EP4399176A1 - Process for preparing starting compounds intended for the synthesis of an ammine metal borohydride - Google Patents
Process for preparing starting compounds intended for the synthesis of an ammine metal borohydrideInfo
- Publication number
- EP4399176A1 EP4399176A1 EP22773680.8A EP22773680A EP4399176A1 EP 4399176 A1 EP4399176 A1 EP 4399176A1 EP 22773680 A EP22773680 A EP 22773680A EP 4399176 A1 EP4399176 A1 EP 4399176A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- formula
- bnh
- metal
- compound
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 47
- 239000002184 metal Substances 0.000 title claims abstract description 47
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 15
- 239000007858 starting material Substances 0.000 title description 4
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 claims abstract description 100
- 229910000085 borane Inorganic materials 0.000 claims abstract description 80
- -1 hydrogenated boron nitride compound Chemical class 0.000 claims abstract description 71
- 238000000034 method Methods 0.000 claims abstract description 37
- 150000001875 compounds Chemical class 0.000 claims abstract description 32
- 229910052796 boron Inorganic materials 0.000 claims abstract description 28
- 238000006243 chemical reaction Methods 0.000 claims abstract description 28
- 229910052987 metal hydride Inorganic materials 0.000 claims abstract description 24
- 150000004681 metal hydrides Chemical class 0.000 claims abstract description 24
- 239000003054 catalyst Substances 0.000 claims abstract description 23
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 19
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 19
- 229910052582 BN Inorganic materials 0.000 claims abstract description 16
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 16
- 150000003624 transition metals Chemical class 0.000 claims abstract description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000007789 gas Substances 0.000 claims abstract description 14
- 239000002253 acid Substances 0.000 claims abstract description 13
- 230000029087 digestion Effects 0.000 claims abstract description 13
- 239000012433 hydrogen halide Substances 0.000 claims abstract description 10
- 229910000039 hydrogen halide Inorganic materials 0.000 claims abstract description 10
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 9
- 150000002367 halogens Chemical class 0.000 claims abstract description 9
- 239000000460 chlorine Substances 0.000 claims abstract description 8
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 5
- 239000002798 polar solvent Substances 0.000 claims abstract description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract 2
- 239000000203 mixture Substances 0.000 claims description 52
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 39
- 239000002904 solvent Substances 0.000 claims description 39
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 37
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 28
- 239000007791 liquid phase Substances 0.000 claims description 22
- 239000007790 solid phase Substances 0.000 claims description 21
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 14
- 229910021529 ammonia Inorganic materials 0.000 claims description 10
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 9
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 claims description 6
- 229910010062 TiCl3 Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 claims description 6
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 claims description 6
- 150000004820 halides Chemical class 0.000 claims description 5
- 229910052744 lithium Inorganic materials 0.000 claims description 5
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 150000002736 metal compounds Chemical class 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 150000004703 alkoxides Chemical class 0.000 claims description 2
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 claims description 2
- 150000001639 boron compounds Chemical class 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910052706 scandium Inorganic materials 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- 239000000047 product Substances 0.000 description 57
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 20
- 238000010586 diagram Methods 0.000 description 9
- 238000000926 separation method Methods 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 238000006356 dehydrogenation reaction Methods 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 7
- 229910015844 BCl3 Inorganic materials 0.000 description 6
- 229910010199 LiAl Inorganic materials 0.000 description 6
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 238000005984 hydrogenation reaction Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000004611 spectroscopical analysis Methods 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229910015845 BBr3 Inorganic materials 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000012265 solid product Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 4
- 229910010084 LiAlH4 Inorganic materials 0.000 description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- JBANFLSTOJPTFW-UHFFFAOYSA-N azane;boron Chemical compound [B].N JBANFLSTOJPTFW-UHFFFAOYSA-N 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 239000012280 lithium aluminium hydride Substances 0.000 description 4
- 238000004607 11B NMR spectroscopy Methods 0.000 description 3
- 238000004286 7Li NMR spectroscopy Methods 0.000 description 3
- 229910003203 NH3BH3 Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 229960004132 diethyl ether Drugs 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 238000005004 MAS NMR spectroscopy Methods 0.000 description 2
- 238000001237 Raman spectrum Methods 0.000 description 2
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 238000000498 ball milling Methods 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910021592 Copper(II) chloride Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 229910010808 Li2Al Inorganic materials 0.000 description 1
- 229910009997 Li2Mg Inorganic materials 0.000 description 1
- 229910003019 MBH4 Inorganic materials 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910010348 TiF3 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- DMSZORWOGDLWGN-UHFFFAOYSA-N ctk1a3526 Chemical compound NP(N)(N)=O DMSZORWOGDLWGN-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000000449 magic angle spinning nuclear magnetic resonance spectrum Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000005935 nucleophilic addition reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- XPGAWFIWCWKDDL-UHFFFAOYSA-N propan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCC[O-].CCC[O-].CCC[O-].CCC[O-] XPGAWFIWCWKDDL-UHFFFAOYSA-N 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000003930 superacid Substances 0.000 description 1
- 238000001149 thermolysis Methods 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- LGQXXHMEBUOXRP-UHFFFAOYSA-N tributyl borate Chemical compound CCCCOB(OCCCC)OCCCC LGQXXHMEBUOXRP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B6/00—Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
- C01B6/24—Hydrides containing at least two metals; Addition complexes thereof
- C01B6/243—Hydrides containing at least two metals; Addition complexes thereof containing only hydrogen, aluminium and alkali metals, e.g. Li(AlH4)
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
- C01B3/001—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
- C01B3/0031—Intermetallic compounds; Metal alloys; Treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B6/00—Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
- C01B6/06—Hydrides of aluminium, gallium, indium, thallium, germanium, tin, lead, arsenic, antimony, bismuth or polonium; Monoborane; Diborane; Addition complexes thereof
- C01B6/10—Monoborane; Diborane; Addition complexes thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B6/00—Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
- C01B6/24—Hydrides containing at least two metals; Addition complexes thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/02—Preparation, purification or separation of ammonia
- C01C1/026—Preparation of ammonia from inorganic compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Definitions
- the present invention deals with the chemical storage of hydrogen by means of metal borohydride-based materials. It notably deals with a process for preparing compounds for manufacturing an ammine metal borohydride starting from the said ammine metal borohydride which has been dehydrogenated.
- Metal borohydride-based materials have been intensively investigated for their potential as high-capacity hydrogen storage materials.
- the thermolysis of a metal borohydride MBH 4 results in hydrogen release at a dehydrogenation temperature which is inversely proportional to the electronegativity of the metal M cation.
- high electronegativity metal borohydrides are well suited for mobile applications due to their low decomposition temperature. For instance, some transition metal borohydrides present a decomposition temperature lower than room temperature.
- This known method comprises performing a nucleophilic addition reaction, implemented in liquid ammonia NH 3 , of a metal hydride of formula A x MH x+m and a borane complex of formula L ⁇ BH 3 , L being a solvent forming a complex with a borane compound BH 3 , such as to obtain a metal borohydride complex of formula A x M(BH 4 ) x+m L n , and a displacement reaction between the metal borohydride complex and liquid ammonia to obtain the ammine metal borohydride.
- ammine metal borohydride can be regenerated by implementing a specific process, starting from the product of formula A x M(BNH) x+m obtained as a reaction by-product of the dehydrogenation of the ammine metal borohydride of formula A x M(BH 4 ) x+m (NH 3 ) n .
- this specific process requires heating the product of formula A x M(BNH) x+m at a temperature greater than the melting temperature of the metal compound AxM, usually greater than 400 °C. This lowers its energetic yield.
- Embodiments according to a first aspect of the invention relate to a process for preparing a metal hydride of formula A x MH x+m and a borane compound BH 3 , starting from a product of formula A x M(BNH) x+m , wherein:
- A is an alkali metal
- the process comprising: a) contacting the product of formula A x M(BNH) x+m with a catalyst comprising a transition metal in solution in an aprotic polar solvent, such as to separate the metal hydride of formula A x MH x+m and a hydrogenated boron nitride compound BNH, b) the synthesis of the borane compound BH 3 , from the hydrogenated boron nitride compound BNH, the synthesis comprising:
- Preferred embodiments according to the first aspect of the invention relate to a process for preparing a metal hydride of formula A x MH x+m and a borane compound BH 3 , starting from a product of formula A x M(BNH) x+m , wherein:
- A is an alkali metal
- M is a metal different from an alkali metal
- the process comprising: a) contacting the product of formula A x M(BNH) x+m with a catalyst comprising a transition metal in solution in an aprotic polar solvent, such as to separate the metal hydride of formula A x MH x+m and a hydrogenated boron nitride compound BNH, b) the synthesis of the borane compound BH 3 , from the hydrogenated boron nitride compound BNH, the synthesis comprising: - a digestion reaction of the boron nitride compound BNH in a gaseous atmosphere containing, even consisting in, an anhydrous hydrogen halide acid gas comprising at least one halogen element Y, such as to produce a boron halide BY 3 ,
- Embodiments according to a second aspect of the invention also relate to a process for preparing a metal hydride of formula A x MH x+m and a borane compound BH 3 , starting from a product of formula A x M(BNH) x+m , wherein:
- A is an alkali metal
- M is a metal different from an alkali metal
- the process further comprising: a’i) reacting the metal hydride of formula A x M(BNH) x+m with ammonia such as obtain an ammoniated product of formula A x M(NH 2 ) x+m and a hydrogenated boron nitride compound BNH, a’ 2) the hydrogenation of the ammoniated product of formula A x M(NH 2 ) x+m such as to obtain an metal hydride of formula A x MH x+m , the process comprising the separation of the hydrogenated boron nitride compound BNH from the ammoniated product of formula A x M(NH 2 ) x+m before step a’ 2) or from the metal hydride of formula A x MH x+m after step a’ 2), and b) the synthesis of the borane compound BH 3 , from the hydrogenated boron nitride compound BNH, the synthesis comprising:
- Preferred embodiments according to the second aspect of the invention relate to a process for preparing a metal hydride of formula A x MH x+m and a borane compound BH 3 , starting from a product of formula A x M(BNH) x+m , wherein:
- A is an alkali metal
- M is a metal different from an alkali metal
- the process further comprising: a’i) reacting the metal hydride of formula A x M(BNH) x+m with ammonia such as obtain an ammoniated product of formula A x M(NH 2 ) x+m and a hydrogenated boron nitride compound BNH, a’ 2) the hydrogenation of the ammoniated product of formula A x M(NH 2 ) x+m such as to obtain an metal hydride of formula A x MH x+m , the process comprising the separation of the hydrogenated boron nitride compound BNH from the ammoniated product of formula A x M(NH 2 ) x+m before step a’ 2) or from the metal hydride of formula A x MH x+m after step a’ 2), and b) the synthesis of the borane compound BH 3 , from the hydrogenated boron nitride compound BNH, the synthesis comprising:
- the process of the invention presents an improved yield. It also provides an easy chemical route to produce the starting materials which are required to the manufacture of the ammine metal borohydride.
- the product of formula A x M(BNH) x+m can be obtained from a dehydrogenation of a least one ammine metal borohydride of formula A x M(BH 4 ) x+m (NH 3 ) n , with n > 0.
- the product of formula A x M(BNH) x+m can be obtained from a dehydrogenation of a mixture of an ammine metal borohydride of formula A x M(BH 4 ) x+m (NH 3 ) n , n > 0, and at least one compound chosen among a metal borohydride of formula A(BH 4 ), a metal borohydride of formula M(BH 4 ) m , a metal hydride of formula AH, a metal hydride of formula MH m , ammonia borane NH 3 BH 3 , a metal amidoborane of formula A(NH 2 BH 3 ), a metal amidoborane of formula M(NH 2 BH 3 ) m and their mixtures.
- the product of formula A x M(BNH) x+m can be obtained from a dehydrogenation of a compound or a mixture of compounds chosen among:
- the product of formula A x M(BNH) x+m is preferably obtained from the dehydrogenation of an ammine borohydride fuel of formula A x M(BH 4 ) x+m (NH 3 ) n with n > 0.
- the product of formula A x M(BNH) x+m can be in the form of a mixture wherein A x M and BNH can be aggregated together and/or interact with each other.
- the coefficient x can be greater than or equal to 0.1, greater than or equal to 0.2, greater than or equal to 0.5, greater than or equal to 1.0, greater than or equal to 1.5, greater than or equal to 1.8, greater than or equal to 1.9.
- the coefficient x can be equal to 2.
- the coefficient x can be lower than or equal to 10, lower than or equal to 2, lower than or equal to 1.9, lower than or equal to 1.8, lower than or equal to 1.5, lower than or equal to 1.0, lower than or equal to 0.5, lower than or equal to 0.2, lower than or equal to 0.1.
- the coefficient m ranges between 2 and 4. It can be equal to 2.
- the alkali metal A can be chosen among Li, Na, K and their mixtures.
- the alkali metal A can be Li.
- the metal M can be chosen among transition metals, earth alkali metals, post- transitions metals and their mixtures.
- the metal M is chosen among Mg, Sc, Y, Ti, Zr, Mn, Zn, Al and their mixtures.
- the metal M is chosen among Zn, Al, Mg and their mixtures.
- the metal M is chosen among Mg, Al and their mixtures.
- the metal M can be Mg.
- the product of formula A x M(BNH) x+m can be AZn(BNH) x+m wherein A is chosen among Li, Na, K and their mixtures.
- the product of formula A x M(BNH) x+m can be Li x A1(BNH) 3+x .
- the product of formula A x M(BNH) x+m can be A 2 Mg(BNH) 4 wherein A is chosen among Li, Na, K and their mixtures. More especially, it can be of formula Li 2 Mg(BNH) 4 .
- step a) is performed at a temperature lower than the melting temperature of the metal compound A x M.
- step a) is performed at a temperature ranging between 0°C and 150 °C.
- Step a) can be performed in a H 2 gas atmosphere, preferably in an autoclave, at a pressure greater than 0.1 MPa, for instance greater than 1.3 MPa, and lower than 35 MPa.
- the product of formula A x M(BNH) x+m and the catalyst can be mixed, for instance by ball milling, in order to increase the surface of contact between the catalyst and the product of formula A x M(BNH) x+m .
- the catalyst comprises Ti and the metal M is Al, and mixing results in the formation of Ti-catalyzed Al.
- the product of formula A x M(BNH) x+m can be in the form of a solid chunk.
- the product of formula A x M(BNH) x+m can comprise a mixture of A x M and BNH based polymers or an amorphous A-M-B-N-H compound.
- the catalysis aims at catalysing the hydrogenation reaction occurring between hydrogen and the product of formula A x M(BNH) x+m .
- the catalyst can be in liquid or solid, notably in the form of a powder.
- the catalyst comprises a transition metal which is preferably chosen among Ti, Zr, Fe and their mixtures.
- the transition metal is titanium.
- the catalyst can be chosen among an halogenide of the transition metal, an alkoxide of the transition metal and their mixtures.
- the catalyst can be chosen among a fluoride of the transition metal, a chloride of the transition metal, and a bromide of the transition metal.
- the catalyst can be chosen among titanium chloride TiCl 3 , n-butoxide Ti(OBu) 4 , zirconium n-propoxide Zr(OPr) 3 , fer-ethylate Fe(OEt) 2 , TiF 3 . TiBr 3 and their mixtures. More especially, it can be chosen among TiCl 3 , Ti(OBu) 4 and their mixtures.
- the catalyst is TiCl 3 .
- the solvent is a polar and aprotic. It can be chosen among an ether, an amine of formula RR’R”N, wherein R, R’ and R” can each be of formula C n H 2n-1 , in particular CH 3 and C 2 H 5 , and phosphoramide, notably hexamethylphosphoramide.
- the solvent is chosen among tetrahydrofuran, dimethyl sulphide, triethylamine, diethyl ether, dimethyl ether, diglyme (bis(2-methoxyethyl) ether) and their mixtures.
- the solvent is tetrahydrofuran, also known as the acronym “THF”.
- step a the product of formula A x MH x+m and the boron nitride compound BNH are separated.
- the product of formula A x MH x+m is dissolved in the solvent and the boron nitride compound BNH is solid.
- the boron nitride compound BNH can be extracted from the solution comprising the product of formula A x MH x+m by filtering.
- the product of formula A x MH x+m and the boron nitride compound BNH can both be dissolved or solid and can be extracted through a density-base separation technique, which takes advantage of the differences of density between boron nitride and the product of formula A x MH x+m .
- At least one, preferably both of steps a’i) and a’2) are performed at a temperature lower than the melting temperature of the metal compound A x M. More especially, at least one, preferably both of steps a’i) and a’ 2) can be performed at a temperature ranging between 15 °C and 150 °C.
- step a’i) is performed at a temperature ranging between 15 °C and 40 °C, notably at room temperature.
- Step a’i) can be performed by mixing A x M(BNH) x+m and liquid ammonia. Mixing is preferably performed by ball milling, preferably for a period ranging between 400 minutes and 800 minutes.
- Step a’i) can be performed at a pressure greater than 0.7 MPa.
- step a’i) is performed at a pressure of 1 MPa.
- Step a’ 2) can be performed in a H 2 gas atmosphere, preferably in an autoclave, at a pressure greater than 0.1 MPa, for instance greater than 1.3 MPa, and lower than 35MPa.
- Step a’ 2) can be performed at a temperature ranging between 20 °C and 150 °C.
- Step a’2) can be performed in a polar and aprotic solvent, preferably, the solvent being chosen among tetrahydrofuran, dimethyl sulphide, diethyl ether, dimethyl ether, diglyme (bis(2-methoxyethyl) ether) and their mixtures.
- the solvent is tetrahydrofuran.
- the process comprises the separation of the hydrogenated boron nitride compound BNH the ammoniated product of formula A x M(NH 2 ) x+m before step a’2).
- the hydrogenated boron nitride compound BNH and the ammoniated product of formula A x M(NH 2 ) x+m can be separated by taking advantage of the difference of their solubility in liquid ammonia.
- the hydrogenated boron nitride compound BNH can be solid whereas the ammoniated product of formula A x M(NH 2 ) x+m can be dissolved in ammonia.
- the hydrogenated boron nitride compound BNH can be separated from the ammoniated product of formula A x M(NH 2 ) x+m by filtering.
- the ammoniated product of formula A x M(NH 2 ) x+m can be precipitated before the hydrogenation step a’2).
- the process comprises the separation of the hydrogenated boron nitride compound BNH from the metal hydride of formula A x MH x+m after step a’ 2).
- the product of formula A x MH x+m is dissolved in the solvent and the boron nitride compound BNH is solid.
- the boron nitride compound BNH can be extracted from the solution comprising the product of formula A x MH x+m by filtering.
- the product of formula A x MH x+m and the boron nitride compound BNH can both be dissolved or solid and can be extracted through a density-base separation technique, which takes advantage of the differences of density between boron nitride and the product of formula A x MH x+m .
- Step a’ 2) can be performed by contacting the mixture comprising the ammoniated product of formula A x M(NH 2 ) x+m and the hydrogenated boron nitride compound BNH with H 2 . Said contacting can be made in presence of the solvent, for instance tetrahydrofuran, or in the absence of the solvent. In a variant, step a’ 2) can be performed by hydrogenating only the ammoniated product of formula AxM(NH 2 ) x+m .
- the halogen element Y can be chosen among F, Cl, Br, I and their mixtures.
- the halogen element can be chosen among Cl and Br.
- the halogen element Y is chlorine Cl.
- a solution can be prepared comprising the hydrogenated boron nitride compound BNH, a solvent chosen among toluene, tetrahydrofuran, diethyl-ether, 1,4-dioxane, l-butyl-3-methylimidazolium chloride, CS 2 , CCI 4 , C 2 CI 4 and their mixtures and a compound chosen among AlCl 3 , CuCl 2 and their mixtures that form together with the halide acid a superacid/solvent system.
- the digestion reaction results in the formation of an ammonia halide of formula NH 4 Y and the process comprises the production of ammonia NH 3 from the ammonia halide, for instance by means of a heating that results in the decomposition of the ammonia halide into ammonia and at least one hydrogen halide gas HY, which can be reused.
- the digestion reaction can be implemented at a temperature ranging between 20°C and 100°C and at a pressure ranging between 1 bar and 80 bar, for instance at a pressure of about 40 bar.
- the digestion reaction can be performed by mixing the BNH compound with CS 2 and AlCl 3 and submitting the obtained solution in anhydrous HCl gas at a temperature of 80°C and at a pressure of 40 bar.
- the digestion reaction can be performed by mixing the BNH compound with CS 2 and AIBr 3 in anhydrous HBr gas at a temperature of 80°C and a pressure of 30 bar.
- the process can comprise the synthesis of the borane compound BH 3 , complexed in a solvent L in the form of a complex of formula L ⁇ BH 3 .
- step b) can comprise a preparation of a solution of the boron halide BY 3 in the solvent L such as to form a L ⁇ BY 3 complex and the hydrodehalogenation is performed with boron halide being so complexed in the form of the L ⁇ BY 3 complex, such as to obtain the borane compound BH 3 , complexed in a solvent L in the form of a complex of formula L ⁇ BH 3 .
- the preparation of the solution of BY 3 in the solvent L can comprise the stirring of the solvent L in a gaseous BY 3 atmosphere or the stirring of the solvent L with a solution of BY 3 at a temperature less than or equal to 30°C, preferably less than 15°C, preferably less than 5°C, notably at 0°C or at -78°C.
- the process can comprise mixing the L ⁇ BY 3 complex in the solvent L.
- the process comprises a step c), successive to step b), comprising the preparation a solution of the boron compound BH 3 with a solvent L such as to form a borane complex of formula L ⁇ BH 3 .
- the solvent L is preferably an amine solvent.
- the amine solvent can be of formula NR 3 where R is chosen among CH 3 , C 2 H 5 , C 3 H 7 , C 4 H 9 , C 6 H 5 and their mixtures.
- the amine solvent can be of formula NR 2 R or NRR R wherein R is different from R’ and R’ ’ and R’ is different from R’ ’ and any of R, R’ and R’ ’ can be chosen among CH 3 , C 2 H 5 , C 3 H 7 , C 4 H 9 and C 6 H 5 .
- solvent L is triethylamine N(CH 2 CH 3 ) 3 .
- the hydrodehalogenation of boron halide BY 3 , optionally complexed in the form of L ⁇ BY 3 , in a hydrogen gas atmosphere to obtain the borane compound BH 3 , respectively the borane complex L ⁇ BH 3 is preferably implemented in the presence of a catalyst, preferably chosen among M m B, M m BN and their mixtures, wherein M is chosen among Ni, Pd, Fe, Co, Cu and their mixtures.
- a catalyst preferably chosen among M m B, M m BN and their mixtures, wherein M is chosen among Ni, Pd, Fe, Co, Cu and their mixtures.
- Examples of hydrodechlorination of N(CH 2 CH 3 ) 3 ⁇ BCl 3 in the presence of Ni 3 B catalyst is for instance described in C. Reller and F.
- the hydrodehalogenation of boron halide BY 3 can be performed at a temperature greater than or equal to 20°C, notably greater than or equal to 50°C and preferably lower than or equal to 160°C, notably about 130°C and/or at a pressure greater than 1 bar, notably greater than or equal to 10 bar and preferably lower than 80 bar.
- the hydrodehalogenation of boron halide BCI3, optionally complexed in the form of L ⁇ BCl 3 can be performed at a temperature ranging between 100°C and 160°C and at a pressure of 60 bar.
- the hydrodehalogenation of boron halide BBr 3 optionally complexed in the form of L*BBr3, can be performed at a temperature ranging between 100°C and 130°C and at a pressure of 60 bar.
- hydrodehalogenation of boron halide BY 3 can be implemented for a duration of less than 72 hours.
- the hydrodehalogenation of boron halide BY 3 complexed in the form of L ⁇ BY 3 can result in the formation of L*HY, which can be reduced such as to obtain the anhydrous hydrogen halide acid HY.
- the hydrogen halide acid complex L ⁇ HY can be reacted with ammonia such as to form NH 4 Y, especially if the temperature to proceed to the reduction of said halide acid complex is greater than the degradation temperature of solvent L.
- the yield of the production of BH 3 can be improved by eliminating the produced L-HY, such as to shift the reactions to the desired product and/or by conducting at least two hydrodehalogenation reactions.
- step b) preferably comprises at least:
- Said solid and liquid phases can be separated with a centrifuge apparatus.
- Figure 1 represents the 7Li NMR liquid spectroscopy diagrams of commercial LiAlH 4 (upper diagram) and of hydrogenation solid products dissolved in THF and in CDCl 3 (lower diagram) as presented in example 2;
- Figure 2 represents the 7Li NMR liquid spectroscopy diagrams of commercial Li AIH 4 (upper diagram line) and hydrogenation solid products (middle and lower diagram) dissolved directly in deuterium oxide (D2O) as presented in example 2;
- Figure 3 represents the 11B NMR liquid spectroscopy diagrams of TEA-BH 3 , TEA-BCI3, liquid phase obtained after a hydrodehalogenation reaction of TEA-BCI 3 (test 1) and after a second (test 2) hydrodehalogenation test, in solution in CDCl 3 as presented in example 2;
- Figure 4 represents the XRD analysis of the solid phase obtained after tests 1 and 2 of figure 3 as presented in example 2; the diamond dots correspond to TEA-HCl diffraction peaks;
- Figure 5 represents the 11B NMR liquid spectroscopy diagrams of TEA-BH 3 , TEA-BBr 3 .
- liquid phase obtained after a hydrodehalogenation reaction of TEA-BBr 3 (test 1) and after a second (test 2) hydrodehalogenation test, in solution in CDCl 3 as presented in example 2
- Figure 6 represents the XRD analysis of the solid phase obtained after tests 1 and 2 of figure 5 as presented in example 2; the diamond dots correspond to TEA-HBr diffraction peaks;
- Figure 7 represents the XRD analysis of the dehydrogenated product of LiAl(BH 4 ) 4 (NH 3 ) 6 presented in example 1;
- Figure 8 represents the Raman spectrum of the dehydrogenated product of LiAl(BH 4 ) 4 (NH 3 ) 6 presented in example 1;
- Figure 9 represents the XPS spectrum for a) boron and b) nitrogen of the dehydrogenated product of LiAl(BH 4 ) 4 (NH 3 ) 6 presented in example 1;
- Figure 10 represents the 11B NMR MAS (acronym of Nuclear Magnetic Resonance Magic Angle Spinning) of the dehydrogenated product of LiAl(BH 4 ) 4 (NH 3 ) 6 presented in example 1.
- Example 1 LiAl(BH 4 ) 4 (NH 3 ) 6 is dehydrogenated by heating from room temperature to 200°C. The solid product obtained is then characterized by different techniques.
- the dehydrogenated product is dissolved by the acid mixture of HCl and HNO 3 to proceed to its elementary analysis for Li, Al and B by ICP-OES.
- the molar ratio obtained for Li:A1:B is 1:0.9:3.5.
- the solid product was also analyzed by XPS spectroscopy, as represented on figure 9.
- the XPS spectra of figures 9a and 9b measured at three different points of the dehydrogenated product for boron and nitrogen respectively, confirm the presence of amorphous BN and are similar to the dehydrogenated product of ammonia borane NH 3 BH 3 and of Mg(BH 4 ) 2 (NH 3 ) 6 .
- the quantitative analysis of XPS gives a molar ratio Li:Al:B:N of 1:0.9:4.3:4.6.
- the 11B RMN MAS spectrum of the dehydrogenated product is presented on figure 10.
- the peaks at 24.6, 19.8 and 10.6 ppm correspond to tricoordinate B atoms such as BN 2 H and/or BN 3 .
- the peaks at -1.14 and -21.9 ppm correspond to fourcoordinate B atoms such as BNH 3 and/or BN 2 H 2 and/or BN 3 H.
- the peak at -40.4 ppm corresponds to the BH 4 group.
- the possible BNH-based polymers obtained are BN 3 , BN 2 H, BNH 3 , BN 2 H 2 , BN 3 H, the ratio of B :N being greater than 1 : 1 (except BNH 3 ). This result is consistent with the result of quantitative XPS analysis.
- the dehydrogenated product contains thus several kinds of B product, which are mainly BNH-based polymers in amorphous form.
- 0.05 g of LiAl(BNH) 4 , 0.007 g of TiCl 3 and 2 ml of tetrahydrofuran have been introduced in an autoclave at a temperature of 25 °C.
- the autoclave has been sealed and H 2 has been introduced therein at a pressure of 5 MPa.
- the temperature of the autoclave has been increased up to 100°C and maintained for 72 hours.
- the digestion of BNH has been done by mixing the BNH compound with CS 2 and AICI3 and submitting the obtained solution in anhydrous HC1 gas at a temperature of 80°C and at a pressure of 40 bar.
- boron trichloride has been mixed with TEA for 60 minutes at 0°C.
- Hydrodechlorination of TEA ⁇ BCl 3 has been conducted by loading a vessel with TEA ⁇ BCl 3 , NiB and TEA. Then the mixture is submitted to a pressure of 67 bar with H 2 gas at a temperature of 130 °C. Once pressure has been lowered to atmospheric pressure and temperature has been lowered to room temperature, TEA ⁇ BH 3 and TEA ⁇ HCl have been obtained, present in a composition comprising a solid phase and a liquid phase. The liquid phase and the solid phase were separated by centrifugation.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Catalysts (AREA)
Abstract
Process for preparing a metal hydride of formula AxMHx+m and a borane compound BH3, starting from a product of formula AxM(BNH)x+m, wherein: A is an alkali metal, M is a metal different from an alkali metal, 0 ≤ x ≤10, in particular 0 ≤ x ≤ 2 m>0, the process comprising: a) contacting the product of formula AxM(BNH)x+m with a catalyst comprising a transition metal in solution in an aprotic polar solvent, such as to separate the metal hydride of formula AxMHx+m and a hydrogenated boron nitride compound BNH, b) the synthesis of the borane compound BH3, from the hydrogenated boron nitride compound BNH, the synthesis comprising: - a digestion reaction of the boron nitride compound BNH in a gaseous atmosphere containing, even consisting in, an anhydrous hydrogen halide acid gas comprising at least one halogen element Y, such as to produce a boron halide BY3, Y being preferably chlorine Cl, - a hydrodehalogenation of the boron halide, in a hydrogen gas atmosphere to obtain the borane compound BH3.
Description
PROCESS FOR PREPARING STARTING COMPOUNDS INTENDED FOR THE SYNTHESIS OF AN AMMINE METAL BOROHYDRIDE
The present invention deals with the chemical storage of hydrogen by means of metal borohydride-based materials. It notably deals with a process for preparing compounds for manufacturing an ammine metal borohydride starting from the said ammine metal borohydride which has been dehydrogenated.
Metal borohydride-based materials have been intensively investigated for their potential as high-capacity hydrogen storage materials. The thermolysis of a metal borohydride MBH4 results in hydrogen release at a dehydrogenation temperature which is inversely proportional to the electronegativity of the metal M cation. Hence, high electronegativity metal borohydrides are well suited for mobile applications due to their low decomposition temperature. For instance, some transition metal borohydrides present a decomposition temperature lower than room temperature.
A method is known for preparing an ammine metal borohydride of formula AxM(BH4)x+m(NH3)n wherein A is an alkali metal, M is a metal different from an alkali metal, 0 ≤ x ≤ 2, n > 0, and m > 0. This known method comprises performing a nucleophilic addition reaction, implemented in liquid ammonia NH3, of a metal hydride of formula AxMHx+m and a borane complex of formula L·BH3, L being a solvent forming a complex with a borane compound BH3, such as to obtain a metal borohydride complex of formula AxM(BH4)x+mLn, and a displacement reaction between the metal borohydride complex and liquid ammonia to obtain the ammine metal borohydride.
It is also known that the ammine metal borohydride can be regenerated by implementing a specific process, starting from the product of formula AxM(BNH)x+m obtained as a reaction by-product of the dehydrogenation of the ammine metal borohydride of formula AxM(BH4)x+m(NH3)n. However, this specific process requires heating the product of formula AxM(BNH)x+m at a temperature greater than the melting temperature of the metal compound AxM, usually greater than 400 °C. This lowers its energetic yield.
Therefore, there is a need for a process for preparing starting compounds for manufacturing a preparing an ammine metal borohydride of formula AxM(BH4)x+m(NH3)n which alleviates the hereabove drawback.
The aim of the invention is to satisfy this need.
Embodiments according to a first aspect of the invention relate to a process for preparing a metal hydride of formula AxMHx+m and a borane compound BH3, starting from a product of formula AxM(BNH)x+m, wherein:
A is an alkali metal,
M is a metal different from an alkali metal,
0 ≤ x ≤ 10 m>0, the process comprising: a) contacting the product of formula AxM(BNH)x+m with a catalyst comprising a transition metal in solution in an aprotic polar solvent, such as to separate the metal hydride of formula AxMHx+m and a hydrogenated boron nitride compound BNH, b) the synthesis of the borane compound BH3, from the hydrogenated boron nitride compound BNH, the synthesis comprising:
- a digestion reaction of the boron nitride compound BNH in a gaseous atmosphere containing, even consisting in, an anhydrous hydrogen halide acid gas comprising at least one halogen element Y, such as to produce a boron halide BY3,
- a hydrodehalogenation of the boron halide in a hydrogen gas atmosphere to obtain the borane compound BH3.
Preferred embodiments according to the first aspect of the invention relate to a process for preparing a metal hydride of formula AxMHx+m and a borane compound BH3, starting from a product of formula AxM(BNH)x+m, wherein:
A is an alkali metal,
M is a metal different from an alkali metal,
0 ≤ x ≤ 2 m>0, the process comprising: a) contacting the product of formula AxM(BNH)x+m with a catalyst comprising a transition metal in solution in an aprotic polar solvent, such as to separate the metal hydride of formula AxMHx+m and a hydrogenated boron nitride compound BNH, b) the synthesis of the borane compound BH3, from the hydrogenated boron nitride compound BNH, the synthesis comprising:
- a digestion reaction of the boron nitride compound BNH in a gaseous atmosphere containing, even consisting in, an anhydrous hydrogen halide acid gas comprising at least one halogen element Y, such as to produce a boron halide BY3,
- a hydrodehalogenation of the boron halide in a hydrogen gas atmosphere to obtain the borane compound BH3.
Embodiments according to a second aspect of the invention also relate to a process for preparing a metal hydride of formula AxMHx+m and a borane compound BH3, starting from a product of formula AxM(BNH)x+m, wherein:
A is an alkali metal,
M is a metal different from an alkali metal,
0 ≤ x ≤ 10 m>0, the process further comprising: a’i) reacting the metal hydride of formula AxM(BNH)x+m with ammonia such as obtain an ammoniated product of formula AxM(NH2)x+m and a hydrogenated boron nitride compound BNH, a’ 2) the hydrogenation of the ammoniated product of formula AxM(NH2)x+m such as to obtain an metal hydride of formula AxMHx+m, the process comprising the separation of the hydrogenated boron nitride compound BNH from the ammoniated product of formula AxM(NH2)x+m before step a’ 2) or from the metal hydride of formula AxMHx+m after step a’ 2), and b) the synthesis of the borane compound BH3, from the hydrogenated boron nitride compound BNH, the synthesis comprising:
- a digestion reaction of the boron nitride compound BNH in a gaseous atmosphere containing, even consisting in, an anhydrous hydrogen halide acid gas comprising at least one halogen element Y, such as to produce a boron halide BY3,
- a hydrodehalogenation of the boron halide in a hydrogen gas atmosphere to obtain the borane compound BH3.
Preferred embodiments according to the second aspect of the invention relate to a process for preparing a metal hydride of formula AxMHx+m and a borane compound BH3, starting from a product of formula AxM(BNH)x+m, wherein:
A is an alkali metal,
M is a metal different from an alkali metal,
0 ≤ x ≤ 2 m>0, the process further comprising: a’i) reacting the metal hydride of formula AxM(BNH)x+m with ammonia such as obtain an ammoniated product of formula AxM(NH2)x+m and a hydrogenated boron nitride compound BNH, a’ 2) the hydrogenation of the ammoniated product of formula AxM(NH2)x+m such as to obtain an metal hydride of formula AxMHx+m, the process comprising the separation of the hydrogenated boron nitride compound BNH from the ammoniated product of formula AxM(NH2)x+m before step a’ 2) or from the metal hydride of formula AxMHx+m after step a’ 2), and b) the synthesis of the borane compound BH3, from the hydrogenated boron nitride compound BNH, the synthesis comprising:
- a digestion reaction of the boron nitride compound BNH in a gaseous atmosphere containing, even consisting in, an anhydrous hydrogen halide acid gas comprising at least one halogen element Y, such as to produce a boron halide BY3,
- a hydrodehalogenation of the boron halide in a hydrogen gas atmosphere to obtain the borane compound BH3.
The process of the invention, according to anyone of its first and second aspects, presents an improved yield. It also provides an easy chemical route to produce the starting materials which are required to the manufacture of the ammine metal borohydride.
The process according to the invention, according to anyone of its first and second aspects, can comprise one or more of the following optional features.
The product of formula AxM(BNH)x+m can be obtained from a dehydrogenation of a least one ammine metal borohydride of formula AxM(BH4)x+m(NH3)n, with n > 0. In particular, the product of formula AxM(BNH)x+m can be obtained from a dehydrogenation of a mixture of an ammine metal borohydride of formula AxM(BH4)x+m(NH3)n, n > 0, and at least one compound chosen among a metal borohydride of formula A(BH4), a metal borohydride of formula M(BH4)m, a metal hydride of formula AH, a metal hydride of formula MHm, ammonia borane NH3BH3, a metal amidoborane of formula A(NH2BH3), a metal amidoborane of formula M(NH2BH3)m and their mixtures.
The product of formula AxM(BNH)x+m can be obtained from a dehydrogenation of a compound or a mixture of compounds chosen among:
- an ammine metal borohydride of formula AxM(BH4)x+m(NH3)n;
- a mixture of an ammine metal borohydride of formula AxM(BH4)x+m(NH3)n and at least one, notably both, of a metal borohydride of formula A(BH4) and a metal borohydride of formula M(BH4)m;
- a mixture of an ammine metal borohydride of formula AxM(BH4)x+m(NH3)n and at least one, notably both, of a metal hydride of formula AH and a metal hydride of formula MHm;
- a mixture of an ammine metal borohydride of formula AxM(BH4)x+m(NH3)n and ammonia borane NH3BH3;
- a mixture of an ammine metal borohydride of formula AxM(BH4)x+m(NH3)n and least one, notably both, of a metal amidoborane of formula A(NH2BH3) and a metal amidoborane of formula M(NH2BH3)m, with n > 0.
For instance, Yang et al. (J. Phys. Chem. C, 2013) relates to the dehydrogenation of Mg(BH4)2·6NH3.
The product of formula AxM(BNH)x+m is preferably obtained from the dehydrogenation of an ammine borohydride fuel of formula AxM(BH4)x+m(NH3)n with n > 0. The product of formula AxM(BNH)x+m can be in the form of a mixture wherein AxM and BNH can be aggregated together and/or interact with each other.
The coefficient x can be greater than or equal to 0.1, greater than or equal to 0.2, greater than or equal to 0.5, greater than or equal to 1.0, greater than or equal to 1.5, greater than or equal to 1.8, greater than or equal to 1.9.
The coefficient x can be equal to 2.
The coefficient x can be lower than or equal to 10, lower than or equal to 2, lower than or equal to 1.9, lower than or equal to 1.8, lower than or equal to 1.5, lower than or equal to 1.0, lower than or equal to 0.5, lower than or equal to 0.2, lower than or equal to 0.1.
Preferably, the coefficient m ranges between 2 and 4. It can be equal to 2.
The alkali metal A can be chosen among Li, Na, K and their mixtures. In particular, the alkali metal A can be Li.
The metal M can be chosen among transition metals, earth alkali metals, post- transitions metals and their mixtures.
Preferably, the metal M is chosen among Mg, Sc, Y, Ti, Zr, Mn, Zn, Al and their mixtures.
Preferably, the metal M is chosen among Zn, Al, Mg and their mixtures. Preferably, the metal M is chosen among Mg, Al and their mixtures. In particular, the metal M can be Mg.
In some embodiments, the product of formula AxM(BNH)x+m can be AZn(BNH)x+m wherein A is chosen among Li, Na, K and their mixtures.
In some preferred embodiments, the product of formula AxM(BNH)x+m can be LixA1(BNH)3+x.
In some preferred embodiments, the product of formula AxM(BNH)x+m can be A2Mg(BNH)4 wherein A is chosen among Li, Na, K and their mixtures. More especially, it can be of formula Li2Mg(BNH)4.
According the first aspect of the invention, preferably, step a) is performed at a temperature lower than the melting temperature of the metal compound AxM.
Preferably, step a) is performed at a temperature ranging between 0°C and 150 °C.
Step a) can be performed in a H2 gas atmosphere, preferably in an autoclave, at a pressure greater than 0.1 MPa, for instance greater than 1.3 MPa, and lower than 35 MPa.
Notably, at step a), the product of formula AxM(BNH)x+m, the catalyst and the solvent can be introduced, into a chamber of the autoclave, for instance at a temperature ranging between 20 °C and 35 °C and at atmospheric pressure, notably in a neutral gaseous atmosphere. The autoclave chamber can be sealed after and the H2 pressure, and optionally the temperature, can be increased inside the chamber for improving the yield of the catalysis reaction.
Prior to being put in contact with the solvent, the product of formula AxM(BNH)x+m and the catalyst can be mixed, for instance by ball milling, in order to increase the surface of contact between the catalyst and the product of formula AxM(BNH)x+m. For
example, in an embodiment the catalyst comprises Ti and the metal M is Al, and mixing results in the formation of Ti-catalyzed Al.
The product of formula AxM(BNH)x+m can be in the form of a solid chunk. For instance, the product of formula AxM(BNH)x+m can comprise a mixture of AxM and BNH based polymers or an amorphous A-M-B-N-H compound.
The catalysis aims at catalysing the hydrogenation reaction occurring between hydrogen and the product of formula AxM(BNH)x+m. The catalyst can be in liquid or solid, notably in the form of a powder.
The catalyst comprises a transition metal which is preferably chosen among Ti, Zr, Fe and their mixtures.
Preferably the transition metal is titanium.
The catalyst can be chosen among an halogenide of the transition metal, an alkoxide of the transition metal and their mixtures. For instance, the catalyst can be chosen among a fluoride of the transition metal, a chloride of the transition metal, and a bromide of the transition metal. The catalyst can be chosen among titanium chloride TiCl3, n-butoxide Ti(OBu)4, zirconium n-propoxide Zr(OPr)3, fer-ethylate Fe(OEt)2, TiF3. TiBr3 and their mixtures. More especially, it can be chosen among TiCl3, Ti(OBu)4 and their mixtures. Preferably, the catalyst is TiCl3.
The solvent is a polar and aprotic. It can be chosen among an ether, an amine of formula RR’R”N, wherein R, R’ and R” can each be of formula CnH2n-1, in particular CH3 and C2H5, and phosphoramide, notably hexamethylphosphoramide.
Preferably, the solvent is chosen among tetrahydrofuran, dimethyl sulphide, triethylamine, diethyl ether, dimethyl ether, diglyme (bis(2-methoxyethyl) ether) and their mixtures. Preferably the solvent is tetrahydrofuran, also known as the acronym “THF”.
At the end of step a), the product of formula AxMHx+m and the boron nitride compound BNH are separated.
Preferably the product of formula AxMHx+m is dissolved in the solvent and the boron nitride compound BNH is solid. In particular, the boron nitride compound BNH can be extracted from the solution comprising the product of formula AxMHx+m by filtering.
As a variant, at the end of step a), the product of formula AxMHx+m and the boron nitride compound BNH can both be dissolved or solid and can be extracted through a
density-base separation technique, which takes advantage of the differences of density between boron nitride and the product of formula AxMHx+m.
According to the second aspect of the invention, preferably, at least one, preferably both of steps a’i) and a’2) are performed at a temperature lower than the melting temperature of the metal compound AxM. More especially, at least one, preferably both of steps a’i) and a’ 2) can be performed at a temperature ranging between 15 °C and 150 °C.
Preferably, step a’i) is performed at a temperature ranging between 15 °C and 40 °C, notably at room temperature.
Step a’i) can be performed by mixing AxM(BNH)x+m and liquid ammonia. Mixing is preferably performed by ball milling, preferably for a period ranging between 400 minutes and 800 minutes.
Step a’i) can be performed at a pressure greater than 0.7 MPa. Preferably, step a’i) is performed at a pressure of 1 MPa.
Preferably, step a’i) is performed by reacting the metal hydride of formula AxM(BNH)x+m with liquid ammonia.
Step a’ 2) can be performed in a H2 gas atmosphere, preferably in an autoclave, at a pressure greater than 0.1 MPa, for instance greater than 1.3 MPa, and lower than 35MPa.
Step a’ 2) can be performed at a temperature ranging between 20 °C and 150 °C.
Step a’2) can be performed in a polar and aprotic solvent, preferably, the solvent being chosen among tetrahydrofuran, dimethyl sulphide, diethyl ether, dimethyl ether, diglyme (bis(2-methoxyethyl) ether) and their mixtures. Preferably the solvent is tetrahydrofuran.
In a variant, the process comprises the separation of the hydrogenated boron nitride compound BNH the ammoniated product of formula AxM(NH2)x+m before step a’2).
In particular, at the end of step a’i), the hydrogenated boron nitride compound BNH and the ammoniated product of formula AxM(NH2)x+m can be separated by taking advantage of the difference of their solubility in liquid ammonia. Notably, the hydrogenated boron nitride compound BNH can be solid whereas the ammoniated product of formula AxM(NH2)x+m can be dissolved in ammonia. For instance, the hydrogenated boron nitride compound BNH can be separated from the ammoniated product of formula AxM(NH2)x+m by filtering. After separation, the ammoniated product of formula AxM(NH2)x+m can be precipitated before the hydrogenation step a’2).
In another variant, the process comprises the separation of the hydrogenated boron nitride compound BNH from the metal hydride of formula AxMHx+m after step a’ 2). Preferably, the product of formula AxMHx+m is dissolved in the solvent and the boron nitride compound BNH is solid. In particular, the boron nitride compound BNH can be extracted from the solution comprising the product of formula AxMHx+m by filtering. As a variant, the product of formula AxMHx+m and the boron nitride compound BNH can both be dissolved or solid and can be extracted through a density-base separation technique, which takes advantage of the differences of density between boron nitride and the product of formula AxMHx+m.
Step a’ 2) can be performed by contacting the mixture comprising the ammoniated product of formula AxM(NH2)x+m and the hydrogenated boron nitride compound BNH with H2. Said contacting can be made in presence of the solvent, for instance tetrahydrofuran, or in the absence of the solvent. In a variant, step a’ 2) can be performed by hydrogenating only the ammoniated product of formula AxM(NH2)x+m.
According to anyone of the first and second aspects of the invention, at step b), the halogen element Y can be chosen among F, Cl, Br, I and their mixtures. Preferably, the halogen element can be chosen among Cl and Br. Preferably the halogen element Y is chlorine Cl.
Prior to the digestion reaction, a solution can be prepared comprising the hydrogenated boron nitride compound BNH, a solvent chosen among toluene, tetrahydrofuran, diethyl-ether, 1,4-dioxane, l-butyl-3-methylimidazolium chloride, CS2, CCI4, C2CI4 and their mixtures and a compound chosen among AlCl3, CuCl2 and their mixtures that form together with the halide acid a superacid/solvent system.
Preferably, the digestion reaction results in the formation of an ammonia halide of formula NH4Y and the process comprises the production of ammonia NH3 from the ammonia halide, for instance by means of a heating that results in the decomposition of the ammonia halide into ammonia and at least one hydrogen halide gas HY, which can be reused.
The digestion reaction can be implemented at a temperature ranging between 20°C and 100°C and at a pressure ranging between 1 bar and 80 bar, for instance at a pressure of about 40 bar.
For instance, the digestion reaction can be performed by mixing the BNH compound with CS2 and AlCl3 and submitting the obtained solution in anhydrous HCl gas
at a temperature of 80°C and at a pressure of 40 bar. In a variant, the digestion reaction can be performed by mixing the BNH compound with CS2 and AIBr3 in anhydrous HBr gas at a temperature of 80°C and a pressure of 30 bar.
The process can comprise the synthesis of the borane compound BH3, complexed in a solvent L in the form of a complex of formula L·BH3.
According to some embodiments, step b) can comprise a preparation of a solution of the boron halide BY3 in the solvent L such as to form a L·BY3 complex and the hydrodehalogenation is performed with boron halide being so complexed in the form of the L·BY3 complex, such as to obtain the borane compound BH3, complexed in a solvent L in the form of a complex of formula L·BH3.
The preparation of the solution of BY3 in the solvent L can comprise the stirring of the solvent L in a gaseous BY3 atmosphere or the stirring of the solvent L with a solution of BY3 at a temperature less than or equal to 30°C, preferably less than 15°C, preferably less than 5°C, notably at 0°C or at -78°C.
Once the complex L·BY3 is formed, the process can comprise mixing the L·BY3 complex in the solvent L.
According to some preferred embodiments, the process comprises a step c), successive to step b), comprising the preparation a solution of the boron compound BH3 with a solvent L such as to form a borane complex of formula L·BH3.
The solvent L is preferably an amine solvent.
The amine solvent can be of formula NR3 where R is chosen among CH3, C2H5, C3H7, C4H9, C6H5 and their mixtures.
The amine solvent can be of formula NR2R or NRR R wherein R is different from R’ and R’ ’ and R’ is different from R’ ’ and any of R, R’ and R’ ’ can be chosen among CH3, C2H5, C3H7, C4H9 and C6H5.
Preferably, solvent L is triethylamine N(CH2CH3)3.
The hydrodehalogenation of boron halide BY3, optionally complexed in the form of L·BY3, in a hydrogen gas atmosphere to obtain the borane compound BH3, respectively the borane complex L·BH3, is preferably implemented in the presence of a catalyst, preferably chosen among MmB, MmBN and their mixtures, wherein M is chosen among Ni, Pd, Fe, Co, Cu and their mixtures. Examples of hydrodechlorination of N(CH2CH3)3·BCl3 in the presence of Ni3B catalyst is for instance described in C. Reller and F. Mertens, “A self-
contained regeneration scheme of spent ammonia borane based on the catalytic hydrodechlorination of BCl3" Angew. Chem. Int. Ed., 2012, 51, 11731-11735, doi:10.1002/anie.201201134. This article also provides details on how to proceed to a reaction of a boron nitride compound BNH in a gaseous hydrogen halide HY atmosphere.
The hydrodehalogenation of boron halide BY3, optionally complexed in the form of L·BY3, can be performed at a temperature greater than or equal to 20°C, notably greater than or equal to 50°C and preferably lower than or equal to 160°C, notably about 130°C and/or at a pressure greater than 1 bar, notably greater than or equal to 10 bar and preferably lower than 80 bar. In example, the hydrodehalogenation of boron halide BCI3, optionally complexed in the form of L·BCl3, can be performed at a temperature ranging between 100°C and 160°C and at a pressure of 60 bar. In another example, the hydrodehalogenation of boron halide BBr3, optionally complexed in the form of L*BBr3, can be performed at a temperature ranging between 100°C and 130°C and at a pressure of 60 bar.
The hydrodehalogenation of boron halide BY3, optionally complexed in the form of L·BY3, can be implemented for a duration of less than 72 hours.
In some embodiments, the hydrodehalogenation of boron halide BY3 complexed in the form of L·BY3, can result in the formation of L*HY, which can be reduced such as to obtain the anhydrous hydrogen halide acid HY. In some other embodiments, the hydrogen halide acid complex L·HY can be reacted with ammonia such as to form NH4Y, especially if the temperature to proceed to the reduction of said halide acid complex is greater than the degradation temperature of solvent L.
The yield of the production of BH3 can be improved by eliminating the produced L-HY, such as to shift the reactions to the desired product and/or by conducting at least two hydrodehalogenation reactions.
In particular, in order to increase said yield, step b) preferably comprises at least:
- performing a first hydrodehalogenation reaction of boron halide BY3 complexed in the form of L·BY3 in the hydrogen gas atmosphere in the presence of the catalyst such as to obtain a first composition comprising a solid phase and a liquid phase comprising L·BH3 and at least one borane compound, such as of L·BY3, L·BHY2 and L·BH2Y,
- recovering the liquid phase from the first composition and prepare a second composition by dissolving the solid phase in the solvent L, in order that at least one borane compound, such as L·BH3, L·BY3, L·BHY2 and L·BH2Y, contained in the solid phase be in solution in
the solvent L,
- separate the remaining solid phase, which notably comprises the halide acid complex L·HY, from the liquid phase of the second composition, and recover said liquid phase of the second composition,
- performing a second hydrodehalogenation reaction starting from the liquid phase recovered from the first and second compositions, in the hydrogen gas atmosphere in the presence of the catalyst,
- separating the liquid phase containing L·BH3 and the solid phase both resulting from the second hydrodehalogenation reaction, and
- optionally, recovering the solid phase resulting from the second reaction, and notably evaporating the excess solvent L contained therein.
Said solid and liquid phases can be separated with a centrifuge apparatus.
Embodiments of the process according to the invention are illustrated hereafter with the non-limitative following examples and accompanying figures.
Figure 1 represents the 7Li NMR liquid spectroscopy diagrams of commercial LiAlH4 (upper diagram) and of hydrogenation solid products dissolved in THF and in CDCl3 (lower diagram) as presented in example 2;
Figure 2 represents the 7Li NMR liquid spectroscopy diagrams of commercial Li AIH4 (upper diagram line) and hydrogenation solid products (middle and lower diagram) dissolved directly in deuterium oxide (D2O) as presented in example 2;
Figure 3 represents the 11B NMR liquid spectroscopy diagrams of TEA-BH3, TEA-BCI3, liquid phase obtained after a hydrodehalogenation reaction of TEA-BCI3 (test 1) and after a second (test 2) hydrodehalogenation test, in solution in CDCl3 as presented in example 2;
Figure 4 represents the XRD analysis of the solid phase obtained after tests 1 and 2 of figure 3 as presented in example 2; the diamond dots correspond to TEA-HCl diffraction peaks;
Figure 5 represents the 11B NMR liquid spectroscopy diagrams of TEA-BH3, TEA-BBr3. liquid phase obtained after a hydrodehalogenation reaction of TEA-BBr3 (test 1) and after a second (test 2) hydrodehalogenation test, in solution in CDCl3 as presented in example 2;
Figure 6 represents the XRD analysis of the solid phase obtained after tests 1 and 2 of figure 5 as presented in example 2; the diamond dots correspond to TEA-HBr diffraction peaks;
Figure 7 represents the XRD analysis of the dehydrogenated product of LiAl(BH4)4(NH3)6 presented in example 1;
Figure 8 represents the Raman spectrum of the dehydrogenated product of LiAl(BH4)4(NH3)6 presented in example 1;
Figure 9 represents the XPS spectrum for a) boron and b) nitrogen of the dehydrogenated product of LiAl(BH4)4(NH3)6 presented in example 1;
Figure 10 represents the 11B NMR MAS (acronym of Nuclear Magnetic Resonance Magic Angle Spinning) of the dehydrogenated product of LiAl(BH4)4(NH3)6 presented in example 1.
Example 1 LiAl(BH4)4(NH3)6 is dehydrogenated by heating from room temperature to 200°C. The solid product obtained is then characterized by different techniques.
It appears from the XRD pattern represented on figure 7 that this solid product is poorly crystallized and mainly amorphous. The four peaks of the XRD pattern correspond either to metallic Al or to AlxLiy alloy (Al0.9Li0.1, Al0.89Li0.11, Al0.955Li0.045).
The dehydrogenated product is dissolved by the acid mixture of HCl and HNO3 to proceed to its elementary analysis for Li, Al and B by ICP-OES. The molar ratio obtained for Li:A1:B is 1:0.9:3.5.
It can be deduced from the Raman spectrum represented on figure 8 that B-H, N-H and B-H bonds are present in the dehydrogenated product.
The solid product was also analyzed by XPS spectroscopy, as represented on figure 9. The XPS spectra of figures 9a and 9b, measured at three different points of the dehydrogenated product for boron and nitrogen respectively, confirm the presence of amorphous BN and are similar to the dehydrogenated product of ammonia borane NH3BH3 and of Mg(BH4)2(NH3)6. The quantitative analysis of XPS gives a molar ratio Li:Al:B:N of 1:0.9:4.3:4.6.
The 11B RMN MAS spectrum of the dehydrogenated product is presented on figure 10. The peaks at 24.6, 19.8 and 10.6 ppm correspond to tricoordinate B atoms such as
BN2H and/or BN3. The peaks at -1.14 and -21.9 ppm correspond to fourcoordinate B atoms such as BNH3 and/or BN2H2 and/or BN3H. The peak at -40.4 ppm corresponds to the BH4 group. The possible BNH-based polymers obtained are BN3, BN2H, BNH3, BN2H2, BN3H, the ratio of B :N being greater than 1 : 1 (except BNH3). This result is consistent with the result of quantitative XPS analysis. The dehydrogenated product contains thus several kinds of B product, which are mainly BNH-based polymers in amorphous form.
Example 2
0.05 g of LiAl(BNH)4, 0.007 g of TiCl3 and 2 ml of tetrahydrofuran have been introduced in an autoclave at a temperature of 25 °C. The autoclave has been sealed and H2 has been introduced therein at a pressure of 5 MPa. The temperature of the autoclave has been increased up to 100°C and maintained for 72 hours.
Then, the pressure has been lowered back to atmospheric pressure, and BNH particles as well as a product of formula LiAlH4 were extracted as a solute in THF, as observed in Figure 1. A liquid-solid separation was performed in a centrifuge apparatus and a liquid phase comprising THF and LiAlH4 was allowed to recover. The solvent THF was then evaporated under dynamic vacuum at 60°C for 4h. Figure 2 presents the 7Li NMR liquid spectroscopy diagram of the corresponding LiAlH4.
The digestion of BNH has been done by mixing the BNH compound with CS2 and AICI3 and submitting the obtained solution in anhydrous HC1 gas at a temperature of 80°C and at a pressure of 40 bar.
Further, boron trichloride has been mixed with TEA for 60 minutes at 0°C. Hydrodechlorination of TEA·BCl3 has been conducted by loading a vessel with TEA·BCl3, NiB and TEA. Then the mixture is submitted to a pressure of 67 bar with H2 gas at a temperature of 130 °C. Once pressure has been lowered to atmospheric pressure and temperature has been lowered to room temperature, TEA·BH3 and TEA·HCl have been obtained, present in a composition comprising a solid phase and a liquid phase. The liquid phase and the solid phase were separated by centrifugation. The liquid phase was recovered, and the solid phase was dissolved in TEA to put the boron contained in the solid phase in solution such a to prepare a second solution. The TEA·HCl was then eliminated from the thus dissolved solid phase. Then another hydrodechlorination of TEA·BCl3 has been conducted by loading a vessel with the remaining liquid phase, NiB and TEA in the
conditions described here above. Finally, after this another hydrodechlorination, a composition has been obtained which comprises:
- a liquid phase comprising a content of TEA·BH3 of 21.6 % higher than the one of 7 % in the liquid phase obtained after the first hydrodechlorination, as it can be observed in figure 3, and
- a solid phase comprising TEA·HCl, as evidenced by the XRD analysis of figure 4.
The same hydrodehalogenation procedure was also employed starting from TEA-BBr3. AS it can be observed on figures 5 and 6, TEA-BH3 can be obtained with sensibly 100% yield after performing two hydrodehalogenation reaction tests. Thus, the process has successfully provided a metal hydride LiAIH4, and
TEA·BH3 which can be used for preparing Al(BH4)3(NH3)6 and Li2Al(BH4)5(NH3)6.
Of course, the present invention is not limited to the experiments presented therein for illustrative purpose.
Claims
CLAIMS 1) Process for preparing a metal hydride of formula AxMHx+m and a borane compound BH3, starting from a product of formula AxM(BNH)x+m, wherein:
A is an alkali metal,
M is a metal different from an alkali metal,
0 ≤ x ≤10, in particular 0 ≤ x ≤ 2 m>0, the process comprising: a) contacting the product of formula AxM(BNH)x+m with a catalyst comprising a transition metal in solution in an aprotic polar solvent, such as to separate the metal hydride of formula AxMHx+m and a hydrogenated boron nitride compound BNH, b) the synthesis of the borane compound BH3, from the hydrogenated boron nitride compound BNH, the synthesis comprising:
- a digestion reaction of the boron nitride compound BNH in a gaseous atmosphere containing, even consisting in, an anhydrous hydrogen halide acid gas comprising at least one halogen element Y, such as to produce a boron halide BY3, Y being preferably chlorine Cl,
- a hydrodehalogenation of the boron halide, in a hydrogen gas atmosphere to obtain the borane compound BH3. 2) Process according to claim 1, step a) being performed at a temperature lower than the melting temperature of the metal compound AxM, preferably at a temperature ranging between 0 °C and 150 °C. 3) Process according to anyone of claims 1 and 2, the transition metal being chosen among Ti, Zr, Fe and their mixtures. 4) Process according to anyone of the preceding claims, the catalyst being an halogenide of the transition metal, an alkoxide of the transition metal and their mixtures. 5) Process according to anyone of the preceding claims, the catalyst being chosen among TiCl3, Ti(OBu)4 and their mixtures, preferably being TiCl3. 6) Process according to anyone of the preceding claims, the solvent being chosen among tetrahydrofuran, dimethyl sulphide, triethylamine, diethyl ether, dimethyl ether,
diglyme (bis(2-methoxyethyl) ether) and their mixtures, preferably being tetrahydrofuran. 7) Process according to anyone of the preceding claims, step a) being performed in a H2 gas atmosphere, preferably in an autoclave, at a pressure greater than 0.1 MPa, for instance greater than 1.3MPa, and lower than 35MPa. 8) Process according to anyone of the preceding claims, the alkali metal A being chosen among Li, Na, K and their mixtures, in particular the alkali metal A being Li. 9) Process according to anyone of the preceding claims, the metal M being chosen among Mg, Sc, Y, Ti, Zr, Mn, Zn, Al and their mixtures, preferably among the among Zn, Al, Mg and their mixtures. 10) Process according to anyone of the preceding claims, comprising a step c), successive to step b), comprising the preparation a solution of the boron compound BH3 with a solvent L such as to form a borane complex of formula L·BH3. 11) Process according to anyone of the preceding claims, step b) comprising a preparation of a solution of the boron halide BY3 in a solvent L such as to form a L·BY3 complex and the hydrodehalogenation being performed with boron halide being so complexed, such as to obtain the borane compound BH3, complexed in a solvent L in the form of a complex of formula L·BH3. 12) Process according to the preceding claim, wherein step b) comprises at least:
- performing a first hydrodehalogenation reaction of boron halide BY3 complexed in the form of L·BY3 in the hydrogen gas atmosphere in the presence of the catalyst such as to obtain a first composition comprising a solid phase and a liquid phase comprising L·BH3 and at least one borane compound, such as of L·BY3, L·BHY2 and L·BH2Y,
- recovering the liquid phase from the first composition and prepare a second composition by dissolving the solid phase in the solvent L, in order that at least one borane compound, such as L·BH3, L·BY3, L·BHY2 and L·BH2Y, contained in the solid phase be in solution in the solvent L,
- separate the remaining solid phase, which notably comprises the halide acid complex L·HY, from the liquid phase of the second composition, and recover said liquid phase of the second composition,
- performing a second hydrodehalogenation reaction starting from the liquid phase
recovered from the first and second compositions, in the hydrogen gas atmosphere in the presence of the catalyst,
- separating the liquid phase containing L·BH3 and the solid phase both resulting from the second hydrodehalogenation reaction, and - optionally, recovering the solid phase resulting from the second reaction, and notably evaporating the excess solvent L contained therein. 13) Process according to anyone of the preceding claims, the digestion reaction resulting in the formation of an ammonia halide of formula NH4Y and the process comprising the production of ammonia NH3 from the ammonia halide and/or the hydrodehalogenation of L·BY3 being performed at a temperature greater than or equal to 20°C, notably greater than or equal to 50°C and preferably lower than or equal to 160°C and/or at a pressure greater than 1 bar, notably greater than or equal to 10 bar and preferably lower than 80 bar, preferably in the presence of a catalyst.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21195378.1A EP4144689A1 (en) | 2021-09-07 | 2021-09-07 | Process for preparing a metal hydride |
PCT/EP2022/074882 WO2023036831A1 (en) | 2021-09-07 | 2022-09-07 | Process for preparing starting compounds intended for the synthesis of an ammine metal borohydride |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4399176A1 true EP4399176A1 (en) | 2024-07-17 |
Family
ID=77666281
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21195378.1A Withdrawn EP4144689A1 (en) | 2021-09-07 | 2021-09-07 | Process for preparing a metal hydride |
EP22773680.8A Pending EP4399176A1 (en) | 2021-09-07 | 2022-09-07 | Process for preparing starting compounds intended for the synthesis of an ammine metal borohydride |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21195378.1A Withdrawn EP4144689A1 (en) | 2021-09-07 | 2021-09-07 | Process for preparing a metal hydride |
Country Status (2)
Country | Link |
---|---|
EP (2) | EP4144689A1 (en) |
WO (1) | WO2023036831A1 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH383938A (en) * | 1959-07-08 | 1964-11-15 | Hoffmann La Roche | Process for the production of lithium aluminum hydride |
US20090142258A1 (en) * | 2005-06-20 | 2009-06-04 | University Of South Carolina | Physiochemical pathway to reversible hydrogen storage |
-
2021
- 2021-09-07 EP EP21195378.1A patent/EP4144689A1/en not_active Withdrawn
-
2022
- 2022-09-07 WO PCT/EP2022/074882 patent/WO2023036831A1/en active Application Filing
- 2022-09-07 EP EP22773680.8A patent/EP4399176A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP4144689A1 (en) | 2023-03-08 |
WO2023036831A1 (en) | 2023-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5045244A (en) | Preparation of metal halide-amine complexes | |
Evans et al. | Organolanthanide and organoyttrium hydride chemistry. Part 8. Structure and reactivity studies of bis (cyclopentadienyl) ytterbium and yttrium alkyl complexes including the x-ray crystal structure of (C5H5) 2Yb (CH3)(THF) | |
EP0273229B1 (en) | Preparation of amine alanes | |
EP1734004B1 (en) | Process for producing boranes | |
CN100584756C (en) | Method for producing dodecahydrododecaborates | |
CA2131870C (en) | Method for the preparation of aluminum hydride (a1h3), by reacting magnesium hydride with aluminum halide | |
Ashby | The chemistry of complex aluminohydrides | |
EP4399176A1 (en) | Process for preparing starting compounds intended for the synthesis of an ammine metal borohydride | |
US4623531A (en) | Process for producing silane | |
US8268288B2 (en) | Regeneration of aluminum hydride | |
EP4144688A1 (en) | Process for preparing a metal hydride | |
CN107995905B (en) | Highly reactive metal hydrides, method for the production thereof and use thereof | |
EP4114795A1 (en) | Method for preparing an ammine metal borohydride | |
Fu et al. | Synthesis of lithium octahydrotriborate and investigation on its thermal decomposition | |
CA1113679A (en) | Synthesis of tetradecahydroundecaborate (-1) from borohydride ion | |
JPS64324B2 (en) | ||
US4957726A (en) | Preparation of amine alanes and lithium aluminum tetrahydride | |
EP0266758B1 (en) | Preparation of silane and amine alanes | |
EP2454189B1 (en) | High capacity stabilized complex hydrides for hydrogen storage | |
US4927616A (en) | Preparation of silane and amine alanes | |
US4528176A (en) | Sodium aluminum hydride production | |
Zhizhin et al. | Modern aspects of the chemistry of complex boron and aluminum hydrides | |
Ashby et al. | Existence of hydridomagnesium aluminohydride (HMgAlH4) and hydridomagnesium borohydride (HMgBH4) | |
US3109709A (en) | Cyclic process for preparation of diborane | |
EP1144419B1 (en) | Synthesis of alkali metal substituted borohydride reagents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20240227 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |