being linear or branched and possibly comprising one or more unsaturations and possibly comprising one or more heteroatoms, preferably chosen among nitrogen, oxygen, sulfur and atoms of the halogen family,
- x est compris entre 0,01 et 0,5, - x is between 0.01 and 0.5,
- y est compris entre 0,05 et 0,5, - y is between 0.05 and 0.5,
- le rapport y/x étant supérieur à 0,2, de préférence supérieur à 1 , - the y/x ratio being greater than 0.2, preferably greater than 1,
- la somme x + y étant supérieure à 0,1 , et moins de 10% des groupements comportant un agent chélatant de type Rc étant chélatés par un cation d’un élément de transition choisi parmi les éléments du bloc d ou f, et c. éventuellement, de l’eau. - the sum x + y being greater than 0.1, and less than 10% of the groups comprising a chelating agent of the Rc type being chelated by a cation of a transition element chosen from among the elements of block d or f, and c . possibly water.
[0009] La présence de groupement chélatant de type Rc dans le copolysaccharide B permet à cette composition de capter un ou plusieurs métaux de façon efficace, et en particulier de capter des cations métalliques. De plus, l’utilisation de chitosane A et de polysaccharide B, qui est produit à partir de chitosane, permet d’obtenir une composition qui présente des propriétés intéressantes. En effet, cette composition peut être biodégradable, biocompatible et biorésorbable. L’utilisation d’une telle composition permettant de chélater des métaux a donc de nombreuses applications possibles au niveau médical. [0009] The presence of an Rc-type chelating group in the copolysaccharide B enables this composition to capture one or more metals effectively, and in particular to capture metal cations. In addition, the use of chitosan A and polysaccharide B, which is produced from chitosan, makes it possible to obtain a composition that has interesting properties. Indeed, this composition can be biodegradable, biocompatible and bioabsorbable. The use of such a composition making it possible to chelate metals therefore has many possible applications at the medical level.
[0010] En outre, il est possible de former un fil à partir de cette composition, notamment par extrusion de la composition. Ce fil présente de bonnes propriétés mécaniques et peut être mis en forme. Il est possible de tresser les fils, par exemple pour former un matériau textile (tricot ou tissu) capable de capter les métaux. [0010] In addition, it is possible to form a yarn from this composition, in particular by extrusion of the composition. This wire has good mechanical properties and can be shaped. It is possible to braid the threads, for example to form a textile material (knit or fabric) capable of capturing metals.
[0011] Par ailleurs, de manière surprenante, les inventeurs ont démontré que cette composition pouvait gonfler au contact d’un fluide biologique dans des proportions importantes. Ce gonflement permet de favoriser la diffusion et la captation des espèces métalliques à capter, et donc d’améliorer l’efficacité du matériau. [0011] Furthermore, surprisingly, the inventors demonstrated that this composition could swell on contact with a biological fluid in significant proportions. This swelling promotes the diffusion and capture of the metal species to be captured, and therefore improves the efficiency of the material.
[0012] L’invention concerne également un fil comprenant un gel ou un lyophilisât de la composition selon l’invention. The invention also relates to a yarn comprising a gel or a lyophilisate of the composition according to the invention.
[0013] L’invention concerne également un matériau textile comprenant des fils selon l’invention. The invention also relates to a textile material comprising yarns according to the invention.
[0014] L’invention concerne également un dispositif médical comprenant la composition selon l’invention, le dispositif médical étant de préférence un pansement, un implant ou un produit de comblement dermique. The invention also relates to a medical device comprising the composition according to the invention, the medical device preferably being a dressing, an implant or a dermal filler.
[0015] L’invention concerne également la composition selon l’invention pour son utilisation pour la captation d’au moins un métal, de préférence pour son utilisation pour la captation d’au moins un métal dans le traitement ou la prévention de l’endométriose, des infections fongiques, des infections bactériennes, des plaies chroniques, des maladies neurodégénératives, les lésions du système nerveux, de l’hémochromatose, de la maladie de Wilson ou du saturnisme. The invention also relates to the composition according to the invention for its use for the capture of at least one metal, preferably for its use for the capture of at least one metal in the treatment or prevention of endometriosis, fungal infections, bacterial infections, chronic wounds, neurodegenerative diseases, nervous system damage, hemochromatosis, Wilson's disease or lead poisoning.
[0016] L’invention concerne également un procédé de préparation d’une composition selon l’invention, comprenant les étapes suivantes : The invention also relates to a method for preparing a composition according to the invention, comprising the following steps:
1) dispersion du chitosane A et du polysaccharide statistique B de masse moléculaire moyenne en poids comprise entre 100 kDa et 1000 kDa de formule I dans de l’eau,1) dispersion of chitosan A and random polysaccharide B with a weight-average molecular mass of between 100 kDa and 1000 kDa of formula I in water,
2) ajout d’un acide, de préférence de l’acide acétique, 2) addition of an acid, preferably acetic acid,
3) mélange puis centrifugation de la solution obtenue pour récupérer une solution comprenant la composition de l’invention, 3) mixing then centrifugation of the solution obtained to recover a solution comprising the composition of the invention,
4) éventuellement, traitement de la solution obtenue à l’étape 3 dans un bain aqueux basique pour obtenir la composition sous forme d’un gel, et 4) optionally, treatment of the solution obtained in step 3 in a basic aqueous bath to obtain the composition in the form of a gel, and
5) éventuellement, lavage, séchage et/ou stérilisation du gel obtenu à l’étape 4, de préférence par autoclave. 5) optionally, washing, drying and/or sterilization of the gel obtained in step 4, preferably by autoclave.
Brève description des dessins Brief description of the drawings
[0017] D’autres caractéristiques, détails et avantages apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels : [0017] Other characteristics, details and advantages will appear on reading the detailed description below, and on analyzing the appended drawings, in which:
Fig. 1 Fig. 1
[0018] [Fig. 1] montre une photo des hydrogels sous forme de disque obtenus selon l’exemple 4, en haut à gauche : composition 9 selon l’invention (HG-5-5), en bas à gauche : composition 12 selon l’invention (HG-8-8), en bas à droite : composition 10 selon l’invention (HG-5-10), en haut à droite : composition 11 selon l’invention (HG-5- 15). [0018] [Fig. 1] shows a photo of the hydrogels in disk form obtained according to Example 4, top left: composition 9 according to the invention (HG-5-5), bottom left: composition 12 according to the invention (HG -8-8), bottom right: composition 10 according to the invention (HG-5-10), top right: composition 11 according to the invention (HG-5-15).
Fig. 2 Fig. 2
[0019] [Fig. 2] montre une photo des hydrogels sous forme de cylindre obtenus selon l’exemple 4. Il s’agit de la composition comparative 2 (Ref-HG-8-0). [0019] [Fig. 2] shows a photo of the hydrogels in the form of a cylinder obtained according to example 4. This is the comparative composition 2 (Ref-HG-8-0).
Fig. 3 Fig. 3
[0020] [Fig. 3] montre une photo des hydrogels sous forme de cylindre obtenus selon l’exemple 4. Il s’agit de la composition 10 selon l’invention (HG-5-10). [0020] [Fig. 3] shows a photo of the hydrogels in the form of a cylinder obtained according to example 4. This is composition 10 according to the invention (HG-5-10).
Fig. 4 Fig. 4
[0021] [Fig. 4] montre une photo au microscope optique d’un fil ayant un nœud selon l’exemple 5. [0022] [Fig. 5] montre une photo au microscope optique d’un tressage de deux fils selon l’exemple 5. [0021] [Fig. 4] shows an optical microscope photo of a thread having a knot according to example 5. [0022] [Fig. 5] shows a photo under an optical microscope of a braiding of two threads according to example 5.
Fig. 6 Fig. 6
[0023] [Fig. 6] montre une photo du gel séché selon l’exemple 6. [0023] [Fig. 6] shows a photo of the dried gel according to Example 6.
Fig. 7 Fig. 7
[0024] [Fig. 7] montre une photo du gel gonflé selon l’exemple 6. [0024] [Fig. 7] shows a photo of the swollen gel according to example 6.
Fig. 8 Fig. 8
[0025] [Fig. 8] montre une photo au microscope optique d’un fil qui a été à moitié immergé dans l’eau selon l’exemple 6. [0025] [Fig. 8] shows an optical microscope photo of a wire that has been half immersed in water according to example 6.
Fig. 9 Fig. 9
[0026] [Fig. 9] montre une photo au microscope optique d’un fil selon l’exemple 6, dont une goutte d’eau a été déposée sur une portion seulement. [0026] [Fig. 9] shows an optical microscope photo of a wire according to example 6, of which a drop of water has been deposited on only one portion.
Fig. 10 Fig. 10
[0027] [Fig. 10] montre une photo de la formation d’un gel selon l’exemple 12, après injection de la composition 23 selon l’invention (IS-1 ,7-3,3) dans du PBS à 10 mM. [0027] [Fig. 10] shows a photo of the formation of a gel according to example 12, after injection of composition 23 according to the invention (IS-1,7-3,3) in 10 mM PBS.
[0028] [0028]
Fig. 11 Fig. 11
[0029] [Fig. 1 1] montre des images IRM (7.1T) d’un gel formé juste après injection (day 0) et après 15 jours et 30 jours selon l’exemple 14. [0029] [Fig. 1 1] shows MRI images (7.1T) of a gel formed just after injection (day 0) and after 15 days and 30 days according to example 14.
Fig. 12 Fig. 12
[0030] [Fig. 12] montre des images IRM (7.1 T) du gel formé juste après injection selon l’exemple 14. [0030] [Fig. 12] shows MRI images (7.1 T) of the gel formed just after injection according to example 14.
Définition Definition
[0031] Dans la présente divulgation, tous les % et les ppm sont indiqués en en masse, sauf mention contraire. [0031] In the present disclosure, all % and ppm are indicated by weight, unless otherwise indicated.
[0032] Sauf indication contraire, toutes les viscosités dont il est question dans le présent exposé correspondent à une grandeur de viscosité dynamique à 25°C dite « Newtonienne », c’est-à-dire la viscosité dynamique qui est mesurée, de manière connue en soi, avec un rhéomètre à un gradient de vitesse de cisaillement suffisamment faible pour que la viscosité mesurée soit indépendante du gradient de vitesse. [0033] Au sens de la présente divulgation, par « chitosane » on entend un polymère naturel de type co-polysaccharide, constitué d'une distribution aléatoire (copolysaccharide statistique) ou non (copolysaccharides à blocs ou à séquence) de D-glucosamine (GIcN) et de N-acétyl-D-glucosamine (GIcNAc), voire exclusivement de D-glucosamine, liés par des liaisons glycosidiques de type 0(1 ->4). Le chitosane est peu présent à l'état natif dans la biomasse, il est principalement obtenu par modification chimique de la chitine, dont il est un dérivé. La chitine possède un rôle structural, on la retrouve principalement dans certains champignons dont elle constitue la paroi cellulaire (Basidiomycètes ex : agariscus campestris, agariscus bisporus, Ascomycètes, Zygomycètes, et Deutéromycètes), mais elle forme également l'exosquelette des arthropodes (crustacés, insectes) notamment chez la crevette ou le crabe et l'endosquelette des céphalopodes tels que le calamar ou la seiche. Le passage de la chitine au chitosane se fait par désacétylation, c’est-à-dire par hydrolyse alcaline des groupements acétyle pour générer des groupements amine primaire. Le chitosane est un polymère biodégradable et biocompatible, présentant des propriétés bactériostatiques et fongistatiques. [0032] Unless otherwise indicated, all the viscosities referred to in this presentation correspond to a magnitude of dynamic viscosity at 25° C. called "Newtonian", that is to say the dynamic viscosity which is measured, in such a way known per se, with a rheometer at a sufficiently low shear rate gradient for the measured viscosity to be independent of the rate gradient. Within the meaning of the present disclosure, by “chitosan” is meant a natural polymer of the co-polysaccharide type, consisting of a random distribution (random copolysaccharide) or not (block or block copolysaccharides) of D-glucosamine ( GIcN) and N-acetyl-D-glucosamine (GIcNAc), or even exclusively D-glucosamine, linked by type 0(1 ->4) glycosidic bonds. Chitosan is not very present in the native state in the biomass, it is mainly obtained by chemical modification of chitin, of which it is a derivative. Chitin has a structural role, it is mainly found in certain fungi of which it constitutes the cell wall (Basidiomycetes ex: agariscus campestris, agariscus bisporus, Ascomycetes, Zygomycetes, and Deuteromycetes), but it also forms the exoskeleton of arthropods (crustaceans, insects) especially in shrimp or crab and the endoskeleton of cephalopods such as squid or cuttlefish. The transition from chitin to chitosan takes place by deacetylation, that is to say by alkaline hydrolysis of the acetyl groups to generate primary amine groups. Chitosan is a biodegradable and biocompatible polymer, exhibiting bacteriostatic and fungistatic properties.
[0034] Par « gel », on entend un réseau polymère non fluide qui est gonflé par un solvant. Le réseau polymère est un réseau constitué de chaînes polymères réticulées. Les interactions responsables de la réticulation des polymères peuvent être physiques ou chimiques. De manière avantageuse, dans le cadre de l’invention, les gels sont constitués exclusivement de chitosane A, de copolysaccharide B, et, éventuellement, d’eau et/ou d’un ingrédient pharmaceutique actif. By "gel" is meant a non-fluid polymer network which is swollen by a solvent. The polymer network is a network made up of cross-linked polymer chains. The interactions responsible for polymer crosslinking can be physical or chemical. Advantageously, in the context of the invention, the gels consist exclusively of chitosan A, of copolysaccharide B, and, optionally, of water and/or of an active pharmaceutical ingredient.
[0035] Par « hydrogel », on entend un matériau visco-élastique comportant au moins 60% en masse d’eau, et de préférence, au moins 80% en masse d'eau. L’hydrogel selon l’invention contient, en général, de 0,1% à 40% et, de préférence de 0,5 à 20% en masse du mélange de chitosane A et de copolysaccharide B. By "hydrogel" is meant a viscoelastic material comprising at least 60% by mass of water, and preferably at least 80% by mass of water. The hydrogel according to the invention contains, in general, from 0.1% to 40% and preferably from 0.5 to 20% by mass of the mixture of chitosan A and copolysaccharide B.
[0036] Dans le cadre de l’invention, l’hydrogel est dit physique, car les interactions responsables de la réticulation inter-chaînes donnant sa cohésion à l’hydrogel sont de type physique, et sont notamment des liaisons hydrogène et/ou des interactions hydrophobes, par opposition à un hydrogel dit chimique (nommé également hydrogel réticulé), dans lequel les interactions inter-chaînes sont de type liaison covalente. Aucun agent de réticulation chimique n’est présent dans un hydrogel purement physique. De manière avantageuse, dans le cadre de l’invention, les hydrogels physiques sont constitués exclusivement d’eau, de chitosane A, de copolysaccharide B, et éventuellement d’un ingrédient pharmaceutique actif, et contiennent, de préférence, plus de 80% (m/m) d’eau. En particulier, de tels hydrogels ne comportent ni collagène, ni polycaprolactone, ni agent de réticulation chimique toxique (du type glutaraldéhyde, formaldéhyde, épichlorhydrine, etc.). Le fait d’avoir un hydrogel physique présente des avantages car un hydrogel chimique est faiblement résorbable du fait de la stabilité des liaisons covalentes, alors que l’hydrogel physique de chitosane A et de copolysaccharide B selon la présente invention est résorbable en milieu physiologique, en particulier en conditions légèrement acide. [0036] In the context of the invention, the hydrogel is said to be physical, because the interactions responsible for the inter-chain cross-linking giving its cohesion to the hydrogel are of the physical type, and are in particular hydrogen bonds and/or hydrophobic interactions, as opposed to a so-called chemical hydrogel (also called cross-linked hydrogel), in which the inter-chain interactions are of the covalent bond type. No chemical crosslinking agent is present in a purely physical hydrogel. Advantageously, in the context of the invention, the physical hydrogels consist exclusively of water, chitosan A, copolysaccharide B, and optionally an active pharmaceutical ingredient, and preferably contain more than 80% ( m/m) of water. In particular, such hydrogels contain neither collagen, neither polycaprolactone nor toxic chemical cross-linking agent (such as glutaraldehyde, formaldehyde, epichlorohydrin, etc.). Having a physical hydrogel has advantages because a chemical hydrogel is poorly resorbable due to the stability of the covalent bonds, whereas the physical hydrogel of chitosan A and copolysaccharide B according to the present invention is resorbable in a physiological medium, especially in slightly acidic conditions.
[0037] Par « xérogel », on entend un matériau obtenu par séchage, notamment séchage d’un hydrogel, comportant moins de 60% en masse d’eau, de préférence, moins de 50% en masse d'eau et plus préférentiellement, moins de 20% d’eau. Le xérogel selon l’invention contient, en général, au moins 40% en masse du mélange de chitosane A et de copolysaccharide B, de préférence entre 40 et 100%, préférentiellement entre 50 et 99,9% du mélange, et plus préférentiellement entre 80 et 99,5% du mélange. By "xerogel" is meant a material obtained by drying, in particular drying of a hydrogel, comprising less than 60% by mass of water, preferably less than 50% by mass of water and more preferentially, less than 20% water. The xerogel according to the invention contains, in general, at least 40% by mass of the mixture of chitosan A and of copolysaccharide B, preferably between 40 and 100%, preferentially between 50 and 99.9% of the mixture, and more preferentially between 80 and 99.5% of the mixture.
[0038] Par « aérogel », on entend un matériau semblable structuralement à un hydrogel mais dont l’eau a été remplacé par du gaz par un procédé évitant l’impact des forces capillaires du solvant sur le matériau (cf. Mike Robitzer, Laurent David, Cyrille Rochas, Francesco Di Renzo and Françoise Quignard Nanostructure of calcium alginate aerogels obtained from multistep solvent exchange route, Langmuir 2008, 24, 12547- 12552, et Mike Robitzer, Laurent David, Cyrille Rochas, Francesco Di Renzo and Françoise Quignard, Supercritically-dried alginate aerogels retain the fibrillar structure of the hydrogels, Macromol. Symp. 2008, 273, 80-84). [0038] By "airgel", we mean a material structurally similar to a hydrogel but whose water has been replaced by gas by a process avoiding the impact of the capillary forces of the solvent on the material (cf. Mike Robitzer, Laurent David, Cyrille Rochas, Francesco Di Renzo and Françoise Quignard Nanostructure of calcium alginate aerogels obtained from multistep solvent exchange route, Langmuir 2008, 24, 12547-12552, and Mike Robitzer, Laurent David, Cyrille Rochas, Francesco Di Renzo and Françoise Quignard, Supercritically -dried alginate aerogels retain the fibrillar structure of the hydrogels, Macromol. Symp. 2008, 273, 80-84).
[0039] Dans le cadre de l’invention, les masses molaires moyennes en masse Mw du chitosane A et du copolysaccharide B sont déterminées par chromatographie d’exclusion stérique, dont les conditions expérimentales sont décrites dans la publication «Physico-chemical studies of the gelation of chitosan in a hydroalcoholic medium » A. MONTEMBAULT, C. VITON, A. DOMARD, Biomaterials, 26(8), 933-943, 2005. In the context of the invention, the mass-average molar masses Mw of chitosan A and of copolysaccharide B are determined by steric exclusion chromatography, the experimental conditions of which are described in the publication “Physico-chemical studies of the gelation of chitosan in a hydroalcoholic medium” A. MONTEMBAULT, C. VITON, A. DOMARD, Biomaterials, 26(8), 933-943, 2005.
[0040] Le degré d'acétylation (DA) du chitosane A et du copolysaccharide B est déterminé en utilisant la technique de RMN du proton, en suivant la méthodologie d’Hirai (A. HIRAI, H ODANI, A. NAKAJIMA, Polymer Bulletin, 26 (1 ), 87-94, 1991 ). [0040] The degree of acetylation (DA) of chitosan A and copolysaccharide B is determined using the proton NMR technique, following Hirai's methodology (A. HIRAI, H ODANI, A. NAKAJIMA, Polymer Bulletin , 26(1), 87-94, 1991).
[0041] Dans le cadre de l’invention, le taux de cristallinité représente la proportion de matière se trouvant à l’état cristallin. Pour les polysaccharides, il est souvent déterminé par diffraction X (Alexander, L. E., 'X-ray Diffraction Methods in Polymer Science', Wiley- Interscience, New York, 1969, p. 137) car de nombreux polysaccharides se dégradent à des températures inférieures à la température de fusion de la phase cristalline, ce qui ne permet pas l’utilisation de la calorimétrie différentielle à balayage. C’est donc cette méthode qui est à considérer dans la cadre de l’invention. D’autres méthodes spectroscopiques sont possibles mais doivent être adaptées dans chaque cas (Spectrométrie Infra-Rouge à Transformée de Fourier, Spectroscopie Raman). La détermination de la densité par une colonne à gradient permet en principe de calculer le taux de cristallinité connaissant la densité de la phase amorphe et de la phase cristalline du polymère, mais de nombreux polysaccharides peuvent gonfler et absorber les solvants utilisés pour les colonnes à gradient de densité, ce qui limite là encore l’utilisation de cette méthode. In the context of the invention, the degree of crystallinity represents the proportion of material found in the crystalline state. For polysaccharides it is often determined by X-ray diffraction (Alexander, LE, 'X-ray Diffraction Methods in Polymer Science', Wiley-Interscience, New York, 1969, p. 137) because many polysaccharides degrade at lower temperatures at the melting temperature of the crystalline phase, which does not allow the use of differential scanning calorimetry. It is therefore this method which is to be considered within the scope of the invention. Other spectroscopic methods are possible but must be adapted in each case (Infra-Red Spectrometry with Fourier Transform, Raman Spectroscopy). The determination of the density by a gradient column makes it possible in principle to calculate the degree of crystallinity knowing the density of the amorphous phase and the crystalline phase of the polymer, but many polysaccharides can swell and absorb the solvents used for the gradient columns density, which again limits the use of this method.
[0042] Dans le cadre de l’invention, la taille des cristallites peut être déterminée par l’étude de la largeur des pics de diffraction obtenus par la méthode des poudres, en utilisant la relation de Laue-Scherrer (Alexander, L. E., 'X-ray Diffraction Methods in Polymer Science', Wiley-lnterscience, New York, 1969, p. 137). In the context of the invention, the size of the crystallites can be determined by studying the width of the diffraction peaks obtained by the powder method, using the Laue-Scherrer relationship (Alexander, L. E., ' X-ray Diffraction Methods in Polymer Science', Wiley-interscience, New York, 1969, p. 137).
Description des modes de réalisation Description of embodiments
[0043] L’invention concerne en premier lieu une composition comprenant : a. Au moins un chitosane A, et b. Au moins un copolysaccharide statistique B de masse moléculaire moyenne en poids comprise entre 100 kDa et 1000 kDa de formule I : The invention relates firstly to a composition comprising: a. At least one chitosan A, and b. At least one random copolysaccharide B with a weight-average molecular mass of between 100 kDa and 1000 kDa of formula I:
Formule I dans laquelle : Formula I in which:
- chaque Rc représente indépendamment un groupement comportant un agent chélatant, - each Rc independently represents a group comprising a chelating agent,
- chaque Z représente indépendamment un liant pouvant être une simple liaison ou une chaine hydrocarbonée comportant entre 1 et 12 atomes de carbone, ladite chaine pouvant être linéaire ou ramifiée et pouvant comporter une ou plusieurs insaturations et pouvant comporter un ou plusieurs hétéroatomes, de préférence choisis parmi l’azote, l’oxygène, le soufre et les atomes de la famille des halogènes, - each Z independently represents a binder which may be a single bond or a hydrocarbon chain comprising between 1 and 12 carbon atoms, said chain possibly being linear or branched and possibly comprising one or more unsaturations and possibly comprising one or more heteroatoms, preferably chosen among nitrogen, oxygen, sulfur and atoms of the halogen family,
- x est compris entre 0,01 et 0,5, - x is between 0.01 and 0.5,
- y est compris entre 0,05 et 0,5, - y is between 0.05 and 0.5,
- le rapport y/x étant supérieur à 0,2, de préférence supérieur à 1 , - the y/x ratio being greater than 0.2, preferably greater than 1,
- la somme x + y étant supérieure à 0,1 , et moins de 10% des groupements comportant un agent chélatant de type Rc étant chélatés par un cation d’un élément de transition choisi parmi les éléments du bloc d et f, et c. éventuellement, de l’eau. - the sum x + y being greater than 0.1, and less than 10% of the groups comprising a chelating agent of Rc type being chelated by a cation of a transition element chosen from the elements of block d and f, and c. possibly water.
[0044] Selon un mode de réalisation, le ratio massique entre A et B (A :B) est compris entre 2 :1 et 1 :10, de préférence entre 1 :1 et 1 :5. According to one embodiment, the mass ratio between A and B (A:B) is between 2:1 and 1:10, preferably between 1:1 and 1:5.
[0045] Cette composition peut comprendre, en outre, au moins un ingrédient pharmaceutique actif, de préférence choisi parmi les anticancéreux, les antibactériens, les antifongiques, les anti-inflammatoires, les ARN messagers, les protéines, et les antigènes. This composition may also comprise at least one active pharmaceutical ingredient, preferably chosen from anticancer agents, antibacterial agents, antifungal agents, anti-inflammatories, messenger RNAs, proteins and antigens.
[0046] Par ingrédient pharmaceutique actif, on entend tout composé ayant un effet thérapeutique ou préventif. Le fait que cette composition ait de bonnes propriétés de gonflement permet de capter puis de relarguer efficacement les ingrédients pharmaceutiques actifs. Il est en effet possible de mettre en contact la composition avec l’ingrédient pharmaceutique actif, par exemple avec une solution comprenant l’ingrédient pharmaceutique actif, et la composition capte alors cet ingrédient. Ensuite, cet ingrédient peut être relargué, par exemple en plongeant la composition dans un autre milieu. Cela se produit avantageusement lorsque la composition est sous forme de gel. By active pharmaceutical ingredient is meant any compound having a therapeutic or preventive effect. The fact that this composition has good swelling properties makes it possible to effectively capture and then release the active pharmaceutical ingredients. It is in fact possible to bring the composition into contact with the active pharmaceutical ingredient, for example with a solution comprising the active pharmaceutical ingredient, and the composition then captures this ingredient. Then, this ingredient can be salted out, for example by immersing the composition in another medium. This advantageously occurs when the composition is in the form of a gel.
[0047] La composition peut être sous plusieurs formes : solution aqueuse, lyophilisât ou gel. The composition can be in several forms: aqueous solution, lyophilizate or gel.
[0048] Selon un mode de réalisation, la composition est une solution aqueuse, de préférence comprenant au moins 10 g/L, de préférence au moins 50 g/L, du mélange de chitosane A et de copolysaccharide B. Lorsque la composition est sous forme de solution aqueuse, la composition peut être injectable. La concentration du mélange de chitosane A et de copolysaccharide B peut être comprise entre 10 g/L et 500 g/L, de préférence entre 40 g/L et 160 g/L. According to one embodiment, the composition is an aqueous solution, preferably comprising at least 10 g/L, preferably at least 50 g/L, of the mixture of chitosan A and copolysaccharide B. When the composition is under In the form of an aqueous solution, the composition may be injectable. The concentration of the mixture of chitosan A and of copolysaccharide B can be between 10 g/L and 500 g/L, preferably between 40 g/L and 160 g/L.
[0049] La solution aqueuse peut avoir une viscosité Newtonienne comprise entre 0.1 et 50000 Pa.s, de préférence comprise entre 50 et 25000 Pa.s, et plus préférentiellement comprise entre 100 et 10000 Pa.s. The aqueous solution may have a Newtonian viscosity between 0.1 and 50,000 Pa.s, preferably between 50 and 25,000 Pa.s, and more preferably between 100 and 10,000 Pa.s.
[0050] La solution aqueuse est une solution gélifiable. Elle peut se gélifier lorsqu’elle est mise en contact avec un bain de coagulation à pH basique. La gélification a lieu à pH basique après neutralisation des amines (NH2) initialement protonées (NH3 +) présentes dans la solution. L’état d’enchevêtrement des chaînes résultant de la forte viscosité initiale est figé par la formation de sites d’interactions interchaines (cristallites, interactions hydrophobes, interactions par liaisons hydrogène) et assure ainsi l’obtention d’un hydrogel physique stable et de propriétés mécaniques suffisantes pour être manipulé ou étiré. Les hydrogels résultants sont réversibles par un traitement en solution acide et se dissocient des hydrogels chimiques où la gélification est assurée par la formation de liaisons chimiques covalentes irréversibles. Ils peuvent être séchés et réhydratés de manière réversible. La solution peut également être lyophilisée. The aqueous solution is a gellable solution. It can gel when brought into contact with a coagulation bath at basic pH. The gelation takes place at basic pH after neutralization of the initially protonated amines (NH 2 ) (NH 3 + ) present in the solution. The state of entanglement of the chains resulting from the high initial viscosity is fixed by the formation of interchain interaction sites (crystallites, hydrophobic interactions, interactions by hydrogen bonds) and thus ensures obtaining a stable physical hydrogel and sufficient mechanical properties to be manipulated or stretched. The resulting hydrogels are reversible by acid solution treatment and dissociate from chemical hydrogels where gelation is provided by the formation of irreversible covalent chemical bonds. They can be dried and rehydrated reversibly. The solution can also be lyophilized.
[0051] La composition peut également être sous la forme d’un lyophilisât ou d’un gel, de préférence sous forme d’un hydrogel, d’un xérogel ou d’un aérogel. The composition can also be in the form of a lyophilizate or a gel, preferably in the form of a hydrogel, a xerogel or an airgel.
[0052] L’hydrogel selon l’invention peut contenir de 0,1% à 40% et, de préférence de 0,5 à 20% en masse du mélange de chitosane A et de copolysaccharide B. The hydrogel according to the invention may contain from 0.1% to 40% and preferably from 0.5 to 20% by mass of the mixture of chitosan A and copolysaccharide B.
[0053] Le xérogel selon l’invention peut contenir au moins 40% en masse du mélange de chitosane A et de copolysaccharide B, de préférence entre 40 et 100%, préférentiellement entre 50 et 99,9% du mélange, et plus préférentiellement entre 80 et 99,5% du mélange. Lorsque la composition est sous forme de xérogel, le xérogel peut être issu du séchage, au moins partiel, d’un hydrogel. The xerogel according to the invention may contain at least 40% by weight of the mixture of chitosan A and copolysaccharide B, preferably between 40 and 100%, preferably between 50 and 99.9% of the mixture, and more preferably between 80 and 99.5% of the mixture. When the composition is in the form of a xerogel, the xerogel may result from the at least partial drying of a hydrogel.
[0054] Le xérogel, lorsqu’il est en contact d’un milieu aqueux ou d’un tissu biologique pendant une période d’au moins 1 heure, gonfle pour former un hydrogel, ledit hydrogel ayant un volume au moins 2 fois plus important, de préférence au moins 5 fois plus important, que le volume de xérogel de référence avant contact avec le milieu aqueux ou le tissu biologique. Le gonflement peut être quantifié en mesurant la masse du xérogel initial et la masse de l’hydrogel obtenu. The xerogel, when in contact with an aqueous medium or a biological tissue for a period of at least 1 hour, swells to form a hydrogel, said hydrogel having a volume at least 2 times greater , preferably at least 5 times greater than the volume of reference xerogel before contact with the aqueous medium or the biological tissue. The swelling can be quantified by measuring the mass of the initial xerogel and the mass of the resulting hydrogel.
[0055] Un tissu biologique est un ensemble de cellules différenciées ou non, organisées selon une architecture caractéristique, en association avec un réseau de macromolécules naturelles ou matrice extracellulaire (MEC) et concourant à exercer une même fonction. Le tissu cellulaire est naturellement hydraté, ce qui permet le gonflement du xérogel. A biological tissue is a set of differentiated or undifferentiated cells, organized according to a characteristic architecture, in association with a network of natural macromolecules or extracellular matrix (ECM) and contributing to exert the same function. The cellular tissue is naturally hydrated, which allows the xerogel to swell.
[0056] L’hydrogel obtenu par réhydratation d’un xérogel peut ensuite être à nouveau séché pour reformer un xérogel. Il est possible d’effectuer plusieurs cycles de séchage- gonflage avec cette composition. The hydrogel obtained by rehydrating a xerogel can then be dried again to reform a xerogel. It is possible to carry out several drying-inflating cycles with this composition.
[0057] Les gels selon l’invention possèdent de bonnes propriétés mécaniques. Il est ainsi possible d’en faire des fils, par exemple en extrudant la composition selon l’invention à travers une filière dans un bain de coagulation. Ces fils peuvent ensuite être utilisés pour préparer un matériau textile. Le fil peut avoir un diamètre compris entre 50 pm et 700 pm, de préférence entre 80 pm et 500 pm. [0058] La composition selon l’invention, et en particulier, les fils et/ou les matériaux textiles, peuvent être utilisés dans les dispositifs médicaux, grâce à leurs bonnes propriétés de gonflement et de captation des métaux. Avantageusement, les fils et/ou les matériaux textiles peuvent être dégradés par l’organisme ou explantés pour éliminer les métaux chelatés. The gels according to the invention have good mechanical properties. It is thus possible to make threads thereof, for example by extruding the composition according to the invention through a die in a coagulation bath. These threads can then be used to prepare a textile material. The wire may have a diameter of between 50 μm and 700 μm, preferably between 80 μm and 500 μm. The composition according to the invention, and in particular the threads and/or the textile materials, can be used in medical devices, thanks to their good properties of swelling and metal uptake. Advantageously, the threads and/or the textile materials can be degraded by the organism or explanted to eliminate the chelated metals.
[0059] Le dispositif médical en question est de préférence un pansement, un implant ou un produit de comblement dermique. Selon un mode de réalisation, le dispositif médical comprend un fil et/ou un matériau textile selon l’invention. The medical device in question is preferably a dressing, an implant or a dermal filler. According to one embodiment, the medical device comprises a yarn and/or a textile material according to the invention.
[0060] Dans le cas d’un produit de comblement dermique, celui-ci peut être sous forme de fil, de préférence ledit fil étant sous forme de xérogel qui peut gonfler au contact d’un milieu aqueux ou d’un tissu biologique pour former un hydrogel. Le produit de comblement dermique peut également être une solution selon l’invention qui peut alors être injectée. [0060] In the case of a dermal filler, this can be in the form of a thread, preferably said thread being in the form of a xerogel which can swell on contact with an aqueous medium or a biological tissue to form a hydrogel. The dermal filler can also be a solution according to the invention which can then be injected.
[0061] Les bonnes propriétés de captation des métaux de la composition permettent de l’utiliser pour la captation d’au moins un métal dans le traitement ou la prévention de l’endométriose, des infections fongiques, des infections bactériennes, des plaies chroniques (escarres, plaies diabétiques) des maladies neurodégénératives (maladie de Parkinson, Maladie d’Alzheimer,...), de l’hémochromatose, de la maladie de Wilson, ou du saturnisme. Le métal est de préférence un cation métallique. Selon un mode de réalisation, le métal appartient au groupe constitué du cuivre, du fer, du plomb, du zinc, de l’aluminium, du gadolinium et du manganèse et de manière plus préférentielle, dans le groupe constitué du cuivre, du fer et du plomb. [0061] The good metal-capturing properties of the composition make it possible to use it for the capture of at least one metal in the treatment or prevention of endometriosis, fungal infections, bacterial infections, chronic wounds ( bedsores, diabetic wounds) neurodegenerative diseases (Parkinson's disease, Alzheimer's disease, etc.), hemochromatosis, Wilson's disease, or lead poisoning. The metal is preferably a metal cation. According to one embodiment, the metal belongs to the group consisting of copper, iron, lead, zinc, aluminum, gadolinium and manganese and more preferably, to the group consisting of copper, iron and Lead.
[0062] L’invention concerne également l’utilisation de la composition selon l’invention pour la captation d’au moins un métal, éventuellement pour le traitement ou la prévention d’une maladie. The invention also relates to the use of the composition according to the invention for capturing at least one metal, optionally for the treatment or prevention of a disease.
[0063] L’invention concerne également une méthode de traitement ou de prévention de l’endométriose, des infections fongiques, des infections bactériennes, des plaies chroniques (escarres, plaies diabétiques) des maladies neurodégénératives (maladie de Parkinson, Maladie d’Alzheimer,...), de l’hémochromatose, de la maladie de Wilson, ou du saturnisme, ladite méthode comprenant l’utilisation de la composition selon l’invention pour la captation d’au moins un métal. The invention also relates to a method for treating or preventing endometriosis, fungal infections, bacterial infections, chronic wounds (bedsores, diabetic wounds), neurodegenerative diseases (Parkinson's disease, Alzheimer's disease, ...), hemochromatosis, Wilson's disease, or lead poisoning, said method comprising the use of the composition according to the invention for the capture of at least one metal.
Procédé de préparation de la composition Process for preparing the composition
[0064] L’invention concerne également un procédé de préparation d’une composition selon l’invention comprenant les étapes suivantes : The invention also relates to a method for preparing a composition according to the invention comprising the following steps:
1 ) dispersion du chitosane A et du copolysaccharide statistique B de masse moléculaire moyenne en poids comprise entre 10OkDa et 10OOkDa de formule I dans de l’eau,1 ) dispersion of chitosan A and random copolysaccharide B of molecular mass weight average of between 100kDa and 1000kDa of formula I in water,
2) ajout d’un acide, de préférence de l’acide acétique, 2) addition of an acid, preferably acetic acid,
3) mélange puis centrifugation de la solution obtenue pour récupérer une solution comprenant la composition, 3) mixing and then centrifuging the solution obtained to recover a solution comprising the composition,
4) éventuellement, traitement de la solution obtenue à l’étape 3 dans un bain aqueux basique pour obtenir la composition sous forme d’un gel, et 4) optionally, treatment of the solution obtained in step 3 in a basic aqueous bath to obtain the composition in the form of a gel, and
5) éventuellement, lavage, séchage et/ou stérilisation du gel obtenu à l’étape 4, de préférence par autoclave. 5) optionally, washing, drying and/or sterilization of the gel obtained in step 4, preferably by autoclave.
[0065] De préférence, l’acide est ajouté en proportion stoechiométrique par rapport aux fonctions de type amine primaire non fonctionnalisées du chitosane A et du copolysaccharide B. L’acide est de préférence organique. Preferably, the acid is added in stoichiometric proportion with respect to the non-functionalized primary amine type functions of the chitosan A and of the copolysaccharide B. The acid is preferably organic.
[0066] La solution comprenant la composition a de préférence une viscosité comprise entre 0.1 et 50000 Pa.s. The solution comprising the composition preferably has a viscosity of between 0.1 and 50,000 Pa.s.
[0067] Le bain aqueux basique à l’étape 4 est un bain de coagulation qui permet la gélification de la solution. Ce bain de coagulation est de préférence une solution alcaline, par exemple de soude, d’ammoniaque ou de potasse, à une concentration pouvant être comprise entre 0,5 et 10 M, de préférence entre 1 et 5 M. Le bain de coagulation peut également être une chambre de coagulation où des vapeurs alcalines sont utilisées, comme des vapeurs d’ammoniac. The basic aqueous bath in step 4 is a coagulation bath which allows the solution to gel. This coagulation bath is preferably an alkaline solution, for example of sodium hydroxide, ammonia or potash, at a concentration which can be between 0.5 and 10 M, preferably between 1 and 5 M. The coagulation bath can also be a coagulation chamber where alkaline vapors are used, such as ammonia vapors.
[0068] Pour obtenir un fil, il est possible, lors de l’étape 4, d’extruder la composition selon l’invention à travers une filière (ou cône d’extrusion). L’extrudât est ensuite introduit dans le bain de coagulation. Il est également possible d’extruder directement la composition dans le bain de coagulation. To obtain a yarn, it is possible, during step 4, to extrude the composition according to the invention through a die (or extrusion cone). The extrudate is then introduced into the coagulation bath. It is also possible to extrude the composition directly into the coagulation bath.
[0069] L’étape 5 peut comprendre une ou plusieurs étapes de lavage, le lavage pouvant être effectué à l’eau ou avec un tampon. [0069] Step 5 can comprise one or more washing steps, the washing being able to be carried out with water or with a buffer.
[0070] L’étape 5 peut également comprendre une ou plusieurs étapes d’échange de solvant, par exemple pour remplacer l’eau par de l’éthanol. Step 5 can also include one or more solvent exchange steps, for example to replace the water with ethanol.
[0071] L’étape 5 peut comprendre une ou plusieurs étapes de séchage. Le séchage à l’étape 5 peut être effectué à l’air libre, à température ambiante, ou à une température comprise entre 30 et 250°C, par exemple sous air chaud à une température comprise entre 100 et 200°C. Selon un mode de réalisation, le séchage est effectué après échange de l’eau avec l’éthanol par bains successifs progressivement concentrés en alcool, puis après échange de l’éthanol par du CO2 liquide dans une enceinte pressurisée, puis après détente en milieu du CO2 supercrititque, ce qui permet de former un aérogel. [0072] Toute technique de stérilisation bien connue de l’homme de l’art pourra être utilisée, notamment une stérilisation à la vapeur d'eau par autoclave, irradiation gamma ou béta.[0071] Step 5 may comprise one or more drying steps. The drying in step 5 can be carried out in the open air, at ambient temperature, or at a temperature comprised between 30 and 250°C, for example in hot air at a temperature comprised between 100 and 200°C. According to one embodiment, the drying is carried out after exchange of water with ethanol by successive baths gradually concentrated in alcohol, then after exchange of ethanol with liquid CO 2 in a pressurized enclosure, then after expansion in medium supercritical CO 2 , which makes it possible to form an airgel. Any sterilization technique well known to those skilled in the art may be used, in particular steam sterilization by autoclave, gamma or beta irradiation.
Chitosane A Chitosan A
[0073] La composition selon l’invention comprend un chitosane A. The composition according to the invention comprises a chitosan A.
[0074] La composition peut avoir ; The composition may have;
- un taux de cristallinité ramené au chitosane A d’au moins 10% par rapport à la masse sèche totale de la composition, et - a level of crystallinity reduced to chitosan A of at least 10% relative to the total dry mass of the composition, and
- une taille de cristallite du chitosane A de moins de 20 nm. - a chitosan A crystallite size of less than 20 nm.
[0075] Le taux de cristallinité ramené au chitosane A peut être compris entre 10 et 25%. Les cristallites du chitosane A jouent le rôle de nœuds de réticulation physique indispensables à la constitution d’un gel. La taille des cristallites peut par exemple être comprise entre 1 et 20 nm. The level of crystallinity reduced to chitosan A can be between 10 and 25%. The crystallites of chitosan A play the role of physical cross-linking nodes essential to the constitution of a gel. The size of the crystallites can for example be between 1 and 20 nm.
[0076] Avantageusement, le chitosane A possède une masse moléculaire moyenne Mw comprise entre 100 kg/mol et 1000 kg/mol, de préférence entre 200 kg/mol et 700 kg/mol. Advantageously, chitosan A has an average molecular weight Mw of between 100 kg/mol and 1000 kg/mol, preferably between 200 kg/mol and 700 kg/mol.
[0077] Selon un mode de réalisation préféré, le chitosane A possède un degré d’acétylation x inférieur à 40%, de préférence inférieur à 10%, par exemple compris entre 0% et 10%.According to a preferred embodiment, chitosan A has a degree of acetylation x of less than 40%, preferably less than 10%, for example between 0% and 10%.
Copolysaccharide B Copolysaccharide B
[0078] La composition comprend un copolysaccharide statistique B de masse moléculaire moyenne en poids comprise entre 100 kDa et 1000 kDa de formule I. The composition comprises a random copolysaccharide B with a weight-average molecular mass of between 100 kDa and 1000 kDa of formula I.
[0079] Il est entendu que, dans la formule I ci-dessus, plusieurs groupements Rc peuvent être présents dans le polysaccharide. Ces groupements Rc peuvent être identiques ou différents les uns des autres. Ils sont tous indépendamment choisis parmi les groupements portant un agent chélatant. Il en va de même des liants Z : plusieurs liants Z peuvent être présents, et ils peuvent être identiques ou différents les uns des autres. It is understood that, in formula I above, several Rc groups may be present in the polysaccharide. These Rc groups can be identical to or different from each other. They are all independently chosen from the groups carrying a chelating agent. The same applies to the Z binders: several Z binders may be present, and they may be identical or different from each other.
[0080] Le copolysaccharide B peut être de formule II : The copolysaccharide B can be of formula II:
Formule II dans laquelle : Formula II in which:
- Rci et RC2 sont différents, et sont des groupements comportant un agent chélatant, - Zi et Z2, identiques ou différents, sont des liants pouvant être une simple liaison ou une chaine hydrocarbonée comportant entre 1 et 12 atomes de carbone, ladite chaine pouvant être linéaire ou ramifiée et pouvant comporter une ou plusieurs insaturations et pouvant comporter un ou plusieurs hétéroatomes, de préférence choisis parmi l’azote, l’oxygène, le soufre et les atomes de la famille des halogènes, - Rci and RC 2 are different, and are groups containing a chelating agent, - Zi and Z 2 , which are identical or different, are binders which may be a single bond or a hydrocarbon chain comprising between 1 and 12 carbon atoms, said chain possibly being linear or branched and possibly comprising one or more unsaturations and possibly comprising one or more several heteroatoms, preferably chosen from nitrogen, oxygen, sulfur and atoms of the halogen family,
- x est compris entre 0,01 et 0,5, de préférence entre 0,01 et 0,1 , et préférentiellement entre 0,05 et 0,1 , - x is between 0.01 and 0.5, preferably between 0.01 and 0.1, and preferably between 0.05 and 0.1,
- y est compris entre 0,01 et 0,5, de préférence entre 0,05 et 0,2, - y is between 0.01 and 0.5, preferably between 0.05 and 0.2,
- z est compris entre 0 et 0,2, et moins de 10% des groupements comportant un agent chélatant de type Rc1 et Rc2 étant chélatés par un cation d’un élément de transition choisi parmi les éléments du bloc d et f. - z is between 0 and 0.2, and less than 10% of the groups comprising a chelating agent of Rc1 and Rc2 type being chelated by a cation of a transition element chosen from among the elements of block d and f.
[0081] On entend par groupement de type Rc, les groupements Rc dans le polysaccharide de formule I, et les groupements Rci et Rc2, lorsque le groupement Rc2 est présent, dans le polysaccharide de formule II. The term Rc-type group means the Rc groups in the polysaccharide of formula I, and the Rci and Rc 2 groups, when the Rc 2 group is present, in the polysaccharide of formula II.
[0082] Selon un mode de réalisation, moins de 10% des groupements de type Rc, de préférence moins de 5%, sont chélatés par un cation, en particulier un cation métallique. Le fait que les groupements de type Rc soit sous forme libre, permet une bonne captation des métaux. Le copolysaccharide B présente également une grande hydrophilie, ce qui induit de bonnes propriétés de gonflement. According to one embodiment, less than 10% of the groups of Rc type, preferably less than 5%, are chelated by a cation, in particular a metal cation. The fact that the Rc-type groups are in free form allows good uptake of metals. Copolysaccharide B also exhibits high hydrophilicity, which induces good swelling properties.
[0083] Conformément à l’invention, les groupements Rc, Rci et Rc2 sont des agents chélatants. En d’autres termes les groupements Rc, Rci et Rc2 permettent de chélater un ou plusieurs métaux en formant un complexe. In accordance with the invention, the groups Rc, Rci and Rc 2 are chelating agents. In other words, the groups Rc, Rci and Rc 2 make it possible to chelate one or more metals by forming a complex.
[0084] Chacun des groupements Rc, Rci et Rc2 peut contenir un ou plusieurs sites de coordination. De préférence, le site de coordination est un atome d’azote ou d’oxygène. De manière avantageuse, chacun des groupements Rc, Rci et Rc2 comporte entre 4 et 8 sites de coordination, de manière plus avantageuse entre 6 et 8 sites de coordination et de manière encore plus avantageuse chacun des groupements Rc, Rci et Rc2 comporte 8 sites de coordination. Each of the groups Rc, Rci and Rc 2 can contain one or more coordination sites. Preferably, the coordination site is a nitrogen or oxygen atom. Advantageously, each of the groups Rc, Rci and Rc 2 comprises between 4 and 8 coordination sites, more advantageously between 6 and 8 coordination sites and even more advantageously each of the groups Rc, Rci and Rc 2 comprises 8 coordinating sites.
[0085] On entend par site de coordination une unique fonction capable de se lier à un métal. Par exemple, une fonction amine représente un site de coordination par la formation d’une liaison dative entre l’atome d’azote et le métal et une fonction acide hydroxamique représente également un site de coordination par la formation d’une liaison dative entre l’oxygène du motif carbonyle et par une liaison covalente avec l’oxygène du motif bioxyde le site de coordination formant ainsi un cycle à cinq chainons. The term coordination site means a single function capable of binding to a metal. For example, an amine function represents a coordination site by the formation of a dative bond between the nitrogen atom and the metal and a hydroxamic acid function also represents a coordination site by the formation of a dative bond between the oxygen of the carbonyl unit and by a covalent bond with the oxygen of the dioxide unit the coordination site thus forming a five-membered ring.
[0086] Dans un mode de réalisation de l’invention, pour le polysaccharide de formule I, chaque groupement Rc est indépendamment choisi dans le groupe constitué du DOTA (acide 1 ,4,7,10-tétraazacyclododécane-N,N’,N”,N’”-téracétique), NOTA (acide 1 ,4,7- triazacyclononane-1 ,4,7-triacétique), NODAGA (acide 1 ,4,7-triazacyclononane-1 - glutarique-4,7-acide diacétique), DOTAGA (acide 2-(4,7,10-tris(carboxymethyl)- 1 ,4,7,10-tétraazacyclododécan-1 -yl)pentanedioïque), DOTAM (1 ,4,7,10- tetrakis(carbamoylméthyl)-1 ,4,7,10 tétraazacyclododécane), NOTAM (1 ,4,7- tetrakis(carbamoylméthyl)-1 ,4,7-triazacyclononane), DOTP (1 ,4,7,10- tétraazacyclododécane 1 ,4,7,10-tétrakis(méthylène phosphonate), NOTP (1 ,4,7- tétrakis(méthylène phosphonate)-1 ,4,7-triazacyclononane), TETA (acide 1 ,4,8,1 1 - tétraazacyclotétradécane-N,N’,N”,N’”-téraacétique), TETAM (1 ,4,8,1 1 - tétraazacyclotétradécane-N,N’,N”,N’”-tétrakis(carbamoyl méthyl), du DTPA (acide diéthylène triaminopentaacétique) et DFO (deferoxamine), de préférence dans le groupe constitué du DOTAGA, DFO, DOTAM et du DTPA et de manière plus préférée le groupement Rc est le DOTAGA. In one embodiment of the invention, for the polysaccharide of formula I, each Rc group is independently chosen from the group consisting of DOTA (1,4,7,10-tetraazacyclododecane-N,N',N ”,N'”-teracetic acid), NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid), NODAGA (1,4,7-triazacyclononane-1-glutaric-4,7-diacetic acid ), DOTAGA (2-(4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecan-1-yl)pentanedioic acid), DOTAM (1,4,7,10-tetrakis(carbamoylmethyl) -1,4,7,10 tetraazacyclododecane), NOTAM (1,4,7-tetrakis(carbamoylmethyl)-1,4,7-triazacyclononane), DOTP (1,4,7,10-tetraazacyclododecane 1,4,7, 10-tetrakis(methylene phosphonate), NOTP (1,4,7-tetrakis(methylene phosphonate)-1,4,7-triazacyclononane), TETA (1,4,8,1 1-tetraazacyclotetradecane-N,N' acid, N”,N'”-teraacetic acid), TETAM (1 ,4,8,1 1 - tetraazacyclotetradecane-N,N',N”,N'”-tetrakis(carbamoyl methyl), DTPA (diethylene triaminopentaacetic acid) and DFO (deferoxamine), preferably from the group consisting of DOTAGA, DFO, DOTAM and DTPA and more preferably the Rc group is DOTAGA.
[0087] Dans un mode de réalisation de l’invention, pour le polysaccharide de formule II, Rci et RC2 sont indépendamment choisis dans le groupe constitué du DOTA, NOTA, NODAGA, DOTAGA, DOTAM, NOTAM, DOTP, NOTP, TETA, TETAM, du DTPA et DFO, de préférence dans le groupe constitué du DOTAGA, DFO, DOTAM et du DTPA. In one embodiment of the invention, for the polysaccharide of formula II, Rci and RC 2 are independently chosen from the group consisting of DOTA, NOTA, NODAGA, DOTAGA, DOTAM, NOTAM, DOTP, NOTP, TETA, TETAM, DTPA and DFO, preferably from the group consisting of DOTAGA, DFO, DOTAM and DTPA.
[0088] Selon un mode de réalisation, pour le polysaccharide de formule II, le groupement Rci est le DOTAGA, et de préférence, z=0. According to one embodiment, for the polysaccharide of formula II, the Rci group is DOTAGA, and preferably, z=0.
[0089] Selon un mode de réalisation, pour le polysaccharide de formule II, le groupement Rci est le DOTAGA et le groupement Rc2 est le DFO According to one embodiment, for the polysaccharide of formula II, the Rci group is DOTAGA and the Rc 2 group is DFO
[0090] On entend par liant de type Z, les liants Z dans le polysaccharide de formule I, et les liants Zi et Z2, lorsque le liant Z2 est présent, dans le polysaccharide de formule II. The term “Z-type binder” means the Z binders in the polysaccharide of formula I, and the Zi and Z 2 binders, when the Z 2 binder is present, in the polysaccharide of formula II.
[0091] Le choix des liants Z, Zi et Z2 dans les formules I et II dépend essentiellement des groupements Rc, Rci et Rc2 et du métal à chélater. En effet, pour des raisons stériques notamment, les groupements Rc, Rci et Rc2 peuvent être plus ou moins proche du cycle à 6 chainons de l’azote de l’unité glucosamine. The choice of binders Z, Zi and Z 2 in formulas I and II essentially depends on the Rc, Rci and Rc 2 groups and on the metal to be chelated. Indeed, for steric reasons in particular, the Rc, Rci and Rc 2 groups may be more or less close to the 6-membered ring of the nitrogen of the glucosamine unit.
[0092] De préférence, dans la formule I, chaque Z est indépendamment une simple liaison ou une chaine hydrocarbonée comportant entre 1 et 12 atomes de carbone, ladite chaine pouvant être linéaire ou ramifiée et pouvant comporter une ou plusieurs insaturations et pouvant comporter un ou plusieurs hétéroatomes, de préférence choisis parmi l’azote, l’oxygène, le soufre et les atomes de la famille des halogènes. Preferably, in formula I, each Z is independently a single bond or a hydrocarbon chain comprising between 1 and 12 carbon atoms, said chain possibly being linear or branched and possibly comprising one or more unsaturations and possibly comprising one or more heteroatoms, preferably chosen from nitrogen, oxygen, sulfur and atoms of the halogen family.
[0093] Selon un mode de réalisation, dans la formule I, chaque Z est indépendamment sélectionné dans le groupe constitué par : une liaison, une chaine alkyle linéaire ou ramifiée comportant entre 1 et 12 atomes de carbone, et une chaine alcényle linéaire ou ramifiée comportant entre 2 et 12 atomes de carbone, lesdites chaînes alkyle et alcényle pouvant être interrompues par un ou plusieurs groupes aryle en C6-Cio, et/ou par un ou plusieurs hétéroatomes ou groupes sélectionnés dans le groupe constitué par -O-, -S-, -C(O)-, -NR’-, -C(O)NR’-, -NR’-C(O)-, -NR’-C(O)-NR’-, -NR’-C(O)-O-, -O-C(O)NR’, -C(S)NR’-, -NR’-C(S)-, -NR’-C(S)-NR’ lesdites chaînes alkyle et alcényle pouvant être substituées par un ou plusieurs groupes sélectionnés dans le groupe constitué par les halogènes, -OR’, -COOR’, -SR’, -NR’2, chaque R’ est indépendamment H ou un alkyl en Ci-C6. According to one embodiment, in formula I, each Z is independently selected from the group consisting of: a bond, a linear or branched alkyl chain comprising between 1 and 12 carbon atoms, and a linear or branched alkenyl chain comprising between 2 and 12 carbon atoms, said alkyl and alkenyl chains possibly being interrupted by one or more C 6 -Cio aryl groups, and/or by one or more heteroatoms or groups selected from the group consisting of -O-, - S-, -C(O)-, -NR'-, -C(O)NR'-, -NR'-C(O)-, -NR'-C(O)-NR'-, -NR' -C(O)-O-, -OC(O)NR', -C(S)NR'-, -NR'-C(S)-, -NR'-C(S)-NR' said alkyl chains and alkenyl which may be substituted by one or more groups selected from the group consisting of halogen, -OR', -COOR', -SR', -NR' 2 , each R' is independently H or C 1 -C 6 alkyl .
[0094] Avantageusement, dans la formule I, chaque Z est indépendamment sélectionné dans le groupe constitué par : une liaison et une chaine alkyle linéaire ou ramifiée comportant entre 1 et 12 atomes de carbone, ladite chaine alkyle pouvant être interrompue par un ou plusieurs groupes aryle en C6- Cio, et/ou par un ou plusieurs hétéroatomes ou groupes sélectionnés dans le groupe constitué par -O-, -S-, -C(O)-, -NR’-, -C(O)NR’-, -NR’-C(O)-, -C(S)NR’-, -NR’-C(S)-, - NR’-C(S)-NR’, chaque R’ est indépendamment H ou un alkyl en Ci-C6, Advantageously, in formula I, each Z is independently selected from the group consisting of: a bond and a linear or branched alkyl chain comprising between 1 and 12 carbon atoms, said alkyl chain possibly being interrupted by one or more groups C 6 -Cio aryl, and/or by one or more heteroatoms or groups selected from the group consisting of -O-, -S-, -C(O)-, -NR'-, -C(O)NR' -, -NR'-C(O)-, -C(S)NR'-, -NR'-C(S)-, -NR'-C(S)-NR', each R' is independently H or a Ci-C 6 alkyl,
[0095] Dans un mode de réalisation particulier chaque Z est une chaine alkyle comportant entre 1 et 12 atomes de carbone. In a particular embodiment, each Z is an alkyl chain comprising between 1 and 12 carbon atoms.
[0096] Dans un autre mode de réalisation particulier, chaque Z est un segment polyéthylène glycol (PEG). In another particular embodiment, each Z is a polyethylene glycol (PEG) segment.
[0097] De préférence, dans la formule II, Zi et Z2 sont indépendamment une simple liaison ou une chaine hydrocarbonée comportant entre 1 et 12 atomes de carbone, ladite chaine pouvant être linéaire ou ramifiée et pouvant comporter une ou plusieurs insaturations et pouvant comporter un ou plusieurs hétéroatomes, de préférence choisis parmi l’azote, l’oxygène, le soufre et les atomes de la famille des halogènes. Preferably, in formula II, Zi and Z 2 are independently a single bond or a hydrocarbon chain comprising between 1 and 12 carbon atoms, said chain possibly being linear or branched and possibly comprising one or more unsaturations and possibly comprising one or more heteroatoms, preferably chosen from nitrogen, oxygen, sulfur and atoms of the halogen family.
[0098] Selon un mode de réalisation, dans la formule II, Zi et Z2 sont indépendamment sélectionnés dans le groupe constitué par : une liaison, une chaine alkyle linéaire ou ramifiée comportant entre 1 et 12 atomes de carbone, et une chaine alcényle linéaire ou ramifiée comportant entre 2 et 12 atomes de carbone, lesdites chaînes alkyle et alcényle pouvant être interrompues par un ou plusieurs groupes aryle en C6-Cio, et/ou par un ou plusieurs hétéroatomes ou groupes sélectionnés dans le groupe constitué par -O-, -S-, -C(O)-, -NR’-, -C(O)NR’-, -NR’-C(O)-, -NR’-C(O)-NR’-, -NR’-C(O)-O-, -O-C(O)NR’, -C(S)NR’-, -NR’-C(S)-, -NR’-C(S)-NR’ lesdites chaînes alkyle et alcényle pouvant être substituées par un ou plusieurs groupes sélectionnés dans le groupe constitué par les halogènes, -OR’, -COOR’, -SR’, -NR’2, chaque R’ est indépendamment H ou un alkyl en Ci-C6. According to one embodiment, in formula II, Zi and Z 2 are independently selected from the group consisting of: a bond, a linear or branched alkyl chain comprising between 1 and 12 carbon atoms, and a linear alkenyl chain or branched containing between 2 and 12 carbon atoms, said alkyl and alkenyl chains possibly being interrupted by one or more C 6 -Cio aryl groups, and/or by one or more heteroatoms or groups selected from the group consisting of -O-, -S-, -C(O)-, -NR'-, -C(O)NR '-, -NR'-C(O)-, -NR'-C(O)-NR'-, -NR'-C(O)-O-, -OC(O)NR', -C(S )NR'-, -NR'-C(S)-, -NR'-C(S)-NR', said alkyl and alkenyl chains possibly being substituted by one or more groups selected from the group consisting of halogens, -OR ', -COOR', -SR', -NR' 2 , each R' is independently H or C 1 -C 6 alkyl.
[0099] Avantageusement, dans la formule II, Zi et Z2 sont indépendamment sélectionnés dans le groupe constitué par : une liaison et une chaîne alkyle linéaire ou ramifiée comportant entre 1 et 12 atomes de carbone, ladite chaîne alkyle pouvant être interrompue par un ou plusieurs groupes aryle en C6- Cio, et/ou par un ou plusieurs hétéroatomes ou groupes sélectionnés dans le groupe constitué par -O-, -S-, -C(O)-, -NR’-, -C(O)NR’-, -NR’-C(O)-, -C(S)NR’-, -NR’-C(S)-, - NR’-C(S)-NR’, chaque R’ est indépendamment H ou un alkyl en Ci-C6, Advantageously, in formula II, Zi and Z 2 are independently selected from the group consisting of: a bond and a linear or branched alkyl chain comprising between 1 and 12 carbon atoms, said alkyl chain possibly being interrupted by one or several C 6 -Cio aryl groups, and/or by one or more heteroatoms or groups selected from the group consisting of -O-, -S-, -C(O)-, -NR'-, -C(O) NR'-, -NR'-C(O)-, -C(S)NR'-, -NR'-C(S)-, -NR'-C(S)-NR', each R' is independently H or a Ci-C 6 alkyl,
[0100] Dans un mode de réalisation particulier Zi et/ou Z2 est une chaîne alkyle comportant entre 1 et 12 atomes de carbone. In a particular embodiment Zi and/or Z 2 is an alkyl chain comprising between 1 and 12 carbon atoms.
[0101] Dans un autre mode de réalisation particulier, Zi et/ou Z2 est un polyéthylène glycol (PEG). In another particular embodiment, Zi and/or Z 2 is a polyethylene glycol (PEG).
[0102] Conformément à l’invention, z est compris entre 0 et 0,2. En d’autres termes les unités de type C peuvent être exclusivement des unités comportant comme liant Zi et comme groupement portant un agent chélatant Rci. According to the invention, z is between 0 and 0.2. In other words, the C-type units can be exclusively units comprising as binder Zi and as group carrying a chelating agent Rci.
[0103] Le polysaccharide selon l’invention a une masse moléculaire moyenne en poids comprise entre 100 kDa et 1000 kDa, de manière avantageuse, la masse moléculaire moyenne en poids du polysaccharide selon l’invention est comprise entre 200 kDa et 750 kDa, de manière plus avantageuse entre 250 kDa et 500 kDa et de manière encore plus avantageuse, entre 300 kDa et 400 kDa. The polysaccharide according to the invention has a weight-average molecular mass of between 100 kDa and 1000 kDa, advantageously, the weight-average molecular mass of the polysaccharide according to the invention is between 200 kDa and 750 kDa, more advantageously between 250 kDa and 500 kDa and even more advantageously between 300 kDa and 400 kDa.
[0104] Selon un mode de réalisation, le copolysaccharide B est choisi parmi les polysaccharides suivants : According to one embodiment, the copolysaccharide B is chosen from the following polysaccharides:
- copolysaccharide de formule II où y = 0,15, Rci est DOTAGA et Zi est une liaison;- copolysaccharide of formula II where y = 0.15, Rci is DOTAGA and Zi is a bond;
- copolysaccharide de formule II où 0,05 < z < 0,06, Rci est DOTAGA et Zi est une liaison, et Rc2 est DFO et Z2 est sélectionné dans le groupe constitué par : une liaison et une chaine alkyle linéaire ou ramifiée comportant entre 1 et 12 atomes de carbone, ladite chaine alkyle pouvant être interrompue par un ou plusieurs groupes aryle en C6- Cio, et/ou par un ou plusieurs hétéroatomes ou groupes sélectionnés dans le groupe constitué par -O-, -S-, -C(O)-, -NR’-, -C(O)NR’-, -NR’-C(O)-, -C(S)NR’-, -NR’-C(S)-, - NR’-C(S)-NR’, chaque R’ est indépendamment H ou un alkyl en Ci-C6, - copolysaccharide of formula II where 0.05 <z <0.06, Rci is DOTAGA and Zi is a bond, and Rc 2 is DFO and Z 2 is selected from the group consisting of: a bond and a linear or branched alkyl chain comprising between 1 and 12 carbon atoms, said alkyl chain possibly being interrupted by one or more C 6 -Cio aryl groups, and/or by one or more heteroatoms or groups selected from the group consisting of -O-, -S- , -C(O)-, -NR'-, -C(O)NR'-, -NR'-C(O)-, -C(S)NR'-, -NR'-C(S)- , - NR'-C(S)-NR', each R' is independently H or C1- C6 alkyl,
[0105] Le copolysaccharide B peut être obtenu selon un procédé comprenant les trois étapes successives suivantes : The copolysaccharide B can be obtained according to a process comprising the following three successive steps:
Etape 1 : solubilisation d’un chitosane dans une solution acide à un pH compris entre 4 et 5 ; Step 1: solubilization of a chitosan in an acid solution at a pH between 4 and 5;
Etape 2 : acétylation partielle des fonctions amines du chitosane solubilisé en étape 1 (formation d'unités acétylées) ; Step 2: partial acetylation of the amine functions of the chitosan dissolved in step 1 (formation of acetylated units);
Etape 3 : fonctionnalisation d’au moins une partie des fonctions amines toujours présentes à l’issu de l’étape 2 (formation des unités comprenant le groupement Rc). Step 3: functionalization of at least some of the amine functions still present at the end of step 2 (formation of units comprising the Rc group).
[0106] L’étape 3 peut être subdivisée en plusieurs sous étapes, notamment lorsque le liant Z est une chaine hydrocarbonée telle que définit précédemment. [0106] Stage 3 can be subdivided into several sub-stages, in particular when the binder Z is a hydrocarbon chain as defined previously.
[0107] Dans les modes de réalisations où le liant Z est une chaine hydrocarbonée telle que définit précédemment, l’étape 3 peut comprendre une sous étape 3-1 consistant à greffer ladite chaine hydrocarbonée sur au moins une partie des fonctions amines toujours présentes à l’issue de l’étape 2, puis une sous étape 3-2 consistant au greffage du groupement Rc sur ladite chaine hydrocarbonée. De manière alternative, l’étape 3 ne comporte pas de sous étape. Dans cette alternative, ladite chaine hydrocarbonée est couplée avec le groupement Rc préalablement à l’étape 3, ladite étape 3 est alors réalisée avec une molécule comprenant le groupement Rc et ladite chaine hydrocarbonée. In the embodiments where the binder Z is a hydrocarbon chain as defined above, step 3 may include a sub-step 3-1 consisting in grafting said hydrocarbon chain onto at least some of the amine functions still present at the end of step 2, then a sub-step 3-2 consisting in the grafting of the Rc group on said hydrocarbon chain. Alternatively, step 3 does not include a sub-step. In this alternative, said hydrocarbon chain is coupled with the Rc group prior to step 3, said step 3 is then carried out with a molecule comprising the Rc group and said hydrocarbon chain.
[0108] De manière alternative, le copolysaccharide B peut être obtenu à partir d’un chitosane présentant le taux d’acétylation souhaité, ainsi, dans ce mode de réalisation les unités acétylées sont déjà présentes et n’ont pas besoin d’être formées. Dans ce mode de réalisation, le procédé d’obtention du copolysaccharide B comporte au moins les deux étapes successives suivantes : [0108] Alternatively, the copolysaccharide B can be obtained from a chitosan having the desired acetylation rate, thus, in this embodiment the acetylated units are already present and do not need to be formed. . In this embodiment, the process for obtaining copolysaccharide B comprises at least the following two successive steps:
Etape 1 b : solubilisation d’un chitosane partiellement acétylé dans une solution acide à un pH compris entre 4 et 5 ; Step 1b: solubilization of a partially acetylated chitosan in an acid solution at a pH between 4 and 5;
Etape 2b : fonctionnalisation d’au moins une partie des fonctions amines dudit chitosane partiellement acétylé solubilisé à l’étape 1 b (formation des unités comprenant le groupement Rc). Step 2b: functionalization of at least some of the amine functions of said partially acetylated chitosan dissolved in step 1b (formation of units comprising the Rc group).
[0109] De la même manière que précédemment pour ladite étape 3, ladite étape 2b peut être subdivisée en plusieurs sous étapes, notamment lorsque le liant Z est une chaine hydrocarbonée telle que définit précédemment. [0110] Dans les modes de réalisations où le liant Z est une chaine hydrocarbonée telle que définit précédemment, l’étape 2b peut comprendre une sous étape 2b-1 consistant à lier ladite chaine hydrocarbonée sur au moins une partie des fonctions amines, puis une sous étape 2b-2 consistant au greffage du groupement Rc sur ladite chaine hydrocarbonée. De manière alternative, l’étape 2b ne comporte pas de sous étape. Dans cette alternative, ladite chaine hydrocarbonée est couplée avec le groupement Rc préalablement à l’étape 2b, ladite étape 2b est alors réalisée avec une molécule comprenant le groupement Rc et ladite chaine hydrocarbonée. In the same way as previously for said step 3, said step 2b can be subdivided into several sub-steps, in particular when the binder Z is a hydrocarbon chain as defined above. In the embodiments where the binder Z is a hydrocarbon chain as defined above, step 2b may comprise a sub-step 2b-1 consisting in linking said hydrocarbon chain on at least part of the amine functions, then a under step 2b-2 consisting in the grafting of the Rc group on said hydrocarbon chain. Alternatively, step 2b does not include a sub-step. In this alternative, said hydrocarbon chain is coupled with the Rc group prior to step 2b, said step 2b is then carried out with a molecule comprising the Rc group and said hydrocarbon chain.
Exemples Examples
Matériels et méthodes Materials and methods
[0111] Plusieurs chitosane A et copolysaccharides B ont été utilisés pour préparer les compositions selon l’invention. Le tableau 1 récapitule les composés utilisés. Les synthèses des composés B1 et B2 sont présentées respectivement en exemple 1 et 2. Several chitosan A and copolysaccharides B were used to prepare the compositions according to the invention. Table 1 summarizes the compounds used. The syntheses of compounds B1 and B2 are presented respectively in examples 1 and 2.
[0112] [Tableau 1] [0112] [Table 1]
[0113] Le degré d’acétylation (DA) des composés B1 et B2 est obtenu de la manière suivante : Les spectres RMN 1 H des produits à analyser sont obtenus à l'aide d'un spectromètre Avance III HD 400 MHz NanoBay de Bruker. La phase est corrigée manuellement à l'aide du pic d'eau situé à 4,7 ppm. L'intégration des pics se fait manuellement en intégrant le massif des pics entre 4,1 et 2,9 ppm et en intégrant le pic à 2,00 ppm entre 2,02 et 1 ,90 ppm. Le DA en pourcentage est directement obtenu en normalisant l’intégration du massif de pics à 200. [0114] Le degré de substitution en DOTAGA (DS) est obtenu de la manière suivante : Différents échantillons du produit à analyser sont obtenus par redispersion du produit lyophilisé dans un tampon acétate (0,1 M acide acétique et 0,1 M ammonium acétate) pour obtenir une concentration massique finale en polymère de 0,1%. Différents volumes d’une solution de nitrate de cuivre sont ajoutés afin d’obtenir des concentrations en cuivre dans chaque échantillon allant de 0 à 1 mM puis chaque échantillon est agité. L’absorbance des solutions résultantes est ensuite mesurée à l’aide d’un spectrophotomètre UV-Visible Varian Cary® 50. La détermination du DS est réalisée en traçant l’absorbance à 295 nm (maximum d’absorption du DOTA-GA) en fonction de la concentration en cuivre, la rupture correspondant à la quantité de DOTAGA pour 1 g de produit. The degree of acetylation (DA) of compounds B1 and B2 is obtained as follows: The 1 H NMR spectra of the products to be analyzed are obtained using an Avance III HD 400 MHz NanoBay spectrometer from Bruker . The phase is corrected manually using the water peak located at 4.7 ppm. The integration of the peaks is done manually by integrating the bulk of the peaks between 4.1 and 2.9 ppm and by integrating the peak at 2.00 ppm between 2.02 and 1.90 ppm. The percentage DA is directly obtained by normalizing the integration of the peak mass to 200. The degree of substitution in DOTAGA (DS) is obtained as follows: Different samples of the product to be analyzed are obtained by redispersion of the freeze-dried product in an acetate buffer (0.1 M acetic acid and 0.1 M ammonium acetate ) to obtain a final mass concentration of polymer of 0.1%. Different volumes of a copper nitrate solution are added in order to obtain copper concentrations in each sample ranging from 0 to 1 mM, then each sample is stirred. The absorbance of the resulting solutions is then measured using a Varian Cary® 50 UV-Visible spectrophotometer. The determination of the DS is carried out by plotting the absorbance at 295 nm (maximum of absorption of DOTA-GA) in function of the copper concentration, the break corresponding to the quantity of DOTAGA for 1 g of product.
[0115] La pureté des composés B1 et B2 est vérifiée de la façon suivante : Les chromatogrammes HPLC-SEC-UV des produits à analyser ont été enregistrés sur des échantillons à une concentration massique en polymère de 1% avec un système HPLC Shimadzu Prominence. La colonne SEC utilisée est une colonne PolySep-GFC-P 4000 et un tampon acétate est utilisée comme éluant (0,1 M acide acétique et 0,1 M ammonium acétate). La température de fonctionnement est de 30°C et la longueur d'onde d'absorption est de 295 nm. Le débit d'éluant est de 0,8 mL / min. La pureté du produit est vérifiée par intégration du pic du DOTA-GA libre sur l’intégration du pic du chitosane greffé avec du DOTA-GA. The purity of compounds B1 and B2 is checked as follows: The HPLC-SEC-UV chromatograms of the products to be analyzed were recorded on samples at a mass concentration of polymer of 1% with a Shimadzu Prominence HPLC system. The SEC column used is a PolySep-GFC-P 4000 column and an acetate buffer is used as eluent (0.1 M acetic acid and 0.1 M ammonium acetate). The operating temperature is 30°C and the absorption wavelength is 295 nm. The eluent flow rate is 0.8 mL/min. The purity of the product is checked by integration of the peak of free DOTA-GA on the integration of the peak of chitosan grafted with DOTA-GA.
Exemple 1 - Synthèse du MEX-CD2 (B1) Example 1 - Synthesis of MEX-CD2 (B1)
[0116] Le chitosane précurseur du polysaccharide MEX-CD2 (B1 ) est de qualité médicale et d’origine animale. Les masses molaires moyennes en poids et en nombre (respectivement Mw = 2,583.105 g/mol, Mn = 1 ,323.105 g/mol) ont été déterminées par chromatographie d'exclusion de taille couplée à des mesures d'indice de réfraction et de diffusion de la lumière laser multiangle. Le degré d'acétylation (proportion d’unité N- acétyl-D-glucosamine) d'un tel chitosane brut a été déterminé par spectroscopie RMN 1H par la méthode d’Hirai (Asako Hirai et al., Determination of degree of deacetylation of chitosan by 1 H NMR spectroscopy, Polymer Bulletin, 1991 , 26, 87-94) et est estimé à 6 ± 0,5%. The chitosan precursor of the polysaccharide MEX-CD2 (B1) is of medical quality and of animal origin. The average molar masses by weight and number (respectively M w = 2.583.10 5 g/mol, M n = 1.323.10 5 g/mol) were determined by size exclusion chromatography coupled with refractive index measurements and multi-angle laser light scattering. The degree of acetylation (proportion of N-acetyl-D-glucosamine unit) of such crude chitosan was determined by 1H NMR spectroscopy by Hirai's method (Asako Hirai et al., Determination of degree of deacetylation of chitosan by 1 H NMR spectroscopy, Polymer Bulletin, 1991, 26, 87-94) and is estimated at 6 ± 0.5%.
[0117] 60 g de chitosane sont introduits dans un réacteur de 10 L avec 4 L d’eau ultra pure et 50 mL d’acide acétique, puis le mélange est placé sous agitation mécanique à 500 RPM. Après dissolution complète du chitosane (3h), 4L de 1 ,2-propanediol sont ajoutés au milieu et le mélange est maintenu sous agitation jusqu’à homogénéisation (2h). 120g de DOTA-GA anhydride sont ensuite introduits et le mélange est maintenu sous agitation pendant la nuit jusqu’à dissolution complète. Le produit de synthèse est ensuite purifié par filtration tangentielle à l’aide du dispositif Sartoflow® Advanced avec une cassette Sartocon® Slice PESU (membranes polyéthersulfone ; seuil de coupure : 100 kDa ; surface de filtration : 0,1 m2) selon un modèle de diafiltration-concentration contre 200L d’une solution d’acide acétique à 0,1 M puis 200L d’une solution d’acide acétique à 5 mM. La purification est suivie par une chromatographie d’exclusion de taille couplée à un détecteur UV jusqu’à obtenir moins de 5% de DOTA-GA libre. Le produit est ensuite lyophilisé et le degré d’acétylation (DA) et le degré de substitution (DS) sont déterminés respectivement par RMN 1 H et par la méthode de chélation au cuivre décrite ci-dessus. La pureté a été vérifiée par HPLC comme mentionné ci-dessus. 60 g of chitosan are introduced into a 10 L reactor with 4 L of ultrapure water and 50 mL of acetic acid, then the mixture is placed under mechanical stirring at 500 RPM. After complete dissolution of the chitosan (3 h), 4 L of 1,2-propanediol are added to the medium and the mixture is kept under stirring until homogenization (2 h). 120g of DOTA-GA anhydride are then introduced and the mixture is kept under shaking overnight until completely dissolved. The synthesis product is then purified by tangential filtration using the Sartoflow® Advanced device with a Sartocon® Slice PESU cassette (polyethersulfone membranes; cut-off threshold: 100 kDa; filtration area: 0.1 m 2 ) according to a model of diafiltration-concentration against 200L of a 0.1 M acetic acid solution then 200L of a 5 mM acetic acid solution. Purification is followed by size exclusion chromatography coupled with a UV detector until less than 5% of free DOTA-GA is obtained. The product is then freeze-dried and the degree of acetylation (DA) and the degree of substitution (DS) are determined respectively by 1 H NMR and by the copper chelation method described above. Purity was checked by HPLC as mentioned above.
Exemple 2 - Synthèse du MEX-CDDFO1 (B2) Example 2 - Synthesis of MEX-CDDFO1 (B2)
[0118] Le chitosane précurseur du polysaccharide MEX-CDDFO1 (B2) est identique à celui décrit dans l’exemple 1 (Mw = 2,583.105 g/mol, Mn = 1 ,323.105 g/mol, DA=6±0,5%). The precursor chitosan of the polysaccharide MEX-CDDFO1 (B2) is identical to that described in Example 1 (M w = 2.583.10 5 g/mol, M n = 1.323.10 5 g/mol, DA=6±0 .5%).
[0119] 60 g de chitosane, 4 L d’eau ultra-pure et 45 mL d’acide acétique glacial sont introduits dans un réacteur de 10 L et placés sous agitation pendant une durée de 16 heures à un pH de 4,5 ± 0,5. 1 ,2 L de propane-1 ,2-diol sont ajoutés à la solution et l’agitation est maintenue pendant 1 h. Une solution composée de 14 mL d’anhydride acétique dissous dans 600 mL de propane-1 ,2-diol est ensuite ajoutée lentement en 30 min, le milieu réactionnel est maintenu sous agitation pendant 4 h. 120 g de DOTA-GA anhydride sont ensuite pesés et ajoutés dans le réacteur puis 2 L de propane-1 , 2-diol sont ajoutés et l’agitation est maintenue pendant 16 h. A l’issu de la réaction, la solution est purifiée par filtration tangentielle en utilisant une membrane de 100 kDa. Le produit de synthèse est ensuite purifié par filtration tangentielle de la même façon que décrite dans l’exemple 1 , contre 200 L d’une solution d’acide acétique à 0,1 M puis 200 L d’eau ultra pure. La purification est suivie par chromatographie d’exclusion de taille couplée à un détecteur UV jusqu’à obtenir moins de 5 % de DOTA-GA libre. Le produit est ensuite lyophilisé à une concentration de 7 g/L et le degré d’acétylation (DA) et le degré de substitution (DS) sont déterminés respectivement par RMN 1H et par la méthode de chélation au cuivre décrite précédemment. 60 g of chitosan, 4 L of ultra-pure water and 45 mL of glacial acetic acid are introduced into a 10 L reactor and stirred for 16 hours at a pH of 4.5 ± 0.5. 1.2 L of propane-1,2-diol are added to the solution and stirring is maintained for 1 hour. A solution composed of 14 mL of acetic anhydride dissolved in 600 mL of propane-1,2-diol is then added slowly over 30 min, the reaction medium is kept under stirring for 4 h. 120 g of DOTA-GA anhydride are then weighed and added to the reactor, then 2 L of propane-1,2-diol are added and stirring is maintained for 16 h. At the end of the reaction, the solution is purified by tangential filtration using a 100 kDa membrane. The synthesis product is then purified by tangential filtration in the same way as described in Example 1, against 200 L of a 0.1 M acetic acid solution then 200 L of ultrapure water. Purification is followed by size exclusion chromatography coupled with a UV detector until less than 5% of free DOTA-GA is obtained. The product is then freeze-dried at a concentration of 7 g/L and the degree of acetylation (DA) and the degree of substitution (DS) are determined respectively by 1 H NMR and by the copper chelation method described above.
[0120] Un volume de 720 mL de chitosane-DOTAGA purifié à une concentration de 7 g/L est introduit dans un ballon de 2 L. Cette solution (pH entre 6 et 6,5) est complétée avec de l’eau ultra-pure pour atteindre un volume total de 900 mL. En parallèle, 143,1 mg de p-NCS-Bz-DFO sont pesés et dissous dans 100 mL de DMSO. Cette solution est ensuite ajoutée goutte à goutte à la solution de chitosane-DOTAGA. La solution est maintenue sous agitation et chauffée à 40°C pendant une nuit. 500 mL de cette solution sont dilués jusqu’à 5 L avec de l’eau ultra pure puis reconcentrée à 1 L par filtration tangentielle à l’aide du dispositif Sartoflow® Smart avec deux cassettes Sartocon® Slice PESU (membranes polyéthersulfone ; seuil de coupure : 100 kDa ; surface de filtration : 0,02 m2). La filtration est poursuivie à concentration constante contre 4L d’eau ultra pure puis la solution est reconcentrée à 500 mL. A volume of 720 mL of purified chitosan-DOTAGA at a concentration of 7 g/L is introduced into a 2 L flask. This solution (pH between 6 and 6.5) is supplemented with ultra-high water. pure to reach a total volume of 900 mL. In parallel, 143.1 mg of p-NCS-Bz-DFO are weighed and dissolved in 100 mL of DMSO. This solution is then added dropwise to the chitosan-DOTAGA solution. The solution is kept under stirring and heated at 40° C. overnight. 500 mL of this solution are diluted to 5 L with ultrapure water then reconcentrated to 1 L by cross-flow filtration using the Sartoflow® Smart device with two Sartocon® Slice PESU cassettes (polyethersulfone membranes; cut-off threshold: 100 kDa; surface of filtration: 0.02 m 2 ). Filtration is continued at constant concentration against 4L of ultrapure water then the solution is reconcentrated to 500 mL.
[0121] L’analyse HPLC-SEC-UV du produit permet de confirmer le greffage du DFO et l’élimination du p-NCS-Bz-DFO résiduel. La comparaison des analyses HPLC-SEC-UV du chitosane-DOTAGA et du chitosane-DOTAGA-DFO montre une augmentation de l’absorption du pic polymère (autour de 7 min) lorsque le p-NCS-Bz-DFO est greffé. The HPLC-SEC-UV analysis of the product makes it possible to confirm the grafting of the DFO and the elimination of the residual p-NCS-Bz-DFO. The comparison of the HPLC-SEC-UV analyzes of chitosan-DOTAGA and chitosan-DOTAGA-DFO shows an increase in the absorption of the polymer peak (around 7 min) when the p-NCS-Bz-DFO is grafted.
[0122] Dans le cas du MEX-CDDFO1 (B2), la méthode de chélation au cuivre a été appliquée sur le produit avant fonctionnalisation avec le DFO et a permis de déterminer un DS en DOTAGA de 8,6%. Une méthode analogue à celle de la chélation au cuivre a permis de déterminer le DS en DFO. Des concentrations croissantes de fer (III) sont ajoutées à une solution de MEX-CDDFO1 (B2) à 0,1 g/L dans un tampon acétate à pH 4,5 (0,1 M ammonium acétate et 0,1 M acide acétique). L’absorption mesurée à 425 nm (Àmax du complexe [Fe(n6-DFO)]) est ensuite tracée en fonction de la concentration en fer et la concentration de fer correspondant à la rupture de pente permet d’obtenir le DS. Cette méthode permet d’estimer le DS du MEX-CDDFO1 (B2) à 0,7%. In the case of MEX-CDDFO1 (B2), the copper chelation method was applied to the product before functionalization with DFO and made it possible to determine a DS in DOTAGA of 8.6%. A method analogous to that of copper chelation made it possible to determine the DS in DFO. Increasing concentrations of iron (III) are added to a solution of MEX-CDDFO1 (B2) at 0.1 g/L in an acetate buffer at pH 4.5 (0.1 M ammonium acetate and 0.1 M acetic acid ). The absorption measured at 425 nm (λmax of the [Fe(n 6 -DFO)] complex) is then plotted as a function of the iron concentration and the iron concentration corresponding to the slope break makes it possible to obtain the DS. This method makes it possible to estimate the DS of MEX-CDDFO1 (B2) at 0.7%.
[0123] L’analyse RMN 1H du produit intermédiaire (N-DOTAGA chitosane) selon la méthode décrite précédemment a permis de déterminer un DA de 26%. L’analyse RMN 1H du MEX-CDDFO1 (B2) révèle la présence d’un pic à 7,3 ppm caractéristique des protons d’un benzène substitué. Le spectre RMN du produit présente également des pics identiques entre 1 ,1 et 1 ,7 ppm à ceux de la déferoxamine mésylate seul qui confirme le greffage effectif du DFO sur le N-DOTAGA chitosane après purification. 1 H NMR analysis of the intermediate product (N-DOTAGA chitosan) according to the method described above made it possible to determine a DA of 26%. The 1H NMR analysis of MEX-CDDFO1 (B2) reveals the presence of a peak at 7.3 ppm characteristic of the protons of a substituted benzene. The NMR spectrum of the product also shows peaks that are identical between 1.1 and 1.7 ppm to those of deferoxamine mesylate alone, which confirms the effective grafting of DFO onto the N-DOTAGA chitosan after purification.
Exemple 3 - Synthèse du MEX-CDFO (B3) Example 3 - Synthesis of MEX-CDFO (B3)
[0124] Le chitosane précurseur du polysaccharide MEX-CDFO est identique à celui décrit dans l’exemple 1 (Mw = 2,583.105 g/mol, Mn = 1 ,323.105 g/mol, DA = 6±0,5%). Pour 2,5 g de chitosane, 170 mL d’eau ultra-pure et 2,25 mL d’acide acétique glacial sont introduits dans un réacteur de 1 L et placés sous agitation jusqu’à dissolution totale du chitosane. 50 mL de propane-1 ,2-diol sont ajoutés à la solution. Une solution composée de 785 pL d’anhydride acétique dissous dans 25 mL de propane-1 , 2-diol est ensuite ajoutée lentement, le milieu réactionnel est maintenu sous agitation pendant 4 h. 40 mL d’eau ultra-pure et 43 ml d’une solution de NaOH à 1 M sont ajoutés pour obtenir une solution entre pH 5,5 et 6,5. Un volume de 75 mL de propane-1 , 2-diol et 35 mL de DMSO sont ajoutés. Simultanément 576 mg de p-NCS- Bz-DFO sont pesés et dissous dans 57,6 mL de DMSO. Cette solution est ajoutée à une vitesse de 150 pL/min. Pendant l’ajout du DFO, 3,1 mL de HCl à 1 M sont aussi ajoutés à une vitesse de 8 pL/min. La solution est maintenue sous agitation et chauffée à 40°C pendant une nuit. 250 mL de cette solution sont dilués par 5 dans l’acide acétique 0,1 M puis elle est reconcentrée à 500 mL par filtration tangentielle à l’aide du dispositif Sartoflow® Smart avec deux cassettes Sartocon® Slice PESU (membranes polyéthersulfone ; seuil de coupure : 100 kDa ; surface de filtration : 0,02 m2). La filtration est poursuivie à concentration constante contre 5 L d’acide acétique et 2,5 L d’eau ultra pure puis la solution est reconcentrée à 250 mL. The chitosan precursor of the MEX-CDFO polysaccharide is identical to that described in Example 1 (Mw=2.583.105 g/mol, Mn=1.323.105 g/mol, DA=6±0.5%). For 2.5 g of chitosan, 170 mL of ultra-pure water and 2.25 mL of glacial acetic acid are introduced into a 1 L reactor and placed with stirring until the chitosan is completely dissolved. 50 mL of propane-1,2-diol are added to the solution. A solution composed of 785 μL of acetic anhydride dissolved in 25 mL of propane-1,2-diol is then added slowly, the reaction medium is kept under stirring for 4 h. 40 mL of ultra-pure water and 43 mL of a 1 M NaOH solution are added to obtain a solution between pH 5.5 and 6.5. A volume of 75 mL of propane-1,2-diol and 35 mL of DMSO are added. Simultaneously 576 mg of p-NCS- Bz-DFO are weighed and dissolved in 57.6 mL of DMSO. This solution is added at a rate of 150 µL/min. During the addition of DFO, 3.1 mL of 1 M HCl is also added at a rate of 8 µL/min. The solution is kept under stirring and heated at 40° C. overnight. 250 mL of this solution are diluted by 5 in 0.1 M acetic acid then it is reconcentrated to 500 mL by tangential filtration using the Sartoflow® Smart device with two Sartocon® Slice PESU cassettes (polyethersulfone membranes; cutoff: 100 kDa; filtration area: 0.02 m 2 ). Filtration is continued at constant concentration against 5 L of acetic acid and 2.5 L of ultrapure water then the solution is reconcentrated to 250 mL.
[0125] Dans le cas du MEX-CDFO (B3), la méthode de chélation au fer expliquée préalablement est aussi utilisée dans le but d’estimer le DS. Cette méthode permet d’estimer le DS du MEXCDFO (B3) à 3%. In the case of MEX-CDFO (B3), the iron chelation method explained previously is also used for the purpose of estimating the DS. This method makes it possible to estimate the DS of MEXCDFO (B3) at 3%.
[0126] L’analyse RMN 1 H permet de confirmer le greffage du DFO et le DS grâce aux pics caractéristiques du DFO. Selon le spectre RMN le DS est égal à 2,9%. Également il est possible de déterminer le DA avec ce même spectre. Le DA retrouver est de 41%. The 1 H NMR analysis makes it possible to confirm the grafting of the DFO and the DS thanks to the characteristic peaks of the DFO. According to the NMR spectrum, the DS is equal to 2.9%. Also it is possible to determine the DA with this same spectrum. The DA to find is 41%.
Exemple 4 - Compositions selon l’invention (Solutions aqueuses) Example 4 - Compositions according to the invention (Aqueous solutions)
[0127] Différentes compositions selon l’invention ont été préparées. Un chitosane A non fonctionnalisé de faible DA pouvant être de 250 kDa ou de 650 kDa est mélangé avec un copolysaccharide B selon un rapport o/ % où a est la concentration massique du chitosane A et 0 la concentration massique du copolysaccharide B dans la formulation considérée (Tableau 2). Différentes quantités de chitosane A (a) et de copolysaccharide B (P) sous forme lyophilisée sont introduites dans un réacteur de 50 mL et sont redispersées sous faible agitation dans un volume d’eau adéquat. De l’acide acétique est ajouté en proportion stoechiométrique par rapport aux fonctions amines primaires non fonctionnalisées présentes dans le milieu. Le mélange est laissé sous agitation jusqu’à solubilisation complète du produit. Different compositions according to the invention have been prepared. A non-functionalized chitosan A of low DA which can be 250 kDa or 650 kDa is mixed with a copolysaccharide B according to a ratio o/% where a is the mass concentration of chitosan A and 0 the mass concentration of copolysaccharide B in the formulation considered (Table 2). Different quantities of chitosan A (a) and copolysaccharide B (P) in freeze-dried form are introduced into a 50 mL reactor and are redispersed with gentle stirring in an adequate volume of water. Acetic acid is added in stoichiometric proportion with respect to the non-functionalized primary amine functions present in the medium. The mixture is left under agitation until complete solubilization of the product.
[0128] À titre d’exemple, la préparation de la composition 10 selon l’invention (HG-5-10) se déroule de la manière suivante : 3,0 g de B1 (MEX-CD2) et 1 ,5 g de chitosane A1 sont dispersés dans 28,93 mL d’eau ultra pure et 1 ,07 mL d’acide acétique ultra pure sont ajoutés sous agitation mécanique à 100RPM dans un réacteur de 50 mL. Le mélange est laissé sous agitation pendant 24h jusqu’à dissolution complète et homogénéisation du milieu. By way of example, the preparation of composition 10 according to the invention (HG-5-10) takes place as follows: 3.0 g of B1 (MEX-CD2) and 1.5 g of chitosan A1 are dispersed in 28.93 mL of ultrapure water and 1.07 mL of ultrapure acetic acid are added with mechanical stirring at 100 RPM in a 50 mL reactor. The mixture is left stirring for 24 hours until complete dissolution and homogenization of the medium.
[0129] Les différentes compositions et leurs préparations sont présentées dans le tableau 2. The various compositions and their preparations are presented in Table 2.
[0130] [Tableau 2] [0130] [Table 2]
[0131] La solution obtenue est récupérée et introduite dans un doseur de fluide adapté, puis centrifugée à 4000 RPM pendant 10 minutes pour obtenir une solution sans bulles d’air comprenant la composition. Les viscosités newtoniennes de chaque solution ont été déterminées à l’aide d’un rhéomètre AR200 de chez TA Instruments. Chaque solution obtenue a également été testée pour savoir s’il est possible de produire un gel et/ou un fil. Les résultats sont présentés ci-dessous (Tableau 3). The solution obtained is recovered and introduced into a suitable fluid dispenser, then centrifuged at 4000 RPM for 10 minutes to obtain a solution without air bubbles comprising the composition. The Newtonian viscosities of each solution were determined using an AR200 rheometer from TA Instruments. Each solution obtained was also tested to see if it is possible to produce a gel and/or a thread. The results are presented below (Table 3).
[0132] [Tableau 3] [0132] [Table 3]
[0133] Ces résultats montrent que, contrairement à la composition selon l’invention, lorsque la composition comprend uniquement le copolysaccharide B, il n’est pas possible de gélifier la solution ou de produire des fils. Cependant, l’ajout d’un copolysaccharide B à un chitosane A permet d’obtenir une solution gélifiable et, dans certains cas, de baisser la viscosité de la solution résultante (cf. compositions comparative 2 et 3 et composition 9, et composition comparative 4 et composition 13), ce qui contribue à une meilleure maniabilité de la solution et permet un meilleur filage. These results show that, unlike the composition according to the invention, when the composition comprises only the copolysaccharide B, it is not possible to gel the solution or to produce threads. However, the addition of a copolysaccharide B to a chitosan A makes it possible to obtain a gellable solution and, in certain cases, to lower the viscosity of the resulting solution (cf. comparative compositions 2 and 3 and composition 9, and comparative composition 4 and composition 13), which contributes to better workability of the solution and allows better spinning.
Exemple 5 - Compositions selon l’invention (Gels) Example 5 - Compositions according to the invention (Gels)
[0134] Plusieurs hydrogels ont été obtenus par gélification de solutions obtenues à l’exemple 3. La gélification de la solution se produit après immersion dans un bain de soude à 3 mol/L. Les hydrogels obtenus selon l’invention sont caractérisés d’hydrogels physiques où la gélification à lieu à pH basique après neutralisation des amines (NH2) initialement protonée (NH3 +) présentent dans la solution. L’état d’enchevêtrement des chaînes résultant de la forte viscosité initiale est figé par la formation des nœuds d’interactions physiques interchaînes et assure ainsi l’obtention d’un hydrogel physique stable et de propriétés mécaniques suffisantes pour être manipulé ou étiré. Les hydrogels résultants sont réversibles par un traitement en solution acide et se dissocient des hydrogels chimiques où la gélification est assurée par la formation de liaisons chimiques covalentes irréversibles. Ils peuvent être séchés et réhydratés de manière réversible. Several hydrogels were obtained by gelation of solutions obtained in Example 3. Gelation of the solution occurs after immersion in a 3 mol/L sodium hydroxide bath. The hydrogels obtained according to the invention are characterized as physical hydrogels where gelation takes place at basic pH after neutralization of the initially protonated amines (NH 2 ) (NH 3 + ) present in the solution. The state of entanglement of the chains resulting from the high initial viscosity is fixed by the formation of the nodes of interchain physical interactions and thus ensures the obtaining of a stable physical hydrogel and of sufficient mechanical properties to be manipulated or stretched. The resulting hydrogels are reversible by acid solution treatment and dissociate from chemical hydrogels where gelation is provided by the formation of irreversible covalent chemical bonds. They can be dried and rehydrated reversibly.
[0135] Obtention d’hydroqels sous forme de disque [0135] Obtaining hydroqels in disk form
[0136] Après centrifugation, les compositions 9 à 12 selon l’invention sont introduites dans un moule en PVC dont les dimensions sont soit 0=1 cm et h=2mm ou 0=3cm et h=2,5mm. Après que la solution se soit étalée uniformément, le moule contenant la solution est introduit dans un bain de soude (NaOH) à 3 mol/L pendant 1 h30. Le disque d’hydrogel alors formé est retiré du moule et introduit dans un bain d’eau pendant 30 minutes. Le disque est ensuite rincé une deuxième fois dans un autre bain d’eau ultra pure pendant 30 minutes. L’hydrogel est ensuite rincé dans un tampon phosphate à pH=7,4 pendant 24 heures. Il est ensuite introduit avec du tampon phosphate dans un flacon en verre et stérilisé pendant 20 minutes à 121 °C dans un autoclave. Les hydrogels obtenus sous forme de disque sont présentés en figure 1 . After centrifugation, compositions 9 to 12 according to the invention are introduced into a PVC mold whose dimensions are either 0=1 cm and h=2 mm or 0=3 cm and h=2.5 mm. After the solution has spread evenly, the mold containing the solution is introduced into a bath of sodium hydroxide (NaOH) at 3 mol/L for 1 hour 30 minutes. The hydrogel disc thus formed is removed from the mold and placed in a water bath for 30 minutes. The disc is then rinsed a second time in another bath of ultrapure water for 30 minutes. The hydrogel is then rinsed in a phosphate buffer at pH=7.4 for 24 hours. It is then introduced with phosphate buffer into a glass bottle and sterilized for 20 minutes at 121°C in an autoclave. The hydrogels obtained in the form of a disc are presented in FIG.
[0137] Obtention d’hydroqel sous forme de cylindre [0137] Obtaining hydroqel in the form of a cylinder
[0138] Après centrifugation, la composition comparative 2 et la composition 10 selon l’invention sont connectées à un système d’air comprimé (Nordson Ultimus™) permettant l’extrusion de la solution. Un tube d’extrusion de 5 mm de diamètre est adapté à la seringue du dispenseur et la solution est extrudée directement dans un bain de soude à 3 mol/L. La pression d’extrusion est adaptée à la viscosité initiale de la solution de précurseur et est comprise entre 1 et 3 bars. L’hydrogel ainsi formé est laissé immergé dans le bain de soude pendant 1 h30. Le cylindre est retiré et introduit dans un bain d’eau ultra pure pendant 30 minutes. Le tube est ensuite rincé une deuxième fois dans un autre bain d’eau ultra pure pendant 30 minutes. L’hydrogel est ensuite rincé dans un tampon phosphate à pH 7,4 pendant 24 heures. Il est enfin introduit avec du tampon phosphate dans un flacon en verre et stérilisé pendant 20 minutes à 121 °C dans un autoclave. Les hydrogels obtenus sous forme de cylindre sont présentés en figure 2 et 3. After centrifugation, comparative composition 2 and composition 10 according to the invention are connected to a compressed air system (Nordson Ultimus™) allowing the solution to be extruded. A 5 mm diameter extrusion tube is fitted to the dispenser's syringe and the solution is extruded directly into a 3 mol/L soda bath. The extrusion pressure is adapted to the initial viscosity of the precursor solution and is between 1 and 3 bars. The hydrogel thus formed is left immersed in the sodium hydroxide bath for 1 hour 30 minutes. The cylinder is removed and placed in an ultrapure water bath for 30 minutes. The tube is then rinsed a second time in another bath of ultrapure water for 30 minutes. The hydrogel is then rinsed in a phosphate buffer at pH 7.4 for 24 hours. It is finally introduced with phosphate buffer into a glass bottle and sterilized for 20 minutes at 121°C in an autoclave. The hydrogels obtained in the form of a cylinder are presented in figures 2 and 3.
[0139] L’hydrogel obtenu à partir de chitosane A seul est d’aspect blanc opaque et relativement rigide à la manipulation. Plus l’hydrogel est chargé en copolysaccharide B, plus ce dernier apparaît transparent avec un effet Tyndall moins prononcé traduisant une meilleure homogénéité de la structure à l’échelle microscopique. The hydrogel obtained from chitosan A alone has an opaque white appearance and is relatively rigid to handle. The more the hydrogel is loaded with copolysaccharide B, the more the latter appears transparent with a less pronounced Tyndall effect reflecting a better homogeneity of the structure at the microscopic scale.
Exemple 6 - Compositions selon l’invention (Fils) Example 6 - Compositions according to the invention (Yarns)
[0140] Des fils comprenant la composition selon l’invention sont obtenus de la façon suivante : certaines des solutions obtenues à l’exemple 3 sont introduites dans un dispenseur (ou doseur) de fluide adapté, puis centrifugées. Le dispenseur de fluide contenant la solution est ensuite connecté à un système d’air comprimé. Un cône d’extrusion pouvant être de 254 pm, de 406 pm, ou de 584 pm est équipé au dispenseur puis la solution est extrudée sous une pression constante pouvant aller de 150 kPa à 400 kPa dans un bain de soude concentrée à 3 mol/L. L’hydrogel obtenu est neutralisé dans deux bains d’eau puis séché à une température pouvant aller de 100°C à 200°C à l’aide d’une souffleuse d’air thermo régulée. Le fil sec est récupéré et enroulé dans des bobines. [0141] À titre d’exemple, la préparation de fil à partir de la composition 10 selon l’invention se déroule de la manière suivante : 3,0 g de copolysaccharide B1 et 1 ,5 g de chitosane A1 sont dispersés dans 28,93 mL d’eau ultra pure et 1 ,07 mL d’acide acétique ultra pur sous faible agitation mécanique à 100 RPM dans un réacteur de 50 mL. Le mélange est laissé sous agitation pendant 24 h jusqu’à dissolution complète et homogénéisation du milieu. La solution obtenue est récupérée et introduite dans un dispenseur de fluide adapté, puis centrifugée à 4000 RPM pendant 10 minutes. Le dispenseur de fluide contenant la solution est ensuite connecté à un système d’air comprimé et un cône d’extrusion de 406 pm est équipé au système. Une pression constante de 200 kPa est délivrée jusqu’à extrusion complète de la solution de départ. La solution est extrudée directement dans un bain de soude à 3 mol/L et gélifiée directement pour former un hydrogel. L’hydrogel obtenu sous forme de cylindre fin est entraîné dans un circuit de bobine et est neutralisé successivement dans deux bains d’eau ultra pure contenant chacun 5L d’eau. L’hydrogel est ensuite séché sous air chaud à 150°C à l’aide d’une souffleuse d’air thermorégulée. Le fil obtenu après séchage est enroulé sur une bobine située à la fin du circuit de filage. Le fil obtenu est présenté en figure 4 et 5. Ces figures montrent qu’il est possible de faire des nœuds et de tresser plusieurs fils ensemble. Yarns comprising the composition according to the invention are obtained in the following way: some of the solutions obtained in Example 3 are introduced into a suitable fluid dispenser (or doser), then centrifuged. The fluid dispenser containing the solution is then connected to a compressed air system. An extrusion cone which can be 254 μm, 406 μm, or 584 μm is fitted to the dispenser then the solution is extruded under a constant pressure which can range from 150 kPa to 400 kPa in a bath of concentrated sodium hydroxide at 3 mol/ I. The hydrogel obtained is neutralized in two water baths and then dried at a temperature which can range from 100° C. to 200° C. using a thermo-regulated air blower. The dry yarn is collected and wound into spools. By way of example, the preparation of yarn from composition 10 according to the invention takes place as follows: 3.0 g of copolysaccharide B1 and 1.5 g of chitosan A1 are dispersed in 28, 93 mL of ultra-pure water and 1.07 mL of ultra-pure acetic acid with gentle mechanical stirring at 100 RPM in a 50 mL reactor. The mixture is left stirring for 24 hours until complete dissolution and homogenization of the medium. The solution obtained is recovered and introduced into a suitable fluid dispenser, then centrifuged at 4000 RPM for 10 minutes. The fluid dispenser containing the solution is then connected to a compressed air system and a 406 µm extrusion cone is fitted to the system. A constant pressure of 200 kPa is delivered until complete extrusion of the starting solution. The solution is extruded directly into a 3 mol/L sodium hydroxide bath and gelled directly to form a hydrogel. The hydrogel obtained in the form of a fine cylinder is drawn into a coil circuit and is successively neutralized in two ultrapure water baths each containing 5L of water. The hydrogel is then dried under hot air at 150° C. using a thermoregulated air blower. The yarn obtained after drying is wound on a spool located at the end of the spinning circuit. The yarn obtained is shown in Figures 4 and 5. These figures show that it is possible to tie knots and braid several yarns together.
[0142] Le diamètre moyen des fils a été déterminé au microscope optique par mesure de différentes portions du fil. En moyenne, 5 portions du fils ont été étudiées afin d’établir un diamètre moyen le plus représentatif possible de la globalité de la structure. La masse linéique des différents fils a également été déterminée par pesée à la balance de précision de différentes longueurs de fils. Les propriétés mécaniques des fils obtenus ont été déterminées par essais de traction à l’aide d’un système Shimadzu Autograph AG-X plus. En moyenne, cinq essais de traction sont réalisés sur chaque fil afin de vérifier la répétabilité de chaque mesure. Les résultats sont présentés dans le tableau 4. The mean diameter of the wires was determined under an optical microscope by measuring different portions of the wire. On average, 5 portions of the wire were studied in order to establish an average diameter as representative as possible of the entire structure. The linear density of the different yarns was also determined by weighing different lengths of yarn on a precision balance. The mechanical properties of the yarns obtained were determined by tensile tests using a Shimadzu Autograph AG-X plus system. On average, five tensile tests are carried out on each wire in order to check the repeatability of each measurement. The results are shown in Table 4.
[0143] [Tableau 4] [0143] [Table 4]
[0144] Ces résultats montrent que les fils selon l’invention présentent des propriétés mécaniques satisfaisantes et comparables à celles des fils de chitosane A seul. En particulier, les fils selon l’invention présentent des propriétés mécaniques adaptées pour une mise en forme des fils par tressage de plusieurs fils ou par tissage ou tricotage. These results show that the threads according to the invention have satisfactory mechanical properties comparable to those of threads of chitosan A alone. In particular, the yarns according to the invention have mechanical properties suitable for shaping the yarns by braiding several yarns or by weaving or knitting.
Exemple 7 - Etude du gonflement des fils et des gels selon l’inventionExample 7 - Study of the swelling of threads and gels according to the invention
[0145] Les gels et fils selon l’invention décrits dans les sections précédentes présentent tous des capacités de gonflement unique en présence de fluides aqueux. Dans un premier temps, la capacité et la cinétique de séchage et de gonflement des gels ont été déterminées en fonction de la formulation initiale. Après neutralisation du pH des hydrogels par rinçage successif, le gel est laissé à l’air libre pendant 1 semaine jusqu’à séchage complet en xérogel. La masse de l’hydrogel a été mesurée à la balance de précision avant séchage et à intervalle de temps régulier durant le séchage. La cinétique de séchage des hydrogels est répertoriée dans le Tableau 6. Le chitosane A étant plus hydrophobe que les copolysaccharides B, la vitesse de séchage est plus lente lorsque la quantité de copolysaccharide B contenue dans le gel est élevée. Ainsi, le gel référence de chitosane A seul (composition comparative 2) atteint une masse stable au bout de 30 heures, la composition 9 selon l’invention (HG-5-5) au bout de 52 heures, la composition 12 selon l’invention (HG-8-8) au bout de 72h, et les compositions 10 et 11 selon l’invention (HG-5-10 et HG-5-15) au bout de 144 heures. The gels and yarns according to the invention described in the preceding sections all have unique swelling capacities in the presence of aqueous fluids. First, the capacity and the drying and swelling kinetics of the gels were determined according to the initial formulation. After neutralization of the pH of the hydrogels by successive rinsing, the gel is left in the open air for 1 week until complete drying in xerogel. The mass of the hydrogel was measured on a precision balance before drying and at regular time intervals during drying. The drying kinetics of the hydrogels are listed in Table 6. Since chitosan A is more hydrophobic than copolysaccharides B, the drying rate is slower when the quantity of copolysaccharide B contained in the gel is high. Thus, freezing reference chitosan A alone (comparative composition 2) reaches a stable mass after 30 hours, composition 9 according to the invention (HG-5-5) after 52 hours, composition 12 according to the invention (HG- 8-8) after 72 hours, and compositions 10 and 11 according to the invention (HG-5-10 and HG-5-15) after 144 hours.
[0146] [Tableau 5] [0146] [Table 5]
[0147] Les xérogels ont ensuite été immergés dans de l’eau ultra pure pendant 48 heures jusqu’à hydratation complète des gels. La masse de chaque gel a été précisément mesurée avant hydratation et à intervalle de temps régulier durant le test de gonflement. La cinétique de gonflement des gels est retranscrite dans le Tableau 6. De la même façon que pour l’étape de séchage, l’hydrophobicité du gel de référence à base de chitosane A seul entraine une réhydratation limitée du gel. Ainsi un faible gonflement maximal du gel obtenu à partir de la composition comparative 2 (Ref HG-8-0), de l’ordre de 2 fois son volume initial, est observé au bout de 6 heures. D’un autre côté, on observe une forte augmentation de la capacité de gonflement des gels selon l’invention, en fonction de la quantité de copolysaccharide B présent dans la formulation, allant jusqu’à plus de 22 fois son volume initial pour la composition 1 1 selon l’invention (HG-5-15) au bout de 30 heures. The xerogels were then immersed in ultrapure water for 48 hours until the gels were completely hydrated. The mass of each gel was precisely measured before hydration and at regular time intervals during the swelling test. The swelling kinetics of the gels are transcribed in Table 6. In the same way as for the drying step, the hydrophobicity of the reference gel based on chitosan A alone leads to limited rehydration of the gel. Thus a low maximum swelling of the gel obtained from comparative composition 2 (Ref HG-8-0), of the order of twice its initial volume, is observed after 6 hours. On the other hand, a strong increase in the swelling capacity of the gels according to the invention is observed, depending on the quantity of copolysaccharide B present in the formulation, going up to more than 22 times its initial volume for the composition 1 1 according to the invention (HG-5-15) after 30 hours.
[0148] Les gels avant et après hydratation sont présentés en figure 6 et 7 (composition 11 selon l’invention). The gels before and after hydration are presented in FIGS. 6 and 7 (composition 11 according to the invention).
[0149] [Tableau 6] [0149] [Table 6]
[0150] La capacité de gonflement des fils selon l’invention a également été évaluée lors de leur réhydratation par immersion dans un bain d’eau ultra pure. De la même façon que pour les hydrogels massifs, des fils selon l’invention ont été découpés puis immergés dans de l’eau ultra pure pendant 15 minutes. La masse initiale de chaque fil, ainsi que la masse du fil à intervalle de temps régulier a été mesurée à l’aide d’une balance de précision. La cinétique de gonflement pour les fils est retranscrite dans le Tableau 7. On note une légère différence de gonflement pour une formulation donnée en fonction du diamètre du fil initial. À formulation identique, les valeurs de gonflement obtenues à partir des fils sont relativement similaires à celles obtenues avec les hydrogels. De la même façon que pour les hydrogels, le fil de référence à base de chitosane A (composition comparative 2, Ref HG-8-0) présente un faible gonflement maximal de l’ordre de 2 fois son volume initial au bout de 15 minutes. Le fil obtenu avec la composition 11 selon l’invention (HG-5-15) contenant le plus de copolysaccharide B présente une capacité de gonflement équivalente à l’hydrogel de même formulation allant jusqu’à 21 fois son volume initial au bout de 15 minutes d’immersion. Contrairement aux hydrogels, la réhydratation observée avec les fils est très rapide et découle d’un ratio surface / volume beaucoup plus élevé pour les fils que pour les hydrogels massifs. Une observation microscopique du phénomène de gonflement des fils a également été réalisée en immergeant pendant 5 minutes une partie d’un fil obtenu avec la composition 11 selon l’invention (HG-5-15) dans de l’eau ultra pure. De la même façon, l’influence d’une goutte d’eau déposée sur une portion de fil a été observée. Les fils sont présentés en figure 8 et 9. The swelling capacity of the threads according to the invention was also evaluated during their rehydration by immersion in an ultrapure water bath. In the same way as for bulk hydrogels, threads according to the invention were cut and then immersed in ultrapure water for 15 minutes. The initial mass of each thread, as well as the mass of the thread at regular time intervals, was measured using a precision balance. The swelling kinetics for the yarns are transcribed in Table 7. A slight difference in swelling is noted for a given formulation as a function of the diameter of the initial yarn. With an identical formulation, the swelling values obtained from the yarns are relatively similar to those obtained with the hydrogels. In the same way as for the hydrogels, the reference yarn based on chitosan A (comparative composition 2, Ref HG-8-0) exhibits a slight maximum swelling of the order of 2 times its initial volume after 15 minutes . The yarn obtained with composition 11 according to the invention (HG-5-15) containing the most copolysaccharide B has a swelling capacity equivalent to the hydrogel of the same formulation, up to 21 times its initial volume after 15 minutes of immersion. Unlike hydrogels, the rehydration observed with threads is very rapid and results from a much higher surface area to volume ratio for threads than for bulk hydrogels. A microscopic observation of the yarn swelling phenomenon was also carried out by immersing part of a yarn obtained with composition 11 according to the invention (HG-5-15) in ultrapure water for 5 minutes. In the same way, the influence of a drop of water deposited on a portion of wire was observed. The wires are shown in figure 8 and 9.
[0151] Ces résultats nous montrent que les compositions selon l’invention ont une capacité de gonflement beaucoup plus élevées que les fils avec seulement le chitosane A. These results show us that the compositions according to the invention have a much higher swelling capacity than the yarns with only chitosan A.
[0152] [Tableau 7] [0152] [Table 7]
[0153] Une expérience a été conduite sur un disque d’hydrogel selon l’invention pour évaluer l’influence de plusieurs cycles de séchage-gonflage sur les capacités d’hydratation et de déshydratation de l’hydrogel. Une solution de la composition 11 selon l’invention (HG-5-15) a été formulée puis gélifiée dans un moule de dimension 0=3cm et h=2,5mm pour obtenir un hydrogel sous forme de disque dont la masse a été mesuré précisément à la balance de précision. L’hydrogel est ensuite rincé comme décrit précédemment puis laisser sécher pendant 1 semaine et pesé. Le xérogel est alors de nouveau hydraté et pesé après hydratation complète puis de nouveau séché pendant une semaine. Après une semaine le gel est pesé puis de nouveau immergé dans l’eau pendant 5 jours. Les valeurs obtenues sur plusieurs cycles sont retranscrites dans le tableau 8. An experiment was conducted on a hydrogel disk according to the invention to evaluate the influence of several drying-inflation cycles on the hydration and dehydration capacities of the hydrogel. A solution of composition 11 according to the invention (HG-5-15) was formulated and then gelled in a mold of dimension 0=3cm and h=2.5mm to obtain a hydrogel in the form of a disc whose mass was measured precisely to the precision balance. The hydrogel is then rinsed as described above, then left to dry for 1 week and weighed. The xerogel is then again hydrated and weighed after complete hydration and then again dried for a week. After a week the gel is weighed and then again immersed in water for 5 days. The values obtained over several cycles are transcribed in Table 8.
[0154] [Tableau 8] [0154] [Table 8]
[0155] Une faib e perte de masse liée à la diminution des capacités de gonflement et de séchage du gel semble graduellement se produire au fil des cycles d’hydratation et de déshydratation, mais reste très limitée. De même, une perte limitée de 14% des capacités de gonflement est observée après deux cycles complets d’hydratation et de déshydratation s’étalant sur deux semaines au total. [0155] A small loss of mass linked to the reduction in the swelling and drying capacities of the gel seems to occur gradually over the cycles of hydration and dehydration, but remains very limited. Similarly, a limited loss of 14% in swelling capacities is observed after two complete cycles of hydration and dehydration spanning a total of two weeks.
Exemple 8 - Etude de la capacité d’extraction métallique des fils selon l’inventionExample 8 - Study of the metal extraction capacity of the wires according to the invention
[0156] La capacité d’extraction en plomb, en cuivre, en cadmium et en fer de certains fils selon l’invention a été évaluée précisément par analyse ICP-MS après immersion des fils dans des solutions diluées de métaux. Dans un premier temps, une expérience a été conduite sur une solution métallique contenant trois cations métalliques (Cu2+, Pb2+, Cd2+). 10 mL de solutions métalliques composés des trois métaux Cu, Pb et Cd à 0 ppb, 10 ppb et 100 ppb respectivement ont été préparées dans de l’eau pure à partir de solution de référence de chaque métal à 500 ppb. En parallèle un fil de 1 mg est pesé précisément à la balance de précision et ce morceau est ensuite découpé en quatre morceaux de longueurs et de masses identiques (m = 0,25 mg). Les quatre morceaux de fil sont ensuite immergés dans chaque solution métallique. Après une durée de 4 heures, 1 jour, 2 jours et 1 semaine respectivement, un morceau de fil est prélevé puis séché à l’étuve pendant 24 h à 40°C. Les échantillons secs à 4 heures, 1 jour et 2 jours sont ensuite analysés à l’aide d’un spectrophotomètre ICP-MS Nexion 2000 de chez Perkin-Elmer sans minéralisation préalable et après simple solubilisation du fil sec dans 1 mL d’une solution d’acide nitrique (HNO3) à 10% wt. Les échantillons à 1 semaine sont, quant à eux, récupérés puis introduits dans un récipient en Teflon avec 2mL d’HNO3 à 69% wt. et 1 mL d’eau ultra pure pour digestion dans un micro-onde Multiwave 5000 de chez Anton Paar pendant 30 minutes à 200°C. Le produit minéralisé est ensuite analysé par ICP-MS. Les résultats obtenus sur le fil obtenu avec la composition 12 selon l’invention (HG-8-8) sont présentés dans le Tableau 9. The lead, copper, cadmium and iron extraction capacity of certain wires according to the invention was evaluated precisely by ICP-MS analysis after immersion of the wires in dilute solutions of metals. First, an experience was carried out on a metal solution containing three metal cations (Cu 2+ , Pb 2+ , Cd 2+ ). 10 mL of metal solutions composed of the three metals Cu, Pb and Cd at 0 ppb, 10 ppb and 100 ppb respectively were prepared in pure water from a reference solution of each metal at 500 ppb. In parallel, a 1 mg wire is weighed precisely on the precision balance and this piece is then cut into four pieces of identical lengths and masses (m = 0.25 mg). The four pieces of wire are then immersed in each metal solution. After a period of 4 hours, 1 day, 2 days and 1 week respectively, a piece of yarn is removed and then dried in an oven for 24 hours at 40°C. The samples dry at 4 hours, 1 day and 2 days are then analyzed using an ICP-MS Nexion 2000 spectrophotometer from Perkin-Elmer without prior mineralization and after simple solubilization of the dry thread in 1 mL of a solution of nitric acid (HNO 3 ) at 10% wt. The samples at 1 week are, for their part, recovered then introduced into a Teflon container with 2 mL of HNO 3 at 69% wt. and 1 mL of ultrapure water for digestion in a Multiwave 5000 microwave from Anton Paar for 30 minutes at 200°C. The mineralized product is then analyzed by ICP-MS. The results obtained on the yarn obtained with composition 12 according to the invention (HG-8-8) are presented in Table 9.
[0157] [Tableau 9] [0158] Le fil utilisé pour cette expérience est obtenu avec la composition 12 selon l’invention (HG-8-8) et se compose donc à 50% en masse de chitosane A et à 50% en masse de copolysaccharide B. Le fil a été immergé dans une solution métallique correspondant à 10,000 fois son propre volume et est capable d’extraire efficacement le cuivre, le plomb et le cadmium en concentrant les métaux plus de 1000 fois dans son volume par rapport à la solution avoisinante. Le fil est également capable d’extraire efficacement les trois métaux pour des solutions métalliques dilués de l’ordre de la dizaine de ppb. [0157] [Table 9] The yarn used for this experiment is obtained with composition 12 according to the invention (HG-8-8) and therefore consists of 50% by weight of chitosan A and 50% by weight of copolysaccharide B. The yarn has been immersed in a metal solution of 10,000 times its own volume and is capable of efficiently extracting copper, lead and cadmium by concentrating the metals more than 1000 times in its volume compared to the surrounding solution. The wire is also capable of effectively extracting the three metals for dilute metal solutions of the order of ten ppb.
[0159] Une étude d’extraction métallique a également été conduite en milieu biologique sur du sang de porc reconstitué et fortement hémolysé afin d’évaluer la capacité d’extraction du fer des fils. 10 mL d’une solution de sang de porc hémolysé sont préparés par redispersion à 10 g/L de la poudre de sang séché dans de l’eau ultra pure. En parallèle, un fil de 1 mg est pesé précisément à la balance de précision et ce morceau est ensuite découpé en quatre morceaux de longueurs et de masses identiques (m=0,25mg). Les quatre morceaux de fil sont ensuite immergés dans la solution de sang de porc reconstituée. Après une durée de 1 heure, 2 heures, 4 heures et 24 heures respectivement, un morceau de fil est prélevé puis rincé dans 60mL d’eau ultra pure pendant 1 minute avant d’être séché à l’étuve pendant 24h à 40°C. Les fils secs sont ensuite récupérés puis introduits dans un récipient en Teflon avec 2mL d’HNOs à 69% wt. et 1 mL d’eau ultra pure pour digestion dans un micro-onde Multiwave 5000 de chez Anton Paar pendant 30 minutes à 200°C. Le produit minéralisé est ensuite analysé par ICP-MS. Les résultats obtenus sur trois fils sont présentés dans le Tableau 10. A metal extraction study was also conducted in a biological medium on reconstituted and heavily hemolyzed pig blood in order to assess the iron extraction capacity of the wires. 10 mL of a solution of haemolyzed pig blood are prepared by redispersion at 10 g/L of the dried blood powder in ultrapure water. In parallel, a 1 mg wire is weighed precisely on the precision balance and this piece is then cut into four pieces of identical lengths and masses (m=0.25 mg). The four pieces of wire are then immersed in the reconstituted pig's blood solution. After a period of 1 hour, 2 hours, 4 hours and 24 hours respectively, a piece of yarn is removed and then rinsed in 60mL of ultrapure water for 1 minute before being dried in an oven for 24 hours at 40°C. . The dry threads are then recovered and introduced into a Teflon container with 2mL of HNOs at 69% wt. and 1 mL of ultrapure water for digestion in a Multiwave 5000 microwave from Anton Paar for 30 minutes at 200°C. The mineralized product is then analyzed by ICP-MS. The results obtained on three wires are presented in Table 10.
[0160] [Tableau 10] [0160] [Table 10]
[0161] Au bout d’une heure d’immersion, les trois fils sont capables d’extraire du fer du milieu. Cependant, l’ajout de copolysaccharide B dans la composition permet d’augmenter les capacités de chélation du fil vis-à-vis du fer au bout d’une heure et significativement au bout de 2 heures. Cette augmentation est particulièrement significative lorsque la composition selon l’invention comprend 2 chélatants de type Rc différent. After one hour of immersion, the three wires are capable of extracting iron from the medium. However, the addition of copolysaccharide B in the composition makes it possible to increase the chelation capacities of the wire with respect to iron after one hour and significantly after 2 hours. This increase is particularly significant when the composition according to the invention comprises 2 chelating agents of different Rc type.
[0162] La capacité d’extraction en fer selon l’invention face à différents chélateurs du fer (III) (citrate, NTA, Défériprone) a été évaluée précisément par analyse ICP-MS après immersion des pastilles de xerogel dans des solutions de fer (2 ppm en fer) contenant des chélateurs du fer dans des proportions pour avoir un cation de fer par complexe (11 citrate/1 fer ; 1 ,1 NTA/1 fer ; 4 Défériprone/ 1 fer). Les solutions sont tamponnées à pH 7,4 avec du PBS 0,1 M pour les solutions ayant du citrate ou de la défériprone, pour les solutions ayant du NTA le tampon utilisé est le tris HCl 0,05M. Une pastille de xerogel de masse connue a été plongée dans un volume de 20 ml de solution métallique pendant une durée de 24 H dans le cas de l’expérience avec la Défériprone et 90 H pour les expériences avec le NTA et le citrate. Les pastilles contrôle ont été plongées dans la solution tampon (PBS ou Tris-HCI) pour un temps correspondant à l’expérience considérée. Des prélèvements dans les solutions ont été faits à t : 0 et t : final. Ces échantillons sont alors analysés à l’aide d’un spectrophotomètre ICP-MS Nexion 2000 de chez Perkin-Elmer. Les pastilles de gel sont récupérées et minéralisées dans un micro-onde Multiwave 5000 de chez Anton Paar suivant la méthode présentée précédemment. Ainsi les solutions résultantes sont analysées par ICP-MS. Les résultats obtenus pour les inventions 10, 16, 17, 15, 18 de compositions respectives HG-5-10 ; HG-5-9,5-0,5 ; HG-5-9,2-0,8 ; HG-5-9-1 ; HG-5-8-2 sont présentés dans le Tableau 11 . The iron extraction capacity according to the invention against different iron (III) chelators (citrate, NTA, Deferiprone) was precisely evaluated by ICP-MS analysis after immersion of the xerogel pellets in iron solutions. (2 ppm iron) containing iron chelators in proportions to have one iron cation per complex (11 citrate/1 iron; 1.1 NTA/1 iron; 4 Deferiprone/1 iron). The solutions are buffered at pH 7.4 with 0.1 M PBS for the solutions having citrate or deferiprone, for the solutions having NTA the buffer used is 0.05 M Tris HCl. A xerogel pellet of known mass was immersed in a volume of 20 ml of metallic solution for a period of 24 hours in the case of the experiment with deferiprone and 90 hours for the experiments with NTA and citrate. The control pellets were immersed in the buffer solution (PBS or Tris-HCl) for a time corresponding to the experiment considered. Samples were taken from the solutions at t: 0 and t: final. These samples are then analyzed using an ICP-MS Nexion 2000 spectrophotometer from Perkin-Elmer. The gel pellets are recovered and mineralized in a Multiwave 5000 microwave from Anton Paar according to the method presented previously. Thus the resulting solutions are analyzed by ICP-MS. The results obtained for inventions 10, 16, 17, 15, 18 of respective compositions HG-5-10; HG-5-9.5-0.5; HG-5-9.2-0.8; HG-5-9-1; HG-5-8-2 are shown in Table 11.
[Tableau 11 ] comportant des chélates du fer présentant des constante de complexation relativement faibles comme le sont le citrate ou le NTA. Dans le cas où les pastilles sont face à un fort agent complexant du fer comme c’est le cas de la défériprone, seuls les gels comportant du DFO sont capables d’extraire du fer ce qui correspond aux inventions 16, 17, 15, 18. L’invention 18 (HG-5-8-2) ayant le plus de polymère MEX-CDFO (B3) dans sa composition possède la meilleure capacité d’extraction du fer face à la défériprone. [Table 11 ] comprising iron chelates having relatively low complexation constants such as citrate or NTA. In the case where the pellets are faced with a strong iron complexing agent as is the case with deferiprone, only the gels comprising DFO are capable of extracting iron, which corresponds to inventions 16, 17, 15, 18 Invention 18 (HG-5-8-2) having the most MEX-CDFO (B3) polymer in its composition has the best iron extracting capacity compared to deferiprone.
[0164] Une autre étude d’extraction métallique a été conduite en milieu biologique sur du plasma bovin afin d’évaluer la capacité d’extraction du fer des pastilles dans des conditions plus proches de la réalité. Pour les inventions 10, 16, 17, 15 et 18, une pastille a été pesée et introduite dans 20 mL de plasma bovin pendant 24 heures. Le plasma a t : 0 est analysé par ICP-MS. Les pastilles sont minéralisées et analysées par ICP-MS suivant la méthode expliquée précédemment. Les résultats obtenus pour les inventions 10, 16, 17, 15, 18 de compositions respectives HG-5-10 ; HG-5-9,5-0,5 ; HG-5-9,2-0,8 ;Another metal extraction study was conducted in a biological medium on bovine plasma in order to evaluate the iron extraction capacity of the pellets under conditions closer to reality. For inventions 10, 16, 17, 15 and 18, a pellet was weighed and introduced into 20 mL of bovine plasma for 24 hours. The t:0 plasma is analyzed by ICP-MS. The pellets are mineralized and analyzed by ICP-MS according to the method explained above. The results obtained for inventions 10, 16, 17, 15, 18 of respective compositions HG-5-10; HG-5-9.5-0.5; HG-5-9.2-0.8;
HG-5-9-1 ; HG-5-8-2 sont présentés dans le Tableau 12. HG-5-9-1; HG-5-8-2 are shown in Table 12.
[Tableau 12] Après 24 heures, les 3 gels sont capables d’extraire une partie du fer du plasma. Exemple 9 - Etudes de la capacité de relargage des fils et des hydrogels selon l’invention [Table 12] After 24 hours, the 3 gels are able to extract part of the iron from the plasma. Example 9 - Studies of the release capacity of threads and hydrogels according to the invention
[0165] La capacité de chargement du fil en substance d’intérêt et de leur relargage contrôlé dans une autre solution ou un autre milieu ont été mises en évidence. Dans un premier temps, la possibilité de chargement et de relargage du fil avec une substance a été évaluée à l’aide d’une molécule fluorescente. 10 mL d’une solution de fluorescéine à 25 mg/L est préparé par solubilisation de la fluorescéine dans de l’eau ultra pure. Un fil de 4 mg est alors découpé et pesé à la balance de précision avant d’être immergé dans la solution de fluorescéine pendant 10 minutes. Les fils sont ensuite retirés de la solution et séchés dans une étuve à 40°C pendant 2 heures puis à température ambiante pendant 3 jours. Le fil est ensuite immergé dans 20 mL d’eau ultra pure et un prélèvement de 2 mL de cette solution est réalisé au bout de 0, 1 , 2, 5, 10, 15, 30, 45 minutes et au bout de 15 heures et est analysé à l’aide d’un spectromètre à fluorescence Cary Eclipse de chez Agilent (Tableau 11 ). The loading capacity of the yarn with the substance of interest and their controlled release into another solution or another medium have been demonstrated. First, the possibility of loading and releasing the thread with a substance was evaluated using a fluorescent molecule. 10 mL of a 25 mg/L fluorescein solution is prepared by dissolving fluorescein in ultrapure water. A 4 mg thread is then cut and weighed on a precision balance before being immersed in the fluorescein solution for 10 minutes. The threads are then removed from the solution and dried in an oven at 40° C. for 2 hours then at ambient temperature for 3 days. The wire is then immersed in 20 mL of ultrapure water and a sample of 2 mL of this solution is taken after 0, 1, 2, 5, 10, 15, 30, 45 minutes and after 15 hours and is analyzed using a Cary Eclipse fluorescence spectrometer from Agilent (Table 11).
[0166] [Tableau 13] [0166] [Table 13]
[0167] Les capacités de chargement et de relargage de substance d’intérêt de trois formulations de fils ont été étudiées à l’aide de la fluorescéine par analyse de la fluorescence de la solution après relargage. Les trois fils relarguent de la fluorescéine 1 minute après l’immersion du fil sec chargé dans l’eau ultra pure. La formulation comparative 2 (HG-8-0) composée uniquement de chitosane A relargue très peu de fluorescéine. L’ajout de copolysaccharide B dans la composition du fil permet d’augmenter la capacité de relargage des fils, ceci est particulièrement vrai plus la composition est chargée en copolysaccharide B The loading and release capacities of the substance of interest of three thread formulations were studied using fluorescein by analysis of the fluorescence of the solution after release. The three threads release fluorescein 1 minute after immersion of the charged dry thread in ultrapure water. Comparative formulation 2 (HG-8-0) composed solely of chitosan A releases very little fluorescein. The addition of copolysaccharide B in the yarn composition allows to increase the release capacity of the threads, this is particularly true the more the composition is loaded with copolysaccharide B
[0168] Une expérience identique a été réalisée en chargeant cette fois-ci les fils à l’aide de miconazole qui est une molécule antimycosique imidazolé couramment utilisé dans des dispositifs médicaux variés (spray topique, crèmes, lotions, etc.) pour guérir les infections fongiques. 100 mL d’une solution de miconazole à 0,1 g/L est préparé par solubilisation du miconazole dans de l’eau ultra pure. Un fil obtenu à partir de la composition 10 selon l’invention (HG-5-10) de 0,9mg (10cm) est alors découpé et pesé à la balance de précision avant d’être immergé dans la solution de miconazole pendant 10 minutes. Les fils sont ensuite retirés de la solution et suspendus à une tige en verre pour sécher pendant 3 heures à température ambiante. Le fil est ensuite immergé directement dans 3 mL d’eau ultra pure contenue dans une cuvette pour spectrophotomètre en plastique et une analyse du milieu est réalisée à intervalle de temps régulier par analyse de fluorescence à l’aide d’un spectromètre à fluorescence Cary Eclipse de chez Agilent (Tableau 12). An identical experiment was carried out, this time loading the threads with miconazole, which is an imidazole antifungal molecule commonly used in various medical devices (topical spray, creams, lotions, etc.) to cure the fungal infections. 100 mL of a 0.1 g/L miconazole solution is prepared by dissolving miconazole in ultrapure water. A thread obtained from composition 10 according to the invention (HG-5-10) of 0.9 mg (10 cm) is then cut and weighed on a precision balance before being immersed in the miconazole solution for 10 minutes . The threads are then removed from the solution and hung on a glass rod to dry for 3 hours at room temperature. The wire is then immersed directly in 3 mL of ultrapure water contained in a plastic spectrophotometer cuvette and an analysis of the medium is carried out at regular time intervals by fluorescence analysis using a Cary Eclipse fluorescence spectrometer from Agilent (Table 12).
[0169] [Tableau 14] [0169] [Table 14]
[0170] La même expérience a été réalisée en chargeant les fils avec de la pénicilline qui est un antibiotique. 100 mL d’une solution de pénicilline à O,1g/L est préparé par solubilisation de la pénicilline dans de l’eau ultra pure. Un fil obtenu à partir de la composition 10 selon l’invention (HG-5-10) de 0,9 mg (10 cm) est alors découpé et pesé à la balance de précision avant d’être immergé dans la solution de pénicilline pendant 5 minutes. Les fils sont ensuite retirés de la solution et suspendus à une tige en verre pour sécher pendant 3 heures à température ambiante. Le fil est ensuite immergé dans 10 mL d’eau ultra pure et des prélèvements sont réalisés après 1 h, 2 h et 22 h. Les échantillons sont ensuite analysés par absorbance UV-visible à l’aide d’unThe same experiment was carried out by loading the threads with penicillin, which is an antibiotic. 100 mL of a penicillin solution at 0.1 g/L is prepared by dissolving the penicillin in ultrapure water. A thread obtained from composition 10 according to the invention (HG-5-10) of 0.9 mg (10 cm) is then cut and weighed on a precision balance before being immersed in the penicillin solution for 5 minutes. The threads are then removed from the solution and hung on a glass rod to dry for 3 hours at room temperature. The wire is then immersed in 10 mL of ultrapure water and samples are taken after 1 h, 2 h and 22 h. THE samples are then analyzed by UV-visible absorbance using a
Spectrophotomètre UV-Vis Varian Cary 50 de chez Agilent (Tableau 13). Varian Cary 50 UV-Vis spectrophotometer from Agilent (Table 13).
[0171] [Tableau 15] [0171] [Table 15]
[0172] Ces résultats montrent que les compositions selon l’invention peuvent être chargées en ingrédient pharmaceutique actif, et peuvent également les relarguer. These results show that the compositions according to the invention can be loaded with active pharmaceutical ingredient, and can also release them.
Exemple 10 - Étude préliminaire de la composition d’une solution injectable gélifiante Example 10 - Preliminary study of the composition of a gelling injectable solution
[0173] Plusieurs solutions ont été préparées de la même façon que décrit dans l’exemple 4 mais cette fois-ci la quantité d’acide acétique est ajoutée de sorte à obtenir un mélange homogène où l’acide est en défaut par rapport aux fonctions amines non fonctionnalisées. Brièvement, différentes quantités de chitosane A1 et de composé B1 sont ajoutées dans un réacteur avec de l’eau milli-Q et de l’acide acétique. Le mélange est laissé sous agitation pendant au moins une heure à 100 RPM. La solution est ensuite récupérée et introduite dans un dispenseur de fluide puis centrifugée à 4000 RPM pendant 10 minutes pour enlever les bulles d’air restantes. Le pH et l’osmolarité de chaque formulation ont été mesurés avec un pH mètre Mettler Toledo SevenCompact S210 pH et un osmomètre Camlab Lôser Micro MCD200 Plus respectivement. Les différentes compositions et leurs préparations sont présentées dans le tableau 16. Several solutions were prepared in the same way as described in example 4 but this time the quantity of acetic acid is added so as to obtain a homogeneous mixture where the acid is lacking with respect to the functions unfunctionalized amines. Briefly, different amounts of chitosan A1 and compound B1 are added to a reactor with milli-Q water and acetic acid. The mixture is left stirring for at least one hour at 100 RPM. The solution is then collected and introduced into a fluid dispenser and then centrifuged at 4000 RPM for 10 minutes to remove the remaining air bubbles. The pH and osmolarity of each formulation were measured with a Mettler Toledo SevenCompact S210 pH meter and a Camlab Loser Micro MCD200 Plus osmometer respectively. The different compositions and their preparations are shown in Table 16.
[Tableau 16] [Table 16]
[0174] Les valeurs de pH obtenues sur les solutions aqueuses de MEX-CD2 sans ajout d'acide sont relativement basses. Ceci s'explique par la présence préalable d'acide acétique dans le lyophilisât de MEX-CD2 pour assurer sa solubilité durant l’étape de purification. L'acide acétique contenu dans le lyophilisât de MEX-CD2 est également osmotiquement actif et contribue à une augmentation de l'osmolarité. [0175] La viscosité de chaque solution a été mesurée à l'aide d'un rhéomètre HAAKE RheoStress 600 équipé d'une géométrie cône plan C35/20 Ti L. Les valeurs des viscosités newtoniennes sont présentées tableau 15. On note que la viscosité dépend directement de la concentration totale en polymère, plus la concentration est faible, plus la viscosité est faible. De la même manière, à concentration totale en polymère égale, une fraction massique de MEX-CD2 plus importante contribue à réduire la viscosité. The pH values obtained on the aqueous solutions of MEX-CD2 without addition of acid are relatively low. This is explained by the prior presence of acetic acid in the MEX-CD2 lyophilisate to ensure its solubility during the purification step. The acetic acid contained in the MEX-CD2 lyophilisate is also osmotically active and contributes to an increase in osmolarity. The viscosity of each solution was measured using a HAAKE RheoStress 600 rheometer equipped with a C35/ 20 Ti L plane cone geometry. The values of the Newtonian viscosities are presented in Table 15. It is noted that the viscosity directly depends on the total polymer concentration, the lower the concentration, the lower the viscosity. In the same way, at an equal total polymer concentration, a larger mass fraction of MEX-CD2 contributes to reducing the viscosity.
[0176] L'injectabilité de chaque composition a été précisément mesurée à l'aide d'une machine de force Shimadzu AG-X plus. Chaque solution a été introduite dans une seringue pré-remplissable en verre BD Hylok™ de 1 mL équipée d'une aiguille Sterican 27G (0,4x12 mm). L'injectabilité a été déterminée comme la force en Newtons nécessaire pour éjecter la solution à une vitesse constante du piston de 1 mm/s. L'injectabilité du système dépend principalement de la viscosité de la solution et dépend donc de la concentration totale en polymère et dans une moindre mesure de la fraction massique de MEX-CD2 dans la composition considérée. Ainsi, les solutions sont facilement injectables à 3% (w/w), modérément injectables à 5% (w/w), difficiles à injecter à 7% (w/w) et non injectables à 10% (w/w) (T. E. Robinson et al., Filling the Gap: A Correlation between Objective and Subjective Measures of Injectability, Adv. Healthc. Mater., vol. 9, no 5, p. 1901521 , 2020). The injectability of each composition was precisely measured using a Shimadzu AG-X plus force machine. Each solution was introduced into a BD Hylok™ 1 mL pre-fillable glass syringe fitted with a Sterican 27G needle (0.4x12 mm). Injectability was determined as the force in Newtons required to eject the solution at a constant piston velocity of 1 mm/s. The injectability of the system mainly depends on the viscosity of the solution and therefore depends on the total polymer concentration and to a lesser extent on the mass fraction of MEX-CD2 in the composition considered. Thus, the solutions are readily injectable at 3% (w/w), moderately injectable at 5% (w/w), difficult to inject at 7% (w/w), and non-injectable at 10% (w/w) ( T. E. Robinson et al., Filling the Gap: A Correlation between Objective and Subjective Measures of Injectability, Adv. Healthc. Mater., vol. 9, no 5, p. 1901521 , 2020).
[Tableau 17] [Table 17]
Exemple 11 - Détermination de la fraction massique de MEX-CD2 adéquate pour une solution injectable gélifiante Example 11 - Determination of the mass fraction of MEX-CD2 suitable for a gelling solution for injection
[0177] Cet exemple permet de mettre en évidence l'impact de la fraction massique de MEX- CD2 sur la formulation finale. Par conséquent, des solutions à 5 % (w/v) ont été produites avec différentes fractions massiques de MEX-CD2 allant de 0 % à 100 % de MEX-CD2. Chacune de ces formulations a été stérilisée pendant 20 minutes à 121 °C dans un autoclave afin d’évaluer l’impact de ce procédé sur les propriétés rhéologiques du système. Pour chacune de ces formulations, le pH, l'osmolarité, la viscosité et l'injectabilité ont été déterminés et sont présentés tableau 18. This example makes it possible to demonstrate the impact of the mass fraction of MEX-CD2 on the final formulation. Therefore, 5% (w/v) solutions were produced with different mass fractions of MEX-CD2 ranging from 0% to 100% MEX-CD2. Each of these formulations was sterilized for 20 minutes at 121°C in an autoclave to assess the impact of this process on the rheological properties of the system. For each of these formulations, the pH, osmolarity, viscosity and injectability were determined and are presented in Table 18.
[Tableau 18] [Table 18]
[0178] Ces formulations ont été réalisées en ajoutant de l'acide acétique dans des proportions stoechiométriques avec les amines libres des deux polymères ; la quantité résiduelle d'acide acétique présente dans le lyophilisât de MEX-CD2 n'a pas été considérée. Ceci explique pourquoi le pH décroît quasi linéairement avec la quantité de MEX-CD2 ajoutée à la composition et donc avec la fraction massique de MEX-CD2 de la formulation considérée. La viscosité newtonienne mesurée sur ces solutions avant et après stérilisation décroît linéairement en fonction de la fraction massique de MEX-CD2. L’injectabilité suit la même tendance et démontre donc que plus la quantité de MEX- CD2 est importante dans la formulation considérée, plus cette dernière est simple à injecter. Les échantillons formulés à 5% (w/v) sont tous modérément injectables à 27G avec des forces d'éjection allant de 19 N pour une formulation à 100% de MEX-CD2 à 38 N pour une formulation à 100% de chitosane standard. L'impact de la stérilisation sur la viscosité de la formulation dépend fortement de la fraction massique de MEX- CD2. Ainsi, les formulations comprenant une fraction massique de MEX-CD2 supérieure ou égale à 67% voient leurs viscosités peu ou pas affectées lors de la stérilisation du mélange. These formulations were produced by adding acetic acid in stoichiometric proportions with the free amines of the two polymers; the residual amount of acetic acid present in the MEX-CD2 lyophilisate was not considered. This explains why the pH decreases almost linearly with the quantity of MEX-CD2 added to the composition and therefore with the mass fraction of MEX-CD2 of the formulation considered. The Newtonian viscosity measured on these solutions before and after sterilization decreases linearly as a function of the mass fraction of MEX-CD2. The injectability follows the same trend and therefore demonstrates that the greater the amount of MEX- CD2 is important in the formulation considered, the more the latter is simple to inject. The 5% (w/v) formulated samples are all moderately injectable at 27G with ejection forces ranging from 19 N for a 100% MEX-CD2 formulation to 38 N for a standard 100% chitosan formulation. The impact of sterilization on the viscosity of the formulation strongly depends on the mass fraction of MEX-CD2. Thus, the formulations comprising a mass fraction of MEX-CD2 greater than or equal to 67% see their viscosities little or not affected during the sterilization of the mixture.
Exemple 12 - Injectabilité et gélification d’une solution injectable gélifiante MEX-CD2-I Example 12 - Injectability and gelation of an injectable gelling solution MEX-CD2-I
[0179] Cet exemple vise à déterminer précisément les propriétés physico-chimiques et rhéologiques de deux formulations de MEX-CD2-I (solution injectable gélifiante) sélectionnées parmi les résultats des précédents exemples. Ainsi les formulations à 5% (w/w) avec une fraction massique de MEX-CD2 égale à 67% et 100% respectivement ont été étudiées plus précisément. La formulation à 67 % de MEX-CD2 a été synthétisée à deux pH légèrement différents pour évaluer l'impact du pH sur les propriétés rhéologiques de la formulation. Chacune de ces deux formulations a également été préparée à 10% (w/w) afin d'envisager un mélange de ces solutions précurseurs plus concentrées avec des molécules d'intérêt selon un ratio 1 :1. Chacune de ces formulations a été stérilisée pendant 20 minutes à 121 °C dans un autoclave pour étudier l'impact de la stérilisation sur leurs propriétés. Pour chacune de ces formulations, le pH, l'osmolarité et la viscosité ont été mesurés et sont présentés au tableau 19. Pour les formulations à 5 % (w/w), l'injectabilité a également été déterminée à l'aide d'aiguilles différentes. This example aims to precisely determine the physico-chemical and rheological properties of two formulations of MEX-CD2-I (gelling injectable solution) selected from the results of the preceding examples. Thus the formulations at 5% (w/w) with a mass fraction of MEX-CD2 equal to 67% and 100% respectively were studied more precisely. The 67% MEX-CD2 formulation was synthesized at two slightly different pHs to assess the impact of pH on the rheological properties of the formulation. Each of these two formulations was also prepared at 10% (w/w) in order to envisage a mixture of these more concentrated precursor solutions with molecules of interest according to a 1:1 ratio. Each of these formulations was sterilized for 20 minutes at 121°C in an autoclave to study the impact of sterilization on their properties. For each of these formulations, pH, osmolarity and viscosity were measured and are shown in Table 19. For the 5% (w/w) formulations, injectability was also determined using different needles.
[Tableau 19] [Table 19]
[0180] L'injectabilité des formulations dépend principalement de la viscosité newtonienne de la solution, du rayon interne de l'aiguille et, dans une moindre mesure, de la longueur de l'aiguille utilisée. Pour une formulation à 5% (w/w) avec une fraction massique de MEX-CD2 de 67%, on observe qu'une diminution du pH génère une augmentation significative de l'injectabilité après stérilisation du mélange. Ceci est en accord avec l'observation faite sur la viscosité du système. La formulation à 5 % (w/w) avec 100 % de MEX-CD2 est plus facile à injecter que la formulation à 67 % de MEX-CD2/CTS, quelle que soit l'aiguille utilisée. Enfin, quelle que soit la formulation envisagée, le système ne semble pas injectable manuellement avec une aiguille de 30 G. Les deux formulations peuvent être injectées manuellement par un praticien avec une aiguille de 27G ou inférieur. The injectability of the formulations mainly depends on the Newtonian viscosity of the solution, the internal radius of the needle and, to a lesser extent, the length of the needle used. For a formulation at 5% (w/w) with a mass fraction of MEX-CD2 of 67%, it is observed that a reduction in the pH generates a significant increase in the injectability after sterilization of the mixture. This is in agreement with the observation made on the viscosity of the system. The 5% (w/w) formulation with 100% MEX-CD2 is easier to inject than the 67% MEX-CD2/CTS formulation, regardless of the needle used. Finally, whatever the formulation considered, the system does not seem to be manually injected with a 30 G needle. The two formulations can be injected manually by a practitioner with a 27 G needle or less.
[0181] Les compositions IS-1 ,7-3,3 et IS-0-5 sont capable de gélifier spontanément par immersion dans un milieu physiologique comportant un pH supérieur à 6,2 et une osmolarité supérieure à 285 mOsm/L [Fig.10]. Pour évaluer les propriétés rhéologiques du gel formé, 2 mL de la composition IS-1 ,7-3,3 sont introduits dans un moule sous forme de disque de 25 mm de diamètre. Le moule est plongé dans 20 mL de PBS à 10 mM et laissé pendant 2 heures. Le module de stockage (G') et le module de perte (G") de l'hydrogel formé ont été enregistrés sur un rhéomètre ARES de TA Instruments en utilisant une géométrie plan/plan de 25 mm. Avant la mesure, l'écart zéro de l'appareil est réglé avec le moule vide. Un balayage avec une déformation constante de 1 % et une fréquence de 10 Hz a été effectué sur l'hydrogel formé après avoir placé le moule contenant l'hydrogel sur la géométrie. L'hydrogel commence à se former spontanément après immersion dans le PBS et on peut observer un front de gélification progressif. Le gel obtenu possède des valeurs de G' et G" supérieurs à 102 Pa pour une fréquence d'oscillation élevée ce qui correspond à un gel très souple. De plus, la valeur de G' est supérieure à celle de G" ce qui signifie que le matériau résultant est effectivement plus proche d'un gel que d'une solution. G' et G" diminuent avec la fréquence ce qui semble mettre en évidence un important phénomène de relaxation (flux/relaxation/mobilité des chaînes, effet viscoélastique) dû à un gel faiblement réticulé. The IS-1,7-3,3 and IS-0-5 compositions are capable of gelling spontaneously by immersion in a physiological medium having a pH greater than 6.2 and an osmolarity greater than 285 mOsm/L [Fig .10]. To evaluate the rheological properties of the gel formed, 2 mL of the composition IS-1,7-3,3 are introduced into a mold under disc shape 25 mm in diameter. The mold is immersed in 20 mL of 10 mM PBS and left for 2 hours. The storage modulus (G') and the loss modulus (G") of the formed hydrogel were recorded on an ARES rheometer from TA Instruments using a 25 mm plane/plane geometry. Before the measurement, the deviation The apparatus is zeroed with the mold empty. A sweep with a constant strain of 1% and a frequency of 10 Hz was performed on the formed hydrogel after placing the mold containing the hydrogel on the geometry. hydrogel begins to form spontaneously after immersion in PBS and a progressive gelation front can be observed. The gel obtained has values of G' and G" greater than 10 2 Pa for a high oscillation frequency, which corresponds to a very flexible gel. Moreover, the value of G' is higher than that of G" which means that the resulting material is indeed closer to a gel than to a solution. G' and G" decrease with frequency which seems to put in evidence of a significant relaxation phenomenon (flow/relaxation/chain mobility, viscoelastic effect) due to a weakly cross-linked gel.
Exemple 13 - Étude de tolérance in-vivo de l’implantation dans la cavité péritonéale d’un xerogel HG-5-10 Example 13 - In-vivo tolerance study of the implantation in the peritoneal cavity of a xerogel HG-5-10
[0182] Un xerogel (h=1 ,5mm et 0=10mm) sous forme de pastille a été obtenu par séchage partiel d’un gel comprenant la composition HG-5-10 préparée comme décrit dans l’exemple 4. Ce xerogel a été implanté dans le péritoine de 10 souris mâles C57BI/6 afin d’évaluer la biocompatibilité et la tolérance de l’implant. Les paramètres évalués dans cette étude comprennent des observations et des mesures en cours de vie (y compris la morbidité/mortalité, signes cliniques, poids corporel, consommation alimentaire), hématologie avant et après traitement et la chimie du sang et le poids des organes après le traitement et l'autopsie. La moitié des souris ont été sacrifiées à J7 et l’autre moitié à J56. A xerogel (h=1.5 mm and 0=10 mm) in the form of a pellet was obtained by partial drying of a gel comprising the composition HG-5-10 prepared as described in example 4. This xerogel has was implanted into the peritoneum of 10 male C57BI/6 mice to assess the biocompatibility and tolerance of the implant. Parameters assessed in this study include lifetime observations and measurements (including morbidity/mortality, clinical signs, body weight, food consumption), hematology before and after treatment, and blood chemistry and organ weights after treatment and autopsy. Half of the mice were sacrificed on D7 and the other half on D56.
[0183] Dans les conditions expérimentales retenues, le xerogel HG-5-10 administré comme dispositif médical implantable dans le péritoine, chez des souris mâles C57BI/6, n'a pas induit de signes systémiques de toxicité. Lors de cette étude, aucun décès, changement de poids corporel significatif ou changement hématologique n’a été induit par l’implant à J7 et J56 chez les souris. L’implantation intra-abdominale du xerogel HG-5-10 n’a pas provoqué de changements microscopiques dans le foie ni de modification du poids du foie. Under the experimental conditions adopted, xerogel HG-5-10 administered as an implantable medical device in the peritoneum, in C57BI/6 male mice, did not induce systemic signs of toxicity. In this study, no death, significant change in body weight or haematological change was induced by the implant at D7 and D56 in mice. Intra-abdominal implantation of xerogel HG-5-10 did not cause microscopic changes in the liver or changes in liver weight.
Exemple 14 - Étude IRM in-vivo de la dégradabilité de la solution injectable gélifiante IS-1 ,7-3,3 par administration sous-cutanée Example 14 - In-vivo MRI study of the degradability of the gelling injectable solution IS-1,7-3,3 by subcutaneous administration
[0184] Environ 300 pL de la formulation IS-1 ,7-3,3 chargée à 305 ppm de Gd (précomplexé sur le MEX-CD2) ont été injecté par voie sous-cutanée dans le dos de souris BALB/c en bonne santé à l'aide d'une seringue de 22G. Les images IRM, de la figure 11 , du gel implanté chez la souris ont été acquises pendant 1 mois après l'implantation à 7,1 T sur un spectromètre Bruker Avance Neo 300 MHz équipé d’une sonde de micro-imagerie micro 2,5 à température ambiante (R.T. = 21 0 C). Les intensités des signaux dans le foie, les reins et la rate ont également été surveillées. About 300 μl of the IS-1,7-3,3 formulation loaded with 305 ppm of Gd (precomplexed on MEX-CD2) were injected subcutaneously into the back of BALB/c mice in good condition. health using a 22G syringe. MRI images, in Figure 11, of the gel implanted in mice were acquired for 1 month after implantation at 7.1 T on a Bruker Avance Neo 300 MHz spectrometer equipped with a micro-2.5 micro-imaging probe at room temperature (RT=21 ° C.). Signal intensities in liver, kidney and spleen were also monitored.
[0185] Sur la figure 12, les images T2w ont été acquises en utilisant une séquence standard RARE (Rapid Acquisition with Refocated Echoes) avec les paramètres suivants : TR = 4000 ms, TE = 24 ms, facteur RARE = 16, nombre de moyennes = 4, FOV = 30 mm, épaisseur de coupe = 1 mm, taille de matrice 128x 128. Les images Ti w ont été acquises en utilisant une séquence standard MSME (multi spins multi échos) avec les paramètres suivants : TR = 400 ms, TE = 3,3 ms, nombre de moyennes = 6, FOV = 30 mm, épaisseur de coupe = 1 mm, taille de la matrice 128x 128. Les valeurs de Ti ont été mesurées à l'aide d'une séquence Saturation Recovery Spin Echo (TE = 3,8 ms, 10 TR variables allant de 50 à 5000 ms, FOV = 30 mm, épaisseur de tranche = 1 mm, taille de matrice 128 x 128) et analysées à l'aide de l’équation Ti de récupération de saturation. La taille du gel formé a été mesurée par dessin manuel du ROI dans les images IRM. In FIG. 12, the T 2 w images were acquired using a standard RARE sequence (Rapid Acquisition with Refocated Echoes) with the following parameters: TR = 4000 ms, TE = 24 ms, RARE factor = 16, number of means = 4, FOV = 30 mm, slice thickness = 1 mm, matrix size 128x 128. Ti w images were acquired using a standard MSME (multi spin multi echo) sequence with the following parameters: TR = 400 ms, TE = 3.3 ms, number of averages = 6, FOV = 30 mm, slice thickness = 1 mm, die size 128x 128. Ti values were measured using a Saturation sequence Recovery Spin Echo (TE = 3.8 ms, 10 variable TR ranging from 50 to 5000 ms, FOV = 30 mm, slice thickness = 1 mm, array size 128 x 128) and analyzed using the equation Saturation Recovery Ti. The size of the gel formed was measured by manual drawing of the ROI in the MRI images.
[0186] Comme répertorié dans le tableau 20, le volume occupé par le gel formé a diminué jusqu'à environ 50 % du volume initial en 30 jours de surveillance, tandis que le Ti mesuré dans la même zone a augmenté d'environ 6 fois. À partir du jour 15 après l'implantation, l'hétérogénéité de l'implant a commencé à augmenter en raison de l'infiltration des cellules. Cette infiltration est mise en évidence par l'augmentation des écarts-types en Ti mesurés du jour 15 au jour 30. Les volumes de départ des implants chez les 3 souris étaient respectivement de 304, 348 et 216 mm3. Les intensités du signal Tiw dans le foie, les reins et la rate n'ont pas augmenté dans la plage de temps étudiée. As listed in Table 20, the volume occupied by the formed gel decreased to approximately 50% of the initial volume in 30 days of monitoring, while the Ti measured in the same area increased approximately 6 times. . From day 15 after implantation, implant heterogeneity began to increase due to cell infiltration. This infiltration is demonstrated by the increase in the standard deviations in Ti measured from day 15 to day 30. The starting volumes of the implants in the 3 mice were respectively 304, 348 and 216 mm 3 . Tiw signal intensities in liver, kidney and spleen did not increase over the time range studied.
[Tableau 20] [Table 20]
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2110474A FR3127759B1 (en) | 2021-10-04 | 2021-10-04 | Chitosan-based swelling gel |
PCT/FR2022/051864 WO2023057712A1 (en) | 2021-10-04 | 2022-10-03 | Chitosan-based swelling gel |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4412623A1 true EP4412623A1 (en) | 2024-08-14 |
Family
ID=79018501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22797426.8A Pending EP4412623A1 (en) | 2021-10-04 | 2022-10-03 | Chitosan-based swelling gel |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240409724A1 (en) |
EP (1) | EP4412623A1 (en) |
JP (1) | JP2024537858A (en) |
FR (1) | FR3127759B1 (en) |
WO (1) | WO2023057712A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3150126A1 (en) * | 2023-06-26 | 2024-12-27 | M&Wine | Process for capturing metals in an ingestible liquid |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130302255A1 (en) * | 2012-05-09 | 2013-11-14 | Bbs Nanomedicina Zrt. | Novel targeted paramagnetic contrast agent |
-
2021
- 2021-10-04 FR FR2110474A patent/FR3127759B1/en active Active
-
2022
- 2022-10-03 US US18/698,471 patent/US20240409724A1/en active Pending
- 2022-10-03 WO PCT/FR2022/051864 patent/WO2023057712A1/en active Application Filing
- 2022-10-03 JP JP2024520753A patent/JP2024537858A/en active Pending
- 2022-10-03 EP EP22797426.8A patent/EP4412623A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20240409724A1 (en) | 2024-12-12 |
FR3127759B1 (en) | 2024-08-09 |
FR3127759A1 (en) | 2023-04-07 |
JP2024537858A (en) | 2024-10-16 |
WO2023057712A1 (en) | 2023-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Séon-Lutz et al. | Electrospinning in water and in situ crosslinking of hyaluronic acid/cyclodextrin nanofibers: Towards wound dressing with controlled drug release | |
Divband et al. | Bioactive chitosan biguanidine-based injectable hydrogels as a novel BMP-2 and VEGF carrier for osteogenesis of dental pulp stem cells | |
Gami et al. | Chemically crosslinked xylan–β-Cyclodextrin hydrogel for the in vitro delivery of curcumin and 5-Fluorouracil | |
EP3317326B1 (en) | Method for the production of hydrogel comprising chitosan and negatively charged polyelectrolytes, and cellular, porous material resulting from said hydrogel | |
Joy et al. | Gelatin—Oxidized carboxymethyl cellulose blend based tubular electrospun scaffold for vascular tissue engineering | |
CN105473622B (en) | Method for manufacturing the hyaluronic acid product of the crosslinking of forming | |
Hedayati et al. | Ketoconazole and Ketoconazole/β-cyclodextrin performance on cotton wound dressing as fungal skin treatment | |
Liu et al. | Gelatin-based hydrogels with β-cyclodextrin as a dual functional component for enhanced drug loading and controlled release | |
Li et al. | Amphiphilically-modified gelatin nanoparticles: Self-assembly behavior, controlled biodegradability, and rapid cellular uptake for intracellular drug delivery | |
Narayanan et al. | Electrospinning preparation and spectral characterizations of the inclusion complex of ferulic acid and γ-cyclodextrin with encapsulation into polyvinyl alcohol electrospun nanofibers | |
Ouerghemmi et al. | Triclosan loaded electrospun nanofibers based on a cyclodextrin polymer and chitosan polyelectrolyte complex | |
FR2937974A1 (en) | BLOCK COPOLYMERS BASED ON POLYSACCHARIDE AND POLYPEPTIDE, VESICLES COMPRISING THESE COPOLYMERS AND THEIR USE | |
EP2833919A1 (en) | Microparticles and nanoparticles made up of hydrophobized polysaccharides and an alpha-cyclodextrine | |
Ettoumi et al. | Supramolecular assembly of dual crosslinked nanocomposite polysaccharides hydrogel: Integration of injectable, self-healing, and pH-responsive platform for sustained delivery of polyphenols | |
EP4412623A1 (en) | Chitosan-based swelling gel | |
WO2017017379A1 (en) | Process for preparing biocompatible and biodegradable porous three-dimensional polymer matrices and uses thereof | |
WO2014190849A1 (en) | Doxorubicin prodrug, method of preparing same, and injectable combination | |
WO2013068397A1 (en) | Production of hydrogels by means of diels-alder reaction | |
Chen et al. | A facile strategy for in situ controlled delivery of doxorubicin with a pH-sensitive injectable hydrogel | |
EP2190884B1 (en) | Process for preparing thermosensitive (poly(ethylene oxide) poly(propylene oxide)) derivatives that can be used to functionalize chitosan. | |
Feng et al. | Injectable self-crosslinking hyaluronic acid/silk fibroin blend hydrogel based on disulfide bond | |
Wang et al. | A self-healing thermogelling polymer with tunable transparency based on biomolecule alginate grafting phenylboronic acid | |
WO2020212615A1 (en) | Process for crosslinking a polymer | |
Li et al. | Enhancement of Oryzanol application by constructing modified β-CD inclusion complex and polycaprolactone-chitosan electrospun fiber membranes: Perspectives on wound dressings and grape preservation | |
WO2006092540A1 (en) | Multiple-membrane polysaccharide capsules and in particular of chitosan and method for preparing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20240408 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |