EP4380632A1 - Radioconjugates targeting cd33 in the treatment of cancers - Google Patents
Radioconjugates targeting cd33 in the treatment of cancersInfo
- Publication number
- EP4380632A1 EP4380632A1 EP22854141.3A EP22854141A EP4380632A1 EP 4380632 A1 EP4380632 A1 EP 4380632A1 EP 22854141 A EP22854141 A EP 22854141A EP 4380632 A1 EP4380632 A1 EP 4380632A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- radiolabeled
- antibody
- cancer
- sarcoma
- binding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 289
- 238000011282 treatment Methods 0.000 title claims description 75
- 230000008685 targeting Effects 0.000 title abstract description 215
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 claims abstract description 139
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 claims abstract description 137
- 201000011510 cancer Diseases 0.000 claims abstract description 124
- 238000000034 method Methods 0.000 claims abstract description 76
- 239000003814 drug Substances 0.000 claims description 87
- -1 125I Chemical compound 0.000 claims description 85
- 230000027455 binding Effects 0.000 claims description 72
- 229950002950 lintuzumab Drugs 0.000 claims description 71
- 239000008194 pharmaceutical composition Substances 0.000 claims description 70
- 102000008394 Immunoglobulin Fragments Human genes 0.000 claims description 53
- 108010021625 Immunoglobulin Fragments Proteins 0.000 claims description 53
- 101000868279 Homo sapiens Leukocyte surface antigen CD47 Proteins 0.000 claims description 50
- 102100032913 Leukocyte surface antigen CD47 Human genes 0.000 claims description 50
- 206010039491 Sarcoma Diseases 0.000 claims description 42
- 239000012634 fragment Substances 0.000 claims description 42
- 230000002489 hematologic effect Effects 0.000 claims description 37
- 239000002738 chelating agent Substances 0.000 claims description 33
- 208000008334 Dermatofibrosarcoma Diseases 0.000 claims description 24
- 206010057070 Dermatofibrosarcoma protuberans Diseases 0.000 claims description 24
- 238000002560 therapeutic procedure Methods 0.000 claims description 24
- 102000037982 Immune checkpoint proteins Human genes 0.000 claims description 19
- 108091008036 Immune checkpoint proteins Proteins 0.000 claims description 19
- 229940045513 CTLA4 antagonist Drugs 0.000 claims description 18
- 229960000578 gemtuzumab Drugs 0.000 claims description 17
- 229950000302 vadastuximab Drugs 0.000 claims description 17
- 230000009920 chelation Effects 0.000 claims description 14
- 201000003076 Angiosarcoma Diseases 0.000 claims description 12
- 208000005243 Chondrosarcoma Diseases 0.000 claims description 12
- 208000006168 Ewing Sarcoma Diseases 0.000 claims description 12
- 201000008808 Fibrosarcoma Diseases 0.000 claims description 12
- 206010051066 Gastrointestinal stromal tumour Diseases 0.000 claims description 12
- 208000001258 Hemangiosarcoma Diseases 0.000 claims description 12
- 208000018142 Leiomyosarcoma Diseases 0.000 claims description 12
- 230000003328 fibroblastic effect Effects 0.000 claims description 12
- 201000011243 gastrointestinal stromal tumor Diseases 0.000 claims description 12
- 206010024627 liposarcoma Diseases 0.000 claims description 12
- 201000008968 osteosarcoma Diseases 0.000 claims description 12
- 201000009410 rhabdomyosarcoma Diseases 0.000 claims description 12
- 206010042863 synovial sarcoma Diseases 0.000 claims description 12
- STNZNCWQNMGRIM-UHFFFAOYSA-N 2-benzyl-1,4,7,10-tetrakis-(4-methylphenyl)sulfonyl-1,4,7,10-tetrazacyclododecane Chemical compound C1=CC(C)=CC=C1S(=O)(=O)N1CCN(S(=O)(=O)C=2C=CC(C)=CC=2)CC(CC=2C=CC=CC=2)N(S(=O)(=O)C=2C=CC(C)=CC=2)CCN(S(=O)(=O)C=2C=CC(C)=CC=2)CC1 STNZNCWQNMGRIM-UHFFFAOYSA-N 0.000 claims description 11
- 238000002360 preparation method Methods 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 9
- UDOPJKHABYSVIX-UHFFFAOYSA-N 2-[4,7,10-tris(carboxymethyl)-6-[(4-isothiocyanatophenyl)methyl]-1,4,7,10-tetrazacyclododec-1-yl]acetic acid Chemical compound C1N(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CCN(CC(O)=O)C1CC1=CC=C(N=C=S)C=C1 UDOPJKHABYSVIX-UHFFFAOYSA-N 0.000 claims description 8
- 239000012270 PD-1 inhibitor Substances 0.000 claims description 8
- 239000012271 PD-L1 inhibitor Substances 0.000 claims description 8
- 230000002147 killing effect Effects 0.000 claims description 8
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 8
- 239000012275 CTLA-4 inhibitor Substances 0.000 claims description 7
- 239000012668 PD-1-inhibitor Substances 0.000 claims description 7
- 229940121655 pd-1 inhibitor Drugs 0.000 claims description 7
- 229940121656 pd-l1 inhibitor Drugs 0.000 claims description 7
- WDLRUFUQRNWCPK-UHFFFAOYSA-N Tetraxetan Chemical compound OC(=O)CN1CCN(CC(O)=O)CCN(CC(O)=O)CCN(CC(O)=O)CC1 WDLRUFUQRNWCPK-UHFFFAOYSA-N 0.000 claims 3
- LBDSXVIYZYSRII-IGMARMGPSA-N alpha-particle Chemical compound [4He+2] LBDSXVIYZYSRII-IGMARMGPSA-N 0.000 claims 3
- 102100029986 Receptor tyrosine-protein kinase erbB-3 Human genes 0.000 abstract description 89
- 101710100969 Receptor tyrosine-protein kinase erbB-3 Proteins 0.000 abstract description 88
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 abstract description 37
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 abstract description 37
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 31
- 101000610604 Homo sapiens Tumor necrosis factor receptor superfamily member 10B Proteins 0.000 abstract description 30
- 102100033579 Trophoblast glycoprotein Human genes 0.000 abstract description 30
- 102100040112 Tumor necrosis factor receptor superfamily member 10B Human genes 0.000 abstract description 30
- 239000000203 mixture Substances 0.000 abstract description 30
- 101000801433 Homo sapiens Trophoblast glycoprotein Proteins 0.000 abstract description 29
- 102100027212 Tumor-associated calcium signal transducer 2 Human genes 0.000 abstract description 25
- 229940076838 Immune checkpoint inhibitor Drugs 0.000 abstract description 23
- 102000037984 Inhibitory immune checkpoint proteins Human genes 0.000 abstract description 23
- 108091008026 Inhibitory immune checkpoint proteins Proteins 0.000 abstract description 23
- 239000012274 immune-checkpoint protein inhibitor Substances 0.000 abstract description 23
- 101150117918 Tacstd2 gene Proteins 0.000 abstract description 22
- 230000002062 proliferating effect Effects 0.000 abstract description 22
- 239000000611 antibody drug conjugate Substances 0.000 abstract description 18
- 229940049595 antibody-drug conjugate Drugs 0.000 abstract description 18
- 230000001225 therapeutic effect Effects 0.000 abstract description 18
- 208000002250 Hematologic Neoplasms Diseases 0.000 abstract description 12
- 239000012829 chemotherapy agent Substances 0.000 abstract description 3
- 239000003795 chemical substances by application Substances 0.000 description 227
- 108091007433 antigens Proteins 0.000 description 50
- 102000036639 antigens Human genes 0.000 description 50
- 239000000427 antigen Substances 0.000 description 49
- 210000004027 cell Anatomy 0.000 description 49
- 210000004985 myeloid-derived suppressor cell Anatomy 0.000 description 45
- 206010006187 Breast cancer Diseases 0.000 description 39
- 208000026310 Breast neoplasm Diseases 0.000 description 39
- 101150036449 SIRPA gene Proteins 0.000 description 39
- 150000001413 amino acids Chemical class 0.000 description 38
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 35
- 108090000765 processed proteins & peptides Proteins 0.000 description 34
- 230000003439 radiotherapeutic effect Effects 0.000 description 34
- 239000003112 inhibitor Substances 0.000 description 33
- 150000003384 small molecules Chemical class 0.000 description 33
- 206010060862 Prostate cancer Diseases 0.000 description 31
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 31
- 208000032672 Histiocytosis haematophagic Diseases 0.000 description 28
- 206010009944 Colon cancer Diseases 0.000 description 27
- 108090000623 proteins and genes Proteins 0.000 description 27
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 26
- 208000035475 disorder Diseases 0.000 description 26
- 229940079593 drug Drugs 0.000 description 26
- 239000003446 ligand Substances 0.000 description 26
- OHSVLFRHMCKCQY-NJFSPNSNSA-N lutetium-177 Chemical compound [177Lu] OHSVLFRHMCKCQY-NJFSPNSNSA-N 0.000 description 26
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 25
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 24
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 24
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 24
- 201000002528 pancreatic cancer Diseases 0.000 description 24
- 208000008443 pancreatic carcinoma Diseases 0.000 description 24
- 208000000587 small cell lung carcinoma Diseases 0.000 description 24
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 22
- 208000003721 Triple Negative Breast Neoplasms Diseases 0.000 description 22
- 208000022679 triple-negative breast carcinoma Diseases 0.000 description 22
- 235000018102 proteins Nutrition 0.000 description 21
- 102000004169 proteins and genes Human genes 0.000 description 21
- 229940124597 therapeutic agent Drugs 0.000 description 20
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 17
- 206010033128 Ovarian cancer Diseases 0.000 description 16
- 102000004196 processed proteins & peptides Human genes 0.000 description 16
- 101001008255 Homo sapiens Immunoglobulin kappa variable 1D-8 Proteins 0.000 description 15
- 101001047628 Homo sapiens Immunoglobulin kappa variable 2-29 Proteins 0.000 description 15
- 101001008321 Homo sapiens Immunoglobulin kappa variable 2D-26 Proteins 0.000 description 15
- 101001047619 Homo sapiens Immunoglobulin kappa variable 3-20 Proteins 0.000 description 15
- 101001008263 Homo sapiens Immunoglobulin kappa variable 3D-15 Proteins 0.000 description 15
- 102100022949 Immunoglobulin kappa variable 2-29 Human genes 0.000 description 15
- 206010061535 Ovarian neoplasm Diseases 0.000 description 15
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 15
- 101000998953 Homo sapiens Immunoglobulin heavy variable 1-2 Proteins 0.000 description 14
- 102100036887 Immunoglobulin heavy variable 1-2 Human genes 0.000 description 14
- 206010025323 Lymphomas Diseases 0.000 description 14
- 208000004987 Macrophage activation syndrome Diseases 0.000 description 14
- 206010017758 gastric cancer Diseases 0.000 description 14
- 208000008839 Kidney Neoplasms Diseases 0.000 description 13
- 208000005718 Stomach Neoplasms Diseases 0.000 description 13
- 230000005746 immune checkpoint blockade Effects 0.000 description 13
- 206010061289 metastatic neoplasm Diseases 0.000 description 13
- 238000001565 modulated differential scanning calorimetry Methods 0.000 description 13
- 206010041823 squamous cell carcinoma Diseases 0.000 description 13
- 201000011549 stomach cancer Diseases 0.000 description 13
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 12
- 101001137987 Homo sapiens Lymphocyte activation gene 3 protein Proteins 0.000 description 12
- 101710089372 Programmed cell death protein 1 Proteins 0.000 description 12
- 102100040678 Programmed cell death protein 1 Human genes 0.000 description 12
- 210000001744 T-lymphocyte Anatomy 0.000 description 12
- 230000005855 radiation Effects 0.000 description 12
- 102100020862 Lymphocyte activation gene 3 protein Human genes 0.000 description 11
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 11
- 206010038389 Renal cancer Diseases 0.000 description 11
- 208000006990 cholangiocarcinoma Diseases 0.000 description 11
- 201000004101 esophageal cancer Diseases 0.000 description 11
- 230000014509 gene expression Effects 0.000 description 11
- 201000010982 kidney cancer Diseases 0.000 description 11
- 238000002372 labelling Methods 0.000 description 11
- 208000020816 lung neoplasm Diseases 0.000 description 11
- 229960001603 tamoxifen Drugs 0.000 description 11
- 206010055113 Breast cancer metastatic Diseases 0.000 description 10
- 208000017604 Hodgkin disease Diseases 0.000 description 10
- 208000007766 Kaposi sarcoma Diseases 0.000 description 10
- 239000002246 antineoplastic agent Substances 0.000 description 10
- 208000017572 squamous cell neoplasm Diseases 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 9
- 108060003951 Immunoglobulin Proteins 0.000 description 9
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 9
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 9
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 9
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 9
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 9
- 229940024606 amino acid Drugs 0.000 description 9
- 235000001014 amino acid Nutrition 0.000 description 9
- 229940127089 cytotoxic agent Drugs 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 102000018358 immunoglobulin Human genes 0.000 description 9
- 201000005202 lung cancer Diseases 0.000 description 9
- 230000001394 metastastic effect Effects 0.000 description 9
- 229920001184 polypeptide Polymers 0.000 description 9
- 229950008834 seribantumab Drugs 0.000 description 9
- 102100038080 B-cell receptor CD22 Human genes 0.000 description 8
- 208000023514 Barrett esophagus Diseases 0.000 description 8
- 208000023665 Barrett oesophagus Diseases 0.000 description 8
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 8
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 8
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 8
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 8
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 8
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 description 8
- 101001038507 Homo sapiens Ly6/PLAUR domain-containing protein 3 Proteins 0.000 description 8
- 102100040281 Ly6/PLAUR domain-containing protein 3 Human genes 0.000 description 8
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 8
- 229930012538 Paclitaxel Natural products 0.000 description 8
- 229940125666 actinium-225 Drugs 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 229950009645 istiratumab Drugs 0.000 description 8
- 208000003747 lymphoid leukemia Diseases 0.000 description 8
- 231100000682 maximum tolerated dose Toxicity 0.000 description 8
- 201000001441 melanoma Diseases 0.000 description 8
- 229960001592 paclitaxel Drugs 0.000 description 8
- 229950010966 patritumab Drugs 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 229960000575 trastuzumab Drugs 0.000 description 8
- 108091023037 Aptamer Proteins 0.000 description 7
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 7
- 108010074708 B7-H1 Antigen Proteins 0.000 description 7
- 102000008096 B7-H1 Antigen Human genes 0.000 description 7
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 7
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 description 7
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 7
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 description 7
- 101001109501 Homo sapiens NKG2-D type II integral membrane protein Proteins 0.000 description 7
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 7
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 7
- 102100034256 Mucin-1 Human genes 0.000 description 7
- 229960004679 doxorubicin Drugs 0.000 description 7
- 229950002519 elgemtumab Drugs 0.000 description 7
- 108020001507 fusion proteins Proteins 0.000 description 7
- 102000037865 fusion proteins Human genes 0.000 description 7
- 208000014829 head and neck neoplasm Diseases 0.000 description 7
- 229950010079 lumretuzumab Drugs 0.000 description 7
- 229960002087 pertuzumab Drugs 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 6
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 6
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 6
- 101000851376 Homo sapiens Tumor necrosis factor receptor superfamily member 8 Proteins 0.000 description 6
- 101000666896 Homo sapiens V-type immunoglobulin domain-containing suppressor of T-cell activation Proteins 0.000 description 6
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 6
- 206010057249 Phagocytosis Diseases 0.000 description 6
- 102100036857 Tumor necrosis factor receptor superfamily member 8 Human genes 0.000 description 6
- 102100038282 V-type immunoglobulin domain-containing suppressor of T-cell activation Human genes 0.000 description 6
- QQINRWTZWGJFDB-YPZZEJLDSA-N actinium-225 Chemical compound [225Ac] QQINRWTZWGJFDB-YPZZEJLDSA-N 0.000 description 6
- 210000000612 antigen-presenting cell Anatomy 0.000 description 6
- 230000001588 bifunctional effect Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 6
- 229960004316 cisplatin Drugs 0.000 description 6
- 229940054586 datopotamab Drugs 0.000 description 6
- 238000001802 infusion Methods 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 229950002884 lexatumumab Drugs 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 229960001756 oxaliplatin Drugs 0.000 description 6
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 6
- 230000008782 phagocytosis Effects 0.000 description 6
- 102000005962 receptors Human genes 0.000 description 6
- 108020003175 receptors Proteins 0.000 description 6
- 229950001460 sacituzumab Drugs 0.000 description 6
- 229950004742 tigatuzumab Drugs 0.000 description 6
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 5
- 108700012439 CA9 Proteins 0.000 description 5
- 102100024423 Carbonic anhydrase 9 Human genes 0.000 description 5
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 5
- 102000001301 EGF receptor Human genes 0.000 description 5
- 108060006698 EGF receptor Proteins 0.000 description 5
- 229940126656 GS-4224 Drugs 0.000 description 5
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 5
- 101000610605 Homo sapiens Tumor necrosis factor receptor superfamily member 10A Proteins 0.000 description 5
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 5
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 5
- 102100033986 Neurotensin receptor type 1 Human genes 0.000 description 5
- 101710098146 Neurotensin receptor type 1 Proteins 0.000 description 5
- 102100040113 Tumor necrosis factor receptor superfamily member 10A Human genes 0.000 description 5
- 210000000481 breast Anatomy 0.000 description 5
- 229950007276 conatumumab Drugs 0.000 description 5
- 230000021615 conjugation Effects 0.000 description 5
- 229950009964 drozitumab Drugs 0.000 description 5
- 229960002949 fluorouracil Drugs 0.000 description 5
- 201000003444 follicular lymphoma Diseases 0.000 description 5
- 229960005386 ipilimumab Drugs 0.000 description 5
- 229950001869 mapatumumab Drugs 0.000 description 5
- 208000010658 metastatic prostate carcinoma Diseases 0.000 description 5
- 229960003301 nivolumab Drugs 0.000 description 5
- 150000003904 phospholipids Chemical class 0.000 description 5
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 5
- 229960004618 prednisone Drugs 0.000 description 5
- 238000011363 radioimmunotherapy Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000011664 signaling Effects 0.000 description 5
- 102000004052 somatostatin receptor 2 Human genes 0.000 description 5
- 108090000586 somatostatin receptor 2 Proteins 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 231100000747 viability assay Toxicity 0.000 description 5
- 238000003026 viability measurement method Methods 0.000 description 5
- 102100035248 Alpha-(1,3)-fucosyltransferase 4 Human genes 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 108010073466 Bombesin Receptors Proteins 0.000 description 4
- 102100038078 CD276 antigen Human genes 0.000 description 4
- 201000009030 Carcinoma Diseases 0.000 description 4
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 4
- 206010008342 Cervix carcinoma Diseases 0.000 description 4
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 4
- 108010049207 Death Domain Receptors Proteins 0.000 description 4
- 102000009058 Death Domain Receptors Human genes 0.000 description 4
- 102000010451 Folate receptor alpha Human genes 0.000 description 4
- 108050001931 Folate receptor alpha Proteins 0.000 description 4
- 102100030671 Gastrin-releasing peptide receptor Human genes 0.000 description 4
- 206010018338 Glioma Diseases 0.000 description 4
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 4
- 101001022185 Homo sapiens Alpha-(1,3)-fucosyltransferase 4 Proteins 0.000 description 4
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 4
- 101001132524 Homo sapiens Retinoic acid early transcript 1E Proteins 0.000 description 4
- 101000607316 Homo sapiens UL-16 binding protein 5 Proteins 0.000 description 4
- 101000607320 Homo sapiens UL16-binding protein 2 Proteins 0.000 description 4
- 102000008100 Human Serum Albumin Human genes 0.000 description 4
- 108091006905 Human Serum Albumin Proteins 0.000 description 4
- 241001436793 Meru Species 0.000 description 4
- 101100407308 Mus musculus Pdcd1lg2 gene Proteins 0.000 description 4
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 4
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 4
- 102100022680 NKG2-D type II integral membrane protein Human genes 0.000 description 4
- 108700030875 Programmed Cell Death 1 Ligand 2 Proteins 0.000 description 4
- 102100024213 Programmed cell death 1 ligand 2 Human genes 0.000 description 4
- 108091030071 RNAI Proteins 0.000 description 4
- 102100033964 Retinoic acid early transcript 1E Human genes 0.000 description 4
- 208000000453 Skin Neoplasms Diseases 0.000 description 4
- 208000024770 Thyroid neoplasm Diseases 0.000 description 4
- 102100040010 UL-16 binding protein 5 Human genes 0.000 description 4
- 102100039989 UL16-binding protein 2 Human genes 0.000 description 4
- 102100040013 UL16-binding protein 6 Human genes 0.000 description 4
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 4
- 230000003213 activating effect Effects 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 239000002260 anti-inflammatory agent Substances 0.000 description 4
- 229940121363 anti-inflammatory agent Drugs 0.000 description 4
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 4
- 229960004562 carboplatin Drugs 0.000 description 4
- 201000010881 cervical cancer Diseases 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 239000000562 conjugate Substances 0.000 description 4
- 229960004397 cyclophosphamide Drugs 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 4
- 229960005420 etoposide Drugs 0.000 description 4
- IJJVMEJXYNJXOJ-UHFFFAOYSA-N fluquinconazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1N1C(=O)C2=CC(F)=CC=C2N=C1N1C=NC=N1 IJJVMEJXYNJXOJ-UHFFFAOYSA-N 0.000 description 4
- 230000009368 gene silencing by RNA Effects 0.000 description 4
- 208000005017 glioblastoma Diseases 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 201000010536 head and neck cancer Diseases 0.000 description 4
- 208000014951 hematologic disease Diseases 0.000 description 4
- 210000002865 immune cell Anatomy 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 208000032839 leukemia Diseases 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 230000003211 malignant effect Effects 0.000 description 4
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 4
- 201000000050 myeloid neoplasm Diseases 0.000 description 4
- 201000011519 neuroendocrine tumor Diseases 0.000 description 4
- 230000002611 ovarian Effects 0.000 description 4
- 229960002621 pembrolizumab Drugs 0.000 description 4
- 210000001539 phagocyte Anatomy 0.000 description 4
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 201000000849 skin cancer Diseases 0.000 description 4
- 206010044412 transitional cell carcinoma Diseases 0.000 description 4
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 4
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 3
- JODKFOVZURLVTG-UHFFFAOYSA-N 2-bromo-1-(3,3-dinitroazetidin-1-yl)ethanone Chemical compound [O-][N+](=O)C1([N+]([O-])=O)CN(C(=O)CBr)C1 JODKFOVZURLVTG-UHFFFAOYSA-N 0.000 description 3
- LTZZZXXIKHHTMO-UHFFFAOYSA-N 4-[[4-fluoro-3-[4-(4-fluorobenzoyl)piperazine-1-carbonyl]phenyl]methyl]-2H-phthalazin-1-one Chemical compound FC1=C(C=C(CC2=NNC(C3=CC=CC=C23)=O)C=C1)C(=O)N1CCN(CC1)C(C1=CC=C(C=C1)F)=O LTZZZXXIKHHTMO-UHFFFAOYSA-N 0.000 description 3
- 108010012934 Albumin-Bound Paclitaxel Proteins 0.000 description 3
- 208000003174 Brain Neoplasms Diseases 0.000 description 3
- 102100035350 CUB domain-containing protein 1 Human genes 0.000 description 3
- 101710082365 CUB domain-containing protein 1 Proteins 0.000 description 3
- 102000000905 Cadherin Human genes 0.000 description 3
- 108050007957 Cadherin Proteins 0.000 description 3
- 102100029968 Calreticulin Human genes 0.000 description 3
- 108090000549 Calreticulin Proteins 0.000 description 3
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 3
- PTOAARAWEBMLNO-KVQBGUIXSA-N Cladribine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PTOAARAWEBMLNO-KVQBGUIXSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 206010014733 Endometrial cancer Diseases 0.000 description 3
- 206010014759 Endometrial neoplasm Diseases 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 108091006020 Fc-tagged proteins Proteins 0.000 description 3
- 102000010956 Glypican Human genes 0.000 description 3
- 108050001154 Glypican Proteins 0.000 description 3
- 108050007237 Glypican-3 Proteins 0.000 description 3
- 206010066476 Haematological malignancy Diseases 0.000 description 3
- 101000914324 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 5 Proteins 0.000 description 3
- 101000607318 Homo sapiens UL16-binding protein 3 Proteins 0.000 description 3
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 3
- 239000002147 L01XE04 - Sunitinib Substances 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 206010027476 Metastases Diseases 0.000 description 3
- 206010029260 Neuroblastoma Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 208000006265 Renal cell carcinoma Diseases 0.000 description 3
- 206010041067 Small cell lung cancer Diseases 0.000 description 3
- 208000000102 Squamous Cell Carcinoma of Head and Neck Diseases 0.000 description 3
- 230000005867 T cell response Effects 0.000 description 3
- 108700012411 TNFSF10 Proteins 0.000 description 3
- 229940123237 Taxane Drugs 0.000 description 3
- 108010008125 Tenascin Proteins 0.000 description 3
- 102100040011 UL16-binding protein 3 Human genes 0.000 description 3
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 3
- 208000002495 Uterine Neoplasms Diseases 0.000 description 3
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 3
- 229940028652 abraxane Drugs 0.000 description 3
- 208000009956 adenocarcinoma Diseases 0.000 description 3
- 239000005557 antagonist Substances 0.000 description 3
- 108010044540 auristatin Proteins 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 229960005243 carmustine Drugs 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 229960003957 dexamethasone Drugs 0.000 description 3
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 3
- 206010012818 diffuse large B-cell lymphoma Diseases 0.000 description 3
- 238000006471 dimerization reaction Methods 0.000 description 3
- 229960003668 docetaxel Drugs 0.000 description 3
- 229960001484 edetic acid Drugs 0.000 description 3
- 239000012636 effector Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 229960005277 gemcitabine Drugs 0.000 description 3
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 3
- 201000000459 head and neck squamous cell carcinoma Diseases 0.000 description 3
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 102000044042 human KLRK1 Human genes 0.000 description 3
- 229940072221 immunoglobulins Drugs 0.000 description 3
- 230000001506 immunosuppresive effect Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 102000006495 integrins Human genes 0.000 description 3
- 108010044426 integrins Proteins 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229960000485 methotrexate Drugs 0.000 description 3
- 210000000822 natural killer cell Anatomy 0.000 description 3
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 3
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 239000011886 peripheral blood Substances 0.000 description 3
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 3
- 230000026731 phosphorylation Effects 0.000 description 3
- 238000006366 phosphorylation reaction Methods 0.000 description 3
- 238000000163 radioactive labelling Methods 0.000 description 3
- 230000028617 response to DNA damage stimulus Effects 0.000 description 3
- 102000004115 somatostatin receptor 5 Human genes 0.000 description 3
- 108090000680 somatostatin receptor 5 Proteins 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 201000002510 thyroid cancer Diseases 0.000 description 3
- 210000004881 tumor cell Anatomy 0.000 description 3
- 206010046766 uterine cancer Diseases 0.000 description 3
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 3
- 229960004528 vincristine Drugs 0.000 description 3
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 3
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 3
- ZPUHVPYXSITYDI-HEUWMMRCSA-N xyotax Chemical compound OC(=O)[C@@H](N)CCC(O)=O.O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 ZPUHVPYXSITYDI-HEUWMMRCSA-N 0.000 description 3
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 2
- BKWJAKQVGHWELA-UHFFFAOYSA-N 1-[6-(2-hydroxypropan-2-yl)-2-pyridinyl]-6-[4-(4-methyl-1-piperazinyl)anilino]-2-prop-2-enyl-3-pyrazolo[3,4-d]pyrimidinone Chemical compound C1CN(C)CCN1C(C=C1)=CC=C1NC1=NC=C2C(=O)N(CC=C)N(C=3N=C(C=CC=3)C(C)(C)O)C2=N1 BKWJAKQVGHWELA-UHFFFAOYSA-N 0.000 description 2
- ZOAIEFWMQLYMTF-UHFFFAOYSA-N 18-(4-iodophenyl)octadecyl 2-(trimethylazaniumyl)ethyl phosphate Chemical compound C[N+](C)(C)CCOP([O-])(=O)OCCCCCCCCCCCCCCCCCCC1=CC=C(I)C=C1 ZOAIEFWMQLYMTF-UHFFFAOYSA-N 0.000 description 2
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 2
- UEJJHQNACJXSKW-UHFFFAOYSA-N 2-(2,6-dioxopiperidin-3-yl)-1H-isoindole-1,3(2H)-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1C1CCC(=O)NC1=O UEJJHQNACJXSKW-UHFFFAOYSA-N 0.000 description 2
- RAEOEMDZDMCHJA-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-[2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]ethyl]amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CCN(CC(O)=O)CC(O)=O)CC(O)=O RAEOEMDZDMCHJA-UHFFFAOYSA-N 0.000 description 2
- MXDPZUIOZWKRAA-UZOALHFESA-K 2-[4-[2-[[(2r)-1-[[(4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-4-[[(1s,2r)-1-carboxy-2-hydroxypropyl]carbamoyl]-7-[(1r)-1-hydroxyethyl]-16-[(4-hydroxyphenyl)methyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicos-19-y Chemical compound [Lu+3].C([C@H](C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](CC=2C3=CC=CC=C3NC=2)NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC1=O)C(=O)N[C@@H]([C@H](O)C)C(O)=O)NC(=O)CN1CCN(CC([O-])=O)CCN(CC([O-])=O)CCN(CC([O-])=O)CC1)C1=CC=CC=C1 MXDPZUIOZWKRAA-UZOALHFESA-K 0.000 description 2
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 2
- VVIAGPKUTFNRDU-UHFFFAOYSA-N 6S-folinic acid Natural products C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-UHFFFAOYSA-N 0.000 description 2
- KURQKNMKCGYWRJ-HNNXBMFYSA-N 7-(5-methylfuran-2-yl)-3-[[6-[[(3s)-oxolan-3-yl]oxymethyl]pyridin-2-yl]methyl]triazolo[4,5-d]pyrimidin-5-amine Chemical compound O1C(C)=CC=C1C1=NC(N)=NC2=C1N=NN2CC1=CC=CC(CO[C@@H]2COCC2)=N1 KURQKNMKCGYWRJ-HNNXBMFYSA-N 0.000 description 2
- 102000000872 ATM Human genes 0.000 description 2
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 2
- 208000010507 Adenocarcinoma of Lung Diseases 0.000 description 2
- 241000270728 Alligator Species 0.000 description 2
- 108020005544 Antisense RNA Proteins 0.000 description 2
- 241000272878 Apodiformes Species 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZKFQEACEUNWPMT-UHFFFAOYSA-N Azelnidipine Chemical compound CC(C)OC(=O)C1=C(C)NC(N)=C(C(=O)OC2CN(C2)C(C=2C=CC=CC=2)C=2C=CC=CC=2)C1C1=CC=CC([N+]([O-])=O)=C1 ZKFQEACEUNWPMT-UHFFFAOYSA-N 0.000 description 2
- 208000036170 B-Cell Marginal Zone Lymphoma Diseases 0.000 description 2
- 108010008014 B-Cell Maturation Antigen Proteins 0.000 description 2
- 102000006942 B-Cell Maturation Antigen Human genes 0.000 description 2
- MLDQJTXFUGDVEO-UHFFFAOYSA-N BAY-43-9006 Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 MLDQJTXFUGDVEO-UHFFFAOYSA-N 0.000 description 2
- 229940127277 BI-765063 Drugs 0.000 description 2
- 206010005003 Bladder cancer Diseases 0.000 description 2
- 206010005949 Bone cancer Diseases 0.000 description 2
- 208000018084 Bone neoplasm Diseases 0.000 description 2
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 description 2
- 101710185679 CD276 antigen Proteins 0.000 description 2
- 241000288950 Callithrix jacchus Species 0.000 description 2
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 230000005778 DNA damage Effects 0.000 description 2
- 231100000277 DNA damage Toxicity 0.000 description 2
- 108010092160 Dactinomycin Proteins 0.000 description 2
- 102100038083 Endosialin Human genes 0.000 description 2
- 102000016359 Fibronectins Human genes 0.000 description 2
- 108010067306 Fibronectins Proteins 0.000 description 2
- 108010007707 Hepatitis A Virus Cellular Receptor 2 Proteins 0.000 description 2
- 102100034458 Hepatitis A virus cellular receptor 2 Human genes 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000922348 Homo sapiens C-X-C chemokine receptor type 4 Proteins 0.000 description 2
- 101000884279 Homo sapiens CD276 antigen Proteins 0.000 description 2
- 101000884275 Homo sapiens Endosialin Proteins 0.000 description 2
- 101000777628 Homo sapiens Leukocyte antigen CD37 Proteins 0.000 description 2
- 101000991061 Homo sapiens MHC class I polypeptide-related sequence B Proteins 0.000 description 2
- 101001005719 Homo sapiens Melanoma-associated antigen 3 Proteins 0.000 description 2
- 101100101727 Homo sapiens RAET1L gene Proteins 0.000 description 2
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 2
- 101000607306 Homo sapiens UL16-binding protein 1 Proteins 0.000 description 2
- 101000607314 Homo sapiens UL16-binding protein 6 Proteins 0.000 description 2
- 108020003285 Isocitrate lyase Proteins 0.000 description 2
- UETNIIAIRMUTSM-UHFFFAOYSA-N Jacareubin Natural products CC1(C)OC2=CC3Oc4c(O)c(O)ccc4C(=O)C3C(=C2C=C1)O UETNIIAIRMUTSM-UHFFFAOYSA-N 0.000 description 2
- 102100038356 Kallikrein-2 Human genes 0.000 description 2
- 101710176220 Kallikrein-2 Proteins 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 description 2
- 102100031586 Leukocyte antigen CD37 Human genes 0.000 description 2
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 2
- 208000028018 Lymphocytic leukaemia Diseases 0.000 description 2
- 102100030301 MHC class I polypeptide-related sequence A Human genes 0.000 description 2
- 102100030300 MHC class I polypeptide-related sequence B Human genes 0.000 description 2
- 102100025082 Melanoma-associated antigen 3 Human genes 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 2
- 102100035486 Nectin-4 Human genes 0.000 description 2
- 101710043865 Nectin-4 Proteins 0.000 description 2
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 2
- 208000019569 Nodular lymphocyte predominant Hodgkin lymphoma Diseases 0.000 description 2
- 108010049586 Norepinephrine Plasma Membrane Transport Proteins Proteins 0.000 description 2
- 241000282577 Pan troglodytes Species 0.000 description 2
- 206010061332 Paraganglion neoplasm Diseases 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 102100026547 Platelet-derived growth factor receptor beta Human genes 0.000 description 2
- 101710164680 Platelet-derived growth factor receptor beta Proteins 0.000 description 2
- 102000012338 Poly(ADP-ribose) Polymerases Human genes 0.000 description 2
- 108010061844 Poly(ADP-ribose) Polymerases Proteins 0.000 description 2
- 229920000776 Poly(Adenosine diphosphate-ribose) polymerase Polymers 0.000 description 2
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 2
- 101000605024 Rattus norvegicus Large neutral amino acids transporter small subunit 1 Proteins 0.000 description 2
- 102000004278 Receptor Protein-Tyrosine Kinases Human genes 0.000 description 2
- 108090000873 Receptor Protein-Tyrosine Kinases Proteins 0.000 description 2
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 2
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 2
- 102100033929 Sodium-dependent noradrenaline transporter Human genes 0.000 description 2
- 230000024932 T cell mediated immunity Effects 0.000 description 2
- 229940126302 TTI-621 Drugs 0.000 description 2
- 229940126301 TTI-622 Drugs 0.000 description 2
- 102000007000 Tenascin Human genes 0.000 description 2
- 208000024313 Testicular Neoplasms Diseases 0.000 description 2
- 206010057644 Testis cancer Diseases 0.000 description 2
- 102100040012 UL16-binding protein 1 Human genes 0.000 description 2
- 108010042352 Urokinase Plasminogen Activator Receptors Proteins 0.000 description 2
- 102000004504 Urokinase Plasminogen Activator Receptors Human genes 0.000 description 2
- 208000008383 Wilms tumor Diseases 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 229950009557 adavosertib Drugs 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 229960000473 altretamine Drugs 0.000 description 2
- 229960003437 aminoglutethimide Drugs 0.000 description 2
- ROBVIMPUHSLWNV-UHFFFAOYSA-N aminoglutethimide Chemical compound C=1C=C(N)C=CC=1C1(CC)CCC(=O)NC1=O ROBVIMPUHSLWNV-UHFFFAOYSA-N 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000002280 anti-androgenic effect Effects 0.000 description 2
- 230000001446 anti-myeloma Effects 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 239000000051 antiandrogen Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000003435 antirheumatic agent Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 229960002170 azathioprine Drugs 0.000 description 2
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 229940062815 barecetamab Drugs 0.000 description 2
- 230000033590 base-excision repair Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229960000106 biosimilars Drugs 0.000 description 2
- 229940126587 biotherapeutics Drugs 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- GXJABQQUPOEUTA-RDJZCZTQSA-N bortezomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)B(O)O)NC(=O)C=1N=CC=NC=1)C1=CC=CC=C1 GXJABQQUPOEUTA-RDJZCZTQSA-N 0.000 description 2
- 229960001467 bortezomib Drugs 0.000 description 2
- 239000008366 buffered solution Substances 0.000 description 2
- 229930195731 calicheamicin Natural products 0.000 description 2
- HXCHCVDVKSCDHU-LULTVBGHSA-N calicheamicin Chemical compound C1[C@H](OC)[C@@H](NCC)CO[C@H]1O[C@H]1[C@H](O[C@@H]2C\3=C(NC(=O)OC)C(=O)C[C@](C/3=C/CSSSC)(O)C#C\C=C/C#C2)O[C@H](C)[C@@H](NO[C@@H]2O[C@H](C)[C@@H](SC(=O)C=3C(=C(OC)C(O[C@H]4[C@@H]([C@H](OC)[C@@H](O)[C@H](C)O4)O)=C(I)C=3C)OC)[C@@H](O)C2)[C@@H]1O HXCHCVDVKSCDHU-LULTVBGHSA-N 0.000 description 2
- 208000025997 central nervous system neoplasm Diseases 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 208000013056 classic Hodgkin lymphoma Diseases 0.000 description 2
- 239000003184 complementary RNA Substances 0.000 description 2
- 230000001268 conjugating effect Effects 0.000 description 2
- 208000030381 cutaneous melanoma Diseases 0.000 description 2
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 239000002988 disease modifying antirheumatic drug Substances 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 229950009791 durvalumab Drugs 0.000 description 2
- 238000002710 external beam radiation therapy Methods 0.000 description 2
- 201000001343 fallopian tube carcinoma Diseases 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 229960002074 flutamide Drugs 0.000 description 2
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 2
- 235000008191 folinic acid Nutrition 0.000 description 2
- 239000011672 folinic acid Substances 0.000 description 2
- VVIAGPKUTFNRDU-ABLWVSNPSA-N folinic acid Chemical compound C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-ABLWVSNPSA-N 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 238000005734 heterodimerization reaction Methods 0.000 description 2
- 102000056982 human CD33 Human genes 0.000 description 2
- 230000002519 immonomodulatory effect Effects 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 239000003018 immunosuppressive agent Substances 0.000 description 2
- 229940125721 immunosuppressive agent Drugs 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000007913 intrathecal administration Methods 0.000 description 2
- 230000005865 ionizing radiation Effects 0.000 description 2
- 229960004768 irinotecan Drugs 0.000 description 2
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 2
- 229960000681 leflunomide Drugs 0.000 description 2
- VHOGYURTWQBHIL-UHFFFAOYSA-N leflunomide Chemical compound O1N=CC(C(=O)NC=2C=CC(=CC=2)C(F)(F)F)=C1C VHOGYURTWQBHIL-UHFFFAOYSA-N 0.000 description 2
- 229940125052 lemzoparlimab Drugs 0.000 description 2
- GOTYRUGSSMKFNF-UHFFFAOYSA-N lenalidomide Chemical compound C1C=2C(N)=CC=CC=2C(=O)N1C1CCC(=O)NC1=O GOTYRUGSSMKFNF-UHFFFAOYSA-N 0.000 description 2
- 229960004942 lenalidomide Drugs 0.000 description 2
- 229960001691 leucovorin Drugs 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 201000007270 liver cancer Diseases 0.000 description 2
- 208000014018 liver neoplasm Diseases 0.000 description 2
- 201000005249 lung adenocarcinoma Diseases 0.000 description 2
- 201000005243 lung squamous cell carcinoma Diseases 0.000 description 2
- 108700033205 lutetium Lu 177 dotatate Proteins 0.000 description 2
- 229940008393 lutetium lu 177 dotatate Drugs 0.000 description 2
- 229940121581 magrolimab Drugs 0.000 description 2
- 208000026037 malignant tumor of neck Diseases 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229960001924 melphalan Drugs 0.000 description 2
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 2
- 229960001428 mercaptopurine Drugs 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 239000011325 microbead Substances 0.000 description 2
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 2
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 2
- 229960001156 mitoxantrone Drugs 0.000 description 2
- ZDZOTLJHXYCWBA-BSEPLHNVSA-N molport-006-823-826 Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-BSEPLHNVSA-N 0.000 description 2
- 229940124303 multikinase inhibitor Drugs 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- LBWFXVZLPYTWQI-IPOVEDGCSA-N n-[2-(diethylamino)ethyl]-5-[(z)-(5-fluoro-2-oxo-1h-indol-3-ylidene)methyl]-2,4-dimethyl-1h-pyrrole-3-carboxamide;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C LBWFXVZLPYTWQI-IPOVEDGCSA-N 0.000 description 2
- 210000004897 n-terminal region Anatomy 0.000 description 2
- 201000008026 nephroblastoma Diseases 0.000 description 2
- 210000000440 neutrophil Anatomy 0.000 description 2
- 230000000683 nonmetastatic effect Effects 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 229960002450 ofatumumab Drugs 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 201000008129 pancreatic ductal adenocarcinoma Diseases 0.000 description 2
- 208000007312 paraganglioma Diseases 0.000 description 2
- 229960002340 pentostatin Drugs 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229960003171 plicamycin Drugs 0.000 description 2
- 229920001481 poly(stearyl methacrylate) Polymers 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 229940121896 radiopharmaceutical Drugs 0.000 description 2
- 239000012217 radiopharmaceutical Substances 0.000 description 2
- 230000002799 radiopharmaceutical effect Effects 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 210000003289 regulatory T cell Anatomy 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 229960004641 rituximab Drugs 0.000 description 2
- 229940061622 rosopatamab Drugs 0.000 description 2
- 229950000143 sacituzumab govitecan Drugs 0.000 description 2
- ULRUOUDIQPERIJ-PQURJYPBSA-N sacituzumab govitecan Chemical compound N([C@@H](CCCCN)C(=O)NC1=CC=C(C=C1)COC(=O)O[C@]1(CC)C(=O)OCC2=C1C=C1N(C2=O)CC2=C(C3=CC(O)=CC=C3N=C21)CC)C(=O)COCC(=O)NCCOCCOCCOCCOCCOCCOCCOCCOCCN(N=N1)C=C1CNC(=O)C(CC1)CCC1CN1C(=O)CC(SC[C@H](N)C(O)=O)C1=O ULRUOUDIQPERIJ-PQURJYPBSA-N 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 201000003708 skin melanoma Diseases 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229960001940 sulfasalazine Drugs 0.000 description 2
- NCEXYHBECQHGNR-QZQOTICOSA-N sulfasalazine Chemical compound C1=C(O)C(C(=O)O)=CC(\N=N\C=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-QZQOTICOSA-N 0.000 description 2
- NCEXYHBECQHGNR-UHFFFAOYSA-N sulfasalazine Natural products C1=C(O)C(C(=O)O)=CC(N=NC=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-UHFFFAOYSA-N 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229940034785 sutent Drugs 0.000 description 2
- 201000003120 testicular cancer Diseases 0.000 description 2
- 229960003433 thalidomide Drugs 0.000 description 2
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 2
- 229960005267 tositumomab Drugs 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 229940049679 trastuzumab deruxtecan Drugs 0.000 description 2
- 210000004981 tumor-associated macrophage Anatomy 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 229960003048 vinblastine Drugs 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- FFILOTSTFMXQJC-QCFYAKGBSA-N (2r,4r,5s,6s)-2-[3-[(2s,3s,4r,6s)-6-[(2s,3r,4r,5s,6r)-5-[(2s,3r,4r,5r,6r)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(e)-3-hydroxy-2-(octadecanoylamino)octadec-4-enoxy]oxan-3-yl]oxy-3-hy Chemical compound O[C@@H]1[C@@H](O)[C@H](OCC(NC(=O)CCCCCCCCCCCCCCCCC)C(O)\C=C\CCCCCCCCCCCCC)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@]2(O[C@@H]([C@@H](N)[C@H](O)C2)C(O)C(O)CO[C@]2(O[C@@H]([C@@H](N)[C@H](O)C2)C(O)C(O)CO)C(O)=O)C(O)=O)[C@@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](CO)O1 FFILOTSTFMXQJC-QCFYAKGBSA-N 0.000 description 1
- RDJGLLICXDHJDY-NSHDSACASA-N (2s)-2-(3-phenoxyphenyl)propanoic acid Chemical compound OC(=O)[C@@H](C)C1=CC=CC(OC=2C=CC=CC=2)=C1 RDJGLLICXDHJDY-NSHDSACASA-N 0.000 description 1
- YXTKHLHCVFUPPT-YYFJYKOTSA-N (2s)-2-[[4-[(2-amino-5-formyl-4-oxo-1,6,7,8-tetrahydropteridin-6-yl)methylamino]benzoyl]amino]pentanedioic acid;(1r,2r)-1,2-dimethanidylcyclohexane;5-fluoro-1h-pyrimidine-2,4-dione;oxalic acid;platinum(2+) Chemical compound [Pt+2].OC(=O)C(O)=O.[CH2-][C@@H]1CCCC[C@H]1[CH2-].FC1=CNC(=O)NC1=O.C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 YXTKHLHCVFUPPT-YYFJYKOTSA-N 0.000 description 1
- HMLGSIZOMSVISS-ONJSNURVSA-N (7r)-7-[[(2z)-2-(2-amino-1,3-thiazol-4-yl)-2-(2,2-dimethylpropanoyloxymethoxyimino)acetyl]amino]-3-ethenyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid Chemical compound N([C@@H]1C(N2C(=C(C=C)CSC21)C(O)=O)=O)C(=O)\C(=N/OCOC(=O)C(C)(C)C)C1=CSC(N)=N1 HMLGSIZOMSVISS-ONJSNURVSA-N 0.000 description 1
- FPVKHBSQESCIEP-UHFFFAOYSA-N (8S)-3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol Natural products C1C(O)C(CO)OC1N1C(NC=NCC2O)=C2N=C1 FPVKHBSQESCIEP-UHFFFAOYSA-N 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- OXHOPZLBSSTTBU-UHFFFAOYSA-N 1,3-bis(bromomethyl)benzene Chemical compound BrCC1=CC=CC(CBr)=C1 OXHOPZLBSSTTBU-UHFFFAOYSA-N 0.000 description 1
- 102100025573 1-alkyl-2-acetylglycerophosphocholine esterase Human genes 0.000 description 1
- BYIRBDUHSVOFLU-UHFFFAOYSA-M 1-ethyl-2,6-bis[2-(4-pyrrolidin-1-ylphenyl)ethenyl]pyridin-1-ium;iodide Chemical compound [I-].C1=CC=C(C=CC=2C=CC(=CC=2)N2CCCC2)[N+](CC)=C1C=CC(C=C1)=CC=C1N1CCCC1 BYIRBDUHSVOFLU-UHFFFAOYSA-M 0.000 description 1
- BFPYWIDHMRZLRN-UHFFFAOYSA-N 17alpha-ethynyl estradiol Natural products OC1=CC=C2C3CCC(C)(C(CC4)(O)C#C)C4C3CCC2=C1 BFPYWIDHMRZLRN-UHFFFAOYSA-N 0.000 description 1
- ZOAIEFWMQLYMTF-YRKXUXMHSA-N 18-(4-iodanylphenyl)octadecyl 2-(trimethylazaniumyl)ethyl phosphate Chemical compound C[N+](C)(C)CCOP([O-])(=O)OCCCCCCCCCCCCCCCCCCC1=CC=C([131I])C=C1 ZOAIEFWMQLYMTF-YRKXUXMHSA-N 0.000 description 1
- LDGWQMRUWMSZIU-LQDDAWAPSA-M 2,3-bis[(z)-octadec-9-enoxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCCOCC(C[N+](C)(C)C)OCCCCCCCC\C=C/CCCCCCCC LDGWQMRUWMSZIU-LQDDAWAPSA-M 0.000 description 1
- PDWUPXJEEYOOTR-UHFFFAOYSA-N 2-[(3-iodophenyl)methyl]guanidine Chemical compound NC(=N)NCC1=CC=CC(I)=C1 PDWUPXJEEYOOTR-UHFFFAOYSA-N 0.000 description 1
- BZTSELBLVQOAIL-UHFFFAOYSA-N 2-[4,5,5-tris(carboxymethyl)-1,2,3,4-tetrazacyclododec-8-yl]acetic acid Chemical compound C1(N(NNNCCCCC(CC1)CC(=O)O)CC(=O)O)(CC(=O)O)CC(=O)O BZTSELBLVQOAIL-UHFFFAOYSA-N 0.000 description 1
- JHALWMSZGCVVEM-UHFFFAOYSA-N 2-[4,7-bis(carboxymethyl)-1,4,7-triazonan-1-yl]acetic acid Chemical compound OC(=O)CN1CCN(CC(O)=O)CCN(CC(O)=O)CC1 JHALWMSZGCVVEM-UHFFFAOYSA-N 0.000 description 1
- CTRPRMNBTVRDFH-UHFFFAOYSA-N 2-n-methyl-1,3,5-triazine-2,4,6-triamine Chemical compound CNC1=NC(N)=NC(N)=N1 CTRPRMNBTVRDFH-UHFFFAOYSA-N 0.000 description 1
- LKKMLIBUAXYLOY-UHFFFAOYSA-N 3-Amino-1-methyl-5H-pyrido[4,3-b]indole Chemical compound N1C2=CC=CC=C2C2=C1C=C(N)N=C2C LKKMLIBUAXYLOY-UHFFFAOYSA-N 0.000 description 1
- WEVYNIUIFUYDGI-UHFFFAOYSA-N 3-[6-[4-(trifluoromethoxy)anilino]-4-pyrimidinyl]benzamide Chemical compound NC(=O)C1=CC=CC(C=2N=CN=C(NC=3C=CC(OC(F)(F)F)=CC=3)C=2)=C1 WEVYNIUIFUYDGI-UHFFFAOYSA-N 0.000 description 1
- NMUSYJAQQFHJEW-UHFFFAOYSA-N 5-Azacytidine Natural products O=C1N=C(N)N=CN1C1C(O)C(O)C(CO)O1 NMUSYJAQQFHJEW-UHFFFAOYSA-N 0.000 description 1
- NCWQLHHDGDXIJN-UHFFFAOYSA-N 6-(2-chloro-6-methylpyridin-4-yl)-5-(4-fluorophenyl)-1,2,4-triazin-3-amine Chemical compound ClC1=NC(C)=CC(C=2C(=NC(N)=NN=2)C=2C=CC(F)=CC=2)=C1 NCWQLHHDGDXIJN-UHFFFAOYSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 102100040079 A-kinase anchor protein 4 Human genes 0.000 description 1
- 101710109924 A-kinase anchor protein 4 Proteins 0.000 description 1
- 102100031585 ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 Human genes 0.000 description 1
- 102000017918 ADRB3 Human genes 0.000 description 1
- 108060003355 ADRB3 Proteins 0.000 description 1
- 229940125979 ALX148 Drugs 0.000 description 1
- 108700001691 ALX148 Proteins 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 208000036762 Acute promyelocytic leukaemia Diseases 0.000 description 1
- 102100026402 Adhesion G protein-coupled receptor E2 Human genes 0.000 description 1
- 102100026423 Adhesion G protein-coupled receptor E5 Human genes 0.000 description 1
- 206010073478 Anaplastic large-cell lymphoma Diseases 0.000 description 1
- 102100032187 Androgen receptor Human genes 0.000 description 1
- 102100023003 Ankyrin repeat domain-containing protein 30A Human genes 0.000 description 1
- 102100024003 Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 1 Human genes 0.000 description 1
- 108010024976 Asparaginase Proteins 0.000 description 1
- 102000030431 Asparaginyl endopeptidase Human genes 0.000 description 1
- 206010003591 Ataxia Diseases 0.000 description 1
- 101150065175 Atm gene Proteins 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical class C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 102100025218 B-cell differentiation antigen CD72 Human genes 0.000 description 1
- 208000003950 B-cell lymphoma Diseases 0.000 description 1
- 206010003908 B-cell small lymphocytic lymphoma Diseases 0.000 description 1
- 108700020463 BRCA1 Proteins 0.000 description 1
- 101150072950 BRCA1 gene Proteins 0.000 description 1
- 108700020462 BRCA2 Proteins 0.000 description 1
- 102000052609 BRCA2 Human genes 0.000 description 1
- 102100021663 Baculoviral IAP repeat-containing protein 5 Human genes 0.000 description 1
- 102100027522 Baculoviral IAP repeat-containing protein 7 Human genes 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 102100037086 Bone marrow stromal antigen 2 Human genes 0.000 description 1
- 206010006143 Brain stem glioma Diseases 0.000 description 1
- 101150008921 Brca2 gene Proteins 0.000 description 1
- 208000011691 Burkitt lymphomas Diseases 0.000 description 1
- 230000005724 C-terminal phosphorylation Effects 0.000 description 1
- 102100026094 C-type lectin domain family 12 member A Human genes 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- IYSSKWHJCKNPBJ-UHFFFAOYSA-N CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CCCCCCCCCCCC Chemical compound CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CCCCCCCCCCCC IYSSKWHJCKNPBJ-UHFFFAOYSA-N 0.000 description 1
- 108010058905 CD44v6 antigen Proteins 0.000 description 1
- 102100029390 CMRF35-like molecule 1 Human genes 0.000 description 1
- FVLVBPDQNARYJU-XAHDHGMMSA-N C[C@H]1CCC(CC1)NC(=O)N(CCCl)N=O Chemical compound C[C@H]1CCC(CC1)NC(=O)N(CCCl)N=O FVLVBPDQNARYJU-XAHDHGMMSA-N 0.000 description 1
- 102100036360 Cadherin-3 Human genes 0.000 description 1
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 description 1
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 1
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 108010051152 Carboxylesterase Proteins 0.000 description 1
- 102000013392 Carboxylesterase Human genes 0.000 description 1
- 208000017897 Carcinoma of esophagus Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 101150015280 Cel gene Proteins 0.000 description 1
- 206010007953 Central nervous system lymphoma Diseases 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- JWBOIMRXGHLCPP-UHFFFAOYSA-N Chloditan Chemical compound C=1C=CC=C(Cl)C=1C(C(Cl)Cl)C1=CC=C(Cl)C=C1 JWBOIMRXGHLCPP-UHFFFAOYSA-N 0.000 description 1
- 101710178046 Chorismate synthase 1 Proteins 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 102100038449 Claudin-6 Human genes 0.000 description 1
- 102100035167 Coiled-coil domain-containing protein 54 Human genes 0.000 description 1
- 206010052360 Colorectal adenocarcinoma Diseases 0.000 description 1
- 102000002427 Cyclin B Human genes 0.000 description 1
- 108010068150 Cyclin B Proteins 0.000 description 1
- FCKYPQBAHLOOJQ-UHFFFAOYSA-N Cyclohexane-1,2-diaminetetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)C1CCCCC1N(CC(O)=O)CC(O)=O FCKYPQBAHLOOJQ-UHFFFAOYSA-N 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 101710152695 Cysteine synthase 1 Proteins 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 239000012623 DNA damaging agent Substances 0.000 description 1
- 230000008265 DNA repair mechanism Effects 0.000 description 1
- 101100481408 Danio rerio tie2 gene Proteins 0.000 description 1
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 1
- UQBOJOOOTLPNST-UHFFFAOYSA-N Dehydroalanine Chemical compound NC(=C)C(O)=O UQBOJOOOTLPNST-UHFFFAOYSA-N 0.000 description 1
- RTZKSTLPRTWFEV-OLZOCXBDSA-N Deoxygomisin A Chemical compound COC1=C2C=3C(OC)=C(OC)C(OC)=CC=3C[C@@H](C)[C@@H](C)CC2=CC2=C1OCO2 RTZKSTLPRTWFEV-OLZOCXBDSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- 102000012804 EPCAM Human genes 0.000 description 1
- 101150084967 EPCAM gene Proteins 0.000 description 1
- 101150029707 ERBB2 gene Proteins 0.000 description 1
- 108700038672 Edotreotide Proteins 0.000 description 1
- 108700041152 Endoplasmic Reticulum Chaperone BiP Proteins 0.000 description 1
- 102100021451 Endoplasmic reticulum chaperone BiP Human genes 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 108010055196 EphA2 Receptor Proteins 0.000 description 1
- 102100030340 Ephrin type-A receptor 2 Human genes 0.000 description 1
- 108010044090 Ephrin-B2 Proteins 0.000 description 1
- 102100023721 Ephrin-B2 Human genes 0.000 description 1
- 208000032027 Essential Thrombocythemia Diseases 0.000 description 1
- 108010008165 Etanercept Proteins 0.000 description 1
- BFPYWIDHMRZLRN-SLHNCBLASA-N Ethinyl estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 BFPYWIDHMRZLRN-SLHNCBLASA-N 0.000 description 1
- 206010061850 Extranodal marginal zone B-cell lymphoma (MALT type) Diseases 0.000 description 1
- 229940125996 FPI-1434 Drugs 0.000 description 1
- 102100031507 Fc receptor-like protein 5 Human genes 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 101150032879 Fcrl5 gene Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102000010449 Folate receptor beta Human genes 0.000 description 1
- 108050001930 Folate receptor beta Proteins 0.000 description 1
- 206010016935 Follicular thyroid cancer Diseases 0.000 description 1
- 108090000123 Fos-related antigen 1 Proteins 0.000 description 1
- 102000003817 Fos-related antigen 1 Human genes 0.000 description 1
- 102100036939 G-protein coupled receptor 20 Human genes 0.000 description 1
- 102100021197 G-protein coupled receptor family C group 5 member D Human genes 0.000 description 1
- 108700011146 GPA 7 Proteins 0.000 description 1
- 102100030708 GTPase KRas Human genes 0.000 description 1
- 102000044445 Galectin-8 Human genes 0.000 description 1
- 102100031351 Galectin-9 Human genes 0.000 description 1
- 101710121810 Galectin-9 Proteins 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 201000010915 Glioblastoma multiforme Diseases 0.000 description 1
- 102000006395 Globulins Human genes 0.000 description 1
- 108010044091 Globulins Proteins 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- IQUHNCOJRJBMSU-UHFFFAOYSA-N H3HP-DO3A Chemical compound CC(O)CN1CCN(CC(O)=O)CCN(CC(O)=O)CCN(CC(O)=O)CC1 IQUHNCOJRJBMSU-UHFFFAOYSA-N 0.000 description 1
- 208000017891 HER2 positive breast carcinoma Diseases 0.000 description 1
- 108010058597 HLA-DR Antigens Proteins 0.000 description 1
- 102000006354 HLA-DR Antigens Human genes 0.000 description 1
- 108010001041 HLA-DR7 Antigen Proteins 0.000 description 1
- 101150112743 HSPA5 gene Proteins 0.000 description 1
- 108010007712 Hepatitis A Virus Cellular Receptor 1 Proteins 0.000 description 1
- 102100034459 Hepatitis A virus cellular receptor 1 Human genes 0.000 description 1
- 102000018713 Histocompatibility Antigens Class II Human genes 0.000 description 1
- 102100027368 Histone H1.3 Human genes 0.000 description 1
- 208000017605 Hodgkin disease nodular sclerosis Diseases 0.000 description 1
- 101000777636 Homo sapiens ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 Proteins 0.000 description 1
- 101000718211 Homo sapiens Adhesion G protein-coupled receptor E2 Proteins 0.000 description 1
- 101000718243 Homo sapiens Adhesion G protein-coupled receptor E5 Proteins 0.000 description 1
- 101000757191 Homo sapiens Ankyrin repeat domain-containing protein 30A Proteins 0.000 description 1
- 101000934359 Homo sapiens B-cell differentiation antigen CD72 Proteins 0.000 description 1
- 101000936083 Homo sapiens Baculoviral IAP repeat-containing protein 7 Proteins 0.000 description 1
- 101000740785 Homo sapiens Bone marrow stromal antigen 2 Proteins 0.000 description 1
- 101000912622 Homo sapiens C-type lectin domain family 12 member A Proteins 0.000 description 1
- 101000990055 Homo sapiens CMRF35-like molecule 1 Proteins 0.000 description 1
- 101000762242 Homo sapiens Cadherin-15 Proteins 0.000 description 1
- 101000714553 Homo sapiens Cadherin-3 Proteins 0.000 description 1
- 101000856237 Homo sapiens Cancer/testis antigen 1 Proteins 0.000 description 1
- 101000914321 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 7 Proteins 0.000 description 1
- 101000882898 Homo sapiens Claudin-6 Proteins 0.000 description 1
- 101000737052 Homo sapiens Coiled-coil domain-containing protein 54 Proteins 0.000 description 1
- 101000954709 Homo sapiens Doublecortin domain-containing protein 2 Proteins 0.000 description 1
- 101001071355 Homo sapiens G-protein coupled receptor 20 Proteins 0.000 description 1
- 101001040713 Homo sapiens G-protein coupled receptor family C group 5 member D Proteins 0.000 description 1
- 101000584612 Homo sapiens GTPase KRas Proteins 0.000 description 1
- 101000608769 Homo sapiens Galectin-8 Proteins 0.000 description 1
- 101000985516 Homo sapiens Hermansky-Pudlak syndrome 5 protein Proteins 0.000 description 1
- 101001009450 Homo sapiens Histone H1.3 Proteins 0.000 description 1
- 101000878602 Homo sapiens Immunoglobulin alpha Fc receptor Proteins 0.000 description 1
- 101000840267 Homo sapiens Immunoglobulin lambda-like polypeptide 1 Proteins 0.000 description 1
- 101000998120 Homo sapiens Interleukin-3 receptor subunit alpha Proteins 0.000 description 1
- 101000614481 Homo sapiens Kidney-associated antigen 1 Proteins 0.000 description 1
- 101000984197 Homo sapiens Leukocyte immunoglobulin-like receptor subfamily A member 2 Proteins 0.000 description 1
- 101001138062 Homo sapiens Leukocyte-associated immunoglobulin-like receptor 1 Proteins 0.000 description 1
- 101000917858 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-A Proteins 0.000 description 1
- 101000917839 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-B Proteins 0.000 description 1
- 101001065550 Homo sapiens Lymphocyte antigen 6K Proteins 0.000 description 1
- 101001018034 Homo sapiens Lymphocyte antigen 75 Proteins 0.000 description 1
- 101001014223 Homo sapiens MAPK/MAK/MRK overlapping kinase Proteins 0.000 description 1
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 description 1
- 101001051490 Homo sapiens Neural cell adhesion molecule L1 Proteins 0.000 description 1
- 101000721757 Homo sapiens Olfactory receptor 51E2 Proteins 0.000 description 1
- 101000613490 Homo sapiens Paired box protein Pax-3 Proteins 0.000 description 1
- 101000601724 Homo sapiens Paired box protein Pax-5 Proteins 0.000 description 1
- 101000589399 Homo sapiens Pannexin-3 Proteins 0.000 description 1
- 101000691463 Homo sapiens Placenta-specific protein 1 Proteins 0.000 description 1
- 101001064779 Homo sapiens Plexin domain-containing protein 2 Proteins 0.000 description 1
- 101000617725 Homo sapiens Pregnancy-specific beta-1-glycoprotein 2 Proteins 0.000 description 1
- 101001136592 Homo sapiens Prostate stem cell antigen Proteins 0.000 description 1
- 101001136981 Homo sapiens Proteasome subunit beta type-9 Proteins 0.000 description 1
- 101000880770 Homo sapiens Protein SSX2 Proteins 0.000 description 1
- 101001010819 Homo sapiens Receptor tyrosine-protein kinase erbB-3 Proteins 0.000 description 1
- 101000932478 Homo sapiens Receptor-type tyrosine-protein kinase FLT3 Proteins 0.000 description 1
- 101000665137 Homo sapiens Scm-like with four MBT domains protein 1 Proteins 0.000 description 1
- 101000785063 Homo sapiens Serine-protein kinase ATM Proteins 0.000 description 1
- 101000884271 Homo sapiens Signal transducer CD24 Proteins 0.000 description 1
- 101000824971 Homo sapiens Sperm surface protein Sp17 Proteins 0.000 description 1
- 101000873927 Homo sapiens Squamous cell carcinoma antigen recognized by T-cells 3 Proteins 0.000 description 1
- 101000874179 Homo sapiens Syndecan-1 Proteins 0.000 description 1
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 1
- 101100369992 Homo sapiens TNFSF10 gene Proteins 0.000 description 1
- 101000655352 Homo sapiens Telomerase reverse transcriptase Proteins 0.000 description 1
- 101000714168 Homo sapiens Testisin Proteins 0.000 description 1
- 101000772267 Homo sapiens Thyrotropin receptor Proteins 0.000 description 1
- 101000894428 Homo sapiens Transcriptional repressor CTCFL Proteins 0.000 description 1
- 101000638154 Homo sapiens Transmembrane protease serine 2 Proteins 0.000 description 1
- 101001047681 Homo sapiens Tyrosine-protein kinase Lck Proteins 0.000 description 1
- 101000808105 Homo sapiens Uroplakin-2 Proteins 0.000 description 1
- 101000851007 Homo sapiens Vascular endothelial growth factor receptor 2 Proteins 0.000 description 1
- 101000814512 Homo sapiens X antigen family member 1 Proteins 0.000 description 1
- 206010062904 Hormone-refractory prostate cancer Diseases 0.000 description 1
- DOMWKUIIPQCAJU-LJHIYBGHSA-N Hydroxyprogesterone caproate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)CCCCC)[C@@]1(C)CC2 DOMWKUIIPQCAJU-LJHIYBGHSA-N 0.000 description 1
- 206010020631 Hypergammaglobulinaemia benign monoclonal Diseases 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 108010031794 IGF Type 1 Receptor Proteins 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 1
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 1
- 102100038005 Immunoglobulin alpha Fc receptor Human genes 0.000 description 1
- 102100029616 Immunoglobulin lambda-like polypeptide 1 Human genes 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 206010051792 Infusion related reaction Diseases 0.000 description 1
- 102100039688 Insulin-like growth factor 1 receptor Human genes 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102000019223 Interleukin-1 receptor Human genes 0.000 description 1
- 108050006617 Interleukin-1 receptor Proteins 0.000 description 1
- 102000051628 Interleukin-1 receptor antagonist Human genes 0.000 description 1
- 108700021006 Interleukin-1 receptor antagonist Proteins 0.000 description 1
- 102000004553 Interleukin-11 Receptors Human genes 0.000 description 1
- 108010017521 Interleukin-11 Receptors Proteins 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 102100033493 Interleukin-3 receptor subunit alpha Human genes 0.000 description 1
- RTZKSTLPRTWFEV-UHFFFAOYSA-N Isokadsuranin Natural products COC1=C2C=3C(OC)=C(OC)C(OC)=CC=3CC(C)C(C)CC2=CC2=C1OCO2 RTZKSTLPRTWFEV-UHFFFAOYSA-N 0.000 description 1
- 102100034872 Kallikrein-4 Human genes 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 102100031413 L-dopachrome tautomerase Human genes 0.000 description 1
- 101710093778 L-dopachrome tautomerase Proteins 0.000 description 1
- 239000005511 L01XE05 - Sorafenib Substances 0.000 description 1
- 102000017578 LAG3 Human genes 0.000 description 1
- UTLPKQYUXOEJIL-UHFFFAOYSA-N LSM-3822 Chemical compound N1=CC=2C3=NC(C=4OC=CC=4)=NN3C(N)=NC=2N1CCC1=CC=CC=C1 UTLPKQYUXOEJIL-UHFFFAOYSA-N 0.000 description 1
- 208000006404 Large Granular Lymphocytic Leukemia Diseases 0.000 description 1
- 208000032004 Large-Cell Anaplastic Lymphoma Diseases 0.000 description 1
- 102100025586 Leukocyte immunoglobulin-like receptor subfamily A member 2 Human genes 0.000 description 1
- 102100020943 Leukocyte-associated immunoglobulin-like receptor 1 Human genes 0.000 description 1
- 108010000817 Leuprolide Proteins 0.000 description 1
- 102100029185 Low affinity immunoglobulin gamma Fc region receptor III-B Human genes 0.000 description 1
- 102100032129 Lymphocyte antigen 6K Human genes 0.000 description 1
- 102100033486 Lymphocyte antigen 75 Human genes 0.000 description 1
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 1
- 206010052178 Lymphocytic lymphoma Diseases 0.000 description 1
- 201000003791 MALT lymphoma Diseases 0.000 description 1
- 102100031520 MAPK/MAK/MRK overlapping kinase Human genes 0.000 description 1
- 102000016200 MART-1 Antigen Human genes 0.000 description 1
- 108010010995 MART-1 Antigen Proteins 0.000 description 1
- 108091054438 MHC class II family Proteins 0.000 description 1
- 108700012912 MYCN Proteins 0.000 description 1
- 101150022024 MYCN gene Proteins 0.000 description 1
- 241000282567 Macaca fascicularis Species 0.000 description 1
- 208000030070 Malignant epithelial tumor of ovary Diseases 0.000 description 1
- 206010061269 Malignant peritoneal neoplasm Diseases 0.000 description 1
- 208000025205 Mantle-Cell Lymphoma Diseases 0.000 description 1
- 208000037196 Medullary thyroid carcinoma Diseases 0.000 description 1
- 208000000172 Medulloblastoma Diseases 0.000 description 1
- 102000000440 Melanoma-associated antigen Human genes 0.000 description 1
- 108050008953 Melanoma-associated antigen Proteins 0.000 description 1
- 108090000015 Mesothelin Proteins 0.000 description 1
- 102000003735 Mesothelin Human genes 0.000 description 1
- 206010059282 Metastases to central nervous system Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- HZQDCMWJEBCWBR-UUOKFMHZSA-N Mizoribine Chemical compound OC1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 HZQDCMWJEBCWBR-UUOKFMHZSA-N 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 101100063504 Mus musculus Dlx2 gene Proteins 0.000 description 1
- 101100481410 Mus musculus Tek gene Proteins 0.000 description 1
- 208000014767 Myeloproliferative disease Diseases 0.000 description 1
- 201000007224 Myeloproliferative neoplasm Diseases 0.000 description 1
- 108700026495 N-Myc Proto-Oncogene Proteins 0.000 description 1
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 1
- 102100030124 N-myc proto-oncogene protein Human genes 0.000 description 1
- WTBIAPVQQBCLFP-UHFFFAOYSA-N N.N.N.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O Chemical compound N.N.N.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O WTBIAPVQQBCLFP-UHFFFAOYSA-N 0.000 description 1
- BLXXJMDCKKHMKV-UHFFFAOYSA-N Nabumetone Chemical compound C1=C(CCC(C)=O)C=CC2=CC(OC)=CC=C21 BLXXJMDCKKHMKV-UHFFFAOYSA-N 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- 108010069196 Neural Cell Adhesion Molecules Proteins 0.000 description 1
- 102100024964 Neural cell adhesion molecule L1 Human genes 0.000 description 1
- 102400000058 Neuregulin-1 Human genes 0.000 description 1
- 108090000556 Neuregulin-1 Proteins 0.000 description 1
- 101800000675 Neuregulin-2 Proteins 0.000 description 1
- KUIFHYPNNRVEKZ-VIJRYAKMSA-N O-(N-acetyl-alpha-D-galactosaminyl)-L-threonine Chemical compound OC(=O)[C@@H](N)[C@@H](C)O[C@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1NC(C)=O KUIFHYPNNRVEKZ-VIJRYAKMSA-N 0.000 description 1
- 102100025128 Olfactory receptor 51E2 Human genes 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 208000007571 Ovarian Epithelial Carcinoma Diseases 0.000 description 1
- 206010061328 Ovarian epithelial cancer Diseases 0.000 description 1
- 108010037516 PSMA-617 Proteins 0.000 description 1
- 102100040891 Paired box protein Pax-3 Human genes 0.000 description 1
- 102100037504 Paired box protein Pax-5 Human genes 0.000 description 1
- 102100032364 Pannexin-3 Human genes 0.000 description 1
- 102000015094 Paraproteins Human genes 0.000 description 1
- 108010064255 Paraproteins Proteins 0.000 description 1
- 208000000821 Parathyroid Neoplasms Diseases 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 208000002471 Penile Neoplasms Diseases 0.000 description 1
- 208000027190 Peripheral T-cell lymphomas Diseases 0.000 description 1
- 208000007913 Pituitary Neoplasms Diseases 0.000 description 1
- 201000005746 Pituitary adenoma Diseases 0.000 description 1
- 206010061538 Pituitary tumour benign Diseases 0.000 description 1
- 102100026181 Placenta-specific protein 1 Human genes 0.000 description 1
- 102100031889 Plexin domain-containing protein 2 Human genes 0.000 description 1
- 229940123066 Polymerase inhibitor Drugs 0.000 description 1
- 206010036711 Primary mediastinal large B-cell lymphomas Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 102100022668 Pro-neuregulin-2, membrane-bound isoform Human genes 0.000 description 1
- 102100023884 Probable ribonuclease ZC3H12D Human genes 0.000 description 1
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical class C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 1
- 208000033826 Promyelocytic Acute Leukemia Diseases 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Substances CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 102100036735 Prostate stem cell antigen Human genes 0.000 description 1
- 102100035764 Proteasome subunit beta type-9 Human genes 0.000 description 1
- 102100032831 Protein ITPRID2 Human genes 0.000 description 1
- 102100037686 Protein SSX2 Human genes 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 102100020718 Receptor-type tyrosine-protein kinase FLT3 Human genes 0.000 description 1
- 101100111629 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR2 gene Proteins 0.000 description 1
- 101710173694 Short transient receptor potential channel 2 Proteins 0.000 description 1
- 102100038081 Signal transducer CD24 Human genes 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 208000021712 Soft tissue sarcoma Diseases 0.000 description 1
- 102100037253 Solute carrier family 45 member 3 Human genes 0.000 description 1
- 108050001286 Somatostatin Receptor Proteins 0.000 description 1
- 102000011096 Somatostatin receptor Human genes 0.000 description 1
- 102100035748 Squamous cell carcinoma antigen recognized by T-cells 3 Human genes 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 108010002687 Survivin Proteins 0.000 description 1
- 102100035721 Syndecan-1 Human genes 0.000 description 1
- 230000006052 T cell proliferation Effects 0.000 description 1
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 description 1
- 208000031672 T-Cell Peripheral Lymphoma Diseases 0.000 description 1
- 201000008717 T-cell large granular lymphocyte leukemia Diseases 0.000 description 1
- 206010042971 T-cell lymphoma Diseases 0.000 description 1
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 1
- 101150057140 TACSTD1 gene Proteins 0.000 description 1
- 108010032166 TARP Proteins 0.000 description 1
- 102000046283 TNF-Related Apoptosis-Inducing Ligand Human genes 0.000 description 1
- 108040000066 TRAIL receptor activity proteins Proteins 0.000 description 1
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 1
- 108010017842 Telomerase Proteins 0.000 description 1
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 description 1
- 102100038126 Tenascin Human genes 0.000 description 1
- 102100036494 Testisin Human genes 0.000 description 1
- PDMMFKSKQVNJMI-BLQWBTBKSA-N Testosterone propionate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](OC(=O)CC)[C@@]1(C)CC2 PDMMFKSKQVNJMI-BLQWBTBKSA-N 0.000 description 1
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 1
- 102400000160 Thymopentin Human genes 0.000 description 1
- 101800001703 Thymopentin Proteins 0.000 description 1
- 102100029337 Thyrotropin receptor Human genes 0.000 description 1
- XNBRWUQWSKXMPW-UHFFFAOYSA-N Tozadenant Chemical compound C1=2SC(NC(=O)N3CCC(C)(O)CC3)=NC=2C(OC)=CC=C1N1CCOCC1 XNBRWUQWSKXMPW-UHFFFAOYSA-N 0.000 description 1
- 102100021393 Transcriptional repressor CTCFL Human genes 0.000 description 1
- 102100031989 Transmembrane protease serine 2 Human genes 0.000 description 1
- 241000245032 Trillium Species 0.000 description 1
- 101710190034 Trophoblast glycoprotein Proteins 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102100040247 Tumor necrosis factor Human genes 0.000 description 1
- 108091005906 Type I transmembrane proteins Proteins 0.000 description 1
- 102000003425 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 102100024036 Tyrosine-protein kinase Lck Human genes 0.000 description 1
- 208000023915 Ureteral Neoplasms Diseases 0.000 description 1
- 206010046458 Urethral neoplasms Diseases 0.000 description 1
- 102100038851 Uroplakin-2 Human genes 0.000 description 1
- 201000003761 Vaginal carcinoma Diseases 0.000 description 1
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 1
- 229940122803 Vinca alkaloid Drugs 0.000 description 1
- 108700020467 WT1 Proteins 0.000 description 1
- 101150084041 WT1 gene Proteins 0.000 description 1
- 102100039490 X antigen family member 1 Human genes 0.000 description 1
- 102000002258 X-ray Repair Cross Complementing Protein 1 Human genes 0.000 description 1
- 108010000443 X-ray Repair Cross Complementing Protein 1 Proteins 0.000 description 1
- 208000012018 Yolk sac tumor Diseases 0.000 description 1
- RCXMQNIDOFXYDO-UHFFFAOYSA-N [4,7,10-tris(phosphonomethyl)-1,4,7,10-tetrazacyclododec-1-yl]methylphosphonic acid Chemical compound OP(O)(=O)CN1CCN(CP(O)(O)=O)CCN(CP(O)(O)=O)CCN(CP(O)(O)=O)CC1 RCXMQNIDOFXYDO-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 208000017733 acquired polycythemia vera Diseases 0.000 description 1
- 229930183665 actinomycin Natural products 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 229960002964 adalimumab Drugs 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 239000003470 adrenal cortex hormone Substances 0.000 description 1
- 208000024447 adrenal gland neoplasm Diseases 0.000 description 1
- 230000001780 adrenocortical effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- OFCNXPDARWKPPY-UHFFFAOYSA-N allopurinol Chemical compound OC1=NC=NC2=C1C=NN2 OFCNXPDARWKPPY-UHFFFAOYSA-N 0.000 description 1
- 229960003459 allopurinol Drugs 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229960004238 anakinra Drugs 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 108010080146 androgen receptors Proteins 0.000 description 1
- 229940030486 androgens Drugs 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- RGHILYZRVFRRNK-UHFFFAOYSA-N anthracene-1,2-dione Chemical class C1=CC=C2C=C(C(C(=O)C=C3)=O)C3=CC2=C1 RGHILYZRVFRRNK-UHFFFAOYSA-N 0.000 description 1
- 229940046836 anti-estrogen Drugs 0.000 description 1
- 230000001833 anti-estrogenic effect Effects 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000000719 anti-leukaemic effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000001494 anti-thymocyte effect Effects 0.000 description 1
- 230000005809 anti-tumor immunity Effects 0.000 description 1
- 229940030495 antiandrogen sex hormone and modulator of the genital system Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 229940125715 antihistaminic agent Drugs 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 239000003430 antimalarial agent Substances 0.000 description 1
- 229940033495 antimalarials Drugs 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 229940045687 antimetabolites folic acid analogs Drugs 0.000 description 1
- 239000003080 antimitotic agent Substances 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 229940045719 antineoplastic alkylating agent nitrosoureas Drugs 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 230000009118 appropriate response Effects 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 108010055066 asparaginylendopeptidase Proteins 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 229940120638 avastin Drugs 0.000 description 1
- 229960002756 azacitidine Drugs 0.000 description 1
- 229950004646 azelnidipine Drugs 0.000 description 1
- 229950010559 besilesomab Drugs 0.000 description 1
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 229960000397 bevacizumab Drugs 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 201000001531 bladder carcinoma Diseases 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical class N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000002798 bone marrow cell Anatomy 0.000 description 1
- 238000002725 brachytherapy Methods 0.000 description 1
- 229960000455 brentuximab vedotin Drugs 0.000 description 1
- 229950010231 brequinar Drugs 0.000 description 1
- PHEZJEYUWHETKO-UHFFFAOYSA-N brequinar Chemical compound N1=C2C=CC(F)=CC2=C(C(O)=O)C(C)=C1C(C=C1)=CC=C1C1=CC=CC=C1F PHEZJEYUWHETKO-UHFFFAOYSA-N 0.000 description 1
- 239000012830 cancer therapeutic Substances 0.000 description 1
- 125000001314 canonical amino-acid group Chemical group 0.000 description 1
- 229960004117 capecitabine Drugs 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 229960000590 celecoxib Drugs 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 230000004637 cellular stress Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 201000007455 central nervous system cancer Diseases 0.000 description 1
- OHUHVTCQTUDPIJ-JYCIKRDWSA-N ceralasertib Chemical compound C[C@@H]1COCCN1C1=CC(C2(CC2)[S@](C)(=N)=O)=NC(C=2C=3C=CNC=3N=CC=2)=N1 OHUHVTCQTUDPIJ-JYCIKRDWSA-N 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- HWGQMRYQVZSGDQ-HZPDHXFCSA-N chembl3137320 Chemical compound CN1N=CN=C1[C@H]([C@H](N1)C=2C=CC(F)=CC=2)C2=NNC(=O)C3=C2C1=CC(F)=C3 HWGQMRYQVZSGDQ-HZPDHXFCSA-N 0.000 description 1
- 230000000973 chemotherapeutic effect Effects 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 208000012191 childhood neoplasm Diseases 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 229960002436 cladribine Drugs 0.000 description 1
- 229950007906 codrituzumab Drugs 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 201000010989 colorectal carcinoma Diseases 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 229940111134 coxibs Drugs 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- JLYVRXJEQTZZBE-UHFFFAOYSA-N ctk1c6083 Chemical compound NP(N)(N)=S JLYVRXJEQTZZBE-UHFFFAOYSA-N 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 201000007241 cutaneous T cell lymphoma Diseases 0.000 description 1
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 1
- 239000003255 cyclooxygenase 2 inhibitor Substances 0.000 description 1
- 229930182912 cyclosporin Natural products 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 239000012649 demethylating agent Substances 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- CFCUWKMKBJTWLW-UHFFFAOYSA-N deoliosyl-3C-alpha-L-digitoxosyl-MTM Natural products CC=1C(O)=C2C(O)=C3C(=O)C(OC4OC(C)C(O)C(OC5OC(C)C(O)C(OC6OC(C)C(O)C(C)(O)C6)C5)C4)C(C(OC)C(=O)C(O)C(C)O)CC3=CC2=CC=1OC(OC(C)C1O)CC1OC1CC(O)C(O)C(C)O1 CFCUWKMKBJTWLW-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 229960001259 diclofenac Drugs 0.000 description 1
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 1
- 229960000452 diethylstilbestrol Drugs 0.000 description 1
- RGLYKWWBQGJZGM-ISLYRVAYSA-N diethylstilbestrol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(\CC)C1=CC=C(O)C=C1 RGLYKWWBQGJZGM-ISLYRVAYSA-N 0.000 description 1
- 229960000616 diflunisal Drugs 0.000 description 1
- HUPFGZXOMWLGNK-UHFFFAOYSA-N diflunisal Chemical compound C1=C(O)C(C(=O)O)=CC(C=2C(=CC(F)=CC=2)F)=C1 HUPFGZXOMWLGNK-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 231100000371 dose-limiting toxicity Toxicity 0.000 description 1
- 229940010982 dotatate Drugs 0.000 description 1
- 230000005782 double-strand break Effects 0.000 description 1
- 230000034431 double-strand break repair via homologous recombination Effects 0.000 description 1
- 229940115080 doxil Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000008482 dysregulation Effects 0.000 description 1
- 229950006595 edotreotide Drugs 0.000 description 1
- 229960000284 efalizumab Drugs 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000000750 endocrine system Anatomy 0.000 description 1
- 238000009261 endocrine therapy Methods 0.000 description 1
- 229940034984 endocrine therapy antineoplastic and immunomodulating agent Drugs 0.000 description 1
- 208000001991 endodermal sinus tumor Diseases 0.000 description 1
- 201000003914 endometrial carcinoma Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 108010087914 epidermal growth factor receptor VIII Proteins 0.000 description 1
- 230000007608 epigenetic mechanism Effects 0.000 description 1
- 229950009760 epratuzumab Drugs 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 229960001842 estramustine Drugs 0.000 description 1
- FRPJXPJMRWBBIH-RBRWEJTLSA-N estramustine Chemical compound ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 FRPJXPJMRWBBIH-RBRWEJTLSA-N 0.000 description 1
- ADFOJJHRTBFFOF-RBRWEJTLSA-N estramustine phosphate Chemical compound ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)OP(O)(O)=O)[C@@H]4[C@@H]3CCC2=C1 ADFOJJHRTBFFOF-RBRWEJTLSA-N 0.000 description 1
- 229960004750 estramustine phosphate Drugs 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 239000000328 estrogen antagonist Substances 0.000 description 1
- 229960000403 etanercept Drugs 0.000 description 1
- 229960002568 ethinylestradiol Drugs 0.000 description 1
- 229960005293 etodolac Drugs 0.000 description 1
- XFBVBWWRPKNWHW-UHFFFAOYSA-N etodolac Chemical compound C1COC(CC)(CC(O)=O)C2=N[C]3C(CC)=CC=CC3=C21 XFBVBWWRPKNWHW-UHFFFAOYSA-N 0.000 description 1
- 229950009929 farletuzumab Drugs 0.000 description 1
- 229960001419 fenoprofen Drugs 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- ODKNJVUHOIMIIZ-RRKCRQDMSA-N floxuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ODKNJVUHOIMIIZ-RRKCRQDMSA-N 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- 229960005304 fludarabine phosphate Drugs 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 229960001751 fluoxymesterone Drugs 0.000 description 1
- YLRFCQOZQXIBAB-RBZZARIASA-N fluoxymesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1CC[C@](C)(O)[C@@]1(C)C[C@@H]2O YLRFCQOZQXIBAB-RBZZARIASA-N 0.000 description 1
- JYEFSHLLTQIXIO-SMNQTINBSA-N folfiri regimen Chemical compound FC1=CNC(=O)NC1=O.C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1.C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 JYEFSHLLTQIXIO-SMNQTINBSA-N 0.000 description 1
- 150000002224 folic acids Chemical class 0.000 description 1
- 125000002446 fucosyl group Chemical group C1([C@@H](O)[C@H](O)[C@H](O)[C@@H](O1)C)* 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 201000006585 gastric adenocarcinoma Diseases 0.000 description 1
- 208000010749 gastric carcinoma Diseases 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 231100000024 genotoxic Toxicity 0.000 description 1
- 230000001738 genotoxic effect Effects 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 150000002343 gold Chemical class 0.000 description 1
- XLXSAKCOAKORKW-AQJXLSMYSA-N gonadorelin Chemical class C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)NCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 XLXSAKCOAKORKW-AQJXLSMYSA-N 0.000 description 1
- 101150028578 grp78 gene Proteins 0.000 description 1
- 201000009277 hairy cell leukemia Diseases 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 201000005787 hematologic cancer Diseases 0.000 description 1
- 208000019691 hematopoietic and lymphoid cell neoplasm Diseases 0.000 description 1
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 208000006359 hepatoblastoma Diseases 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 229940121372 histone deacetylase inhibitor Drugs 0.000 description 1
- 239000003276 histone deacetylase inhibitor Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 238000001794 hormone therapy Methods 0.000 description 1
- 230000005745 host immune response Effects 0.000 description 1
- 102000046001 human TACSTD2 Human genes 0.000 description 1
- 229940088013 hycamtin Drugs 0.000 description 1
- XXSMGPRMXLTPCZ-UHFFFAOYSA-N hydroxychloroquine Chemical compound ClC1=CC=C2C(NC(C)CCCN(CCO)CC)=CC=NC2=C1 XXSMGPRMXLTPCZ-UHFFFAOYSA-N 0.000 description 1
- 229960004171 hydroxychloroquine Drugs 0.000 description 1
- 229950000801 hydroxyprogesterone caproate Drugs 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 229960000908 idarubicin Drugs 0.000 description 1
- 229960001101 ifosfamide Drugs 0.000 description 1
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000037451 immune surveillance Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 239000000367 immunologic factor Substances 0.000 description 1
- 238000013394 immunophenotyping Methods 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 229940055742 indium-111 Drugs 0.000 description 1
- APFVFJFRJDLVQX-AHCXROLUSA-N indium-111 Chemical compound [111In] APFVFJFRJDLVQX-AHCXROLUSA-N 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 229960000598 infliximab Drugs 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 108091008042 inhibitory receptors Proteins 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 229960003795 iobenguane (123i) Drugs 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- IQVRBWUUXZMOPW-PKNBQFBNSA-N istradefylline Chemical compound CN1C=2C(=O)N(CC)C(=O)N(CC)C=2N=C1\C=C\C1=CC=C(OC)C(OC)=C1 IQVRBWUUXZMOPW-PKNBQFBNSA-N 0.000 description 1
- 229950009028 istradefylline Drugs 0.000 description 1
- 108010024383 kallikrein 4 Proteins 0.000 description 1
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 1
- 229960000991 ketoprofen Drugs 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 208000022013 kidney Wilms tumor Diseases 0.000 description 1
- 208000003849 large cell carcinoma Diseases 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- 108020001756 ligand binding domains Proteins 0.000 description 1
- 229940126616 lilotomab satetraxetan Drugs 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 229960002247 lomustine Drugs 0.000 description 1
- 229950009756 loncastuximab Drugs 0.000 description 1
- 201000005296 lung carcinoma Diseases 0.000 description 1
- 229950003828 lupartumab Drugs 0.000 description 1
- 229950005005 lupartumab amadotin Drugs 0.000 description 1
- 201000011649 lymphoblastic lymphoma Diseases 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000000527 lymphocytic effect Effects 0.000 description 1
- 201000007919 lymphoplasmacytic lymphoma Diseases 0.000 description 1
- 230000001589 lymphoproliferative effect Effects 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 208000014432 malignant adrenal gland pheochromocytoma Diseases 0.000 description 1
- 201000006782 malignant pheochromocytoma Diseases 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 201000007924 marginal zone B-cell lymphoma Diseases 0.000 description 1
- 208000021937 marginal zone lymphoma Diseases 0.000 description 1
- 241001515942 marmosets Species 0.000 description 1
- 208000020968 mature T-cell and NK-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 229960004961 mechlorethamine Drugs 0.000 description 1
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229960002985 medroxyprogesterone acetate Drugs 0.000 description 1
- PSGAAPLEWMOORI-PEINSRQWSA-N medroxyprogesterone acetate Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2CC[C@]2(C)[C@@](OC(C)=O)(C(C)=O)CC[C@H]21 PSGAAPLEWMOORI-PEINSRQWSA-N 0.000 description 1
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 1
- 229960004296 megestrol acetate Drugs 0.000 description 1
- RQZAXGRLVPAYTJ-GQFGMJRRSA-N megestrol acetate Chemical compound C1=C(C)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 RQZAXGRLVPAYTJ-GQFGMJRRSA-N 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 238000012737 microarray-based gene expression Methods 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 229950007243 mirvetuximab Drugs 0.000 description 1
- 230000033607 mismatch repair Effects 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 229960000350 mitotane Drugs 0.000 description 1
- 229950000844 mizoribine Drugs 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 201000005328 monoclonal gammopathy of uncertain significance Diseases 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- HDZGCSFEDULWCS-UHFFFAOYSA-N monomethylhydrazine Chemical compound CNN HDZGCSFEDULWCS-UHFFFAOYSA-N 0.000 description 1
- 210000005087 mononuclear cell Anatomy 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 230000007659 motor function Effects 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 238000012243 multiplex automated genomic engineering Methods 0.000 description 1
- 229960004866 mycophenolate mofetil Drugs 0.000 description 1
- RTGDFNSFWBGLEC-SYZQJQIISA-N mycophenolate mofetil Chemical compound COC1=C(C)C=2COC(=O)C=2C(O)=C1C\C=C(/C)CCC(=O)OCCN1CCOCC1 RTGDFNSFWBGLEC-SYZQJQIISA-N 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 201000005962 mycosis fungoides Diseases 0.000 description 1
- 210000001167 myeloblast Anatomy 0.000 description 1
- 206010028537 myelofibrosis Diseases 0.000 description 1
- 229960004270 nabumetone Drugs 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 229960005027 natalizumab Drugs 0.000 description 1
- 210000000581 natural killer T-cell Anatomy 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 230000017066 negative regulation of growth Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000000626 neurodegenerative effect Effects 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 229940080607 nexavar Drugs 0.000 description 1
- 229950011068 niraparib Drugs 0.000 description 1
- PCHKPVIQAHNQLW-CQSZACIVSA-N niraparib Chemical compound N1=C2C(C(=O)N)=CC=CC2=CN1C(C=C1)=CC=C1[C@@H]1CCCNC1 PCHKPVIQAHNQLW-CQSZACIVSA-N 0.000 description 1
- 230000006780 non-homologous end joining Effects 0.000 description 1
- 239000003956 nonsteroidal anti androgen Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000020520 nucleotide-excision repair Effects 0.000 description 1
- 229960000572 olaparib Drugs 0.000 description 1
- FAQDUNYVKQKNLD-UHFFFAOYSA-N olaparib Chemical compound FC1=CC=C(CC2=C3[CH]C=CC=C3C(=O)N=N2)C=C1C(=O)N(CC1)CCN1C(=O)C1CC1 FAQDUNYVKQKNLD-UHFFFAOYSA-N 0.000 description 1
- 229940121476 omburtamab Drugs 0.000 description 1
- JVPLVXRNWLOHML-UHFFFAOYSA-N omega-phenyl tridecanoic acid Natural products OC(=O)CCCCCCCCCCCCC1=CC=CC=C1 JVPLVXRNWLOHML-UHFFFAOYSA-N 0.000 description 1
- 201000003707 ovarian clear cell carcinoma Diseases 0.000 description 1
- OFPXSFXSNFPTHF-UHFFFAOYSA-N oxaprozin Chemical compound O1C(CCC(=O)O)=NC(C=2C=CC=CC=2)=C1C1=CC=CC=C1 OFPXSFXSNFPTHF-UHFFFAOYSA-N 0.000 description 1
- 229960002739 oxaprozin Drugs 0.000 description 1
- 210000002990 parathyroid gland Anatomy 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000002727 particle therapy Methods 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 229940016628 patritumab deruxtecan Drugs 0.000 description 1
- 229960003330 pentetic acid Drugs 0.000 description 1
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 210000004976 peripheral blood cell Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 201000002524 peritoneal carcinoma Diseases 0.000 description 1
- 229960005190 phenylalanine Drugs 0.000 description 1
- 208000028591 pheochromocytoma Diseases 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 229950010773 pidilizumab Drugs 0.000 description 1
- 229960002702 piroxicam Drugs 0.000 description 1
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 1
- 208000021310 pituitary gland adenoma Diseases 0.000 description 1
- 210000005134 plasmacytoid dendritic cell Anatomy 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 208000037244 polycythemia vera Diseases 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 108040000983 polyphosphate:AMP phosphotransferase activity proteins Proteins 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 208000016800 primary central nervous system lymphoma Diseases 0.000 description 1
- 208000025638 primary cutaneous T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 208000003476 primary myelofibrosis Diseases 0.000 description 1
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 1
- 229960000624 procarbazine Drugs 0.000 description 1
- 239000000583 progesterone congener Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 108010079891 prostein Proteins 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 230000006824 pyrimidine synthesis Effects 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 239000003087 receptor blocking agent Substances 0.000 description 1
- 208000015347 renal cell adenocarcinoma Diseases 0.000 description 1
- 201000007444 renal pelvis carcinoma Diseases 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 229960000371 rofecoxib Drugs 0.000 description 1
- RZJQGNCSTQAWON-UHFFFAOYSA-N rofecoxib Chemical compound C1=CC(S(=O)(=O)C)=CC=C1C1=C(C=2C=CC=CC=2)C(=O)OC1 RZJQGNCSTQAWON-UHFFFAOYSA-N 0.000 description 1
- 229950004707 rucaparib Drugs 0.000 description 1
- HMABYWSNWIZPAG-UHFFFAOYSA-N rucaparib Chemical compound C1=CC(CNC)=CC=C1C(N1)=C2CCNC(=O)C3=C2C1=CC(F)=C3 HMABYWSNWIZPAG-UHFFFAOYSA-N 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000018448 secretion by cell Effects 0.000 description 1
- 229960003440 semustine Drugs 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 208000000649 small cell carcinoma Diseases 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 206010062113 splenic marginal zone lymphoma Diseases 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 201000000498 stomach carcinoma Diseases 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- MLKXDPUZXIRXEP-MFOYZWKCSA-N sulindac Chemical compound CC1=C(CC(O)=O)C2=CC(F)=CC=C2\C1=C/C1=CC=C(S(C)=O)C=C1 MLKXDPUZXIRXEP-MFOYZWKCSA-N 0.000 description 1
- 229960000894 sulindac Drugs 0.000 description 1
- WINHZLLDWRZWRT-ATVHPVEESA-N sunitinib Chemical compound CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C WINHZLLDWRZWRT-ATVHPVEESA-N 0.000 description 1
- 229960001796 sunitinib Drugs 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 101150047061 tag-72 gene Proteins 0.000 description 1
- 229950004550 talazoparib Drugs 0.000 description 1
- ATFXVNUWQOXRRU-UHFFFAOYSA-N taminadenant Chemical compound BrC=1C(N)=NC(N2N=CC=C2)=NC=1N1C=CC=N1 ATFXVNUWQOXRRU-UHFFFAOYSA-N 0.000 description 1
- 238000010809 targeting technique Methods 0.000 description 1
- 229940063683 taxotere Drugs 0.000 description 1
- 229960004964 temozolomide Drugs 0.000 description 1
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 1
- 229960001278 teniposide Drugs 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960001712 testosterone propionate Drugs 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 229960001196 thiotepa Drugs 0.000 description 1
- PSWFFKRAVBDQEG-YGQNSOCVSA-N thymopentin Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 PSWFFKRAVBDQEG-YGQNSOCVSA-N 0.000 description 1
- 229960004517 thymopentin Drugs 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 208000030901 thyroid gland follicular carcinoma Diseases 0.000 description 1
- 208000013818 thyroid gland medullary carcinoma Diseases 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000037426 transcriptional repression Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 229960001612 trastuzumab emtansine Drugs 0.000 description 1
- 238000011277 treatment modality Methods 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 229950007217 tremelimumab Drugs 0.000 description 1
- 229960001099 trimetrexate Drugs 0.000 description 1
- NOYPYLRCIDNJJB-UHFFFAOYSA-N trimetrexate Chemical compound COC1=C(OC)C(OC)=CC(NCC=2C(=C3C(N)=NC(N)=NC3=CC=2)C)=C1 NOYPYLRCIDNJJB-UHFFFAOYSA-N 0.000 description 1
- 230000005747 tumor angiogenesis Effects 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 210000000626 ureter Anatomy 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 1
- 208000023747 urothelial carcinoma Diseases 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 229940065658 vidaza Drugs 0.000 description 1
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
- JBHPLHATEXGMQR-LFWIOBPJSA-N vipivotide tetraxetan Chemical compound OC(=O)CC[C@H](NC(=O)N[C@@H](CCCCNC(=O)[C@H](CC1=CC=C2C=CC=CC2=C1)NC(=O)[C@H]1CC[C@H](CNC(=O)CN2CCN(CC(O)=O)CCN(CC(O)=O)CCN(CC(O)=O)CC2)CC1)C(O)=O)C(O)=O JBHPLHATEXGMQR-LFWIOBPJSA-N 0.000 description 1
- 208000013013 vulvar carcinoma Diseases 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 230000036642 wellbeing Effects 0.000 description 1
- 238000013389 whole blood assay Methods 0.000 description 1
- QDLHCMPXEPAAMD-UHFFFAOYSA-N wortmannin Natural products COCC1OC(=O)C2=COC(C3=O)=C2C1(C)C1=C3C2CCC(=O)C2(C)CC1OC(C)=O QDLHCMPXEPAAMD-UHFFFAOYSA-N 0.000 description 1
- QDLHCMPXEPAAMD-QAIWCSMKSA-N wortmannin Chemical compound C1([C@]2(C)C3=C(C4=O)OC=C3C(=O)O[C@@H]2COC)=C4[C@@H]2CCC(=O)[C@@]2(C)C[C@H]1OC(C)=O QDLHCMPXEPAAMD-QAIWCSMKSA-N 0.000 description 1
- 229940055760 yervoy Drugs 0.000 description 1
- 229950007155 zenocutuzumab Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
- A61K51/08—Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
- A61K51/10—Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
- A61K51/1045—Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody against animal or human tumor cells or tumor cell determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
- A61K51/08—Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
- A61K51/10—Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
- A61K51/1093—Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody conjugates with carriers being antibodies
- A61K51/1096—Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody conjugates with carriers being antibodies radioimmunotoxins, i.e. conjugates being structurally as defined in A61K51/1093, and including a radioactive nucleus for use in radiotherapeutic applications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
Definitions
- the invention relates to the field of radiopharmaceuticals.
- MDSCs Myeloid-Derived Suppressor Cells
- MDSCs include monocytic MDSCs which are CD14-positive and granulocytic MDSCs which are CD 15-positive.
- TAMs immunosuppressive tumor-associated macrophages
- MDSCs also play a role in the pathology of the rare conditions haemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS).
- HHLH haemophagocytic lymphohistiocytosis
- MAS macrophage activation syndrome
- the invention provides compositions and methods for treating cancers and proliferative disorders, such as solid tumor cancers, using radioconjugates targeting CD33, alone or in combination with one or more of radioconjugates targeting other cancer-associated targets such as DR5, 5T4, HER2, HER3, or TROP2 antibody drug conjugates (ADCs) targeting cancer-associated targets such as the aforementioned targets, therapeutic antibodies targeting cancer-associated targets such as the aforementioned targets, chemotherapy agents and regimens, and immune checkpoint inhibitors.
- ADCs antibody drug conjugates
- Exemplary CD33 targeting agents that may be radiolabeled for use in the invention include the monoclonal anti-CD33 antibodies lintuzumab, gemtuzumab, or vadastuximab.
- Exemplary DR5 targeting agents that may be radiolabeled, unlabeled or drug- conjugated for use in the invention include the monoclonal anti-DR5 antibodies mapatumumab, conatumumab, lexatumumab, tigatuzumab, drozitumab, and LBY-135.
- an Actinium-225 labeled monoclonal antibody against CD33 is administered to a mammalian subject, such as a human patient, in a radiation dose of 0.1 to 10 pCi/kg body weight of the subject and a protein dose of less than 10 mg/kg body weight of the subject.
- Exemplary 5T4 targeting agents that may be radiolabeled, drug-conjugated, or unlabeled for use in the invention include the anti-5T4 monoclonal antibodies MED 10641, ALG.APV-527, Tb535, H6-DM5, and ZV0508.
- Exemplary HER2 targeting agents that may be radiolabeled, drug-conjugated, or unlabeled for use in the invention include the monoclonal antibodies trastuzumab and pertuzumab.
- Exemplary HER3 targeting agents that may be radiolabeled, drug-conjugated, or unlabeled for use in the invention include the monoclonal antibodies patritumab, seribantumab, lumretuzumab, elgemtumab, GSK2849330, and AV-203 (CAN017).
- TROP2 targeting agents that may be radiolabeled, drug-conjugated, or unlabeled for use in the invention include the monoclonal antibodies Sacituzumab and Datopotamab, and antibodies recognizing the same epitope of TROP2 recognized by either of said antibodies.
- Exemplary agents that block binding of CD47 to SIRPa include magrolimab, lemzoparlimab, AO-176, TTI-621, and TTI-622.
- Exemplary effective doses for the CD47 blockade include 0.05 to 5 mg/kg patient weight.
- Other immune checkpoint inhibitors, such as PD-1 and PD-L1 blocking agents, may also be used.
- the cancer for treatment/treated may be a solid tumor or a hematological cancer, which may be a myeloid malignancy or a «o/?-myeloid malignancy.
- exemplary myeloid hematological malignancies include acute myelogenous leukemia, chronic myelogenous leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm.
- the cancer may be associated with CD33 positive cells, such as myeloblast cells or malignant plasmacytes.
- Exemplary non-myeloid hematological malignancies for treatment/treated include lymphomas and lymphocytic leukemias.
- FIG. 1 shows results of a viability assay demonstrating that 225 Ac-labeled lintuzumab (anti-CD33 mAb) significantly depletes MDSCs isolated from a human colorectal cancer (CRC) patient versus non-radiolab eled lintuzumab control.
- FIG. 2 shows results of a viability assay demonstrating that 225 Ac-labeled lintuzumab (anti-CD33 mAb) significantly depletes MDSCs isolated from a healthy human donor (HD) versus non-radiolab eled lintuzumab control.
- radioconjugated CD33 targeting agents such as radioconjugated anti-CD33 antibodies, may also be used to treat other proliferative disorders including but not limited to solid tumor cancers and non-myeloid derived hematological cancers by killing myeloid derived suppressor cells (MDSCs) that suppress host immune response to cancers.
- MDSCs myeloid derived suppressor cells
- the invention provides compositions and methods for treating cancers and proliferative disorders, such as solid tumor cancers, using radioconjugates targeting CD33, alone or in combination with one or more of radioconjugates targeting other cancer-associated targets such as DR5, 5T4, HER2, or HER3, antibody drug conjugates (ADCs) targeting cancer- associated targets such as the aforementioned targets, unlabeled therapeutic antibodies targeting cancer-associated targets such as the aforementioned targets, chemotherapy agents and regimens, and immune checkpoint inhibitors.
- ADCs antibody drug conjugates
- the invention provides compositions and methods for treating the MD SC-associated disorders haemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) using one or more radiolabeled CD33 targeting agents.
- HHL haemophagocytic lymphohistiocytosis
- MAS macrophage activation syndrome
- administer with respect to a targeting agent or other therapeutic agent or composition includes delivering the agent to a subject’s body via any known method suitable for delivery.
- Specific modes of administration include, without limitation, intravenous, transdermal, subcutaneous, intraperitoneal, intrathecal and intra-tumoral administration.
- Exemplary administration methods for antibodies may be as substantially described in U.S. Patent No. 10,736,975 and International Pub. No. WO 2016/187514, each incorporated by reference herein.
- the targeting agent may be administered as a patient specific therapeutic composition which may be included in a single dose container, the total volume of which may be administered to a patient in a single treatment session.
- compositions disclosed herein may include at least one pharmaceutically acceptable carrier or pharmaceutically acceptable excipient.
- the dose of an effector molecule (e.g., radionuclide) of the radiolabeled targeting agent such as radiolabeled monoclonal antibody and a total protein amount of the agent may depend on and/or be selected based on at least one patient specific parameter.
- Patient specific parameters include, but are not limited to, a patient weight, a patient age, a patient height, a patient gender, a patient medical condition, and a patient medical history.
- Antibodies, antibody fragments and other therapeutic proteins and peptides may, for example, be formulated with one or more pharmaceutically acceptable carriers and/or excipients as, for example, known in the art.
- injectable drug delivery systems include solutions, suspensions, gels, microspheres and polymeric injectables, and can include one or more excipients such as solubility-altering agents (e.g., ethanol, propylene glycol and sucrose) and polymers (e.g., polycaprylactones and PLGA's).
- solubility-altering agents e.g., ethanol, propylene glycol and sucrose
- polymers e.g., polycaprylactones and PLGA's.
- An exemplary formulation may be as substantially described in U.S. Pub. No. 20170326259 or International Pub No. WO 2017/155937, each incorporated by reference herein.
- the formulation may include 0.5% to 5.0% (w/v) of an excipient selected from the group consisting of ascorbic acid, polyvinylpyrrolidone (PVP), human serum albumin (HSA), a water-soluble salt of HSA, and mixtures thereof.
- an excipient selected from the group consisting of ascorbic acid, polyvinylpyrrolidone (PVP), human serum albumin (HSA), a water-soluble salt of HSA, and mixtures thereof.
- Certain formulations may include 0.5-5% ascorbic acid; 0.5-4% polyvinylpyrrolidone (PVP); and the monoclonal antibody in 50 mM PBS buffer, pH 7.
- the term “antibody” includes, without limitation, (a) an immunoglobulin molecule including two heavy chains and two light chains and which recognizes an antigen; (b) polyclonal and monoclonal immunoglobulin molecules; (c) monovalent and divalent fragments thereof, such as Fab, di -Fab, scFvs, diabodies, minibodies, and single domain antibodies (sdAb) such as nanobodies; (d) naturally occurring and non-naturally occurring, such as wholly synthetic antibodies, IgG-Fc-silent, and chimeric; and (e) bi/multi-specific forms thereof.
- Immunoglobulin molecules may derive from any of the commonly known classes, including but not limited to IgA, secretory IgA, IgG and IgM.
- IgG subclasses are also well known to those in the art and include, but are not limited to, human IgGl, IgG2, IgG3 and IgG4.
- the N- terminus of each chain defines a “variable region” of about 100 to 110 or more amino acids primarily responsible for antigen recognition.
- the terms variable light chain (VL) and variable heavy chain (VH) refer to these regions of light and heavy chains respectively.
- Antibodies may be human, humanized, nonhuman, or chimeric. When a specific aspect of the presently disclosed invention refers to or recites an “antibody,” it is envisioned as referring to any of the full-length antibodies or fragments thereof disclosed herein, unless explicitly denoted otherwise.
- a “humanized” antibody refers to an antibody in which some, most or all amino acids outside the CDR domains of a non-human antibody are replaced with corresponding amino acids derived from human immunoglobulins.
- some, most or all of the amino acids outside the complementarity-determining region (CDR) domains have been replaced with amino acids from human immunoglobulins, whereas some, most or all amino acids within one or more CDR regions are unchanged.
- CDR complementarity-determining region
- Small additions, deletions, insertions, substitutions or modifications of amino acids are permissible as long as they do not abrogate the ability of the antibody to bind to a particular antigen.
- a “humanized” antibody retains an antigenic specificity similar to that of the original antibody.
- a “chimeric antibody” refers to an antibody in which the variable regions are derived from one species and the constant regions, such as the Fc region, are derived from another species, such as an antibody in which the variable regions are derived from a mouse antibody and the constant regions are derived from a human antibody.
- CDR complementarity-determining region
- a “framework region”, or “FR”, refers to amino acid sequences interposed between CDRs, typically conserved, that act as the scaffold between the CDRs.
- a “constant region” refers to the portion of an antibody molecule that is consistent for a class of antibodies and is defined by the type of light and heavy chains.
- a light chain constant region may be of the kappa or lambda chain type and a heavy chain constant region may be of one of the five chain isotypes: alpha, delta, epsilon, gamma or mu.
- This constant region in general, can confer effector functions exhibited by the antibodies.
- Heavy chains of various subclasses (such as the IgG subclass of heavy chains) are mainly responsible for different effector functions.
- immunoglobulin refers to a measure of the ability of an immunoglobulin to recognize and bind to a specific antigen.
- Specific binding or “specifically binds” refers to an antibody binding to a target antigen or an epitope within the antigen with significantly greater affinity and/or selectivity than for other antigens in the milieu in which the antibody is used or present.
- an antibody binds to the antigen or the epitope within the antigen with an equilibrium dissociation constant (KD) of about 1 X 10 -8 M or less, for example about 1 * 10 -9 M or less, about 1 x IO -10 M or less, about 1 x 10 -11 M or less, or about 1 x 10 -12 M or less, typically with the KD that is at least one hundred fold less than its KD for binding to a nonspecific antigen (e.g., BSA, casein).
- KD equilibrium dissociation constant
- the dissociation constant may be measured using standard procedures.
- Antibodies that specifically bind to the antigen or the epitope within the antigen may have cross-reactivity to other related antigens, for example to the same antigen from other species (homologs), such as human or monkey, for example Macaca fascicularis (cynomolgus, cyno), Pan troglodytes (chimpanzee, chimp) or Callithrix jacchus (common marmoset, marmoset).
- homologs such as human or monkey, for example Macaca fascicularis (cynomolgus, cyno), Pan troglodytes (chimpanzee, chimp) or Callithrix jacchus (common marmoset, marmoset).
- a “CD33 targeting agent” includes, for example, an antibody, such as but not limited to a monoclonal antibody (mAb), antibody fragment such as Fab or Fab2 fragment, a corresponding scFv molecule, antibody mimetic, peptide, aptamer, or small molecule that specifically binds to any available epitope of CD33.
- mAb monoclonal antibody
- antibody fragment such as Fab or Fab2 fragment
- a corresponding scFv molecule antibody mimetic, peptide, aptamer, or small molecule that specifically binds to any available epitope of CD33.
- the CD33 targeting agent used may include any of the monoclonal antibodies lintuzumab (HuM195), gemtuzumab, or vadastuximab, or an antibody including the heavy chain and light chain CDRs of one of these antibodies, or an epitope-binding antibody fragment thereof of any of the preceding antibodies such as a Fab, Fab2 or scFv molecule, or an antibody or antibody fragment that binds to the same epitope as any of the aforementioned antibodies.
- the CD33 targeting agent used is the monoclonal antibody lintuzumab (HuM195), or an antibody including the heavy and light chain CDRs of lintuzumab, or an antigen-binding fragment thereof such as a Fab, Fab2 or corresponding scFv of any of the preceding antibodies, or a different antibody or different antibody fragment that binds to the CD33 epitope recognized by lintuzumab.
- Human195 monoclonal antibody lintuzumab
- an antibody including the heavy and light chain CDRs of lintuzumab or an antigen-binding fragment thereof such as a Fab, Fab2 or corresponding scFv of any of the preceding antibodies, or a different antibody or different antibody fragment that binds to the CD33 epitope recognized by lintuzumab.
- a “DR5 targeting agent” includes, for example, an antibody, such as but not limited to a monoclonal antibody (mAb), antibody fragment such as Fab fragment, antibody mimetic, peptide, ligand, aptamer, or small molecule that binds to any available epitope of DR5.
- the DR5 targeting agent may be an anti-DR5 antibody such as a human or humanized antibody against DR5.
- the anti-DR5 antibody may be or bind to an epitope of DR5 recognized by the any of mapatumumab, conatumumab, lexatumumab, tigatuzumab, drozitumab, and LBY-135.
- the anti-DR5 antibody includes mapatumumab, conatumumab, lexatumumab, tigatuzumab, drozitumab, and/or LBY-135.
- a “5T4 targeting agent” includes, for example, an antibody, such as but not limited to a monoclonal antibody (mAb), antibody fragment such as Fab fragment, antibody mimetic, peptide, ligand, aptamer, or small molecule that binds to any available epitope of 5T4.
- the 5T4 targeting agent may be a monoclonal antibody.
- An early description of an anti-5T4 antibody sequence was provided by Hole & Stern (Hole & Stem (1988) Br. J. Cancer 57, 239-246).
- An antibody for use as an 5T4 targeting agent according to the presently disclosed invention may, for example, be produced using the sequence provided by Hole & Stem.
- the 5T4 targeting agent includes a humanized antibody against 5T4, such as described in U.S. Pat. Nos. 7,074,909 and 8,044,178.
- Exemplary antibodies against 5T4 include at least MED 10641, described in Harper (Harper, J. et a/. (2017) Mol. Cancer Ther. 16, 1576-1587) and developed by Medimmune/AstraZeneca; ALG.APV-527, developed by Aptevo Therapeutics/ Alligator Bioscience; Tb535, developed by Biotecnol/Chiome Bioscience; H6-DM5 developed by Guangdong Zhongsheng Pharmaceuticals; and ZV0508 developed by Zova Biotherapeutics. See also Table 1 which discloses additional antibodies and antibody-drug conjugates, the antibody portions of which may be employed as 5T4 targeting agents according to aspects of the present invention.
- HER2 targeting agent includes, for example, an antibody, such as but not limited to a monoclonal antibody (mAb), antibody fragment such as Fab fragment, antibody mimetic, peptide, ligand, aptamer, or small molecule that binds to any available epitope of HER2 (ErbB2).
- mAb monoclonal antibody
- Fab fragment antibody fragment
- peptide peptide
- ligand ligand
- aptamer small molecule that binds to any available epitope of HER2 (ErbB2).
- the anti-HER2 antibody employed may be Trastuzumab or a different antibody that binds to an epitope of HER2 recognized by Trastuzumab, or an antigen-binding fragment of either, and/or the antibody employed may be Pertuzumab or a different antibody that binds to an epitope of HER2 recognized by Pertuzumab, or an antigenbinding fragment of either.
- the anti-HER2 antibody may also be a multi-specific antibody, such as bispecific antibody, against any available epitope of HER3/HER2 such as MM-111 and MM-141/Istiratumab from Merrimack Pharmaceuticals, MCLA-128 from Merus NV, and MEHD7945A/Duligotumab from Genentech.
- HER3/HER2 such as MM-111 and MM-141/Istiratumab from Merrimack Pharmaceuticals, MCLA-128 from Merus NV, and MEHD7945A/Duligotumab from Genentech.
- HER3 targeting agent includes, for example, an antibody, such as but not limited to a monoclonal antibody (mAb), antibody fragment such as Fab fragment, antibody mimetic, peptide, ligand, aptamer, or small molecule that binds to any available epitope of HER3.
- mAb monoclonal antibody
- antibody fragment such as Fab fragment, antibody mimetic, peptide, ligand, aptamer, or small molecule that binds to any available epitope of HER3.
- the anti-HER3 antibody may be one of the following antibodies or bind to an epitope of HER3 recognized by one of the following antibodies: Patritumab, Seribantumab, Lumretuzumab, Elgemtumab, AV-203 (a/k/a CAN017; Aveo Oncology), or GSK2849330, or be an antigen-binding fragment of such antibodies.
- the anti-HER3 antibody is selected from one or more of Patritumab, Seribantumab, Lumretuzumab, Elgemtumab, US-1402, AV-203, CDX-3379, GSK2849330, and antigen-binding fragments thereof.
- the anti-HER3 antibody may be a multi-specific antibody, such as abispecific antibody, against any available epitope of HER3/HER2 such as MM- 111 and MM-141/Istiratumab from Merrimack Pharmaceuticals, MCLA-128 from Merus NV, and MEHD7945A/Duligotumab from Genentech.
- the antibody may, for example, also be one of the anti-HER3 antibodies disclosed in U.S. Pub No.
- 20210025006 such as CANO 17, 04D01, 09D03, 1 1G01, 12A07, 18H02 and 22A02, or an antibody binding to an epitope of HER3 recognized by one of said antibodies, or an antigen binding fragment of any of the aforementioned antibodies.
- a “TROP2 targeting agent” includes, for example, an antibody, such as but not limited to a monoclonal antibody (mAb), antibody fragment such as Fab, Fab2 or corresponding scFv, antibody mimetic, peptide, ligand, aptamer, or small molecule that binds to any available epitope of TROP2.
- mAb monoclonal antibody
- the anti-TROP2 antibody may be Sacituzumab or Datopotamab, or an antibody that binds to an epitope of TROP2 recognized by Sacituzumab or Datopotamab.
- An “epitope” refers to the target molecule site (e.g., at least a portion of an antigen) that is capable of being recognized by, and bound by, a targeting agent such as an antibody, antibody fragment, Fab fragment, aptamer, or small molecule.
- a targeting agent such as an antibody, antibody fragment, Fab fragment, aptamer, or small molecule.
- this may refer to the region of the protein (i.e., amino acids, and particularly their side chains) that is bound by the targeting agent.
- Overlapping epitopes may include at least one to five common amino acid residues. Methods of identifying epitopes of antibodies are known to those skilled in the art and include, for example, those described in Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988).
- proliferative disorder is inclusive of cancers and precancerous proliferative disorders, and includes, without limitation, a solid cancer (e.g., a solid tumor).
- Solid cancers which may be treated according to various aspects of the invention include, without limitation, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck (head & neck cancer), cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, prostate cancer, colorectal cancer, cancer of the anal region, stomach cancer, testicular cancer, uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra
- the sarcoma may, for example, be osteosarcoma, dermatofibrosarcoma protuberans (DFSP), fibrosarcoma (fibroblastic sarcoma), chondrosarcoma, Ewing’s sarcoma, rhabdomyosarcoma, liposarcoma, synovial sarcoma, pleomorphic sarcoma, gastrointestinal stromal tumor, Kaposi’s sarcoma, leiomyosarcoma, or angiosarcoma.
- DFSP dermatofibrosarcoma protuberans
- fibrosarcoma fibroblastic sarcoma
- chondrosarcoma chondrosarcoma
- Ewing’s sarcoma rhabdomyosarcoma
- liposarcoma liposarcoma
- synovial sarcoma pleomorphic sarcoma
- gastrointestinal stromal tumor Ka
- the solid cancer treated or for treatment may be breast cancer such as metastatic breast cancer, tamoxifen-sensitive breast cancer, tamoxifen-resistant breast cancer or triple negative breast cancer (TNBC), gastric cancer, bladder cancer, cervical cancer, endometrial cancer, skin cancer such as melanoma, stomach cancer, testicular cancer, esophageal cancer, bronchioloalveolar cancer, prostate cancer such as castration resistant prostate cancer (CRPC), metastatic prostate cancer and metastatic CRPC (mCRPC), colorectal cancer, ovarian cancer, cervical epidermoid cancer, liver cancer such as hepatocellular carcinoma (HCC) or cholangiocarcinoma, pancreatic cancer, lung cancer such as non-small cell lung carcinoma (NSCLC; including any of subtypes adenocarcinoma, squamous cell carcinoma, and large cell carcinoma) or small cell lung cancer (SCLC), renal cancer, head and neck cancer such as head and neck squamous cell
- TNBC triple negative breast cancer
- cancer also includes, without limitation, a hematological malignancy.
- a “hematologic disease” or “hematological disorder” may be taken to refer to at least a blood cancer.
- the hematological cancer or hematological proliferative disorder includes, leukemias (such as acute myeloid leukemia (AML), acute promyelocytic leukemia, acute lymphoblastic leukemia (ALL), acute mixed lineage leukemia, chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), hairy cell leukemia and large granular lymphocytic leukemia), myelodysplastic syndrome (MDS), myeloproliferative disorders (polycythemia vera, essential thrombocytosis, primary myelofibrosis and chronic myeloid leukemia), lymphomas, multiple myeloma, MGUS and similar disorders, Hodgkin lymphoma
- AML acute myeloid leukemia
- ALL acute
- One object of the present invention is providing compositions and methods for treating hematological proliferative disorders that are not myeloid-derived, such as lymphomas and lymphocytic leukemias, and/or that do not substantially or at all express CD33, using one or more CD33 targeting radioconjugates.
- lymphomas include Hodgkin lymphoma and NonHodgkin lymphoma.
- Non-Hodgkin lymphomas include (1) aggressive lymphomas such as: Diffuse large B-cell lymphoma; Anaplastic large-cell lymphoma; Burkitt lymphoma; Lymphoblastic lymphoma; Mantle cell lymphoma; and Peripheral T-cell lymphoma; and (2) indolent lymphomas such as: Follicular lymphoma; Cutaneous T-cell lymphoma; Lymphoplasmacytic lymphoma; Marginal zone B-cell lymphoma; MALT lymphoma; and Smallcell lymphocytic lymphoma.
- aggressive lymphomas such as: Diffuse large B-cell lymphoma; Anaplastic large-cell lymphoma; Burkitt lymphoma; Lymphoblastic lymphoma; Mantle cell lymphoma; and Peripheral T-cell lymphoma
- indolent lymphomas such as: Follicular lymphoma; Cutaneous T-cell lymphom
- Hodgkin lymphoma includes (1) classical (or classic) Hodgkin lymphoma representing approximately 95% of Hodgkin lymphoma cases of which there are four subtypes: Nodular sclerosis (the most common sub-type of classical Hodgkin lymphoma), Mixed cellularity accounting for about 25 percent of all classical Hodgkin lymphoma cases, Lymphocyterich accounting for about 5 percent of all classical cases, and Lymphocyte-depleted accounting for less than 1 percent of all Hodgkin lymphomas; and (2) nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL), representing about 5 percent of Hodgkin lymphoma patients.
- NLPHL nodular lymphocyte-predominant Hodgkin lymphoma
- a radiotherapeutic may include a targeting agent labeled with a radioisotope.
- a “radioisotope” and “radionuclide” may be used interchangeably, and may be an alpha particle emitting isotope, a beta particle emitting isotope, and/or a gamma-emitting isotope.
- a targeting agent may be labeled with a beta particle emitter, an alpha particle emitter, and/or a gamma ray emitter.
- radioisotopes examples include the following: 131 I, 125 I, 123 I, 90 Y, 177 Lu, 186 Re, 188 Re, 89 Sr, 153 Sm, 32 P, 225 Ac, 213 Bi, 213 Po, 211 At, 212 Bi, 213 Bi, 223 Ra, 227 Th, 149 Tb, 161 Tb, 47 Sc, 67 Cu, 134 Ce, 137 Cs, 212 Pb, and 103 Pd.
- Methods for affixing a radionuclide to a targeting agent such as a protein such as an antibody or antibody fragment are well known in the art.
- the radiotherapeutic targeting agent may be labeled by (a) chemically conjugating a targeting agent such as an antibody or peptide with a bifunctional chelator, such as p-SCN-Bn-DOTA in a buffered solution, (b) labeling the chelator- conjugated targeting agent by chelation of a radionuclide, such as Actinium-225 ( 225 Ac) or Lutetium- 177 ( 177 Ac), in a buffered solution, (c) quenching the labeling reaction by the addition of a quenching chelate (e.g.
- DTP A diethylenetriaminepentaacetic acid
- chelators that may be used include bifunctional chelator compounds that have the dual functionality of sequestering metal ions, such as the radionuclide, plus the ability to covalently bind a biological carrier such as an antibody.
- Exemplary chelators that may be used include, but are not limited to compounds such as S-2-(4-Isothiocyanatobenzyl)-l,4,7,10 tetraazacyclododecanetetraacetic acid (p-SCN-Bn- DOTA), di ethylene triamine pentaacetic acid (DTP A); ethylene diamine tetraacetic acid (EDTA);
- TETA tri ethylene tetraamine hexaacetic acid
- CYDTA trans- 1,2-diaminohexane tetraacetic acid
- HP-DO3A trans-cyclohexane- diamine tetraacetic acid
- CDTPA trans(l,2)-cyclohexane dietylene triamine pentaacetic acid
- OTTA l-oxa-4,7,10-triazacyclododecane- 1 ,4,7, 10-tetrakis ⁇
- the effective amount is at or below 50 pCi/kg, 40 pCi/kg, 30 pCi/kg, 20 pCi/kg, 10 pCi/kg, 5 pCi/kg, 4 pCi/kg, 3 pCi/kg, 2 pCi/kg, 1 pCi/kg, or even 0.5 pCi/kg.
- the effective amount is at least 0.05 pCi/kg, or 0.1 pCi/kg, 0.2 pCi/kg, 0.3 pCi/kg, 0.4 pCi/kg, 0.5 pCi/kg, 1 pCi/kg, 2 pCi/kg, 3 pCi/kg, 4 pCi/kg, 5 pCi/kg, 6 pCi/kg, 7 pCi/kg, 8 pCi/kg, 9 pCi/kg, 10 pCi/kg, 12 pCi/kg, 14 pCi/kg, 15 pCi/kg, 16 pCi/kg, 18 pCi/kg, 20 pCi/kg, 30 pCi/kg, or 40 pCi/kg.
- the 225 Ac-labeled targeting agent may be administered at a dose that includes any combination of upper and lower limits as described herein, such as from at least 0.1 pCi/kg to at or below 5 pCi/kg, or from at least 5 pCi/kg to at or below 20 pCi/kg.
- the radiotherapeutic targeting agent is 225 Ac-labeled, and the effective amount may be at or below 2 mCi (i.e., wherein the 225 Ac is administered to the subject in a non-weight-based dosage).
- the effective amount may be at or below 1 mCi, such as 0.9 mCi, 0.8 mCi, 0.7 mCi, 0.6 mCi, 0.5 mCi, 0.4 mCi, 0.3 mCi, 0.2 mCi, 0.1 mCi, 90 pCi, 80 pCi, 70 pCi, 60 pCi, 50 pCi, 40 pCi, 30 pCi, 20 pCi, 10 pCi, or 5 pCi.
- 1 mCi such as 0.9 mCi, 0.8 mCi, 0.7 mCi, 0.6 mCi, 0.5 mCi, 0.4 mCi, 0.3 mCi, 0.2 mCi, 0.1 mCi, 90 pCi, 80 pCi, 70 pCi, 60 pCi, 50 pCi, 40 pCi, 30 pCi,
- the effective amount may be at least 2 pCi, such as at least 5 pCi, 10 pCi, 20 pCi, 30 pCi, 40 pCi, 50 pCi, 60 pCi, 70 pCi, 80 pCi, 90 pCi, 100 pCi, 200 pCi, 300 pCi, 400 pCi, 500 pCi, 600 pCi, 700 pCi, 800 pCi, 900 pCi, 1 mCi, 1.1 mCi, 1.2 mCi, 1.3 mCi, 1.4 mCi, or 1.5 mCi.
- the 225 Ac-labeled CD33 targeting agent may be administered in an amount that includes any combination of upper and lower limits as described herein, such as from at least 2 pCi to at or below ImCi, or from at least 2 pCi to at or below 250 pCi, or from 75 pCi to at or below 400 pCi.
- the 225 Ac-labeled radiotherapeutic targeting agent includes a single dose that delivers less than 12Gy, or less than 8 Gy, or less than 6 Gy, or less than 4 Gy, or less than 2 Gy, such as doses of 2 Gy to 8 Gy, to the subject, such as predominantly to the targeted solid tumor.
- the radiotherapeutic targeting agent is radiolabeled with 177 LU (“ 177 Lu-labeled”), and the effective amount may be, for example, at or below 1 mCi/kg (i.e., where the amount of 177 Lu-labeled targeting agent administered to the subject delivers a radiation dose of at or below 1000 mCi per kilogram of subject’s body weight).
- the effective amount is at or below 900 pCi/kg, 800 pCi/kg, 700 pCi/kg, 600 pCi/kg, 500 pCi/kg, 400 pCi/kg, 300 pCi/kg, 200 pCi/kg, 150 pCi/kg, 100 pCi/kg, 80 pCi/kg, 60 pCi/kg, 50 pCi/kg, 40 pCi/kg, 30 pCi/kg, 20 pCi/kg, 10 pCi/kg, 5 pCi/kg, or 1 pCi/kg.
- the effective amount is at least 1 pCi/kg, 2.5 pCi/kg, 5 pCi/kg, 10 pCi/kg, 20 pCi/kg, 30 pCi/kg, 40 pCi/kg, 50 pCi/kg, 60 pCi/kg, 70 pCi/kg, 80 pCi/kg, 90 pCi/kg, 100 pCi/kg, 150 pCi/kg, 200 pCi/kg, 250 pCi/kg, 300 pCi/kg, 350 pCi/kg, 400 pCi/kg or 450 pCi/kg.
- an 177 Lu-labeled targeting agent may be administered in an amount that includes any combination of upper and lower limits as described herein, such as from at least 5 mCi/kg to at or below 50 pCi/kg, or from at least 50 mCi/kg to at or below 500 pCi/kg.
- the radiotherapeutic targeting agent is 177 Lu-labeled, and the effective amount may be at or below 45 mCi, such as at or below 40 mCi, 30 mCi, 20 mCi, 10 mCi, 5 mCi, 3.0 mCi, 2.0 mCi, 1.0 mCi, 800 pCi, 600 pCi, 400 pCi, 200 pCi, 100 pCi, or 50 pCi.
- the effective amount may be at or below 45 mCi, such as at or below 40 mCi, 30 mCi, 20 mCi, 10 mCi, 5 mCi, 3.0 mCi, 2.0 mCi, 1.0 mCi, 800 pCi, 600 pCi, 400 pCi, 200 pCi, 100 pCi, or 50 pCi.
- the effective amount may be at least 10 pCi, such as at least 25 pCi, 50 pCi, 100 pCi, 200 pCi, 300 pCi, 400 pCi, 500 pCi, 600 pCi, 700 pCi, 800 pCi, 900 pCi, 1 mCi, 2 mCi, 3 mCi, 4 mCi, 5 mCi, 10 mCi, 15 mCi, 20 mCi, 25 mCi, 30 mCi.
- an 177 Lu-labeled targeting agent may be administered in an amount that includes any combination of upper and lower limits as described herein, such as from at least 10 mCi to at or below 30 mCi, or from at least 100 pCi to at or below 3 mCi, or from 3 mCi to at or below 30 mCi.
- the radiotherapeutic targeting agent is radiolabeled with 133 I (“ 13 ⁇ -labeled”), and the effective amount may be at or below, for example, 1200 mCi (i.e., where the amount of 131 I administered to the subject delivers a total body radiation dose of at or below 1200 mCi in a non-weight-based dose).
- the effective amount may be at or below 1100 mCi, at or below 1000 mCi, at or below 900 mCi, at or below 800 mCi, at or below 700 mCi, at or below 600 mCi, at or below 500 mCi, at or below 400 mCi, at orbelow 300 mCi, at or below 200 mCi, at orbelow 150 mCi, or at orbelow 100 mCi.
- the effective amount may be at or below 200 mCi, such as at or below 190 mCi, 180 mCi, 170 mCi, 160 mCi, 150 mCi, 140 mCi, 130 mCi, 120 mCi, 110 mCi, 100 mCi, 90 mCi, 80 mCi, 70 mCi, 60 mCi, or 50 mCi.
- the effective amount may be at least 1 mCi, such as at least 2 mCi, 3 mCi, 4 mCi, 5 mCi, 6 mCi, 7 mCi, 8 mCi, 9 mCi, 10 mCi, 20 mCi, 30 mCi, 40 mCi, 50 mCi, 60 mCi, 70 mCi, 80 mCi, 90 mCi, 100 mCi, 110 mCi, 120 mCi, 130 mCi, 140 mCi, 150 mCi, 160 mCi, 170 mCi, 180 mCi, 190 mCi, 200 mCi, 250 mCi, 300 mCi, 350 mCi, 400 mCi, 450 mCi, 500 mCi.
- 1 mCi such as at least 2 mCi, 3 mCi, 4 mCi, 5
- an 131 I-labeled targeting agent may be administered in an amount that includes any combination of upper and lower limits as described herein, such as from at least 1 mCi to at or below 100 mCi, or at least 10 mCi to at or below 200 mCi.
- any of those disclosed herein may used for radiolabeling the targeting agents (to form a radiotherapeutic or radioimmunotherapy agent) according to the various aspects of presently disclosed invention.
- a majority of the radiotherapeutic targeting agent composition (antibody, antibody fragment, peptide, small molecule, etc.) administered to a subject may consist of non-labeled targeting agent, with the minority being the radiolabeled targeting agent.
- the ratio of labeled to non-labeled targeting agent can be adjusted using known methods.
- the radiotherapeutic e.g., radioimmunotherapy
- the radiotherapeutic may be provided as a single dose composition tailored to a specific patient, wherein the amount of labeled and unlabeled targeting agent in the composition may depend on at least a patient weight, age, gender, diagnosis, and/or disease state or health status, such as detailed in International Publication No. WO 2016/187514.
- each of the radiation dose and the protein dose of the antibody may be personalized to that patient based on at least one patient specific parameter.
- each vial of the composition may be made for a specific patient, where the entire content of the vial is delivered to that patient in a single dose.
- each dose may be formulated as a patient specific dose in a vial to be administered to the patient as a “single dose” (i.e., full contents of the vial administered at one time).
- the subsequent dose may be formulated in a similar manner, such that each dose in the regime provides a patient specific dose in a single dose container.
- One of the advantages of the disclosed composition is that there will be no left-over radiation that would need to be discarded or handled by the medical personnel, e.g., no dilution, or other manipulation to obtain a dose for the patient.
- the container is simply placed in-line in an infusion tubing set for infusion to the patient.
- the volume can be standardized so that there is a greatly reduced possibility of medical error (i.e., delivery of an incorrect dose, as the entire volume of the composition is to be administered in one infusion).
- the radiotherapeutic targeting agent when it is an antibody, it may be provided in a total protein amount of up to lOOmg, such as up to 60 mg, such as 5mg to 45mg, or a total protein amount of between 0.01 mg/kg patient weight to 16.0 mg/kg patient weight, such as between 0.01 mg/kg patient weight to 10.0 mg/kg, or between 0.05 mg/kg patient weight to 5.0 mg/kg, or between 0.01 mg/kg patient weight to 1.0 mg/kg, or between 0.01 mg/kg patient weight to 0.6 mg/kg patient weight, or 0.01 mg/kg patient weight, 0.015 mg/kg patient weight, 0.02 mg/kg patient weight, or 0.04 mg/kg patient weight, or 0.06 mg/kg patient weight.
- the effective amount of an antibody in the radioimmunotherapy may include a total protein amount of at or less than 10mg/m 2 (mg/m 2 patient body surface area), such as about 6mg/m 2 , or 3mg/m 2 , or 2mg/m 2 , such as 1-10 mg/m 2 or 2-10 mg/m 2
- the term “subject” includes, without limitation, a mammal such as a human, a non-human primate, a dog, a cat, a horse, a sheep, a goat, a cow, a rabbit, a pig, a rat and a mouse.
- the subject can be of any age.
- the subject can be 60 years or older, 65 or older, 70 or older, 75 or older, 80 or older, 85 or older, or 90 or older.
- the subject can be 50 years or younger, 45 or younger, 40 or younger, 35 or younger, 30 or younger, 25 or younger, or 20 or younger.
- the subject can be newly diagnosed, or relapsed and/or refractory, or in remission.
- the cancer may, for example, be metastatic or non-metastatic.
- the various aspects of the present invention may, for example, be for the treatment of a patient/ subject having an elevated level of circulating MDSCs, for example, a pati ent/ subject whose circulating MDSC level has been determined, for example, by immunoprofiling flow cytometry, to have a circulating MDSC level above a predetermined threshold level, for example, above the typical levels for a healthy (non-cancer) comparator group, such as an age-matched (or age group matched) healthy (non-cancer) comparator group.
- a healthy (non-cancer) comparator group such as an age-matched (or age group matched) healthy (non-cancer) comparator group.
- any of the methods of treatment disclosed herein may further include a step of determining the patient’ s/subject’s circulating MDSC level before administering a radiolabeled CD33 targeting agent to deplete MDSCs in the treatment of a proliferative disorder such as a solid tumor.
- the treatment step may, for example, be performed if the circulating MDSC exceeds the predetermined threshold value.
- any of the methods of treatment disclosed herein may further include a step of determining the patient’ s/subject’s circulating MDSC level, for example, by immunoprofiling flow cytometry, after administering a radiolabeled CD33 targeting agent to deplete MDSCs in the treatment of a proliferative disorder such as a solid tumor in order to determine the extent of depletion of MDSCs resulting from the treatment.
- Such profiling may, for example, be performed according to the methods disclosed in Apodaca et al., Characterization of a whole blood assay for quantifying myeloid-derived suppressor cells, Journal for ImmunoTherapy of Cancer volume 7, Article number: 230 (2019) in which, in brief, total MDSC are defined as CD45 + CD3’CD19’CD20’CD56’CD16’HLA-DR’CD33 + CD1 lb + cells, while the monocytic (M-MDSC) and polymorphonuclear subsets are defined as CD14 + or CD15 + , respectively.
- treating may include, without limitation, (i) slowing, stopping or reversing the cancer's progression, (ii) slowing, stopping or reversing the progression of the cancer’s symptoms, (iii) reducing the likelihood of the cancer’s recurrence, and/or (iv) reducing the likelihood that the cancer’s symptoms will recur.
- treating a subject afflicted with a cancer means (i) reversing the cancer's progression, ideally to the point of eliminating the cancer, and/or (ii) reversing the progression of the cancer’s symptoms, ideally to the point of eliminating the symptoms, and/or (iii) reducing or eliminating the likelihood of relapse (i.e., consolidation, which ideally results in the destruction of any remaining cancer cells).
- “Therapeutically effective amount” or “effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve a therapeutic result.
- a therapeutically effective amount may vary according to factors such as the disease state, age, gender, and weight of the individual, and the ability of a therapeutic or a combination of therapeutics to elicit a desired response in the individual.
- Exemplary indicators of an effective therapeutic or combination of therapeutics include, for example, improved well-being of the subject/patient, reduction in a tumor burden, arrested or slowed growth of a tumor, and/or absence of metastasis of cancer cells to other locations in the body.
- “therapeutically effective amount” or “effective amount” refers to an amount of the therapeutic agent or combination of therapeutic agents that may deplete, cause a reduction in the overall number of and/or slow the proliferation of MDSCs and/or cancer cells, such as a reduction in the burden or amount of CD33 -expressing MDSC and/or cancer cells, and/or DR5 expressing-cancer cells, and/or 5T4-expressing cancer cells, and/or HER2-expressing cancer cells, and/or HER3- expressing cancer cells
- “Inhibits growth” refers to a measurable decrease or delay in the growth of a malignant cell(s) or tissue (e.g., tumor) in vitro or in vivo when contacted with a therapeutic or a combination of therapeutics, drugs and/or treatment modalities, when compared to the decrease or delay in the growth of the same cells or tissue in the absence of the therapeutic or the combination. Inhibition of growth of a malignant cell or tissue in vitro or in vivo may be at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%.
- CD33 The overexpression of CD33 is commonly found in myeloid-derived hematological malignancies, including AML, CML, and MDS and CD33 targeting agents are currently studied for the treatment of these disorders.
- the present invention provides novel compositions and methods for targeting CD33 in the treatment of proliferative disorders such as solid cancers and precancers and hematological proliferative disorders that do not have a myeloid origin, such as lymphomas and lymphocytic leukemias, and/or that do not substantially or at all express CD33 themselves.
- the methods of treatment disclosed herein include administration of a radiolabeled CD33 targeting agent alone or in combination with other cancer therapeutic agents, such as radiolabeled targeting agents against cancer-associated antigens, drug conjugated targeting agents such as antibody drug conjugates against cancer-associated antigens, chemotherapy and immune checkpoint inhibition, or treatments, such as external beam radiation or brachytherapy, for the treatment of solid cancers and precancers and hematological proliferative disorders that do not have a myeloid origin, such as lymphomas, lymphocytic and lymphocytic leukemias, and/or that do not substantially or at all express CD33.
- cancer therapeutic agents such as radiolabeled targeting agents against cancer-associated antigens, drug conjugated targeting agents such as antibody drug conjugates against cancer-associated antigens, chemotherapy and immune checkpoint inhibition, or treatments, such as external beam radiation or brachytherapy, for the treatment of solid cancers and precancers and hematological proliferative disorders that do not have a myeloid origin, such as lymphomas
- Antibodies against human CD33 such as lintuzumab (HuM195), gemtuzumab, and vadastuximab that are known in the art may, for example, be radiolabeled for use in the various aspects of the invention.
- the full-length amino acid sequence of the lintuzumab light chain, including the leader sequence is disclosed as SEQ ID NO: 114 herein.
- the mature light chain begins with the aspartic acid (D) residue at position 20.
- the full-length amino acid sequence of the lintuzumab heavy chain, including the leader sequence is disclosed as SEQ ID NO: 115 herein.
- the mature heavy chain begins with the glutamine (Q) residue at position 20.
- Lintuzumab is also commercially available from Creative Biolabs (Shirley, NY USA) as Catalog No TAB-756.
- Gemtuzumab is commercially available from Creative Biolabs as Catalog No. TAB-013.
- Vadastuximab is commercially available from Creative Biolabs as Catalog No. TAB-471CQ.
- anti-CD33 antibodies or antigen binding fragments thereof may, for example, be radiolabeled with an alpha-emitting radionuclide, such as Actinium-225, to provide a radiolabeled CD33 targeting agent that is highly targeted for use in various aspects of the invention.
- the 225 Ac payload delivers high energy alpha particles directly to the CD33 expressing cells, such as MDSCs, in circulation or resident in tumors, generating lethal double strand DNA breaks without necessitating significant payload accumulation within the tumor cell, and providing therapeutic efficacy for even low target antigen expressing tumors. Due to its short path length, the range of its high energy alpha particle emission is only a few cell diameters thick, thereby limiting damage to nearby normal tissues.
- the radiolabeled antibody may, for example, be or include 225 Ac lintuzumab satetraxetan.
- DR4 and DR5 are functional death receptors (DR4 and DR5), also known as tumor necrosis factor-related apoptosis-inducing ligand receptors 1 and 2 (TRAIL-R1 and -R2), which become upregulated on cell surfaces as part of an immune surveillance mechanism to alert the immune system of the presence of virally infected or transformed cells.
- TRAIL tumor necrosis factor-related apoptosis-inducing ligand receptors 1 and 2
- TRAIL the ligand that binds death receptors
- T-cells and NK cells upon engagement of DR4 or DR5
- TRAIL trimerizes the death receptor and induces an apoptotic cascade that is independent of p53 (Naoum, et el. (2017) Oncol. Rev. 11, 332).
- DR4 and DR5 can be found expressed at low levels in some normal tissues (Spierings, et al. (2004) J. Histochem. Cytochem., 52, 821-31), they are upregulated on the surface of many tumor tissues including renal (kidney), lung, acute myeloid leukemia (AML), cervical, and breast cancers.
- DR4 and DR5-targeting antibodies and recombinant TRAIL (rTRAIL) proteins have been developed, including mapatumumab, conatumumab, lexatumumab, tigatuzumab, drozitumab, and LBY-135.
- rTRAIL recombinant TRAIL
- Tigatuzumab has been evaluated in a Phase 2 clinical trial in triple negative breast cancer (TNBC) patients, wherein the expression of DR5 on both primary and metastatic tumor samples was confirmed, demonstrating that DR5 is a suitable target for directing therapeutic intervention in this cancer type and metastatic disease (Forero-Torres, et al. (2015) Clin. Cancer Res., 21, 2722-9).
- radiation is typically used only to treat the site of the primary tumor after surgical resection and is only used palliatively for metastases.
- An alternative approach to achieve targeted delivery of radiation to both primary and metastatic tumors while sparing normal tissues from radiation toxicity is through use of a MDSC-targeting radiotherapeutic, as disclosed herein, in combination with a second agent directed to the tumor related antigen such as DR5.
- DR5 targeting agents that may be employed in the present invention include at least antibodies, antibody fragments, antibody mimetics, peptides, ligands, and/or small molecules, which may be radiolabeled, drug-conjugated or unlabeled if therapeutically active without labeling.
- DR5 targeting agents may be used in combination with radiolabeled CD33 targeting agents of the invention for the treatment of DR5 -expressing cancers.
- radiotherapeutics include ARCs targeted to DR5, such as radiolabeled monoclonal antibodies against DR5 (e.g., 225 Ac-labeled anti-DR5 mAb).
- Exemplary antibodies against DR5 include at least tigatuzumab (CD-1008) from Daiichi Sankyo, conatumumab (AMG 655) from Amgen, mapatumumab from AstraZeneca, lexatumumab (also known as ETR2-ST01) from Creative Biolabs (Shirley, NY, USA), LBY-135, and drozitumab from Genentech.
- Initial studies in mouse models may use the surrogate mouse antibody TRA-8 or MD5-1.
- Trophoblast glycoprotein also known as 5T4
- 5T4 is a glycoprotein that is categorized as an oncofetal antigen, meaning it is expressed on cells during fetal developmental stages but is not expressed in adult tissues except on tumors (Southall, P. J. et al. (1990) Br. J. Cancer 61, 89-95). 5T4 is expressed widely across many different tumor types, including lung, breast, head and neck, colorectal, bladder, ovarian, pancreatic, and many others (Stem, P. L. & Harrop, R. (2017) Cancer Immunol. Immunother. 66, 415-426). Additional characteristics that make it amenable for targeting with a radiotherapeutic include a high rate of internalization, expression on the tumor periphery, and expression on cancer stem cells.
- 5T4 targeting agents that may be employed in the present invention include at least antibodies, antibody fragments, antibody mimetics, peptides, ligands, and/or small molecules, which may be radiolabeled, drug-conjugated or unlabeled if therapeutically active without labeling.
- Such 5T4 targeting agents may be used in combination with radiolabeled CD33 targeting agents of the invention for the treatment of 5T4 -expressing cancers.
- radiotherapeutics that may be used include ARCs targeted to 5T4, such as radiolabeled monoclonal antibodies against 5T4 (e.g., 225 Ac-labeled anti-5T4 mAb).
- Exemplary antibodies against 5T4 include at least MED 10641 developed by Medimmune/AstraZeneca; ALG.APV-527, developed by Aptevo Therapeutics/ Alligator Bioscience; Tb535, developed by Biotecnol/Chiome Bioscience; H6-DM5 developed by Guangdong Zhongsheng Pharmaceuticals; and ZV0508 developed by Zova Biotherapeutics.
- the anti-HER2 antibody employed may be Trastuzumab or a different antibody that binds to an epitope of HER2 recognized by Trastuzumab and/or the antibody employed may be Pertuzumab or a different antibody that binds to an epitope of HER2 recognized by Pertuzumab, or antigen-binding fragments of the aforementioned antibodies.
- the anti-HER2 antibody may also be a multi-specific antibody, such as bispecific antibody, against any available epitope of HER3/HER2 such as MM- 111 and MM-141/Istiratumab from Merrimack Pharmaceuticals, MCLA-128 from Merus NV, and MEHD7945A/Duligotumab from Genentech.
- HER3/HER2 such as MM- 111 and MM-141/Istiratumab from Merrimack Pharmaceuticals, MCLA-128 from Merus NV, and MEHD7945A/Duligotumab from Genentech.
- the amino acid sequences of the heavy chain and the light chain of Trastuzumab reported by DrugBank Online are: heavy chain (SEQ ID NO: 116) and light chain (SEQ ID NO: 117) and a HER2 binding antibody including one or both of said chains may be embodied in or used in the various embodiments of the invention.
- the amino acid sequences of the heavy chain and the light chain of Pertuzumab reported by DrugBank Online are: heavy chain (SEQ ID NO: 118) and light chain (SEQ ID NO: 119) and a HER2 binding antibody including one or both of said chains may be embodied in or used in the various embodiments of the invention.
- HER2 targeting agents that may be employed in the present invention include at least antibodies, antibody fragments, antibody mimetics, peptides, ligands, and/or small molecules, which may be radiolabeled, drug-conjugated, or unlabeled if therapeutically active without labeling.
- HER2 targeting agents may be used in combination with radiolabeled CD33 targeting agents of the invention for the treatment of HER2-expressing cancers.
- radiotherapeutics include ARCs targeted to HER2, such as radiolabeled monoclonal antibodies against HER2 such as radiolabeled Trastuzumab and/or radiolabeled Pertuzumab.
- Applicants have successfully conjugated Trastuzumab with p-SCN-DOTA and radiolabeled the composition with 225 Ac or 177 LU.
- Exemplary ADCs targeting HER2 that may be used include fam-trastuzumab deruxtecan-nxki (Enhertu®; AstraZeneca/Daiichi Sankyo) and Trastuzumab emtansine (Roche/ Genentech) .
- the human epidermal growth factor receptor 3 (ErbB3, also known as HER3) is a receptor protein tyrosine kinase belonging to the epidermal growth factor receptor (EGFR) subfamily of receptor protein tyrosine kinases.
- the transmembrane receptor HER3 consists of an extracellular ligand-binding domain having a dimerization domain therein, a transmembrane domain, an intracellular protein tyrosine kinase-like domain and a C-terminal phosphorylation domain. Unlike the other HER family members, the kinase domain of HER3 displays very low intrinsic kinase activity.
- the ligands neuregulin 1 or neuregulin 2 bind to the extracellular domain of HER3 and activate receptor-mediated signaling pathway by promoting dimerization with other dimerization partners such as HER2. Heterodimerization results in activation and transphosphorylation of HER3's intracellular domain and is a means not only for signal diversification but also signal amplification. In addition, HER3 heterodimerization can occur in the absence of activating ligands and this is commonly termed ligand-independent HER3 activation. For example, when HER2 is expressed at high levels as a result of gene amplification (e.g. in breast, lung, ovarian or gastric cancer) spontaneous HER2/HER3 dimers can be formed. In this situation the HER2/HER3 is considered the most active ErbB signaling dimer and is therefore highly transforming.
- HER3 has been found in several types of cancer such as breast, lung, gastrointestinal and pancreatic cancers. Significantly, a correlation between the expression of HER2/HER3 and the progression from a non-invasive to an invasive stage has been shown (Alimandi et al. (1995) Oncogene 10: 1813-1821; DeFazio et al. (2000) Cancer 87:487-498).
- HER3 targeting agents that may be employed in the present invention include at least antibodies, antibody fragments, antibody mimetics, peptides, ligands, and/or small molecules, which may be radiolabeled, drug-conjugated or unlabeled if therapeutically active without labeling.
- HER3 targeting agents may be used in combination with radiolabeled CD33 targeting agents of the invention for the treatment of HER3 -expressing cancers.
- Exemplary antibodies against HER3 include at least the monoclonal antibodies Patritumab, Seribantumab, Lumretuzumab, Elgemtumab, US-1402, AV-203, CDX-3379, and GSK2849330, or the bispecific antibodies MM-111, MM-141/Istiratumab, MCLA-128, and MEHD7945A/Duligotumab.
- Exemplary radiotherapeutics include ARCs targeted to HER3, such as radiolabeled forms of any of the aforementioned monoclonal antibodies against HER3 (e.g., 225 Ac-anti-HER3 mAb) or radiolabeled antigen-binding fragments of the antibodies.
- An exemplary ADC targeting HER3 that may be used is patritumab deruxtecan (U3-1402, HER3- DXd; Daiichi Sankyo).
- HER3 targeting agents may also be used, radiolabeled, drug-conjugated or unlabeled if therapeutically active without labeling, in combination or conjunction with a radiolabeled CD33 targeting agent to treat a cancer associated with MDSCs.
- An exemplary HER3 antibody includes a murine monoclonal antibody against HER3 including a heavy chain having the amino acid sequence as set forth in SEQ ID NOV or 11 and/or a light chain having the amino acid sequence as set forth in SEQ ID NO: 10 or 12, or an antibody such as a humanized antibody derived from one or more of said sequences.
- An exemplary HER3 antibody that may be radiolabeled and embodied in and/or used in the presently disclosed invention may include or a heavy chain with an N-terminal region having the sequence set forth in SEQ ID NO: 13 and/or a light chain with an N-terminal region having the sequence as set forth in SEQ ID NO: 14.
- a HER3 antibody that may be similarly embodied or used in various aspect of the invention may, for example, include the heavy chain variable region having the amino acid sequence as set forth in SEQ ID NO:7, and/or a light chain variable region having an amino acid sequence as set forth in SEQ ID NO:8; and/or a heavy chain including one or more of CDR1, CDR2 and CDR3 having the amino acid sequences respectively set forth in SEQ ID NOS: 1-3, and/or a light chain with one or more of the CDR1, CD2 and CDR3 having the amino acid sequences respectively set forth in SEQ ID NOS:4-6.
- a HER3 antibody embodied in and/or used in any of the aspects of the invention may, for example, include any combination of the aforementioned light chain sequences and/or heavy chain sequences.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO: 15, a CDR-H2 including SEQ ID NO: 16, and a CDR-H3 including SEQ ID NO: 17, and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO: 18, a CDR-L2 including SEQ ID NO: 19, and a CDR- L3 including SEQ ID NO:20.
- An exemplary An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:21 and/or an immunoglobulin light chain variable region including SEQ ID NO:22.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:23 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO:24.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:25, a CDR-H2 including SEQ ID NO:26, and a CDR-H3 including SEQ ID NO:27; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO:28, a CDR-L2 including SEQ ID NO:29, and a CDR- L3 including SEQ ID NO:30.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:31 and/or an immunoglobulin light chain variable region including SEQ ID NO:32..
- An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:33 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO:34 [0090]
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:35, a CDR-H2 including SEQ ID NO:36, and a CDR-H3 including SEQ ID NO:37; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO: 38, a CDR-L2 including SEQ ID NO: 39, and a CDR- L3 including SEQ ID NO:40.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:41, and/or an immunoglobulin light chain variable region SEQ ID NO:42.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:43 and an immunoglobulin light chain amino acid sequence of SEQ ID NO:44.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:45, a CDR-H2 including SEQ ID NO:46, and a CDR-H3 including SEQ ID NO:47; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO:48, a CDR-L2 including SEQ ID NO:29, and a CDR- L3 including SEQ ID NO:49.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:50 and/or an immunoglobulin light chain variable region including SEQ ID NO:51.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:52 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO:53.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:54, a CDR-H2 including SEQ ID NO:55, and a CDR-H3 including SEQ ID NO:56; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO:28, a CDR-L2 including SEQ ID NO:29, and a CDR- L3 including SEQ ID NO:30.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:57 and/or an immunoglobulin light chain variable region including SEQ ID NO: 58.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:59 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO: 60.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:61, a CDR-H2 including SEQ ID NO:62, and a CDR-H3 including SEQ ID NO:63; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO:64, a CDR-L2 including SEQ ID NO:65, and a CDR- L3 including SEQ ID NO:66.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:67, and/or an immunoglobulin light chain variable region including SEQ ID NO: 68.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO: 69 and an immunoglobulin light chain amino acid sequence of SEQ ID NO:70.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:71, a CDR-H2 including SEQ ID NO:72, and a CDR-H3 including SEQ ID NO:66; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO:28, a CDR-L2 including SEQ ID NO:29, and a CDR- L3 including SEQ ID NO:30.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:73, and/or an immunoglobulin light chain variable region including SEQ ID NO:74.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:75 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO:76.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:77 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO:78.
- An exemplary HER3 antibody includes an immunoglobulin light chain variable region including SEQ ID NOS: 86, 87, 88, 89, 90 or 91 and/or a heavy chain variable region including SEQ ID NOS:79, 80, 81, 82, 83, 84 or 85.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain sequence including SEQ ID NO:92, 94, 95, 98 or 99 and/or an immunoglobulin light chain sequence including SEQ ID NO: 93, 96, 97, 100 or 101.
- Exemplary HER3 antibodies also include Barecetamab (ISU104) from Isu Abxis Co and any of the HER3 antibodies disclosed in U.S. Patent No. 10,413,607.
- ISU104 Barecetamab from Isu Abxis Co
- Exemplary HER3 antibodies also include HMBD-001 (10D1F) from Hummingbird Bioscience Pte. and any of the HER3 antibodies disclosed in International Pub. Nos. WO 2019185164 and WO2019185878, U.S. Patent 10,662,241; and U.S. Pub. Nos. 20190300624, 20210024651, and 20200308275.
- Exemplary HER3 antibodies also include the HER2/HER3 bispecific antibody MCLA-128 (i.e., Zenocutuzumab) from Merus N.V.; and any of the HER3 antibodies, whether monospecific or multi-specific, disclosed in U.S. Pub. Nos. 20210206875, 20210155698, 20200102393, 20170058035, and 20170037145.
- MCLA-128 i.e., Zenocutuzumab
- Exemplary HER3 antibodies also include the HER3 antibody Patritumab (U3- 1287), an antibody including heavy chain sequence SEQ ID NO: 106 and/or light chain sequence SEQ ID NO: 107 which are reported chains of Patritumab, and any of the HER3 antibodies disclosed in U.S. Patent Nos. 9,249,230 and 7,705,130 and International Pub. No. W02007077028.
- Exemplary HER3 antibodies also include the HER3 antibody MM-121 and any of the HER3 antibodies disclosed in U.S. Patent No. 7,846,440 and International Pub. No. W02008100624.
- Exemplary HER3 antibodies also include the EGFR/HER3 bispecific antibody DL1 and any of the HER3 antibodies, whether monospecific or multi-specific, disclosed in U.S. Patent Nos. 9,327,035 and 8,597,652, U.S. Pub. No. 20140193414, and International Pub. No. W02010108127.
- Exemplary HER3 antibodies also include the HER2/HER3 bispecific antibody MM-111 and any of the HER3 antibodies, whether monospecific or multi-specific, disclosed in U.S. Pub. Nos. 20130183311 and 20090246206 and International Pub. Nos. W02006091209 and W02005117973.
- the HER3 targeting agent includes an anti-HER3 antibody that binds to an epitope of HER3 recognized by Patritumab from Daiichi Sankyo, Seribantumab (MM-121) from Merrimack Pharmaceuticals, Lumretuzumab from Roche, Elgemtumab from Novartis, GSK2849330 from GlaxoSmithKline, CDX-3379 of Celldex Therapeutics, EV20 and MP-RM-1 from MediPharma, Barecetamab (ISU104) from Isu Abxis Co., HMBD-001 (10D1F) from Hummingbird Bioscience Pte., REGN1400 from Regeneron Pharmaceuticals, and/or AV-203 from AVEO Oncology.
- ISU104 Barecetamab
- HMBD-001 (10D1F) from Hummingbird Bioscience Pte.
- REGN1400 from Regeneron Pharmaceuticals
- AV-203 from AVEO Oncology.
- the anti- HER3 antibody is selected from one or more of Patritumab, Seribantumab or an antibody including heavy chain sequence SEQ ID NO: 108 and/or light chain sequence SEQ ID NO: 109 which are reported for Seribantumab, Lumretuzumab or an antibody including heavy chain sequence SEQ ID NO: 110 and/or light chain sequence SEQ ID NO: 111 which are reported for Lumretuzumab, Elgemtumab or an antibody including heavy chain sequence SEQ ID NO: 112 and/or light chain sequence SEQ ID NO: 113 which are reported for Elgemtumab, AV-203, CDX-3379, GSK2849330, EV20, MP-RM-1, ISU104, HMBD-001 (10D1F), and REGN1400.
- TROP2 targeting agents include one or more of TROP2 targeting agents.
- Tumor-associated calcium signal transducer 2 also known as Trop-2 and as epithelial glycoprotein- 1 antigen (EGP-1)
- Trop-2 epithelial glycoprotein- 1 antigen
- GFP-1 epithelial glycoprotein- 1 antigen
- Cancers that may be targeted with a TROP2 targeting agent and treated with a radiolabeled or drug-conjugated TROP2 targeting agent in conjunction with a radiolabeled CD33 targeting agent according to the invention include but are not limited to carcinomas, squamous cell carcinomas, adenocarcinomas, non-small cell lung cancer (NSCLC), Small-cell lung cancer (SCLC), colorectal cancer, gastric adenocarcinoma, esophageal cancer, hepatocellular carcinoma, cholangiocarcinoma, ovarian epithelial cancer, breast cancer, metastatic breast cancer, triple negative breast cancer (TNBC), prostate cancer, hormone-refractory prostate cancer, pancreatic ductal adenocarcinoma, head and neck cancers, renal cell cancer, urinary bladder neoplasms, cervical cancer, endometrial cancer, uterine cancer, follicular thyroid cancer, and glioblastoma multiforme.
- NSCLC non-small cell lung cancer
- Exemplary TROP2 targeting agents that may be radiolabeled and/or drug- conjugated and used in conjunction with a radiolabeled CD33 targeting agent in the treatment of a proliferative disorder include the monoclonal antibodies Sacituzumab and Datopotamab, antibodies having one or both of the heavy chain and light chain of said antibodies, and antibodies having one or both of the heavy chain CDRs and the light chain CDRs of said antibodies, or TROP2-binding fragments of any of the aforementioned antibodies.
- Sacituzumab biosimilar is commercially available as Catalog No. A2175 from BioVision Incorporated (an Abeam company, Waltham, MA, USA).
- Datopotamab biosimilar is commercially available as Catalog No.
- the TROP2 targeting agent used in conjunction with a radiolabeled CD33 targeting agent may, for example, include the ADC Sacituzumab govitecan (Trodelvy®, Daiichi Sankyo).
- Exemplary TROP2 targeting agents that may be radiolabeled and/or drug conjugated and used in conjunction with a radiolabeled CD33 targetign agent in the treatment of a proliferative disorder include a monoclonal antibody having a heavy chain SEQ ID NO: 120 and/or a light chain SEQ ID NO: 125 (reported as the heavy and light chains of Sacituzumab), or an antibody including one or both of the heavy chain variable region (SEQ ID NO: 121) or the light chain variable region (SEQ ID NO: 126) of said chains, or an antibody including 1, 2, or 3 of the heavy chain CDRs of said heavy chain (CDR H1-3: SEQ ID NOS: 122-124 respectively) and/or 1, 2 or 3 of the light chain CDRs of said light chain (CDR Ll-3 : SEQ ID NOS: 127-129 respectively), and any of the anti-human TROP antibodies disclosed in Pat.
- TROP2 targeting agents that may be radiolabeled and/or drug conjugated and used in conjunction with a radiolabeled CD33 targeting agent in the treatment of a proliferative disorder include a monoclonal antibody heavy chain SEQ ID NO: 130 and/or a light chain SEQ ID NO: 135 (reported as the heavy and light chains of Datopotamab), or an antibody including one or both of the variable region of said heavy chain (SEQ ID NO: 131) and the variable region of said light chain (SEQ ID NO: 136, or an antibody including 1, 2, or 3 of the heavy chain CDRs of said heavy chain (CDRs 1-3: SEQ ID NOS: 132-134 respectively) and/or 1, 2 or 3 of the light chain CDRs of the said light chain (CDRH1-3: SEQ ID NOS: 137-139 respectively), and any of the anti-human TROP antibodies disclosed in IntT Pub.
- a monoclonal antibody heavy chain SEQ ID NO: 130 and/or a light chain SEQ ID NO: 135 (re
- a number of different antigens including CD20, CD30, CD22, CD79 and CD19 may be used to preferentially target lymphoma and lymphocytic leukemia cells.
- targeting agents that may be employed in the present invention include at least antibodies, antibody fragments, antibody mimetics peptides, and/or small molecules that target one or more of CD30, CD22, CD79 and CD19, and which may be radiolabeled, drug-conjugated or unlabeled.
- Such targeting agents may be used in combination with radiolabeled CD33 targeting agents of the invention for the treatment of CD20-, CD30-, CD22-, CD79- and CD19-expressing cancers.
- Exemplary monoclonal antibodies include: Rituximab (Rituxan®), Tositumomab (Bexxar®), and Ofatumumab (Arzerra®) targeting CD20; Brentuximab targeting CD30; Inotuzumab targeting CD22; Polatuzumab targeting CD79; and Loncastuximab targeting CD 19.
- Exemplary radiotherapeutics that may be used include ARCs targeting one or more of CD20, CD30, CD22, CD79 and CD19, such as radiolabeled forms of any of the aforementioned monoclonal antibodies against CD20, CD30, CD22, CD79 or CD19 respectively or radiolabeled antigen-binding fragments thereof, for example, 225 Ac labeled forms thereof.
- Table 2 shows exemplary FDA-approved ADCs, their approved indications, and their targets that may be used in combination with a radiolabeled CD33 targeting agent according to the invention for the treatment of lymphomas and lymphocytic leukemias for cancers or precancerous proliferative disorders expressing the respective target for the agent.
- Exemplary MUC1 targeting agents that may be radiolabeled and used in combination or conjunction with a radiolabeled CD33 targeting agent such as any of those disclosed herein for the treatment of a proliferative disorder such as a MUC1 expressing cancer, include hTAB004 (OncoTAb, Inc.) and any of the anti-MUCl antibodies disclosed in any of U.S. Pub. No. 20200061216 and U.S. Patent Nos.: 8,518,405; 9,090,698; 9,217,038; 9,546,217; 10,017,580; 10,507,251 10,517,966; 10,919,973; 11,136,410; and 11,161,911.
- Radiolabeled MUC1 targeting agent that may be used in combination or conjunction with a radiolabeled CD33 targeting agent according to the invention is 90 Y IMMU-107 (hPAM4-Cide; Immunomedics, Inc.; Gilead Sciences, Inc.), or 177 Lu or 225 Ac alternatively labeled versions thereof.
- Radiolabeled MUC1 targeting agents may be used in the treatment of MUC1 overexpressing cancers, such as MUC1 overexpressing solid tumors, such as pancreatic cancer, locally advanced or metastatic pancreatic cancer and breast cancer, such as metastatic breast cancer, tamoxifen-resistant breast cancer, HER2-negative breast cancer, and triple negative breast cancer (TNBC).
- Exemplary LYPD3 (C4.4A) targeting agents that may be used, e.g., as radioconjugates or drug conjugates, in combination or conjunction with a radiolabeled CD33 targeting agent according to the invention include, for example, BAY 1129980 (a/k/a Lupartumab amadotin; Bayer AG, Germany) an Auristatin-based anti-C4.4A (LYPD3) ADC or its antibody component Lupartumab, IgGi mAb GT-002 (Glycotope GmbH, Germany) and any of those disclosed in U.S. Pub. No.
- Such use may, for example, be for the treatment of a LYPD3 -expressing hematological or solid tumor cancer in a mammal, such as carcinomas, primary and metastatic transitional cell carcinomas (TCCs), adenocarcinomas, lung cancer, lung adenocarcinoma, non-small cell lung cancer (NSCLC), hepatocellular carcinoma (HCC), breast cancer, endocrine therapy -resistant breast cancer (such as tarn oxifen -resistant breast cancer), HER2 -positive breast cancer, triple negative breast cancer (TNBC), esophageal cancer, renal cell carcinomas, colorectal cancer, cervical cancer, head and neck cancer, urothelial cancer, skin cancer, melanoma, and acute myelogenous leukemia (AML).
- TCCs primary and metastatic transitional cell carcinomas
- NSCLC non-small cell lung cancer
- HCC hepatocellular carcinoma
- breast cancer endocrine therapy -resistant breast cancer (such as tar
- antibodies such as but not limited to immunoglobulins, such as but not limited to IgG, that (i) include the heavy chain variable region of the disclosed antibody or heavy chain, (ii) include 1, 2 or 3 of the heavy chain CDRs (e.g., by Kabat definition) of the disclosed antibody or heavy chain, (iii) include the light chain variable region of the disclosed antibody or light chain, and/or (iv) include 1, 2 or 3 of the light chain CDRs (e.g., by Kabat definition) of the disclosed antibody or light chain.
- immunoglobulins such as but not limited to IgG
- an antibody heavy chain or an antibody light chain is disclosed that includes an N-terminal leader sequence, also intended to be disclosed for embodiment in and use in the various aspects of the invention are corresponding heavy chains and corresponding light chains that lack the leader sequence.
- Radiolabeled PSMA-targeting agents that may be used include, for example, a radiolabeled anti-PSMA monoclonal antibody such as J591 labeled for example with 177 LU or 225 Ac or Rosopatamab labeled for example with 177 Lu or 225 Ac, or a radiolabeled PSMA- binding small molecule such as PSMA-617 labeled for example with 177 Lu or 225 Ac, PSMA I&T labeled for example with 177 Lu or 225 Ac, FrhPSMA-7 labeled for example with 177 Lu, 64/67Cu- SAR-bisPSMA (Clarity Pharmaceuticals), CONV 01-a (Convergent Therapeutics, Inc.) labeled for example with 225 Ac, 177 Lu-PSMA I&T-P + 225 Ac-CONV
- Such agents may, for example, be used in combination or conjunction with a radiolabeled CD33 targeting agent for the treatment of prostate cancer, such as metastatic prostate cancer, castration-resistant prostate cancer (CRPC), metastatic CRPC (mCRPC), and/or hormone therapy resistant prostate cancer (anti-androgen therapy resistant prostate cancer).
- a radiolabeled CD33 targeting agent for the treatment of prostate cancer such as metastatic prostate cancer, castration-resistant prostate cancer (CRPC), metastatic CRPC (mCRPC), and/or hormone therapy resistant prostate cancer (anti-androgen therapy resistant prostate cancer).
- CRPC castration-resistant prostate cancer
- mCRPC metastatic CRPC
- anti-androgen therapy resistant prostate cancer anti-androgen therapy resistant prostate cancer
- Any of the agents that include DOTA or a DOTA derivative as a chelator may alternatively be labeled with any therapeutically active radionuclide that can be chelated by DOTA, such as 225 Ac, 177 Lu and 90 Y.
- radiolabeled cancer targeting agents may be used in combination or conjunction with a radiolabeled CD33 targeting agent, such as any of the following radiolabeled targeting agents:
- a radiolabeled FAP targeting agent such as 177 Lu-FAP-2286 (Clovis Oncology, Inc.) to treat, for example, solid tumors or any of the cancers disclosed herein;
- a radiolabeled CCK2R targeting agents such as DEBIO 1124 / 177 Lu-DOTA-PP- F11N (Debiopharm International SA) to treat, for example, advanced, unresectable pulmonary extrapulmonary small cell carcinoma, and thyroid cancer such as metastatic thyroid cancer, or any of the cancers disclosed herein;
- a radiolabeled CDH3 (cadherin-3, P-cadherin) targeting agent such as 90 Y labeled FF-21101 (FujiFilm Holdings Corporation / FujiFilm Toyama Chemical) to treat, for example, solid tumors such as epithelial ovarian peritoneal or fallopian tube carcinoma, TNBC, head and neck squamous cell carcinoma (HNSCC), cholangiocarcinoma, pancreatic, colorectal cancer, or any of the cancers disclosed herein;
- a radiolabeled IGF-R1 targeting agent such as 225 Ac FPI-1434 (Fusion Pharmaceuticals, Inc.) to treat, for example, solid tumors expressing IGF-R1, or any of the cancers disclosed herein;
- a radiolabeled CEACAM5 targeting agent such as 90 Y-hMN14 and 90 Y TF2 (Immunomedics, Inc.; Gilead Sciences Inc.) to treat, for example, solid tumors such as colon cancer, colorectal cancer, pancreatic cancer, breast cancer such as HER-negative breast cancer, and thyroid cancer such medullary thyroid carcinoma, or any of the cancers disclosed herein;
- a radiolabeled CD22 targeting agent such as IMMU-102 ( 90 Y-epratuzumab) (Immunomedics, Inc.; Gilead Sciences Inc.) to treat, for example, hematological malignancies such as CD22-positive acute lymphoblastic leukemia, non-Hodgkin lymphoma (NHL), stage in/IV DLBCL, follicular lymphoma, or any of the cancers disclosed herein;
- a radiolabeled SSTR2 targeting agent such as LutatheraTM (lutetium Lu 177proxate; 177Lu-DOTAO-Tyr3-Octreotate; Novartis), LutatheraTM (lutetium Lu 177proxate) + 90 Y-DOTATATE combination (Novartis), 177 LU-OPS201 (Ipsen Pharmaceuticals) the combination 177 LU-OPS201 / 177 Lu-IPN01072 (Ipsen Pharmaceuticals), EBTATE ( 177 Lu-DOTA- EB-TATE; Molecular Targeting Technologies, Inc.), ORM2110 (AlphaMedixTM; Orano Med), and PNT2003 labeled for example with 177 Lu (Point Biopharma Global Inc.), for the treatment of SSTR2 expressing cancers such as solid tumors, for example, neuroendocrine tumors, small cell lung cancer, breast cancer, prostate cancer such as metastatic prostate cancer, such as metastatic castration-resistant prostate cancer, neuroendocrine tumor
- a radiolabeled Neurotensin receptor type 1 (NTSR1) targeting agent such as 177 Lu- IPN01087 / 177 LU-3BP-227 or (Ipsen Pharmaceuticals) to treat, for example, solid tumors expressing NTSR1 such as pancreatic ductal adenocarcinoma, colorectal cancer, gastric cancer, squamous cell carcinoma of the head and neck, bone cancer, advanced cancer, recurrent disease, metastatic tumors, or any of the cancers disclosed herein;
- a radiolabeled human Kallikrein-2 (hK2) targeting agent such as JNJ-69086420 (Janssen / Janssen Pharmaceutica NV) labeled for example with 225 Ac, to treat, for example, prostate cancer such as locally advance or metastatic prostate cancer, or any of the cancers disclosed herein;
- a radiolabeled NET via norepinephrine transporter) targeting agent such as 13 'l- MIBG (Jubilant Radioharma) to treat, for example, neuroblastoma such as relapsed/refractory neuroblastoma, or any of the cancers disclosed herein;
- a radiolabeled neuroepinephrine transporter targeting agents such as AzedraTM (iobenguane 131 I; Lantheus Holdings/Progenics Pharmaceuticals, Inc.) to treat, for example, glioma, paraglioma, malignant pheochromocytoma/paraganglioma, and malignant relapsed/refractory pheochromocytoma/paraganglioma, or any of the cancers disclosed herein;
- a radiolabeled Integrin aVp6 targeting agent such as D0TA-ABM-5G, aVp6 Binding Peptide (ABP; Luminance Biosciences, Inc.) labeled for example with 177 Lu, 225 Ac or 90 Y, to treat, for example, solid tumors such as pancreatic cancer, or any of the cancers disclosed herein;
- a radiolabeled CD37 targeting agent such as BetalutinTM ( 177 Lu-lilotomab satetraxetan; Nordic Nanovector ASA) to treat, for example, hematological malignancies such as lymphomas, such as follicular lymphoma or non-Hodgkin lymphoma (NHL) such as relapsed and/or refractory forms thereof, or any of the cancers disclosed herein;
- a radiolabeled GRPR targeting agent such as 177 Lu-NeoB (Novartis) and 212 Pb- DOTAM-GRPR1 (Orano Med) to treat GRPR-expressing cancers, for example, prostate cancer, such as advanced prostate cancer, locally advanced prostate cancer, metastatic prostate cancer, and castration-resistant prostate cancer, or any of the cancers disclosed herein;
- a radiolabeled CXCR4 targeting agents such as PentixaTherTM (PentixaPharm GmbH) labeled with 177 Lu, 90 Y or 225 Ac to treat, for example, lymphoproliferative or myeloid malignancies, including relapsed and/or refractory forms thereof, or any of the cancers disclosed herein;
- a radiolabeled Tenascin-C targeting agent such as 131 I-F16SIP (Philogen S.p.A.) to treat, for example, solid tumors or hematological malignancies such as any of those disclosed herein;
- a radiolabeled Fibronectin extradomain B (EBD) targeting agent such as 131 I- L19SIP (Philogen S.p.A.)) to treat, for example, solid tumors such as solid tumor brain metastases and non-small cell lung cancer (NSCLC), or any of the cancers disclosed herein;
- EBD Fibronectin extradomain B
- NSCLC non-small cell lung cancer
- a radiolabeled LAT-1 targeting agent such as 4- 131 Iodo-L-phenylalanine (Telix Pharmaceuticals Ltd.) to treat, for example, glioblastoma such as recurrent glioblastoma, or any of the cancers disclosed herein;
- a radiolabeled Carbonic Anhydrase IX (CAIX) targeting agent such as radiolabeled Girentuxumab (cG250) such as DOTA conjugated Girentuxumab (cG250) labeled for example with 177 LU (such as TLX250; Telix Pharmaceuticals Ltd.), 225 Ac or 90 Y, to treat, for example, renal cell carcinoma, such as ccRCC, or any of the cancers disclosed herein;
- a radiolabeled CD66 targeting agent such as 90 Y-besilesomab ( 90 Y-anti-CD66- MTR; Telix Pharmaceuticals Ltd.) to treat, for example, leukemias, myelomas and lymphomas, such as any of those disclosed herein including pediatric and adult forms, or any of the cancers disclosed herein;
- a radiolabeled B7-H3 targeting agents such as radiolabeled omburtumab, such 131 I- 8H9 (1311-omburtumab; Y-mAbs Therapeutics, Inc.) and 177 Lu-omburtamab (Y-mAbs Therapeutics, Inc.) to treat, for example, gliomas such as non-progressive diffuse pontine gliomas, such as non-progressive diffuse pontine gliomas previously treated with external beam radiation therapy, brain tumors, central nervous system tumors, neuroblastomas, sarcomas, leptomeningeal metastasis from solid tumors, and medulloblastoma, including in pediatric and adult forms, or any of the cancers disclosed herein;
- gliomas such as non-progressive diffuse pontine gliomas, such as non-progressive diffuse pontine gliomas previously treated with external beam radiation therapy, brain tumors, central nervous system tumors, neuroblastomas, sarcoma
- a radiolabeled NKG2D ligand targeting agent such as a radiolabeled recombinant human NKG2D Fc chimeric protein, for example, Catalog No. 1299-NK from Biotechne (R&D Systems, Inc., Minneapolis, MN, USA) which includes Phe78-Val216 of Human NKG2D (Accession # P26718) or a radiolabeled recombinant human NKG2D Fc chimeric protein including SEQ ID NO: 140 plus/minus an amino-terminal histidine tag such as (His)e, or a radiolabeled antibody or antigen-binding fragment thereof against an NKG2D ligand such as MICA, MICB, RAET1E/ULBP4, RAET1G/ULBP5, RAET1H/ULBP2, RAET1/ULBP1, RAET1L/ULBP6, or RAET1N/ULBP3 - to treat, for example solid tumors or hematological malignancies expressing
- a radiolabeled GD2 targeting agent such as GD2-SADA: 177 Lu-DOTA (Y-mAbs Therapeutics, Inc.) to treat, for example, SCLC, melanoma, sarcoma or any of the cancers disclosed herein;
- a radiolabeled Folate receptor alpha (FOLR1) targeting agent such as a radiolabeled anti-FOLRl antibody such as radiolabeled Mirvetuximab or Farletuzumab, to treat, for example, solid cancers such as ovarian cancer, lung cancer, NSCLC, breast cancer, TNBC, brain cancer, glioblastoma, colorectal cancer or any of the cancers disclosed herein;
- a radiolabeled Folate receptor alpha (FOLR1) targeting agent such as a radiolabeled anti-FOLRl antibody such as radiolabeled Mirvetuximab or Farletuzumab, to treat, for example, solid cancers such as ovarian cancer, lung cancer, NSCLC, breast cancer, TNBC, brain cancer, glioblastoma, colorectal cancer or any of the cancers disclosed herein;
- a radiolabeled Nectin-4 targeting agent such as a radiolabeled anti-Nectin-4 monoclonal antibody such as radiolabeled Enfortumab or radiolabeled forms of any of the anti- Nectin-4 antibodies or targeting agents disclosed in U.S. Pub. No. 20210130459, U.S. Pub. No. 20200231670, U.S. Patent No. 10,675,357, or Int’l Pub. No.
- WO2022051591 to treat, for example, solid tumors such as urothelial carcinoma, bladder carcinoma, breast cancer, TNBC, lung cancer, NSCLC, colorectal cancer, pancreatic cancer, endometrial cancer, ovarian cancer or any of the cancers disclosed herein;
- a radiolabeled CUB-domain containing protein 1 (CDCP1) targeting agent such as a radiolabeled monoclonal antibody such as radiolabeled forms of any of the CDCP1 targeting agents and antibodies disclosed in U.S. Pub. No. 20210179729, U.S. Pub. No. 20200181281, U.S. Pub. No. 20090196873, U.S. Patent. No. 8,883,159, U.S. Patent No. 9,346,886, or Int’l Pub No.
- WO2021087575 to treat, for example, solid cancers such as breast cancer, TNBC, lung cancer, colorectal cancer, ovarian cancer, kidney cancer, liver cancer, HCC, pancreatic cancer, skin cancer, melanoma, or a hematological malignancy such as acute myeloid leukemia, or any of the cancers disclosed herein;
- solid cancers such as breast cancer, TNBC, lung cancer, colorectal cancer, ovarian cancer, kidney cancer, liver cancer, HCC, pancreatic cancer, skin cancer, melanoma, or a hematological malignancy such as acute myeloid leukemia, or any of the cancers disclosed herein;
- a radiolabeled Glypican-3 (GPC3) targeting agent such as a radiolabeled anti-GPC3 mAb such as the radiolabeled humanized IgGi mAb GC33 (a/k/a Codrituzumab; commercially available as Catalog No. TAB-H14 from Creative Biolabs), such as 225 Ac-Macropa-GC33 (Bell et al., Glypican-3-Targeted Alpha Particle Therapy for Hepatocellular Carcinoma. Molecules. 2020 Dec 22;26(1):4.) or a radiolabeled form of any of the anti-GPC3 antibodies or other targeting agents disclosed in U.S. Patent No. 10,118,959, U.S. Patent No.
- GPC3- expressing cancers such as hepatocellular carcinoma, ovarian clear cell carcinoma, melanoma, NSCLC, squamous cell carcinoma of the lung, hepatoblastoma, nephroblastoma (Wilms tumor), yolk sac tumor, gastric carcinoma, colorectal carcinoma, head and neck cancer, and breast cancer.
- a radiolabeled urokinase plasminogen activator receptor (uPAR) targeting agent such as a radiolabeled monoclonal antibody such as radiolabeled MNPR-101 (huATN-658) such as MNPR-101 -PTC A- Ac225 (Monopar Therapeutics, Inc., Wilmette, IL, USA) or radiolabeled forms of any of the anti-uP AR antibodies or targeting agents disclosed in U.S. Patent No. 9,029,509, U.S. Pub. No. 20080199476, U.S. Pub. No. 20040204348 or Int’l Pub. No. WO2021257552, to treat, for example, solid cancers or hematological malignancies such as any of those disclosed herein; and/or
- a radiolabeled LewisY antigen (LeY) targeting agent such as a radiolabeled anti- LeY monoclonal antibody such as radiolabeled forms of 3S1931 and/or of a humanized version thereof such as Hu3S1933, or of any of monoclonal antibodies B34, BR55-2, BR55/BR96, and IGN 133, or antigen binding fragments of any of the preceding antibodies, to treat, for example, solid tumors such as squamous cell lung carcinoma, lung adenocarcinoma, ovarian carcinoma, or colorectal adenocarcinoma or any of the cancers disclosed herein.
- a radiolabeled LewisY antigen (LeY) targeting agent such as a radiolabeled anti- LeY monoclonal antibody such as radiolabeled forms of 3S1931 and/or of a humanized version thereof such as Hu3S1933, or of any of monoclonal antibodies B34, BR55-2, BR55/BR96,
- a radiolabeled targeting agent used in combination or conjunction a radiolabeled CD33 targeting agent for the treatment of a cancer or proliferative disorder such as any of those disclosed herein in a mammal, such as a human includes a phospholipid-based cancer targeting agent.
- the phospholipid-based cancer targeting agent includes any of the radioactive phospholipid metal chelates disclosed in U.S. Pub. No. 20200291049, incorporated by reference herein, such as but not limited to
- a/k/a NM600 or a pharmaceutically acceptable salt thereof, chelated with a radionuclide, such as 225 Ac, 177 Lu, or 90 Y.
- a radionuclide such as 225 Ac, 177 Lu, or 90 Y.
- the lipid based radiolabeled targeting agent used in combination or conjunction with a CD33 targeting agent includes any of the radiolabeled phospholipid compounds disclosed in U.S. Pub. No. 20140030187 or U.S. Patent No, 6,417,384, each incorporated by reference herein, such as but not limited to i.e., 18-(p-iodophenyl)octadecyl phosphocholine, wherein iodine is 131 I (a/k/a NM404 I- 131, and CLR 131), or a pharmaceutically acceptable salt thereof.
- the phospholipid-based radiolabeled targeting agent used in conjunction with one or more CD47 blockades includes any of the phospholipid drug conjugate compounds disclosed in U.S. Patent No. 9,480,754, incorporated by reference herein.
- one exemplary radiotherapeutic disclosed herein includes only one or more radiolabeled CD33 targeting agents, aspects involving combination use of the radiolabeled CD33 targeting agent(s) with one or more radiolabeled targeting agents against different proliferative disorder-associated antigens are also provided.
- a multi-specific CD33 targeting agent such as an antibody, having CD33 as one target specificity and at least one other target specificity against a different cancer-associated antigen such as but not limited to DR5, 5T4, HER2, HER3, or TROP2.
- a radiolabeled multi-specific targeting agent may include a multi-specific antibody against a first epitope of CD33 and one or more further epitopes of CD33, and/or against an epitope of CD33 and an epitope of one or more additional different antigens such as but not limited to DR5, 5T4, HER2, HER3, or TROP2.
- the ARC may include a multi-specific antibody including at least a first target recognition component which specifically binds to an epitope of a first epitope of CD33, and one or more further target recognition components that specifically bind to one or more different epitopes of CD33 and/or to one or more different (non-CD33) antigens such as but not limited to DR5, 5T4, HER2, HER3, or TROP2.
- Different antigens that may be targeted (in addition to CD33) using radiolabeled targeting agents, drug-conjugated targeting agents such as ADCs, or as unlabeled targeting agents if therapeutically active, or targeted by use of a bi- or multi-specific targeting agent targeting CD33 and the different antigen(s) include, for example, those differentially expressed on cells involved in hematological diseases or disorders, and/or cells involved in solid tumors.
- Different antigens that may be targeted include, for example, DR5, 5T4, HER2 (ERBB2; Her2/neu), HER3, TROP2, mesothelin, TSHR, CD19, CD123, CD22, CD30, CD45, CD171, CD138, CS-1, CLL- 1, GD2, GD3, B-cell maturation antigen (BCMA), T antigen (T Ag), Tn Antigen (Tn Ag), prostate specific membrane antigen (PSMA), R0R1, FLT3, fibroblast activation protein (FAP), a Somatostatin receptor, Somatostatin Receptor 2 (SSTR2), Somatostatin Receptor 5 (SSTR5), gastrin-releasing peptide receptor (GRPR), NKG2D ligands (such as MICA, MICB, RAET1E/ULBP4, RAET1G/ULBP5, RAET1H/ULBP2, RAET1/ULBP1, RAET1L/ULBP6, andRAETlN/ULBP3),
- the first target recognition component may, for example, include one of: a first full-length heavy chain and a first full-length light chain, a first Fab fragment, or a first single-chain variable fragment (scFvs).
- the first target recognition component may be derived from any of the monoclonal antibodies disclosed herein that are directed against CD33.
- the second target recognition component may include one of: a second full length heavy chain and a second full length light chain, a second Fab fragment, or a second single-chain variable fragment (scFvs) and may, for example, be derived from targeting agents targeting, DR5, 5T4, HER2, HER3, TROP2, or any of the aforementioned different cancer-associated antigens.
- scFvs single-chain variable fragment
- ARCs antibody radioconjugates
- the effective amount of the radiotherapeutic(s), such as any of the ARCs disclosed herein, is a maximum tolerated dose (MTD) of the single agent or combination.
- MTD maximum tolerated dose
- the ARCs when more than one ARC is administered, the ARCs may be administered at the same time.
- the ARCs may be provided in a single composition.
- the two ARCs may be administered sequentially.
- a first ARC may be administered before a second ARC, after the second ARC, or both before and after the second ARC.
- the second ARC may be administered before the first ARC, after the first ARC, or both before and after the first ARC.
- the ARC may be administered according to a dosing schedule selected from the group consisting of one every 7, 10, 12, 14, 20, 24, 28, 35, and 42 days throughout a treatment period, wherein the treatment period includes at least two doses.
- the ARC may be administered according to a dose schedule that includes 2 doses, such as on days 1 and 5, 6, 7, 8, 9, or 10 of a treatment period, or days 1 and 8 of a treatment period.
- Administration of the ARCs of the present invention may be provided in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be intratracheal, intranasal, epidermal and transdermal, oral or parenteral. Parenteral administration includes intravenous, intra-arterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration. In some embodiments a slow- release preparation including the targeting agents(s) and/or other therapeutic agents may be administered. The various agents may be administered as a single treatment or in a series of treatments that continue as needed and for a duration of time that causes one or more symptoms of the cancer to be reduced or ameliorated, or that achieves another desired effect.
- the dose(s) may vary, for example, depending upon the identity, size, and condition of the subject, further depending upon the route by which the composition is to be administered and the desired effect. Appropriate doses of a therapeutic agent depend upon the potency with respect to the expression or activity to be modulated.
- the therapeutic agents may, for example, be administered to an animal (e.g., a human) at a relatively low dose at first, with the dose subsequently increased until an appropriate response is obtained.
- the radiotherapeutics disclosed herein such as any of the ARCs, may be administered simultaneously or sequentially with the one or more additional therapeutic agents. Moreover, when more than one additional therapeutic agent is included, the additional therapeutic agents may be administered simultaneously or sequentially with each other and/or with the radiotherapeutic.
- the targeting agent(s) may be labeled with a radioisotope such as an alpha emitter (e.g., 225 Ac) through conjugation of a chelator molecule, and chelation of the radioisotope.
- a radioisotope such as an alpha emitter (e.g., 225 Ac) through conjugation of a chelator molecule, and chelation of the radioisotope.
- the radiotherapeutic may be an antibody that may have reduced disulfide bonds such as by using reducing agents, which may then be converted to dehydroalanine for the purpose of conjugating with a bifunctional chelator molecule.
- the radiotherapeutic may be an antibody that may have reduced disulfide bonds, such as by use of reducing agents, followed by conjugation via aryl bridges with a bifunctional chelator molecule.
- a linker molecule such as 3,5-bis(bromomethyl)benzene may bridge the free sulfhydryl groups on the antibody.
- the radiotherapeutic may be an antibody that may have certain specific existing amino acids replaced with cysteine(s) that then can be used for sitespecific labeling, for example, using the compositions and methods described in U.S. Patent No. 11,000,604, incorporated by reference herein.
- the radiotherapeutic may be radiolabeled through sitespecific conjugation of suitable bifunctional chelators.
- chelator molecules that may be used include at least p-SCN-Bn-DOTA, NH 2 -D0TA, NH 2 -(CH 2 )I-2O-DOTA, NH 2 -(PEG)I- 20 - DOTA, HS-DOTA, HS-(CH 2 )I- 20 -DOTA, HS-(PEG)I- 20 -DOTA, dibromo-S-(CH 2 )i- 20 -DOTA, dibromo-S-(PEG)i.
- the chelator molecules may be attached to the radiotherapeutic targeting agent through a linker molecule.
- the additional agent(s) administered with the radiolabeled CD33 targeting agent may include one or more CD47 blockades, such as any agent that interferes with, or reduces the activity and/or signaling between CD47 (e.g., on a target cell) and SIRPa (e.g., on a phagocytic cell) through interaction with either CD47 or SIRPa.
- CD47 blockades include CD47 and/or SIRPa reagents, including without limitation SIRPa polypeptides, anti-SIRPa antibodies, soluble CD47 polypeptides, and anti-CD47 antibodies or antibody fragments.
- CD47 blockade refers to any agent that reduces the binding of CD47 (e.g., on a target cell) to SIRPa (e.g., on a phagocytic cell) or otherwise downregulates the “don’t eat me” signal of the CD47-. SIRPa pathway.
- suitable anti-CD47 blockades include SIRPa reagents, including without limitation SIRPa polypeptides, anti-SIRPa antibodies, soluble CD47 polypeptides, and anti-CD47 antibodies or antibody fragments.
- a suitable anti-CD47 agent e.g. an anti-CD47 antibody, a SIRPa reagent, etc. specifically binds CD47 to reduce the binding of CD47 to SIRPa.
- a CD47 blockade agent for use in the methods of the invention may, for example, up-regulate phagocytosis by at least 10% (e.g., at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 100%, at least 120%, at least 140%, at least 160%, at least 180%, or at least 200%) compared to phagocytosis in the absence of the agent.
- an in vitro assay for levels of tyrosine phosphorylation of SIRPa may, for example, show a decrease in phosphorylation by at least 5% (e.g., at least 10%, at least 15%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or 100%) compared to phosphorylation observed in absence of the agent.
- at least 5% e.g., at least 10%, at least 15%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or 100%
- a SIRPa reagent may include the portion of SIRPa that is sufficient to bind CD47 at a recognizable affinity, which normally lies between the signal sequence and the transmembrane domain, or a fragment thereof that retains the binding activity.
- suitable CD47 blockades that may be employed include any of the SIRPa-IgG Fc fusion proteins and others disclosed in U.S. Patent No. 9,969,789 including without limitation the SIRPa-IgG Fc fusion proteins TTI-621 and TTI-622 (Trillium Therapeutics, Inc.), both of which preferentially bind CD47 on tumor cells while also engaging activating Fc receptors.
- SIRPa- IgG Fc fusion protein including the amino acid sequence SEQ ID NO: 141, SEQ ID NO: 142, or SEQ ID NO: 143 may, for example, be used.
- Still other SIRPa Fc domain fusions proteins that may be used include ALX148 from Alx Oncology or any of those disclosed in IntT Pub. No WO2017027422 or U.S. Pat. No. 10,696,730.
- an anti-CD47 agent includes an antibody that specifically binds CD47 (i.e., an anti-CD47 antibody) and reduces the interaction between CD47 on one cell (e.g., an infected cell) and SIRPa on another cell (e.g., a phagocytic cell).
- suitable antibodies include clones B6H12, 5F9, 8B6, and C3 (for example as described in International Pub. No. WO 2011/143624).
- Suitable anti-CD47 antibodies include fully human, humanized or chimeric versions of such antibodies.
- Exemplary human or humanized antibodies useful for in vivo applications in humans due to their low antigenicity include at least monoclonal antibodies against CD47, such as Hu5F9-G4, a humanized monoclonal antibody available from Gilead as Magrolimab (Sikic, et al. (2019) Journal of Clinical Oncology 37:946); Lemzoparlimab and TJC4 from I-Mab Biopharma; AO-176 from Arch Oncology, Inc; AK117 from Akesobio Australia Pty; IMC-002 from Innovent Biologies; ZL-1201 from Zia Lab; SHR-1603 from Jiangsu HengRui Medicine Co.; and SRF231 from Surface Oncology.
- CD47 such as Hu5F9-G4, a humanized monoclonal antibody available from Gilead as Magrolimab (Sikic, et al. (2019) Journal of Clinical Oncology 37:946); Lemzoparlimab and TJC
- Bispecific monoclonal antibodies are also available, such as IBI-322, targeting both CD47 and PD-L1 from Innovent Biologies.
- An anti-huCD47 antibody that may be used in the various aspects of the invention may, for example, include the heavy chain set forth in SEQ ID NO: 145 and the light chain set forth in SEQ ID NO: 146, or be an antibody having a heavy chain including the three CDRs present in SEQ ID NO: 145 and a light chain including the three CDRs present in SEQ ID NO: 146, or be an antibody fragment such as an Fab, Fab2 or corresponding scFv molecule of any of the aforementioned antibodies.
- AO-176 in addition to inducing tumor phagocytosis through blocking the CD47- SIRPa interaction, has been found to preferentially bind tumor cells versus normal cells (particularly RBCs where binding is negligible) and directly kills tumor versus normal cells.
- Antibodies against SIRPa may also be used as CD47 blockades.
- anti-SIRPa antibodies also referred to as SIRPa antibodies herein
- antibodies that may be used in or embodied in any of the aspects of the invention include but are not limited to the following anti- SIRPa antibodies, antibodies that include one or both of the heavy chain and light chain variable regions of the following anti-SIRPa antibodies, antibodies that include one or both of the heavy chain and the light chain CDRs of any of the following anti-SIRPa antibodies, and antigen-binding fragments of any of said anti-SIRPa antibodies:
- ADU-1805 Sairopa B.V.; Aduro
- SIRP-1 and SIRP-2 (Arch Oncology, Inc.) and any of the SIRPa antibodies disclosed in Inti. Pub. No. WO2021222746, U.S. App. No. 63/107,200 or U.S. Pub. No. 20200297842;
- OSE-172 (a/k/a BI 765063; Boehringer Ingelheim) and any of the SIRPa antibodies disclosed in Inti. Pub. No. WO2017178653 or U.S. Pub. No. 20190127477;
- CC-95251 (Bristol Myers Squibb; Celgene) and any of the SIRPa antibodies disclosed in Inti. Pub. No. W02020068752 or U.S. Pub. No. 20200102387;
- BYON4228 (Byondis B.V.; Synthon) and any of the SIRPa antibodies disclosed in Inti. Pub. No. WO2018210793, Inti. Pub. No. WO2018210795, or U.S. Pub. No. 20210070874;
- the CD47 blockade may alternatively, or additionally, include agents that modulate the expression of CD47 and/or SIRPa, such as phosphorodiamidate morpholino oligomers (PMO) that block translation of CD47 such as MBT-001 (PMO, morpholino, Sequence: 5'- CGTCACAGGCAGGACCCACTGCCCA-3') [SEQ ID NO: 144) or any of the PMO oligomer CD47 inhibitors disclosed in any of U.S. Patent No. 8,557,788, U.S. Patent No. 8,236,313, U.S. Patent No. 10,370,439 and Int’l Pub. No. W02008060785.
- PMO phosphorodiamidate morpholino oligomers
- Small molecule inhibitors of the CD47-SIRPa axis may also be used, such as RRx- 001 (1 -bromoacetyl- 3,3 dinitroazetidine) from EpicentRx and Azelnidipine (CAS number 123524-52-7), or pharmaceutically acceptable salts thereof.
- Such small molecule CD47 blockades may, for example, be administered at a dose of 5-100 mg/m 2 , 5-50 mg/m 2 , 5-25 mg/m 2 , 10-25 mg/m 2 , or 10-20 mg/m 2 , or in any of the dose ranges or at any of the doses described herein.
- Administration of RRx-001 may, for example, be once or twice weekly and be by intravenous infusion. The duration of administration may, for example, be at least four weeks.
- CD47 blockades that may be used are found in Table 1 of Zhang, et al., (2020), Frontiers in Immunology vol 11, article 18, and in Table 3 below.
- Therapeutically effective doses of an anti-CD47 antibody or other protein CD47 blockade may, for example, be a dose that leads to sustained serum levels of the protein of about 40 pg/ml or more (e.g., about 50 ug/ml or more, about 60 ug/ml or more, about 75 ug/ml or more, about 100 ug/ml or more, about 125 ug/ml or more, or about 150 ug/ml or more).
- Therapeutically effective doses or administration of a CD47 blockade include, for example, amounts of 0.05 - 10 mg/kg (agent weight/ subject weight), such as at least 0.1 mg/kg, 0.5 mg/kg, 1.0 mg/kg, 1.5 mg/kg, 2.0 mg/kg,
- Therapeutically effective doses of a small molecule CD47 blockade such as those disclosed herein also, for example, include 0.01 mg/kg to 1,000 mg/kg and any subrange or value of mg/kg therein such as 0.01 mg/kg to 500 mg/kg or 0.05 mg/kg to 500 mg/kg, or 0.5 mg/kg to 200 mg/kg, or 0.5 mg/kg to 150 mg/kg, or 1.0 mg/kg to 100 mg/kg, or 10 mg/kg to 50 mg/kg.
- the anti-CD47 agent is a soluble CD47 polypeptide that specifically binds SIRPa and reduces the interaction between CD47 on one cell (e.g., an infected cell) and SIRPa on another cell (e.g., a phagocytic cell).
- a suitable soluble CD47 polypeptide can bind SIRPa without activating or stimulating signaling through SIRPa because activation of SIRPa would inhibit phagocytosis. Instead, suitable soluble CD47 polypeptides facilitate the preferential phagocytosis of infected cells over non-infected cells.
- a suitable soluble CD47 polypeptide specifically binds SIRPa without activating/ stimulating enough of a signaling response to inhibit phagocytosis.
- a suitable soluble CD47 polypeptide can be a fusion protein (for example, as described in U.S. Pub. No. 20100239579). Applicant’s U.S. Pub. No. 20220211886 and U.S. provisional application serial no. 63/104,386 filed October 22, 2020, each entitled Combination Radioimmunotherapy and CD47 Blockade in the Treatment of Cancer are incorporated by reference in their entireties herein.
- the immune checkpoint therapy may, for example, include an antibody against PD- 1 such as nivolumab, or any of the inhibitors of PD-1 biological activity (or its ligands) disclosed in U.S. Pat. No. 7,029,674.
- Anti-mouse PD-1 antibody Clone J43 (Cat #BE0033-2) from BioXcell; Anti-mouse PD-1 antibody Clone RMP1-14 (Cat #BE0146) from BioXcell; mouse anti-PD-1 antibody Clone EH12; Merck's MK-3475 anti-mouse PD-1 antibody (Keytruda®, pembrolizumab, lambrolizumab); and AnaptysBio's anti-PD-1 antibody, known as ANB011; antibody MDX-1 106 (ONO-4538); Bristol-Myers Squibb's human IgG4 monoclonal antibody nivolumab (Opdivo®, BMS-936558, MDX1 106); AstraZeneca's AMP-514, and AMP-224; and Pidilizumab (CT-011), CureTech Ltd.
- CT-011 CureTech Ltd.
- the immune checkpoint therapy may, for example, include an inhibitor of PD-L1 such as an antibody (e.g., an anti-PD-Ll antibody, i.e., ICI antibody), RNAi molecule (e.g., anti- PD-L1 RNAi), antisense molecule (e.g., an anti-PD-Ll antisense RNA), dominant negative protein (e.g., a dominant negative PD-L1 protein), and/or small molecule inhibitor.
- an antibody e.g., an anti-PD-Ll antibody, i.e., ICI antibody
- RNAi molecule e.g., anti- PD-L1 RNAi
- antisense molecule e.g., an anti-PD-Ll antisense RNA
- dominant negative protein e.g., a dominant negative PD-L1 protein
- small molecule inhibitor e.g., an antibody (e.g., an anti-PD-Ll antibody, i.e.,
- An exemplary anti- PD-Ll antibody includes clone EH12, or any of Genentech's MPDL3280A (RG7446); anti-mouse PD-L1 antibody Clone 10F.9G2 (Cat #BE0101) from BioXcell; anti-PD-Ll monoclonal antibody MDX-1 105 (BMS-936559) and BMS-935559 from Bristol-Meyer's Squibb; MSB0010718C; mouse anti-PD-Ll Clone 29E.2A3; and AstraZeneca's MEDI4736 (Durvalumab).
- the immune checkpoint therapy may, for example, include an inhibitor of PD-L2 or may reduce the interaction between PD-1 and PD-L2.
- exemplary inhibitors of PD-L2 include antibodies (e.g., an anti-PD-L2 antibody, i.e., ICI antibody), RNAi molecules (e.g., an anti-PD-L2 RNAi), antisense molecules (e.g., an anti-PD-L2 antisense RNA), dominant negative proteins (e.g., a dominant negative PD-L2 protein), and small molecule inhibitors.
- Antibodies include monoclonal antibodies, humanized antibodies, deimmunized antibodies, and Ig fusion proteins.
- the immune checkpoint therapy may, for example, include an inhibitor of CTLA- 4, such as an antibody against CTLA-4.
- An exemplary antibody against CTLA-4 includes ipilimumab.
- the anti-CTLA-4 antibody may block the binding of CTLA-4 to CD80 (B7-1) and/or CD86 (B7-2) expressed on antigen presenting cells.
- Exemplary antibodies against CTLA-4 further that may be used include: Bristol Meyers Squibb's anti-CTLA-4 antibody ipilimumab (also known as Yervoy®, MDX-010, BMS-734016 and MDX-101); anti-CTLA4 Antibody, clone 9H10 from Millipore; Pfizer's tremelimumab (CP-675,206, ticilimumab); and anti-CTLA-4 antibody clone BNI3 from Abeam.
- the immune checkpoint inhibitor may be a nucleic acid inhibitor of CTLA-4 expression.
- the immune checkpoint therapy may, for example, include an inhibitor of LAG3.
- Lymphocyte activation gene-3 (LAG3) functions as an immune checkpoint in mediating peripheral T cell tolerance.
- LAG3 also called CD223 is a transmembrane protein receptor expressed on activated CD4 and CD8 T cells, y6 T cells, natural killer T cells, B-cells, natural killer cells, plasmacytoid dendritic cells and regulatory T cells.
- the primary function of LAG3 is to attenuate the immune response.
- LAG3 binding to MHC class II molecules results in delivery of a negative signal to LAG3 -expressing cells and down-regulates antigen-dependent CD4 and CD8 T cell responses.
- LAG3 negatively regulates the ability of T cells to proliferate, produce cytokines, and lyse target cells, termed as ‘exhaustion’ of T cells, and inhibition of LAG3 function may enhance T cell proliferation.
- EP2320940B peptide inhibitors of LAG3 that may be used are also known and described in U.S. Pub. No. 20200369766.
- the immune checkpoint therapy may, for example, include an inhibitor of the TIM3 protein.
- T-cell immunoglobulin and mucin-domain containing-3 (TIM3), also known as hepatitis A virus cellular receptor 2 (HAVCR2), is a type-I transmembrane protein that functions as a key regulator of immune responses.
- TIM3 has been shown to induce T cell death or exhaustion after binding to galectin-9, and to play an important in regulating the activities of many innate immune cells (e.g., macrophages, monocytes, dendritic cells, mast cells, and natural killer cells; Han, 2013).
- TIM3 expression has been associated with many types of chronic diseases, including cancer.
- TIM3+ T cells have been detected in patients with advanced melanoma, non-small cell lung cancer, or follicular B-cell non-Hodgkin lymphoma. And the presence of TIM3+ regulatory T cells have been described as an effective indicator of lung cancer progression.
- inhibition of TIM3 may enhance the functions of innate immune cells.
- Exemplary TIM3 inhibitors include antibodies, peptides, and small molecules that bind to and inhibit TIM3.
- the immune checkpoint therapy may, for example, include an inhibitor of the VISTA protein.
- the V-domain Ig suppressor of T cell activation (VISTA or PD-L3) is primarily expressed on hematopoietic cells, and its expression is highly regulated on myeloid antigen- presenting cells (APCs) and T cells.
- APCs myeloid antigen- presenting cells
- VISTA on antigen presenting cells
- Inhibition of VISTA would enhance T cell-mediated immunity and anti-tumor immunity, suppressing tumor growth.
- therapeutic intervention of the VISTA inhibitory pathway represents a novel approach to modulate T cell-mediated immunity, such as in combination with the presently disclosed radiolabeled calreticulin targeting agents.
- the immune checkpoint therapy may, for example, include an inhibitor of A2aR, or an A2aR blockade.
- the tumor microenvironment exhibits high concentrations of adenosine due to the contribution of immune and stromal cells, tissue disruption, and inflammation.
- a predominant driver is hypoxia due to the lack of perfusion that can lead to cellular stress and secretion of large amounts of ATP.
- Multiple small molecule inhibitors and antagonistic antibodies against these targets which may be employed in the various aspects of the present invention, have been developed and show promising therapeutic efficacy against different solid tumors in clinical trials.
- A2aR antagonists SYN115 and Istradefylline have been shown to improve motor function in patients with Parkinson’s disease
- CPI-444 NCT02655822, NCT03454451
- PBF-509 NCT02403193
- NIR178 NCT03207867
- AZD4635 NCT02740985, NCT03381274
- CPI-444 in combination with anti-PD-1 and anti-CTLA4 was highly effective in promoting CD8+ T cell responses and eliminating tumors in a preclinical.
- Additional exemplary A2aR inhibitors include, without limitation, the small molecule inhibitors SCH58261, ZM241365, and FSPTP.
- the immune checkpoint therapy may, for example, include one or more modulators of an immune checkpoint protein or of more than one different immune checkpoint proteins.
- the immune checkpoint therapy may include a first antibody or inhibitor against a first immune checkpoint protein and a second antibody or inhibitor against a second immune checkpoint protein.
- the additional agents administered with the radiolabeled calreticulin targeting agent may be a DNA damage response inhibitor (DDRi).
- DDRi DNA damage response inhibitor
- DNA damage can be due to endogenous factors, such as spontaneous or enzymatic reactions, chemical reactions, or errors in replication, or may be due to exogenous factors, such as UV or ionizing radiation or genotoxic chemicals.
- the repair pathways that overcome this damage are collectively referred to as the DNA damage response or DDR.
- This signaling network acts to detect and orchestrate a cell's response to certain forms of DNA damage, most notably double strand breaks and replication stress.
- cells are reliant on the DDR for survival. It has been shown that disruption of the DDR can increase cancer cell sensitivity to these DNA damaging agents and thus may improve patient responses to such therapies.
- DDR DNA repair mechanism
- base excision repair nucleotide excision repair
- mismatch repair homologous recombinant repair
- non-homologous end joining Approximately 450 human DDR genes code for proteins with roles in physiological processes. Dysregulation of DDR leads to a variety of disorders, including genetic, neurodegenerative, immune, cardiovascular, and metabolic diseases or disorders and cancers.
- the genes OGGI and XRCC1 are part of the base excision repair mechanism of DDR, and mutations in these genes are found in renal, breast, and lung cancers, while the genes BRCA1 and BRCA2 are involved in homologous recombination repair mechanisms and mutations in these genes leads to an increased risk of breast, ovarian, prostate, pancreatic, as well as gastrointestinal and hematological cancers, and melanoma.
- Exemplary DDRi’s that may be employed include at least one or more antibodies or small molecules targeting poly(ADP -ribose) polymerase (i.e., a poly(ADP -ribose) polymerase inhibitor or PARPi).
- the PARPi may be a small molecule therapeutic selected from the group consisting of olaparib, niraparib, rucaparib, talazoparib, and a combination thereof.
- the PARPi may, for example, be provided in a subject effective amount including 0.1 mg/day - 1200 mg/day, such as 0.100 mg/day - 600 mg/day, or 0.25 mg/day - 1 mg/day.
- Exemplary subject effective amounts include 0.1 mg, 0.25 mg, 0.5 mg, 0.75 mg, 1.0 mg, 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 700 mg, 750 mg, 800 mg, 900 mg, and 1000 mg, taken orally in one or two doses per day.
- Another exemplary DDRi includes an inhibitor of Ataxia telangiectasia mutated (ATM), Ataxia tai angiectasia mutated and Rad-3 related (ATR), or Weel.
- Exemplary inhibitors of ATM that may be employed include KU-55933, KU-59403, wortmannin, CP466722, and KU-60019.
- Exemplary inhibitors of ATR include at least Schisandrin B, NU6027, NVP-BEA235, VE-821, VE-822, AZ20, and AZD6738.
- Exemplary inhibitors of Weel include AZD-1775 (i.e., adavosertib).
- Additional therapeutic agents relevant to treatment of the disease or condition being treated may be administered, for use in combination with the radiolabeled CD33 targeting agent. Such administration may be simultaneous, separate or sequential with the administration of the radiolabeled CD33 targeting agent. For simultaneous administration, the agents may be administered as one composition, or as separate compositions, as appropriate.
- Exemplary additional therapeutic agents include but are not limited to chemotherapeutic agents, anti-inflammatory agents, immunosuppressive agents, immunomodulatory agents, or any combination thereof.
- Exemplary additional agents that may be used also include but are not limited to other targeted biologic agents such as unlabeled (“naked”) therapeutic antibodies (i.e., without a drug or radionuclide payload), antibody drug conjugates (ADCs), soluble receptors and soluble receptor fusion proteins both unlabeled and conjugated to a drug or radionuclide, and soluble receptor ligands and soluble receptor ligand fusion proteins both unlabeled and conjugated to a drug or radionuclide.
- ADCs antibody drug conjugates
- soluble receptors and soluble receptor fusion proteins both unlabeled and conjugated to a drug or radionuclide
- soluble receptor ligands and soluble receptor ligand fusion proteins both unlabeled and conjugated to a drug or radionuclide.
- the further additional agent(s) includes one or more of dexamethasone, doxorubicin, bortezomib, lenalidomide, prednisone, carmustine, etoposide, cisplatin, vincristine, cyclophosphamide, and thalidomide.
- the methods may include administration of a cytokine such as granulocyte colony-stimulating factor (GCSF) after administration of the radiotherapeutic with or without one or more of the other agents or treatments described herein.
- a cytokine such as granulocyte colony-stimulating factor (GCSF)
- GCSF granulocyte colony-stimulating factor
- the GCSF may be administered, for example, 7, 8, 9, 10, or 11 days after administration of the radiolabeled CD33 targeting agent.
- chemotherapeutic agents include, but are not limited to, anti -neoplastic agents including alkylating agents including: nitrogen mustards, such as mechlorethamine, cyclophosphamide, ifosfamide, melphalan and chlorambucil; nitrosoureas, such as carmustine (BCNU), lomustine (CCNU), and semustine (methyl-CCNU); TemodalTM (temozolamide), ethylenimines/methylmelamine such as thriethylenemelamine (TEM), triethylene, thiophosphoramide (thiotepa), hexamethylmelamine (HMM, altretamine); alkyl sulfonates such as busulfan; triazines such as dacarbazine (DTIC); antimetabolites including folic acid analogs such as methotrexate and trimetrexate, pyrimidine analogs such as 5 -fluorouracil (5FU), fluorodeoxyuridine
- the chemotherapeutic agent may include an agent selected from the group consisting of taxanes (e.g., paclitaxel (Taxol), docetaxel (Taxotere), modified paclitaxel (e.g., Abraxane and Opaxio), doxorubicin, sunitinib (Sutent), sorafenib (Nexavar), and other multikinase inhibitors, oxaliplatin, cisplatin and carboplatin, etoposide, gemcitabine, and vinblastine.
- the chemotherapeutic agent is selected from the group consisting of taxanes (like e.g. taxol (paclitaxel), docetaxel (Taxotere), modified paclitaxel (e.g. Abraxane and Opaxio)).
- the chemotherapeutic agent may include an agent selected from 5 -fluorouracil (5-FU), leucovorin, irinotecan, and oxaliplatin.
- the chemotherapeutic agent includes 5-fluorouracil, leucovorin and irinotecan (FOLFIRI).
- the chemotherapeutic agent includes 5-fluorouracil, and oxaliplatin (FOLFOX).
- the chemotherapeutic agent includes one or more agents selected from taxanes (e.g., docetaxel or paclitaxel) or a modified paclitaxel (e.g., Abraxane or Opaxio), doxorubicin), capecitabine and/or bevacizumab (Avastin) for the treatment of breast cancer; therapies with carboplatin, oxaliplatin, cisplatin, paclitaxel, doxorubicin (or modified doxorubicin (Caelyx or Doxil)), or topotecan (Hycamtin) for the treatment of ovarian cancer; therapies with a multi-kinase inhibitor, MKI, (Sutent, Nexavar, or 706) and/or doxorubicin for the treatment of kidney cancer; therapies with oxaliplatin, cisplatin and/or radiation for the treatment of squamous cell carcinoma; and therapies with
- the therapeutic agents may, for example, be administered according to any standard dose regime known in the field.
- therapeutic agents may be administered at concentrations in the range of 1 to 500 mg/m 2 , the amounts being calculated as a function of patient surface area (m 2 ).
- exemplary doses of the chemotherapeutic paclitaxel may include 15 mg/m 2 to 275 mg/m 2
- exemplary doses of docetaxel may include 60 mg/m 2 to 100 mg/m 2
- exemplary doses of epithilone may include 10 mg/m 2 to 20 mg/m 2
- an exemplary dose of calicheamicin may include 1 mg/m 2 to 10 mg/m 2 . While exemplary doses are disclosed herein which may be used, such are only provided for example and reference and are not intended to limit the dose ranges of the drug agents of the presently disclosed invention that may be used.
- anti-inflammatory agents may be selected from a steroidal drug and a NS AID (nonsteroidal anti-inflammatory drug).
- Other anti-inflammatory agents may be selected from aspirin and other salicylates, Cox-2 inhibitors (such as rofecoxib and celecoxib), NSAIDs (such as ibuprofen, fenoprofen, naproxen, sulindac, diclofenac, piroxicam, ketoprofen, diflunisal, nabumetone, etodolac, oxaprozin, and indomethacin), anti-IL6R antibodies, anti-IL8 antibodies, anti-IL15 antibodies, anti-IL15R antibodies, anti-CD4 antibodies, anti-CDl la antibodies (e.g., efalizumab), anti-alpha4/beta-l integrin (VLA4) antibodies (e.g natalizumab), CTLA4-1 g for the treatment of
- immunosuppressive and/or immunomodulatory agents include cyclosporine, azathioprine, mycophenolic acid, mycophenolate mofetil, corticosteroids such as prednisone, methotrexate, gold salts, sulfasalazine, antimalarials, brequinar, leflunomide, mizoribine, 15-deoxyspergualine, 6-mercaptopurine, cyclophosphamide, rapamycin, tacrolimus (FK-506), OKT3, anti-thymocyte globulin, thymopentin, thymosin-a and similar agents.
- corticosteroids such as prednisone, methotrexate, gold salts, sulfasalazine, antimalarials, brequinar, leflunomide, mizoribine, 15-deoxyspergualine, 6-mercaptopurine, cyclophosphamide, rapa
- the additional therapeutic agents may include an antimyeloma agent.
- antimyeloma agents include dexamethasone, melphalan, doxorubicin, bortezomib, lenalidomide, prednisone, carmustine, etoposide, cisplatin, vincristine, cyclophosphamide, and thalidomide, several of which are indicated above as chemotherapeutic agents, anti-inflammatory agents, or immunosuppressive agents.
- the additional therapeutic agents may include allopurinol, administered at a dose of 300-600 mg/day orally starting on day 1 of the treatment period and continuing for at least 7 days after the CD33 targeting agent.
- Prophylactic antibiotics and antifungal therapies may, for example, be included for those patients who have an absolute neutrophil count of less than 500/pl.
- Analgesics and antihistamines may also be included prior at administration of the CD33 targeting agent by infusion to reduce infusion-related reactions.
- the additional therapeutic agents may be administered according to any standard dose regime known in the field.
- therapeutic agents may be administered at concentrations in the range of 1 to 500 mg/m 2 , the amounts being calculated as a function of patient body surface area (m 2 ).
- exemplary doses of paclitaxel may include 15 mg/m 2 to 275 mg/m 2
- exemplary doses of docetaxel may include 60 mg/m 2 to 100 mg/m 2
- exemplary doses of epithilone may include 10 mg/m 2 to 20 mg/m 2
- an exemplary dose of calicheamicin may include 1 mg/m 2 to 10 mg/m 2 . While exemplary doses are disclosed herein, such are only provided for example reference and are not intended to limit the dose ranges of the drug agents of the presently disclosed invention.
- Aspect 1 Use of a radiolabeled molecule that specifically binds to CD33 in the preparation of a medicament for the treatment of (a) a solid tumor cancer or solid tumor premalignancy, such as any of those disclosed herein, in a mammalian subject, such as a human patient, not afflicted with a myeloid-derived hematological cancer or myeloid-derived hematological premalignancy, or (b) haemophagocytic lymphohistiocytosis (HLH) or macrophage activation syndrome (MAS) in a mammalian subject, such as a human patient.
- HHLH haemophagocytic lymphohistiocytosis
- MAS macrophage activation syndrome
- Aspect 2 The use of aspect 1, wherein the radiolabeled molecule is a radiolabeled antibody, antibody fragment, antibody mimetic, peptide, ligand, or small molecule.
- Aspect 3 The use of aspect 2, wherein the radiolabeled molecule is a radiolabeled antibody or antibody fragment.
- Aspect 4 The use of aspect 3, wherein the radiolabeled antibody includes radiolabeled lintuzumab, radiolabeled gemtuzumab, radiolabeled vadastuximab, or any combination thereof.
- radiolabeled molecule includes a radiolabel selected from 131 I, 125 I, 123 I, 90 Y, 177 Lu, 186 Re, 188 Re, 89 Sr, 153 Sm, 32 P, 225 Ac, 213 Po, 211 At, 212 Bi, 213 Bi, 223 Ra, 227 Th, 149 Tb, 161 Tb, 47 Sc, 67 Cu, 134 Ce, 137 Cs, 212 Pb or 103 Pd, or any combination thereof.
- a radiolabel selected from 131 I, 125 I, 123 I, 90 Y, 177 Lu, 186 Re, 188 Re, 89 Sr, 153 Sm, 32 P, 225 Ac, 213 Po, 211 At, 212 Bi, 213 Bi, 223 Ra, 227 Th, 149 Tb, 161 Tb, 47 Sc, 67 Cu, 134 Ce, 137 Cs, 212 Pb or 103 Pd, or any combination thereof.
- Aspect 6 The use of any one of the preceding aspects, wherein the radiolabeled molecule includes the radiolabel 225 Ac.
- Aspect 7 The use of any one of the preceding aspects, wherein the radiolabeled molecule includes a chelator that binds the radiolabel by chelation.
- Aspect 8 The use of aspect 7, wherein the chelator comprises DOTA or a DOTA derivative.
- Aspect 9 The use of aspect 8, wherein the radiolabeled molecule is 225 Ac-labeled lintuzumab.
- the solid tumor cancer or solid tumor premalignancy includes ovarian cancer, non-small cell lung carcinoma, head and neck squamous cell cancer, pancreatic cancer, renal cancer, breast cancer, metastatic breast cancer, tamoxifen-resistant breast cancer, triple negative breast cancer, prostate cancer, castrationresistant prostate cancer (CRPC), pancreatic cancer, small cell lung carcinoma (SCLC), non-small cell lung carcinoma (NSCLC), hepatocellular carcinoma (HCC), cholangiocarcinoma, gastric cancer, colorectal cancer, esophageal cancer, Barrett’s esophagus, osteosarcoma, dermatofibrosarcoma protuberans (DFSP), fibrosarcoma (fibroblastic sarcoma), chondrosarcoma, Ewing’s sarcoma, Kaposi’s sarcoma, rhabdomyosarcoma, liposarcoma, syn
- Aspect 11 The use of any one of the preceding aspects, wherein the use is for the preparation of a medicament for the treatment of a solid tumor cancer or solid tumor premalignancy in a mammalian subject, such as a human patient, not afflicted with a hematological cancer or hematological premalignancy, in combination with immune checkpoint inhibition.
- Aspect 12 The use of aspect 12, wherein the immune checkpoint inhibition includes a CD47 blockade.
- Aspect 13 The use of aspect 12, wherein the immune checkpoint inhibition includes blockade of one or both of PD-1 or PD-L1.
- Aspect 14 The use of aspect 12, wherein the immune checkpoint inhibition includes blockade of CTLA-4.
- Aspect 15 The use of any one of aspects 1-14, wherein the solid tumor cancer or solid tumor premalignancy is a CD33 low-expressing or CD33-negative solid tumor cancer or solid tumor premalignancy.
- Aspect 16 Use of a radiolabeled molecule that binds specifically to CD33 in the preparation of a medicament for killing myeloid-derived suppressor cells in a mammalian subject, such as a human patient, afflicted with a cancer or premalignancy or afflicted with haemophagocytic lymphohistiocytosis (HLH) or macrophage activation syndrome (MAS).
- a mammalian subject such as a human patient, afflicted with a cancer or premalignancy or afflicted with haemophagocytic lymphohistiocytosis (HLH) or macrophage activation syndrome (MAS).
- HHLH haemophagocytic lymphohistiocytosis
- MAS macrophage activation syndrome
- Aspect 17 The use of aspect 16, wherein the radiolabeled molecule is a radiolabeled antibody, antibody, antibody fragment, antibody mimetic, peptide, ligand, or small molecule.
- Aspect 18 The use of aspect 17, wherein the radiolabeled molecule is a radiolabeled antibody or antibody fragment.
- Aspect 19 The use of aspect 18, wherein the radiolabeled antibody includes radiolabeled lintuzumab, gemtuzumab, vadastuximab, or any combination thereof.
- Aspect 20 The use of any one of aspects 16-19, wherein the radiolabeled molecule includes a radiolabel selected from 133 I, 125 I, 123 I, 90 Y, 177 Lu, 186 Re, 188 Re, 89 Sr, 153 Sm, 32 P, 225 Ac, 213 Po, 211 At, 212 Bi, 213 Bi, 223 Ra, 227 Th, 149 Tb, 161 Tb, 47 Sc, 67 Cu, 134 Ce, 137 Cs, 212 Pb or 103 Pd, or any combination thereof.
- a radiolabel selected from 133 I, 125 I, 123 I, 90 Y, 177 Lu, 186 Re, 188 Re, 89 Sr, 153 Sm, 32 P, 225 Ac, 213 Po, 211 At, 212 Bi, 213 Bi, 223 Ra, 227 Th, 149 Tb, 161 Tb, 47 Sc, 67 Cu, 134 Ce, 137 Cs, 212 Pb or 103 Pd,
- Aspect 21 The use of any one of aspects 16-20, wherein the radiolabeled molecule includes the radiolabel 225Ac.
- Aspect 22 The use of any one of aspects 16-21, wherein the radiolabeled molecule includes a chelator that binds the radiolabel by chelation.
- Aspect 23 The use of aspect 22, wherein the chelator includes DOTA or a DOTA derivative.
- Aspect 24 The use of aspect 23, wherein the radiolabeled molecule is 225 Ac- labeled lintuzumab.
- Aspect 25 The use of any one of aspects 16-24, wherein the cancer or premalignancy includes ovarian cancer, head and neck squamous cell cancer, pancreatic cancer, renal cancer, breast cancer, metastatic breast cancer, tamoxifen-resistant breast cancer, triple negative breast cancer, prostate cancer, castration-resistant prostate cancer (CRPC), pancreatic cancer, small cell lung carcinoma (SCLC), non-small cell lung carcinoma (NSCLC), hepatocellular carcinoma (HCC), cholangiocarcinoma, gastric cancer, colorectal cancer, esophageal cancer, Barrett’s esophagus, osteosarcoma, dermatofibrosarcoma protuberans (DFSP), fibrosarcoma (fibroblastic sarcoma), chondrosarcoma, Ewing’s sarcoma, Kaposi’s sarcoma, rhabdomyosarcoma, liposarcoma, synovial sarcoma, ple
- Aspect 26 The use of any one of aspects 16-24, wherein the use is for the preparation of a medicament for the treatment of a solid tumor cancer or solid tumor premalignancy in a mammalian subject, such as a human patient.
- Aspect 27 The use of aspect 26, wherein the mammalian subject, such as human patient, is
- Aspect 28 The use of any one of aspects 16-27, wherein the use is for the preparation of a medicament for the treatment of a cancer or premalignancy in a mammalian subject, such as a human patient, in combination with immune checkpoint inhibition.
- Aspect 29 The use of aspect 28, wherein the immune checkpoint inhibition includes CD47 blockade.
- Aspect 30 The use of aspect 28, wherein the immune checkpoint inhibition includes blockade of one or both of PD-1 or PD-L1.
- Aspect 31 The use of aspect 28, wherein the immune checkpoint inhibition includes blockade of CTLA-4.
- Aspect 33 The use of any one of aspects 16-31, wherein the solid tumor cancer or solid tumor premalignancy is a CD33 low-expressing or CD33-negative solid tumor cancer or solid tumor premalignancy.
- a method for treating (a) a solid tumor cancer or solid tumor premalignancy in a mammalian subject, such as a human patient, for example, a mammalian subject not afflicted with a myeloid-derived hematological cancer or myeloid-derived premalignancy or not afflicted with a hematological cancer or hematological premalignancy, (b) a non-myeloid derived hematological malignancy such as a lymphoma or lymphocytic leukemia in a mammalian subject, such as a human patient, or (c) haemophagocytic lymphohistiocytosis (HLH) or macrophage activation syndrome (MAS) in a mammalian subject, such as a human patient, including: administering a therapeutically effective amount of a radiolabeled molecule that binds specifically to CD33 to the mammalian subject.
- a radiolabeled molecule that binds specifically to CD33
- Aspect 35 The method of aspect 34, wherein the radiolabeled molecule is a radiolabeled antibody, antibody, antibody fragment, antibody mimetic, peptide, ligand, or small molecule.
- Aspect 36 The method of aspect 35, wherein the radiolabeled molecule is a radiolabeled antibody or antibody fragment.
- Aspect 37 The method of aspect 36, wherein the radiolabeled antibody includes radiolabeled lintuzumab, gemtuzumab, vadastuximab, or any combination thereof.
- Aspect 38 The method of any one of aspects 34-37, wherein the radiolabeled molecule includes a radiolabel selected from 131 I, 125 I, 123 I, 90 Y, 177 Lu, 186 Re, 188 Re, 89 Sr, 153 Sm, 32 P, 225 Ac, 213 Po, 211 At, 212 Bi, 213 Bi, 223 Ra, 227 Th, 149 Tb, 161 Tb, 47 Sc, 67 Cu, 134 Ce, 137 Cs, 212 Pb or 103 Pd, or any combination thereof.
- Aspect 39 The method of any one of aspects 34-38, wherein the radiolabeled molecule includes the radiolabel 225 Ac.
- Aspect 40 The method of any one of aspects 34-39, wherein the radiolabeled molecule includes a chelator that binds the radiolabel by chelation.
- Aspect 41 The method of aspect 40, wherein the chelator includes DOTA or a DOTA derivative.
- Aspect 42 The method of aspect 41, wherein the radiolabeled molecule is 225 Ac- labeled lintuzumab.
- Aspect 43 The method of any one of aspects 34-43, wherein the solid tumor cancer or solid tumor premalignancy includes ovarian cancer, head and neck squamous cell cancer, pancreatic cancer, renal cancer, breast cancer, metastatic breast cancer, tamoxifen-sensitive tamoxifen-resistant breast cancer, triple negative breast cancer, prostate cancer, castration-resistant prostate cancer (CRPC), pancreatic cancer, small cell lung carcinoma (SCLC), non-small cell lung carcinoma (NSCLC), hepatocellular carcinoma (HCC), cholangiocarcinoma, gastric cancer, colorectal cancer, esophageal cancer, Barrett’s esophagus, osteosarcoma, dermatofibrosarcoma protuberans (DFSP), fibrosarcoma (fibroblastic sarcoma), chondrosarcoma, Ewing’s sarcoma, Kaposi’s sarcoma, rhabdomyosarcoma, liposarcom
- Aspect 44 The method of any one of aspects 34-43, further including administering at least one immune checkpoint inhibitor to the mammalian subject.
- Aspect 45 The method of aspect 44, wherein the at least one immune checkpoint inhibitor includes a CD47 inhibitor.
- Aspect 46 The method of aspect 45, wherein the at least one immune checkpoint inhibition includes one or both of a PD-1 or PD-L1 inhibitor.
- Aspect 47 The method of aspect 45, wherein the immune checkpoint inhibition includes a CTLA-4 inhibitor.
- Aspect 48 The method of any one of aspects 34-47, wherein the solid tumor cancer or solid tumor premalignancy is a CD33 low-expressing or CD33-negative solid tumor cancer or solid tumor premalignancy.
- a method for killing myeloid-derived suppressor cells (MDSCs) in a mammalian subject such as a human patient, afflicted with a cancer or premalignancy or afflicted with haemophagocytic lymphohistiocytosis (HLH) or macrophage activation syndrome (MAS), including: administering a radiolabeled molecule that binds specifically to CD33 to the mammalian subject in an amount effective to kill MDSCs in the mammalian subject.
- HHLH haemophagocytic lymphohistiocytosis
- MAS macrophage activation syndrome
- Aspect 50 The method of aspect 49, wherein the radiolabeled molecule is a radiolabeled antibody, antibody fragment, antibody mimetic, peptide, or small molecule.
- Aspect 51 The method of aspect 50, wherein the radiolabeled molecule is a radiolabeled antibody or antibody fragment.
- Aspect 52 The method of aspect 51, wherein the radiolabeled antibody includes radiolabeled lintuzumab, gemtuzumab, vadastuximab, or any combination thereof.
- Aspect 53 The method of any one of aspects 49-52, wherein the radiolabeled molecule includes a radiolabel selected from 131 I, 125 I, 123 I, 90 Y, 177 Lu, 186 Re, 188 Re, 89 Sr, 153 Sm, 32 P, 225 Ac, 213 Po, 211 At, 212 Bi, 213 Bi, 223 Ra, 227 Th, 149 Tb, 161 Tb, 47 Sc, 67 Cu, 134 Ce, 137 Cs, 212 Pb or 103 Pd, or any combination thereof.
- a radiolabel selected from 131 I, 125 I, 123 I, 90 Y, 177 Lu, 186 Re, 188 Re, 89 Sr, 153 Sm, 32 P, 225 Ac, 213 Po, 211 At, 212 Bi, 213 Bi, 223 Ra, 227 Th, 149 Tb, 161 Tb, 47 Sc, 67 Cu, 134 Ce, 137 Cs, 212 Pb or 103 Pd
- Aspect 54 The method of any one of aspects 49-53, wherein the radiolabeled molecule includes the radiolabel 225 Ac.
- Aspect 55 The method of any one of aspects 49-54, wherein the radiolabeled molecule includes a chelator that binds the radiolabel by chelation.
- Aspect 56 The method of aspect 55, wherein the chelator is DOTA or a DOTA derivative.
- Aspect 57 The method of aspect 23, wherein the radiolabeled molecule is 225 Ac- labeled lintuzumab.
- Aspect 58 The method of any one of aspects 49-57, wherein the cancer or premalignancy includes ovarian cancer, non-small cell lung carcinoma, head and neck squamous cell cancer, pancreatic cancer, renal cancer, breast cancer, metastatic breast cancer, tamoxifen- resistant breast cancer, triple negative breast cancer, prostate cancer, castration-resistant prostate cancer (CRPC), pancreatic cancer, small cell lung carcinoma (SCLC), non-small cell lung carcinoma (NSCLC), hepatocellular carcinoma (HCC), cholangiocarcinoma, gastric cancer, colorectal cancer, esophageal cancer, Barrett’s esophagus, osteosarcoma, dermatofibrosarcoma protuberans (DFSP), fibrosarcoma (fibroblastic sarcoma), chondrosarcoma, Ewing’s sarcoma, Kaposi’s sarcoma, rhabdomyosarcoma, liposarcoma, synovi
- SCLC
- Aspect 59 The method of any one of aspects 49-58, wherein the method is for the treatment of a solid tumor cancer or solid tumor premalignancy in a mammalian subject, such as a human patient.
- Aspect 60 The method of aspect 59, wherein the mammalian subject, such as human patient, is
- Aspect 61 The method of any one of aspects 49-60, further including administering at least one immune checkpoint inhibitor to the mammalian subject.
- Aspect 62 The method of aspect 61, wherein the at least one immune checkpoint inhibitor includes a CD47 inhibitor.
- Aspect 63 The method of aspect 61 or 62, wherein the at least one immune checkpoint inhibitor includes one or both of PD-1 inhibitor or a PD-L1 inhibitor.
- Aspect 64 The method of any one of aspects 61-63, wherein the at least one immune checkpoint inhibitor includes a CTLA-4 inhibitor.
- Aspect 65 The method of any one of aspects 49-64, wherein the solid tumor cancer or solid tumor premalignancy is a CD33 low-expressing or CD33-negative solid tumor cancer or CD33 low-expressing or CD33-negative solid tumor premalignancy.
- a pharmaceutical composition including: a therapeutically effective amount of a radiolabeled molecule that binds specifically to CD33 such as to human CD33; and a therapeutically effective amount of an immune checkpoint inhibitor.
- Aspect 67 The pharmaceutical composition of aspect 66, further including at least one pharmaceutically acceptable excipient.
- Aspect 68 The pharmaceutical composition of aspect 66 or 67, wherein the radiolabeled molecule is a radiolabeled antibody, antibody, antibody fragment, antibody mimetic, peptide, ligand, or small molecule.
- Aspect 69 The pharmaceutical composition of aspect 68, wherein the radiolabeled molecule is a radiolabeled antibody or antibody fragment.
- Aspect 70 The pharmaceutical composition of aspect 69, wherein the radiolabeled antibody includes radiolabeled lintuzumab, radiolabeled gemtuzumab, radiolabeled vadastuximab, or any combination thereof.
- Aspect 71 The pharmaceutical composition of any one of aspects 66-70, wherein the radiolabeled molecule includes a radiolabel selected from 131 I, 125 1, 123 1, 90 Y, 177 Lu, 186 Re, 188 Re, 89 Sr, 153 Sm, 32 P, 225 Ac, 213 Bi, 213 Po, 211 At, 212 Bi, 213 Bi, 223 Ra, 227 Th, 149 Tb, 161 Tb, 47 Sc, 67 Cu, 134 Ce, 137 Cs, 212 Pb or 103 Pd, or any combination thereof.
- a radiolabel selected from 131 I, 125 1, 123 1, 90 Y, 177 Lu, 186 Re, 188 Re, 89 Sr, 153 Sm, 32 P, 225 Ac, 213 Bi, 213 Po, 211 At, 212 Bi, 213 Bi, 223 Ra, 227 Th, 149 Tb, 161 Tb, 47 Sc, 67 Cu, 134 Ce, 137 Cs, 212
- Aspect 72 The pharmaceutical composition of any one of 66-71 aspects, wherein the radiolabeled molecule includes the radiolabel 225 Ac.
- Aspect 73 The pharmaceutical composition of any one of aspects 66-72, wherein the radiolabeled molecule includes a chelator that binds the radiolabel by chelation.
- Aspect 74 The pharmaceutical composition of aspect 73, wherein the chelator includes DOTA or a DOTA derivative.
- Aspect 75 The pharmaceutical composition of aspect 74, wherein the radiolabeled molecule is 225 Ac-labeled lintuzumab.
- Aspect 76 The pharmaceutical composition of any one of aspects 66-75, wherein the at least one immune checkpoint inhibitor includes a CD47 inhibitor.
- Aspect 77 The pharmaceutical composition of any one of aspects 66-76, wherein the at least one immune checkpoint inhibitor includes one or both of a PD-1 inhibitor and a PD- L1 inhibitor.
- Aspect 78 The pharmaceutical composition of any one of aspects 66-77, wherein the at least one immune checkpoint inhibitor includes a CTLA-4 inhibitor.
- Aspect 79 The pharmaceutical composition of any one of aspects 66-78, wherein the composition is for the treatment of a solid tumor cancer or solid tumor premalignancy in a mammalian subject, such as a human patient, not afflicted with a hematological cancer or hematological premalignancy.
- Aspect 80 The pharmaceutical composition of aspect 79, wherein the solid tumor cancer or solid tumor premalignancy is a CD33 low-expressing or CD33-negative solid tumor cancer or CD33 low-expressing or CD33-negative solid tumor premalignancy.
- Aspect 81 The pharmaceutical composition of aspect 79, wherein the solid tumor cancer or solid tumor premalignancy is a CD33 low-expressing or CD33-negative solid tumor cancer or CD33 low-expressing or CD33-negative solid tumor premalignancy.
- the solid tumor cancer or solid tumor premalignancy includes ovarian cancer, non-small cell lung carcinoma, head and neck squamous cell cancer, pancreatic cancer, renal cancer, breast cancer, metastatic breast cancer, tamoxifen-resistant breast cancer, triple negative breast cancer, prostate cancer, castrationresistant prostate cancer (CRPC), pancreatic cancer, small cell lung carcinoma (SCLC), non-small cell lung carcinoma (NSCLC), hepatocellular carcinoma (HCC), cholangiocarcinoma, gastric cancer, colorectal cancer, esophageal cancer, Barrett’s esophagus, osteosarcoma, dermatofibrosarcoma protuberans (DFSP), fibrosarcoma (fibroblastic sarcoma), chondrosarcoma, Ewing’s sarcoma, Kaposi’s sarcoma, rhabdomyosarcoma, liposarcoma, synovial sarcoma, ple
- Aspect 82 The pharmaceutical composition of any one of aspects 66-78, wherein the composition is for killing myeloid-derived suppressor cells (MDSCs) in a mammalian subject, such as a human patient, afflicted with a cancer or premalignancy.
- MDSCs myeloid-derived suppressor cells
- Aspect 83 The pharmaceutical composition of aspect 82, wherein the cancer or premalignancy is a CD33 low-expressing or CD33-negative cancer or premalignancy.
- Aspect 84 The pharmaceutical composition of aspect 82, wherein the cancer or premalignancy includes ovarian cancer, non-small cell lung carcinoma, head and neck squamous cell cancer, pancreatic cancer, renal cancer, breast cancer, metastatic breast cancer, tamoxifen- resistant breast cancer, triple negative breast cancer, prostate cancer, castration-resistant prostate cancer (CRPC), pancreatic cancer, small cell lung carcinoma (SCLC), non-small cell lung carcinoma (NSCLC), hepatocellular carcinoma (HCC), cholangiocarcinoma, gastric cancer, colorectal cancer, esophageal cancer, or Barrett’s esophagus, osteosarcoma, dermatofibrosarcoma protuberans (DFSP), fibrosarcoma (fibroblastic sarcoma), chondrosarcoma, Ewing’s sarcoma, Kaposi’s sarcoma, rhabdomyosarcoma, liposarcoma, synovial
- a pharmaceutical composition for treating a solid tumor cancer or solid tumor premalignancy in a mammalian subject, such as a human patient, not afflicted with a myeloid-derived hematological cancer or myeloid-derived hematological premalignancy including: a therapeutically effective amount of a radiolabeled molecule that binds specifically to CD33.
- Aspect 86 The pharmaceutical composition of aspect 85, wherein the radiolabeled molecule is a radiolabeled antibody, antibody, antibody fragment, antibody mimetic, peptide, ligand, or small molecule, peptide or small molecule.
- Aspect 87 The pharmaceutical composition of aspect 86, wherein the radiolabeled molecule is a radiolabeled antibody or antibody fragment.
- Aspect 88 The pharmaceutical composition of aspect 87, wherein the radiolabeled antibody includes radiolabeled lintuzumab, radiolabeled gemtuzumab, radiolabeled vadastuximab, or any combination thereof.
- Aspect 92 The pharmaceutical composition of aspect 91, wherein the chelator includes DOTA or a DOTA derivative.
- Aspect 93 The pharmaceutical composition of aspect 92, wherein the radiolabeled molecule is 225 Ac-labeled lintuzumab.
- Aspect 94 The pharmaceutical composition of any one of aspects 85-93, wherein the solid tumor cancer or solid tumor premalignancy includes ovarian cancer, head and neck squamous cell cancer, pancreatic cancer, renal cancer, breast cancer, metastatic breast cancer, tamoxifen-resistant breast cancer, triple negative breast cancer, prostate cancer, castration-resistant prostate cancer (CRPC), pancreatic cancer, small cell lung carcinoma (SCLC), non-small cell lung carcinoma (NSCLC), hepatocellular carcinoma (HCC), cholangiocarcinoma, gastric cancer, colorectal cancer, esophageal cancer, Barrett’s esophagus, osteosarcoma, dermatofibrosarcoma protuberans (DFSP), fibrosarcoma (fibroblastic sarcoma), chondrosarcoma, Ewing’s sarcoma, Kaposi’s sarcoma, rhabdomyosarcoma, liposarcoma, synovial
- Aspect 95 The pharmaceutical composition of any one of aspects 85-94, further including administering at least one immune checkpoint inhibitor to the mammalian subject.
- Aspect 96 The pharmaceutical composition of aspect 95, wherein the at least one immune checkpoint inhibitor includes a CD47 inhibitor.
- Aspect 97 The pharmaceutical composition of aspect 95 or 96, wherein the at least one immune checkpoint inhibition includes one or both of a PD-1 or PD-L1 inhibitor.
- Aspect 98 The pharmaceutical composition of any one of aspects 95-97, wherein the immune checkpoint inhibition includes a CTLA-4 inhibitor.
- Aspect 99 The pharmaceutical composition of any one of aspects 85-98, wherein the solid tumor cancer or solid tumor premalignancy is a CD33 low-expressing or CD33-negative solid tumor cancer or solid tumor premalignancy.
- Aspect 100 The pharmaceutical composition of any one of aspects 85-99, further including at least one pharmaceutically acceptable excipient.
- a pharmaceutical composition for killing myeloid-derived suppressor cells (MDSCs) in a mammalian subject such as a human patient, afflicted with a cancer or premalignancy or afflicted with haemophagocytic lymphohistiocytosis (HLH) or macrophage activation syndrome (MAS), including: a radiolabeled molecule that binds specifically to CD33 to the mammalian subject in an amount effective to kill MDSCs in the mammalian subject.
- HHLH haemophagocytic lymphohistiocytosis
- MAS macrophage activation syndrome
- Aspect 102 The pharmaceutical composition of aspect 101, wherein the radiolabeled molecule is a radiolabeled antibody, antibody, antibody fragment, antibody mimetic, peptide, ligand, or small molecule.
- Aspect 103 The pharmaceutical composition of aspect 102, wherein the radiolabeled molecule is a radiolabeled antibody.
- Aspect 104 The pharmaceutical composition of aspect 103, wherein the radiolabeled antibody includes radiolabeled lintuzumab, radiolabeled gemtuzumab, radiolabeled vadastuximab, or any combination thereof.
- Aspect 105 The pharmaceutical composition of aspect 103, wherein the radiolabeled antibody includes radiolabeled lintuzumab, radiolabeled gemtuzumab, radiolabeled vadastuximab, or any combination thereof.
- Aspect 109 The pharmaceutical composition of aspect 108, wherein the radiolabeled molecule is 225 Ac-labeled lintuzumab.
- Aspect 111 The pharmaceutical composition of any one of aspects 101-110, wherein the pharmaceutical composition is for the treatment of a solid tumor cancer or solid tumor premalignancy in a mammalian subject, such as a human patient.
- Aspect 116 The pharmaceutical composition of any one of aspects 113-115, wherein the at least one immune checkpoint inhibitor includes a CTLA-4 inhibitor.
- Aspect 117 The pharmaceutical composition of any one of aspects 101-116, wherein the solid tumor cancer or solid tumor premalignancy is a CD33 low-expressing or CD33- negative solid tumor cancer or a CD33 low-expressing or CD33 -negative solid tumor cancer solid tumor premalignancy.
- a targeting agent such as an antibody may, for example, be labeled with Indium- 111 ( m In) or Actinium-225 ( 225 Ac) according to procedures detailed in any of U.S. Patent No. 10,420,851, International Pub. No. WO 2017/155937 and US Provisional Patent Application No. 63/042,651 filed December 9, 2019 and titled “Compositions and methods for preparation of sitespecific radioconjugates.”
- the antibody may be conjugated to a linker, such as any of the bifunctional chelators described herein and in the above indicated patent literature.
- An exemplary linker includes at least dodecane tetraacetic acid (DOTA), wherein a goal of the conjugation reaction is to achieve a DOTA-antibody ratio of 3 : 1 to 5 : 1.
- DOTA dodecane tetraacetic acid
- Chelation with the radionuclide m In or 225 Ac may then be performed and efficiency and purity of the resulting ni In- or 225 Ac-labeled anti-CD33 antibody may be determined by HPLC and iTLC.
- a ImM DTPA solution may be added to the reaction mixture and incubated at room temperature for 20 min to bind the unreacted 225 Ac into the 225 Ac-DTPA complex.
- Instant thin layer chromatography with 10cm silica gel strip and lOmM EDTA/normal saline mobile phase may be used to determine the radiochemical purity of 225 Ac-DOTA-anti-CD33 through separating 225 Ac-labeled anti-CD33 ( 225 Ac-DOTA-anti-CD33) from free 225 Ac ( 225 Ac-DTPA).
- the radiolabeled antibody stays at the point of application and 225 Ac-DTPA moves with the solvent front.
- the strips may be cut in halves and counted in the gamma counter equipped with the multichannel analyzer using channels 72-110 for 225 Ac to exclude its daughters.
- An exemplary radiolabeled targeting agent such as 225 Ac-DOTA- antibody
- 225 Ac-DOTA- antibody may be purified either on PD10 columns pre-blocked with 1% HSA or on Vivaspin centrifugal concentrators with a 50 kDa MW cut-off with 2 x 1.5 mL washes, 3 min per spin.
- Example 2 Specificity and stability of CD33 ARC
- Lintuzumab conjugated with Actinium-225 was tested for cytotoxicity against specific cell types which express CD33. For example, suspensions of HL60 (leukemia cells) were incubated with various doses of radiolabeled lintuzumab (lintuzumab- Ac 225 ), and the dose at which 50% of the cells were killed (LD50) was found to be 8 pCi per mL of cell suspension.
- a maximum tolerated dose (MTD) of a single injection of the radiolabeled lintuzumab was determined to be 3pCi/kg patient weight. As a split dose (e.g., 2 equal doses administered 4-7 days apart), the MTD was determined to be 2pCi/kg per dose, or 4pCi/kg total. This data was determined by injections into patients with relapsed/refractory AML: 21 patients were injected with increasing doses of the radiolabeled lintuzumab - 0.5pCi/kg to 4pCi/kg. Determination of MTD was based on the severity of the adverse effects observed at each dose level.
- Anti -leukemic effects included elimination of peripheral blood blasts in 13 of 19 evaluable patients. Twelve of 18 patients who were evaluable at 4 weeks following treatment had reductions in bone marrow blasts, including nine with reductions > 50%. Three patients treated with 1 pCi/kg, 3 pCi/kg and 4pCi/kg respectively had ⁇ 5% blasts after therapy.
- Example 3 Human maximal tolerated dose and efficacy of CD33 ARC
- a maximum tolerated dose (MTD) of fractionated doses of 225 Ac-lintuzumab followed by Granulocyte Colony Stimulating factor (GCSF) support in each cycle may be determined using a dosing cycle of approximately 42 days.
- a cycle starts with administration of a fractionated dose of 225 Ac-labeled lintuzumab on Day 1 followed by the administration of GCSF on Day 9 and continuing GCSF per appropriate dosing instructions until absolute neutrophil count (ANC) is greater than 1,000, which is expected to occur within 5 - 10 days.
- ANC absolute neutrophil count
- peripheral blood will be assessed for paraprotein burden.
- a bone marrow aspirate will be performed to assess plasmocyte infiltration on Day 42.
- a response is a partial response or better but less than a complete response on Day 42, and the patient remains otherwise eligible, the patient will be re-dosed in a new cycle at the same dose level no sooner than 60 days after Day 1 of the first cycle. In absence of dose limiting toxicities, cycles will continue using the abovedescribed algorithm until the patient has received a cumulative dose of 4 pCi/kg of 225 Ac-labeled lintuzumab.
- Example 4 225 Ac-lintuzumab depletes human cancer patient-derived MDSCs and human healthy donor MDSCs
- 225Ac-labeled lintuzumab (anti-CD33 mAb) to kill MDSCs isolated from the PBMCs of human colorectal cancer (CRC) patients or from healthy human donors (HD) was tested.
- CD14-positive MDSCs monocytic MDSCs, M-MDSCs
- Anti-CD15 microbeads were then used to selected CD15-positive MDSCs (granulocytic MFSCs, G-MDSCs) from the CD14-negative PBMC fraction.
- M-MDSCs and G- MDSCs were then pooled and immunophenotyped (using FITC labeled antibodies from Miltenyi Biotec and an AccuriTM C6 Plus flow cytometer (Becton Dickinson, Franklin Lakes, NJ USA)) confirming M-MDSC (CD14 + , CD15', CDl lb + , HLA-DR7 low CD33 + ) and G-MDSC (CD14‘, CD15 + , CDl lb + , CD33 + ) profiles of the isolated cells.
- the Miltenyi Biotec fluorophore-labeled antibodies used for the immunophenotyping were CD14-FITC anti -Human Antibody (Catalog No.130-110-518), CD15-APC anti-Human Antibody (Catalog No. 130-113-482), CD33-FITC anti-Human Antibody (Catalog No. 130-111-018), CDl lb-APC anti-Human Antibody (Catalog No. 130-110-554), CD33-APC anti-Human Antibody (Catalog No. 130-111-020), CDl lb-FITC anti-Human Antibody (Catalog No. 130-110-552), and HLA-DR-FITC anti-Human Antibody (Catalog No.
- the pooled MDSCs were then used in viability assays examining the effects of 225 Ac-labeled lintuzumab (specifically, 225 Ac-labeled conjugate of p-SCN-Bn-DOTA and lintuzumab) at different radiation doses versus non-radiolab eled lintuzumab control.
- FIG. 1 shows results of a viability assay demonstrating that 225 Ac-labeled lintuzumab (anti-CD33 mAb) significantly depletes MDSCs isolated from a human colorectal cancer (CRC) patient versus non-radiolab eled lintuzumab control.
- CRC colorectal cancer
- FIG. 2 shows results of a viability assay demonstrating that 225 Ac-labeled lintuzumab (anti-CD33 mAb) significantly depletes MDSCs isolated from a healthy human donor (HD) versus non-radiolab eled lintuzumab control.
- 225 Ac-labeled lintuzumab anti-CD33 mAb
- HD human donor
- FIG. 2 shows results of a viability assay demonstrating that 225 Ac-labeled lintuzumab (anti-CD33 mAb) significantly depletes MDSCs isolated from a healthy human donor (HD) versus non-radiolab eled lintuzumab control.
- HD healthy human donor
- FIG. 2 shows results of a viability assay demonstrating that 225 Ac-labeled lintuzumab (anti-CD33 mAb) significantly depletes MDSCs isolated from a healthy human donor (HD) versus non-radiolab
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Organic Chemistry (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Oncology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The invention provides compositions and methods for treating cancers and proliferative disorders, including solid tumor cancers and non-myeloid hematological malignancies, using radioconjugates targeting CD33, alone or in combination with one or more radioconjugates targeting other cancer-associated targets such as DR5, 5T4, HER2, HER3, and TROP2, antibody drug conjugates targeting these or other cancer-associated targets, therapeutic antibodies targeting these or other cancer-associated targets, chemotherapy agents and regimens, and immune checkpoint inhibitors.
Description
RADIOCONJUGATES TARGETING CD33 IN THE TREATMENT OF CANCERS
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. application serial no. 17/532,919 filed November 22, 2021 and U.S. provisional application serial no. 63/230,431 filed August 6, 2021, each of which is hereby incorporated by reference in its entirety.
SEQUENCE LISTING
[0002] The instant application contains a Sequence Listing which has been submitted electronically in XML format and is hereby incorporated by reference in its entirety. Said XML copy, created on August 26, 2022, is named ATNM-002PCT2_SL_ST26.xml and is 203,108 bytes in size.
FIELD OF THE INVENTION
[0003] The invention relates to the field of radiopharmaceuticals.
BACKGROUND OF THE INVENTION
[0004] Myeloid-Derived Suppressor Cells (MDSCs) are CD33-positive cells that contribute to immunosuppression and immunological escape of solid tumors and other cancers. MDSCs include monocytic MDSCs which are CD14-positive and granulocytic MDSCs which are CD 15-positive. Within the tumor microenvironment, MDSCs can differentiate into immunosuppressive tumor-associated macrophages (TAMs). MDSCs also play a role in the pathology of the rare conditions haemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS).
SUMMARY OF THE INVENTION
[0005] In one aspect, the invention provides compositions and methods for treating cancers and proliferative disorders, such as solid tumor cancers, using radioconjugates targeting CD33, alone or in combination with one or more of radioconjugates targeting other cancer-associated targets such as DR5, 5T4, HER2, HER3, or TROP2 antibody drug conjugates (ADCs) targeting cancer-associated targets such as the aforementioned targets, therapeutic antibodies targeting cancer-associated targets such as the aforementioned targets, chemotherapy agents and regimens, and immune checkpoint inhibitors.
[0006] Exemplary CD33 targeting agents that may be radiolabeled for use in the invention include the monoclonal anti-CD33 antibodies lintuzumab, gemtuzumab, or vadastuximab.
[0007] Exemplary DR5 targeting agents that may be radiolabeled, unlabeled or drug- conjugated for use in the invention include the monoclonal anti-DR5 antibodies mapatumumab, conatumumab, lexatumumab, tigatuzumab, drozitumab, and LBY-135. According to certain aspects, an Actinium-225 labeled monoclonal antibody against CD33 is administered to a mammalian subject, such as a human patient, in a radiation dose of 0.1 to 10 pCi/kg body weight of the subject and a protein dose of less than 10 mg/kg body weight of the subject.
[0008] Exemplary 5T4 targeting agents that may be radiolabeled, drug-conjugated, or unlabeled for use in the invention include the anti-5T4 monoclonal antibodies MED 10641, ALG.APV-527, Tb535, H6-DM5, and ZV0508.
[0009] Exemplary HER2 targeting agents that may be radiolabeled, drug-conjugated, or unlabeled for use in the invention include the monoclonal antibodies trastuzumab and pertuzumab.
[0010] Exemplary HER3 targeting agents that may be radiolabeled, drug-conjugated, or unlabeled for use in the invention include the monoclonal antibodies patritumab, seribantumab, lumretuzumab, elgemtumab, GSK2849330, and AV-203 (CAN017).
[0011] Exemplary TROP2 targeting agents that may be radiolabeled, drug-conjugated, or unlabeled for use in the invention include the monoclonal antibodies Sacituzumab and Datopotamab, and antibodies recognizing the same epitope of TROP2 recognized by either of said antibodies.
[0012] Exemplary agents that block binding of CD47 to SIRPa include magrolimab, lemzoparlimab, AO-176, TTI-621, and TTI-622. Exemplary effective doses for the CD47 blockade include 0.05 to 5 mg/kg patient weight. Other immune checkpoint inhibitors, such as PD-1 and PD-L1 blocking agents, may also be used.
[0013] According to certain aspects, the cancer for treatment/treated may be a solid tumor or a hematological cancer, which may be a myeloid malignancy or a «o/?-myeloid malignancy. Exemplary myeloid hematological malignancies include acute myelogenous leukemia, chronic myelogenous leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm. According to certain aspects, the cancer may be associated with CD33 positive cells, such as myeloblast cells or malignant plasmacytes. Exemplary non-myeloid hematological malignancies for treatment/treated include lymphomas and lymphocytic leukemias.
[0014] Additional features, advantages, and aspects of the invention may be set forth or apparent from consideration of the following detailed description, drawings if any, and claims.
Moreover, it is to be understood that both the foregoing summary of the invention and the following detailed description are exemplary and intended to provide further explanation without limiting the scope of the invention as claimed.
BRIEF DESCRIPTION OF THE DRAWINGS
[0015] FIG. 1 shows results of a viability assay demonstrating that 225 Ac-labeled lintuzumab (anti-CD33 mAb) significantly depletes MDSCs isolated from a human colorectal cancer (CRC) patient versus non-radiolab eled lintuzumab control.
[0016] FIG. 2 shows results of a viability assay demonstrating that 225 Ac-labeled lintuzumab (anti-CD33 mAb) significantly depletes MDSCs isolated from a healthy human donor (HD) versus non-radiolab eled lintuzumab control.
DETAILED DESCRIPTION OF THE INVENTION
[0017] One aspect of the presently disclosed invention is based on the discovery that, in addition to finding use in treating myeloid-derived hematological cancers and proliferative disorders, radioconjugated CD33 targeting agents such as radioconjugated anti-CD33 antibodies, may also be used to treat other proliferative disorders including but not limited to solid tumor cancers and non-myeloid derived hematological cancers by killing myeloid derived suppressor cells (MDSCs) that suppress host immune response to cancers.
[0018] In one aspect, the invention provides compositions and methods for treating cancers and proliferative disorders, such as solid tumor cancers, using radioconjugates targeting CD33, alone or in combination with one or more of radioconjugates targeting other cancer-associated targets such as DR5, 5T4, HER2, or HER3, antibody drug conjugates (ADCs) targeting cancer- associated targets such as the aforementioned targets, unlabeled therapeutic antibodies targeting cancer-associated targets such as the aforementioned targets, chemotherapy agents and regimens, and immune checkpoint inhibitors.
[0019] In another aspect, the invention provides compositions and methods for treating the MD SC-associated disorders haemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) using one or more radiolabeled CD33 targeting agents.
[0020] Definitions and Abbreviations
[0021] Throughout this description and in the appended claims, use of the singular includes the plural and plural encompasses singular, unless specifically stated otherwise. For example, although reference is made herein to “an” antibody, “a” radionuclide, and “the” targeting agent,
one or more of any of these components and/or any other components described herein may be used.
[0022] The words “comprising” and forms of the word “comprising” as well as the word “including” and forms of the word “including,” as used in this description and in the claims, do not limit the inclusion of elements beyond what is referred to. Additionally, although throughout the present disclosure various aspects or elements thereof are described in terms of “including” or “comprising,” corresponding aspects or elements thereof described in terms of “consisting essentially of’ or “consisting of’ are similarly disclosed. For example, while certain aspects of the invention have been described in terms of a method “including” or “comprising” administering a radiolabeled targeting agent, corresponding methods instead reciting “consisting essentially of’ or “consisting of’ administering the radiolabeled target are also within the scope of said aspects and disclosed by this disclosure.
[0023] The term “about” when used in this disclosure in connection with a numerical designation or value, e.g., in describing temperature, time, amount, and concentration, including in the description of a range, indicates a variance of ±10% and, within that larger variance, variances of ±5% or ±l%.
[0024] As used herein, “administer” with respect to a targeting agent or other therapeutic agent or composition includes delivering the agent to a subject’s body via any known method suitable for delivery. Specific modes of administration include, without limitation, intravenous, transdermal, subcutaneous, intraperitoneal, intrathecal and intra-tumoral administration. Exemplary administration methods for antibodies may be as substantially described in U.S. Patent No. 10,736,975 and International Pub. No. WO 2016/187514, each incorporated by reference herein. For example, according to certain aspects, the targeting agent may be administered as a patient specific therapeutic composition which may be included in a single dose container, the total volume of which may be administered to a patient in a single treatment session. Any of the compositions disclosed herein, such as those including a monoclonal antibody or antigen-binding antibody fragment, may include at least one pharmaceutically acceptable carrier or pharmaceutically acceptable excipient. The dose of an effector molecule (e.g., radionuclide) of the radiolabeled targeting agent such as radiolabeled monoclonal antibody and a total protein amount of the agent may depend on and/or be selected based on at least one patient specific
parameter. Patient specific parameters include, but are not limited to, a patient weight, a patient age, a patient height, a patient gender, a patient medical condition, and a patient medical history.
[0025] Antibodies, antibody fragments and other therapeutic proteins and peptides may, for example, be formulated with one or more pharmaceutically acceptable carriers and/or excipients as, for example, known in the art. For example, injectable drug delivery systems include solutions, suspensions, gels, microspheres and polymeric injectables, and can include one or more excipients such as solubility-altering agents (e.g., ethanol, propylene glycol and sucrose) and polymers (e.g., polycaprylactones and PLGA's). An exemplary formulation may be as substantially described in U.S. Pub. No. 20170326259 or International Pub No. WO 2017/155937, each incorporated by reference herein. For example, according to certain aspects, the formulation may include 0.5% to 5.0% (w/v) of an excipient selected from the group consisting of ascorbic acid, polyvinylpyrrolidone (PVP), human serum albumin (HSA), a water-soluble salt of HSA, and mixtures thereof. Certain formulations may include 0.5-5% ascorbic acid; 0.5-4% polyvinylpyrrolidone (PVP); and the monoclonal antibody in 50 mM PBS buffer, pH 7.
[0026] As used herein, the term “antibody” includes, without limitation, (a) an immunoglobulin molecule including two heavy chains and two light chains and which recognizes an antigen; (b) polyclonal and monoclonal immunoglobulin molecules; (c) monovalent and divalent fragments thereof, such as Fab, di -Fab, scFvs, diabodies, minibodies, and single domain antibodies (sdAb) such as nanobodies; (d) naturally occurring and non-naturally occurring, such as wholly synthetic antibodies, IgG-Fc-silent, and chimeric; and (e) bi/multi-specific forms thereof. Immunoglobulin molecules may derive from any of the commonly known classes, including but not limited to IgA, secretory IgA, IgG and IgM. IgG subclasses are also well known to those in the art and include, but are not limited to, human IgGl, IgG2, IgG3 and IgG4. The N- terminus of each chain defines a “variable region” of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (VL) and variable heavy chain (VH) refer to these regions of light and heavy chains respectively. Antibodies may be human, humanized, nonhuman, or chimeric. When a specific aspect of the presently disclosed invention refers to or recites an “antibody,” it is envisioned as referring to any of the full-length antibodies or fragments thereof disclosed herein, unless explicitly denoted otherwise.
[0027] A “humanized” antibody refers to an antibody in which some, most or all amino acids outside the CDR domains of a non-human antibody are replaced with corresponding amino
acids derived from human immunoglobulins. In one embodiment of a humanized form of an antibody, some, most or all of the amino acids outside the complementarity-determining region (CDR) domains have been replaced with amino acids from human immunoglobulins, whereas some, most or all amino acids within one or more CDR regions are unchanged. Small additions, deletions, insertions, substitutions or modifications of amino acids are permissible as long as they do not abrogate the ability of the antibody to bind to a particular antigen. A “humanized” antibody retains an antigenic specificity similar to that of the original antibody.
[0028] A “chimeric antibody” refers to an antibody in which the variable regions are derived from one species and the constant regions, such as the Fc region, are derived from another species, such as an antibody in which the variable regions are derived from a mouse antibody and the constant regions are derived from a human antibody.
[0029] A “complementarity-determining region”, or “CDR”, refers to amino acid sequences that, together, define the binding affinity and specificity of the variable region of a native immunoglobulin binding site. There are three CDRs in each of the light and heavy chains of an antibody. CDRs and framework regions may, for example, be delineated according to the Kabat or IMGT numbering conventions, as known in the art.
[0030] A “framework region”, or “FR”, refers to amino acid sequences interposed between CDRs, typically conserved, that act as the scaffold between the CDRs.
[0031] A “constant region” refers to the portion of an antibody molecule that is consistent for a class of antibodies and is defined by the type of light and heavy chains. For example, a light chain constant region may be of the kappa or lambda chain type and a heavy chain constant region may be of one of the five chain isotypes: alpha, delta, epsilon, gamma or mu. This constant region, in general, can confer effector functions exhibited by the antibodies. Heavy chains of various subclasses (such as the IgG subclass of heavy chains) are mainly responsible for different effector functions.
[0032] As used herein, “immunoreactivity” refers to a measure of the ability of an immunoglobulin to recognize and bind to a specific antigen. “Specific binding” or “specifically binds” refers to an antibody binding to a target antigen or an epitope within the antigen with significantly greater affinity and/or selectivity than for other antigens in the milieu in which the antibody is used or present. Typically, an antibody binds to the antigen or the epitope within the antigen with an equilibrium dissociation constant (KD) of about 1 X 10-8 M or less, for example
about 1 * 10-9 M or less, about 1 x IO-10 M or less, about 1 x 10-11 M or less, or about 1 x 10-12 M or less, typically with the KD that is at least one hundred fold less than its KD for binding to a nonspecific antigen (e.g., BSA, casein). The dissociation constant may be measured using standard procedures. Antibodies that specifically bind to the antigen or the epitope within the antigen may have cross-reactivity to other related antigens, for example to the same antigen from other species (homologs), such as human or monkey, for example Macaca fascicularis (cynomolgus, cyno), Pan troglodytes (chimpanzee, chimp) or Callithrix jacchus (common marmoset, marmoset).
[0033] As used herein, a “CD33 targeting agent” includes, for example, an antibody, such as but not limited to a monoclonal antibody (mAb), antibody fragment such as Fab or Fab2 fragment, a corresponding scFv molecule, antibody mimetic, peptide, aptamer, or small molecule that specifically binds to any available epitope of CD33. According to certain aspects, the CD33 targeting agent used may include any of the monoclonal antibodies lintuzumab (HuM195), gemtuzumab, or vadastuximab, or an antibody including the heavy chain and light chain CDRs of one of these antibodies, or an epitope-binding antibody fragment thereof of any of the preceding antibodies such as a Fab, Fab2 or scFv molecule, or an antibody or antibody fragment that binds to the same epitope as any of the aforementioned antibodies. In a related aspect, the CD33 targeting agent used is the monoclonal antibody lintuzumab (HuM195), or an antibody including the heavy and light chain CDRs of lintuzumab, or an antigen-binding fragment thereof such as a Fab, Fab2 or corresponding scFv of any of the preceding antibodies, or a different antibody or different antibody fragment that binds to the CD33 epitope recognized by lintuzumab.
[0034] As used herein, a “DR5 targeting agent” includes, for example, an antibody, such as but not limited to a monoclonal antibody (mAb), antibody fragment such as Fab fragment, antibody mimetic, peptide, ligand, aptamer, or small molecule that binds to any available epitope of DR5. According to certain aspects, the DR5 targeting agent may be an anti-DR5 antibody such as a human or humanized antibody against DR5. According to certain aspects, the anti-DR5 antibody may be or bind to an epitope of DR5 recognized by the any of mapatumumab, conatumumab, lexatumumab, tigatuzumab, drozitumab, and LBY-135. According to certain aspects, the anti-DR5 antibody includes mapatumumab, conatumumab, lexatumumab, tigatuzumab, drozitumab, and/or LBY-135.
TABLE 1
[0035] As used herein, a “5T4 targeting agent” includes, for example, an antibody, such as but not limited to a monoclonal antibody (mAb), antibody fragment such as Fab fragment, antibody mimetic, peptide, ligand, aptamer, or small molecule that binds to any available epitope of 5T4. For example, the 5T4 targeting agent may be a monoclonal antibody. An early description of an anti-5T4 antibody sequence was provided by Hole & Stern (Hole & Stem (1988) Br. J. Cancer 57, 239-246). An antibody for use as an 5T4 targeting agent according to the presently disclosed invention may, for example, be produced using the sequence provided by Hole & Stem. According to certain aspects, the 5T4 targeting agent includes a humanized antibody against 5T4,
such as described in U.S. Pat. Nos. 7,074,909 and 8,044,178. Exemplary antibodies against 5T4 include at least MED 10641, described in Harper (Harper, J. et a/. (2017) Mol. Cancer Ther. 16, 1576-1587) and developed by Medimmune/AstraZeneca; ALG.APV-527, developed by Aptevo Therapeutics/ Alligator Bioscience; Tb535, developed by Biotecnol/Chiome Bioscience; H6-DM5 developed by Guangdong Zhongsheng Pharmaceuticals; and ZV0508 developed by Zova Biotherapeutics. See also Table 1 which discloses additional antibodies and antibody-drug conjugates, the antibody portions of which may be employed as 5T4 targeting agents according to aspects of the present invention.
[0036] As used herein, a “HER2 targeting agent” includes, for example, an antibody, such as but not limited to a monoclonal antibody (mAb), antibody fragment such as Fab fragment, antibody mimetic, peptide, ligand, aptamer, or small molecule that binds to any available epitope of HER2 (ErbB2). According to certain aspects, the anti-HER2 antibody employed may be Trastuzumab or a different antibody that binds to an epitope of HER2 recognized by Trastuzumab, or an antigen-binding fragment of either, and/or the antibody employed may be Pertuzumab or a different antibody that binds to an epitope of HER2 recognized by Pertuzumab, or an antigenbinding fragment of either. According to certain aspects, the anti-HER2 antibody may also be a multi-specific antibody, such as bispecific antibody, against any available epitope of HER3/HER2 such as MM-111 and MM-141/Istiratumab from Merrimack Pharmaceuticals, MCLA-128 from Merus NV, and MEHD7945A/Duligotumab from Genentech.
[0037] As used herein, a “HER3 targeting agent” includes, for example, an antibody, such as but not limited to a monoclonal antibody (mAb), antibody fragment such as Fab fragment, antibody mimetic, peptide, ligand, aptamer, or small molecule that binds to any available epitope of HER3. According to certain aspects, the anti-HER3 antibody may be one of the following antibodies or bind to an epitope of HER3 recognized by one of the following antibodies: Patritumab, Seribantumab, Lumretuzumab, Elgemtumab, AV-203 (a/k/a CAN017; Aveo Oncology), or GSK2849330, or be an antigen-binding fragment of such antibodies. According to certain aspects, the anti-HER3 antibody is selected from one or more of Patritumab, Seribantumab, Lumretuzumab, Elgemtumab, US-1402, AV-203, CDX-3379, GSK2849330, and antigen-binding fragments thereof. According to certain aspects, the anti-HER3 antibody may be a multi-specific antibody, such as abispecific antibody, against any available epitope of HER3/HER2 such as MM- 111 and MM-141/Istiratumab from Merrimack Pharmaceuticals, MCLA-128 from Merus NV, and
MEHD7945A/Duligotumab from Genentech. The antibody may, for example, also be one of the anti-HER3 antibodies disclosed in U.S. Pub No. 20210025006, incorporated by reference herein, such as CANO 17, 04D01, 09D03, 1 1G01, 12A07, 18H02 and 22A02, or an antibody binding to an epitope of HER3 recognized by one of said antibodies, or an antigen binding fragment of any of the aforementioned antibodies.
[0038] As used herein, a “TROP2 targeting agent” includes, for example, an antibody, such as but not limited to a monoclonal antibody (mAb), antibody fragment such as Fab, Fab2 or corresponding scFv, antibody mimetic, peptide, ligand, aptamer, or small molecule that binds to any available epitope of TROP2. According to certain aspects, the anti-TROP2 antibody may be Sacituzumab or Datopotamab, or an antibody that binds to an epitope of TROP2 recognized by Sacituzumab or Datopotamab.
[0039] An “epitope” refers to the target molecule site (e.g., at least a portion of an antigen) that is capable of being recognized by, and bound by, a targeting agent such as an antibody, antibody fragment, Fab fragment, aptamer, or small molecule. For a protein antigen, for example, this may refer to the region of the protein (i.e., amino acids, and particularly their side chains) that is bound by the targeting agent. Overlapping epitopes may include at least one to five common amino acid residues. Methods of identifying epitopes of antibodies are known to those skilled in the art and include, for example, those described in Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988).
[0040] As used herein, the terms “proliferative disorder” is inclusive of cancers and precancerous proliferative disorders, and includes, without limitation, a solid cancer (e.g., a solid tumor). “Solid cancers” which may be treated according to various aspects of the invention include, without limitation, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck (head & neck cancer), cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, prostate cancer, colorectal cancer, cancer of the anal region, stomach cancer, testicular cancer, uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra, cancer of the penis, pediatric tumors, cancer of the bladder, cancer of the kidney or ureter, cancer of lung such as non-small cell lung carcinoma (NSCLC) and small cell lung carcinoma (SCLC), carcinoma
of the renal pelvis, neoplasm of the central nervous system (CNS), primary CNS lymphoma, tumor angiogenesis, spinal axis tumor, brain stem glioma, pituitary adenoma, Kaposi's sarcoma, epidermoid cancer, squamous cell cancer, environmentally-induced cancers including those induced by asbestos. The sarcoma may, for example, be osteosarcoma, dermatofibrosarcoma protuberans (DFSP), fibrosarcoma (fibroblastic sarcoma), chondrosarcoma, Ewing’s sarcoma, rhabdomyosarcoma, liposarcoma, synovial sarcoma, pleomorphic sarcoma, gastrointestinal stromal tumor, Kaposi’s sarcoma, leiomyosarcoma, or angiosarcoma.
[0041] According to certain aspects of the invention, the solid cancer treated or for treatment may be breast cancer such as metastatic breast cancer, tamoxifen-sensitive breast cancer, tamoxifen-resistant breast cancer or triple negative breast cancer (TNBC), gastric cancer, bladder cancer, cervical cancer, endometrial cancer, skin cancer such as melanoma, stomach cancer, testicular cancer, esophageal cancer, bronchioloalveolar cancer, prostate cancer such as castration resistant prostate cancer (CRPC), metastatic prostate cancer and metastatic CRPC (mCRPC), colorectal cancer, ovarian cancer, cervical epidermoid cancer, liver cancer such as hepatocellular carcinoma (HCC) or cholangiocarcinoma, pancreatic cancer, lung cancer such as non-small cell lung carcinoma (NSCLC; including any of subtypes adenocarcinoma, squamous cell carcinoma, and large cell carcinoma) or small cell lung cancer (SCLC), renal cancer, head and neck cancer such as head and neck squamous cell cancer, a carcinoma, a sarcoma, or any combination thereof. In general, the various aspects of the invention may be employed in the treatment of non- metastatic, premetastatic, and metastatic forms of cancers such as the aforementioned cancers and others disclosed herein.
[0042] As used herein, “cancer” also includes, without limitation, a hematological malignancy. A “hematologic disease” or “hematological disorder” may be taken to refer to at least a blood cancer. According to certain aspects of the invention, the hematological cancer or hematological proliferative disorder includes, leukemias (such as acute myeloid leukemia (AML), acute promyelocytic leukemia, acute lymphoblastic leukemia (ALL), acute mixed lineage leukemia, chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), hairy cell leukemia and large granular lymphocytic leukemia), myelodysplastic syndrome (MDS), myeloproliferative disorders (polycythemia vera, essential thrombocytosis, primary myelofibrosis and chronic myeloid leukemia), lymphomas, multiple myeloma, MGUS and similar disorders, Hodgkin lymphoma (HL), non-Hodgkin lymphoma (NHL), primary mediastinal large B-cell
lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, transformed follicular lymphoma, splenic marginal zone lymphoma, lymphocytic lymphoma, T-cell lymphoma, and other B-cell malignancies.
[0043] One object of the present invention is providing compositions and methods for treating hematological proliferative disorders that are not myeloid-derived, such as lymphomas and lymphocytic leukemias, and/or that do not substantially or at all express CD33, using one or more CD33 targeting radioconjugates. Such lymphomas include Hodgkin lymphoma and NonHodgkin lymphoma. Without limitation, these Non-Hodgkin lymphomas include (1) aggressive lymphomas such as: Diffuse large B-cell lymphoma; Anaplastic large-cell lymphoma; Burkitt lymphoma; Lymphoblastic lymphoma; Mantle cell lymphoma; and Peripheral T-cell lymphoma; and (2) indolent lymphomas such as: Follicular lymphoma; Cutaneous T-cell lymphoma; Lymphoplasmacytic lymphoma; Marginal zone B-cell lymphoma; MALT lymphoma; and Smallcell lymphocytic lymphoma. Hodgkin lymphoma includes (1) classical (or classic) Hodgkin lymphoma representing approximately 95% of Hodgkin lymphoma cases of which there are four subtypes: Nodular sclerosis (the most common sub-type of classical Hodgkin lymphoma), Mixed cellularity accounting for about 25 percent of all classical Hodgkin lymphoma cases, Lymphocyterich accounting for about 5 percent of all classical cases, and Lymphocyte-depleted accounting for less than 1 percent of all Hodgkin lymphomas; and (2) nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL), representing about 5 percent of Hodgkin lymphoma patients.
[0044] According to certain aspects, a radiotherapeutic may include a targeting agent labeled with a radioisotope. As used herein, a “radioisotope” and “radionuclide” may be used interchangeably, and may be an alpha particle emitting isotope, a beta particle emitting isotope, and/or a gamma-emitting isotope. Accordingly, a targeting agent may be labeled with a beta particle emitter, an alpha particle emitter, and/or a gamma ray emitter. Examples of radioisotopes that may be used include the following: 131I, 125I, 123I, 90Y, 177Lu, 186Re, 188Re, 89Sr, 153Sm, 32P, 225 Ac, 213Bi, 213Po, 211At, 212Bi, 213Bi, 223Ra, 227Th, 149Tb, 161Tb, 47Sc, 67Cu, 134Ce, 137Cs, 212Pb, and 103Pd. Methods for affixing a radionuclide to a targeting agent such as a protein such as an antibody or antibody fragment (i.e., “labeling” the targeting agent such an antibody with a radioisotope) are well known in the art. Specific methods for labeling are described, for example, in U. S. Patent No. 10,420,851, International Pub. No. WO 2017/155937 and U.S. Provisional Patent Application No.
63/042,651 filed December 9, 2019 and titled “Compositions and methods for preparation of sitespecific radioconjugates,” each of which is incorporated by reference herein.
[0045] For example, according to certain aspects, the radiotherapeutic targeting agent may be labeled by (a) chemically conjugating a targeting agent such as an antibody or peptide with a bifunctional chelator, such as p-SCN-Bn-DOTA in a buffered solution, (b) labeling the chelator- conjugated targeting agent by chelation of a radionuclide, such as Actinium-225 (225Ac) or Lutetium- 177 (177Ac), in a buffered solution, (c) quenching the labeling reaction by the addition of a quenching chelate (e.g. diethylenetriaminepentaacetic acid (DTP A)), and (d) purifying the radiolabeled-chelator-conjugated targeting agent. Exemplary chelators that may be used include bifunctional chelator compounds that have the dual functionality of sequestering metal ions, such as the radionuclide, plus the ability to covalently bind a biological carrier such as an antibody.
[0046] Exemplary chelators that may be used include, but are not limited to compounds such as S-2-(4-Isothiocyanatobenzyl)-l,4,7,10 tetraazacyclododecanetetraacetic acid (p-SCN-Bn- DOTA), di ethylene triamine pentaacetic acid (DTP A); ethylene diamine tetraacetic acid (EDTA);
1.4.7.10-tetra-azacyclododecane-N,N',N",N'"-tetraacetic acid (DOTA); p-isothiocyanatobenzyl-
1.4.7.10-tetra-azacyclododecane-l,4,7,10-te-traacetic acid (p-SCN-Bz-DOTA); 1, 4,7,10-tetra- azacyclododecane-N,N',N"-triacetic acid (D03A); 1,4, 7,10-tetra-azacyclododecane- 1,4, 7,10- tetrakis(2-propionic acid) (DOTMA); 3,6,9-triaza-12-oxa-3,6,9-tricarboxymethylene-10-carboxy- 13-phenyl-tridecanoic acid (“B-19036”); l,4,7-triazacyclononane-N,N',N"-triacetic acid (NOTA);
1.4.8.11 -tetra- azacy cl otetradecane-N,N',N",N'"-tetraacetic acid (TETA); tri ethylene tetraamine hexaacetic acid (TTHA); trans- 1,2-diaminohexane tetraacetic acid (CYDTA); 1,4, 7,10-tetra- azacyclododecane- l-(2-hydroxypropyl)-4, 7,10-triacetic acid (HP-DO3A); trans-cyclohexane- diamine tetraacetic acid (CDTA); trans(l,2)-cyclohexane dietylene triamine pentaacetic acid (CDTPA); l-oxa-4,7,10-triazacyclododecane-N,N',N"-triacetic acid (OTTA); 1,4,7, 10-tetra- azacyclododecane- 1 ,4,7, 10-tetrakis{ 3-(4-carboxyl)-butanoic acid} ; 1 ,4,7, 10-tetra- azacyclododecane- 1,4, 7,10-tetrakis(acetic acid-methyl amide); 1,4,7,10-tetra-azacyclododecane- 1,4,7, 10-tetrakis(methylene phosphonic acid); and derivatives thereof.
[0047] According to certain aspects, when the radiotherapeutic targeting agent is 225 Ac- labeled, the effective amount is at or below 50 pCi/kg, 40 pCi/kg, 30 pCi/kg, 20 pCi/kg, 10 pCi/kg, 5 pCi/kg, 4 pCi/kg, 3 pCi/kg, 2 pCi/kg, 1 pCi/kg, or even 0.5 pCi/kg. According to certain aspects, the effective amount is at least 0.05 pCi/kg, or 0.1 pCi/kg, 0.2 pCi/kg, 0.3 pCi/kg, 0.4 pCi/kg, 0.5
pCi/kg, 1 pCi/kg, 2 pCi/kg, 3 pCi/kg, 4 pCi/kg, 5 pCi/kg, 6 pCi/kg, 7 pCi/kg, 8 pCi/kg, 9 pCi/kg, 10 pCi/kg, 12 pCi/kg, 14 pCi/kg, 15 pCi/kg, 16 pCi/kg, 18 pCi/kg, 20 pCi/kg, 30 pCi/kg, or 40 pCi/kg. According to certain aspects, the 225 Ac-labeled targeting agent may be administered at a dose that includes any combination of upper and lower limits as described herein, such as from at least 0.1 pCi/kg to at or below 5 pCi/kg, or from at least 5 pCi/kg to at or below 20 pCi/kg.
[0048] According to certain aspects, the radiotherapeutic targeting agent is 225 Ac-labeled, and the effective amount may be at or below 2 mCi (i.e., wherein the 225 Ac is administered to the subject in a non-weight-based dosage). According to certain aspects, the effective amount may be at or below 1 mCi, such as 0.9 mCi, 0.8 mCi, 0.7 mCi, 0.6 mCi, 0.5 mCi, 0.4 mCi, 0.3 mCi, 0.2 mCi, 0.1 mCi, 90 pCi, 80 pCi, 70 pCi, 60 pCi, 50 pCi, 40 pCi, 30 pCi, 20 pCi, 10 pCi, or 5 pCi. The effective amount may be at least 2 pCi, such as at least 5 pCi, 10 pCi, 20 pCi, 30 pCi, 40 pCi, 50 pCi, 60 pCi, 70 pCi, 80 pCi, 90 pCi, 100 pCi, 200 pCi, 300 pCi, 400 pCi, 500 pCi, 600 pCi, 700 pCi, 800 pCi, 900 pCi, 1 mCi, 1.1 mCi, 1.2 mCi, 1.3 mCi, 1.4 mCi, or 1.5 mCi. According to certain aspects, the 225 Ac-labeled CD33 targeting agent may be administered in an amount that includes any combination of upper and lower limits as described herein, such as from at least 2 pCi to at or below ImCi, or from at least 2 pCi to at or below 250 pCi, or from 75 pCi to at or below 400 pCi.
[0049] According to certain aspects, the 225 Ac-labeled radiotherapeutic targeting agent includes a single dose that delivers less than 12Gy, or less than 8 Gy, or less than 6 Gy, or less than 4 Gy, or less than 2 Gy, such as doses of 2 Gy to 8 Gy, to the subject, such as predominantly to the targeted solid tumor.
[0050] According to certain aspects, the radiotherapeutic targeting agent is radiolabeled with 177LU (“177Lu-labeled”), and the effective amount may be, for example, at or below 1 mCi/kg (i.e., where the amount of 177Lu-labeled targeting agent administered to the subject delivers a radiation dose of at or below 1000 mCi per kilogram of subject’s body weight). According to certain aspects, the effective amount is at or below 900 pCi/kg, 800 pCi/kg, 700 pCi/kg, 600 pCi/kg, 500 pCi/kg, 400 pCi/kg, 300 pCi/kg, 200 pCi/kg, 150 pCi/kg, 100 pCi/kg, 80 pCi/kg, 60 pCi/kg, 50 pCi/kg, 40 pCi/kg, 30 pCi/kg, 20 pCi/kg, 10 pCi/kg, 5 pCi/kg, or 1 pCi/kg. According to certain aspects, the effective amount is at least 1 pCi/kg, 2.5 pCi/kg, 5 pCi/kg, 10 pCi/kg, 20 pCi/kg, 30 pCi/kg, 40 pCi/kg, 50 pCi/kg, 60 pCi/kg, 70 pCi/kg, 80 pCi/kg, 90 pCi/kg, 100 pCi/kg, 150 pCi/kg, 200 pCi/kg, 250 pCi/kg, 300 pCi/kg, 350 pCi/kg, 400 pCi/kg or 450 pCi/kg.
According to certain aspects, an 177Lu-labeled targeting agent may be administered in an amount that includes any combination of upper and lower limits as described herein, such as from at least 5 mCi/kg to at or below 50 pCi/kg, or from at least 50 mCi/kg to at or below 500 pCi/kg.
[0051] According to certain aspects, the radiotherapeutic targeting agent is 177Lu-labeled, and the effective amount may be at or below 45 mCi, such as at or below 40 mCi, 30 mCi, 20 mCi, 10 mCi, 5 mCi, 3.0 mCi, 2.0 mCi, 1.0 mCi, 800 pCi, 600 pCi, 400 pCi, 200 pCi, 100 pCi, or 50 pCi. According to certain aspects, the effective amount may be at least 10 pCi, such as at least 25 pCi, 50 pCi, 100 pCi, 200 pCi, 300 pCi, 400 pCi, 500 pCi, 600 pCi, 700 pCi, 800 pCi, 900 pCi, 1 mCi, 2 mCi, 3 mCi, 4 mCi, 5 mCi, 10 mCi, 15 mCi, 20 mCi, 25 mCi, 30 mCi. According to certain aspects, an 177Lu-labeled targeting agent may be administered in an amount that includes any combination of upper and lower limits as described herein, such as from at least 10 mCi to at or below 30 mCi, or from at least 100 pCi to at or below 3 mCi, or from 3 mCi to at or below 30 mCi.
[0052] According to certain aspects, the radiotherapeutic targeting agent is radiolabeled with 133I (“ 13 ^-labeled”), and the effective amount may be at or below, for example, 1200 mCi (i.e., where the amount of 131I administered to the subject delivers a total body radiation dose of at or below 1200 mCi in a non-weight-based dose). According to certain aspects, the effective amount may be at or below 1100 mCi, at or below 1000 mCi, at or below 900 mCi, at or below 800 mCi, at or below 700 mCi, at or below 600 mCi, at or below 500 mCi, at or below 400 mCi, at orbelow 300 mCi, at or below 200 mCi, at orbelow 150 mCi, or at orbelow 100 mCi. According to certain aspects, the effective amount may be at or below 200 mCi, such as at or below 190 mCi, 180 mCi, 170 mCi, 160 mCi, 150 mCi, 140 mCi, 130 mCi, 120 mCi, 110 mCi, 100 mCi, 90 mCi, 80 mCi, 70 mCi, 60 mCi, or 50 mCi. According to certain aspects, the effective amount may be at least 1 mCi, such as at least 2 mCi, 3 mCi, 4 mCi, 5 mCi, 6 mCi, 7 mCi, 8 mCi, 9 mCi, 10 mCi, 20 mCi, 30 mCi, 40 mCi, 50 mCi, 60 mCi, 70 mCi, 80 mCi, 90 mCi, 100 mCi, 110 mCi, 120 mCi, 130 mCi, 140 mCi, 150 mCi, 160 mCi, 170 mCi, 180 mCi, 190 mCi, 200 mCi, 250 mCi, 300 mCi, 350 mCi, 400 mCi, 450 mCi, 500 mCi. According to certain aspects, an 131I-labeled targeting agent may be administered in an amount that includes any combination of upper and lower limits as described herein, such as from at least 1 mCi to at or below 100 mCi, or at least 10 mCi to at or below 200 mCi.
[0053] While various radionuclides have been disclosed in detail herein, any of those disclosed herein may used for radiolabeling the targeting agents (to form a radiotherapeutic or radioimmunotherapy agent) according to the various aspects of presently disclosed invention.
[0054] According to certain aspects of the presently disclosed invention, a majority of the radiotherapeutic targeting agent composition (antibody, antibody fragment, peptide, small molecule, etc.) administered to a subject may consist of non-labeled targeting agent, with the minority being the radiolabeled targeting agent. The ratio of labeled to non-labeled targeting agent can be adjusted using known methods. According to certain aspects, the radiotherapeutic (e.g., radioimmunotherapy) may include a labeled fraction and an unlabeled fraction, wherein the ratio of labeled : unlabeled may be from about 0.01 : 10 to 1 : 1, such as 0.1 : 10 to 1 : 1 labeled : unlabeled. Moreover, the radiotherapeutic may be provided as a single dose composition tailored to a specific patient, wherein the amount of labeled and unlabeled targeting agent in the composition may depend on at least a patient weight, age, gender, diagnosis, and/or disease state or health status, such as detailed in International Publication No. WO 2016/187514.
[0055] This inventive combination of a radiolabeled fraction and a non-radiolab eled fraction of the targeting agent of the radiotherapeutic allows the composition to be tailored to a specific patient. For example, when the radiotherapeutic is a radioimmunotherapy (i.e., the targeting agent is an antibody), each of the radiation dose and the protein dose of the antibody may be personalized to that patient based on at least one patient specific parameter. As such, each vial of the composition may be made for a specific patient, where the entire content of the vial is delivered to that patient in a single dose. When a treatment regime calls for multiple doses, each dose may be formulated as a patient specific dose in a vial to be administered to the patient as a “single dose” (i.e., full contents of the vial administered at one time). The subsequent dose may be formulated in a similar manner, such that each dose in the regime provides a patient specific dose in a single dose container. One of the advantages of the disclosed composition is that there will be no left-over radiation that would need to be discarded or handled by the medical personnel, e.g., no dilution, or other manipulation to obtain a dose for the patient. When provided in a single dose container, the container is simply placed in-line in an infusion tubing set for infusion to the patient. Moreover, the volume can be standardized so that there is a greatly reduced possibility of medical error (i.e., delivery of an incorrect dose, as the entire volume of the composition is to be administered in one infusion).
[0056] Accordingly to certain aspects, when the radiotherapeutic targeting agent is an antibody, it may be provided in a total protein amount of up to lOOmg, such as up to 60 mg, such as 5mg to 45mg, or a total protein amount of between 0.01 mg/kg patient weight to 16.0 mg/kg patient weight, such as between 0.01 mg/kg patient weight to 10.0 mg/kg, or between 0.05 mg/kg patient weight to 5.0 mg/kg, or between 0.01 mg/kg patient weight to 1.0 mg/kg, or between 0.01 mg/kg patient weight to 0.6 mg/kg patient weight, or 0.01 mg/kg patient weight, 0.015 mg/kg patient weight, 0.02 mg/kg patient weight, or 0.04 mg/kg patient weight, or 0.06 mg/kg patient weight.
[0057] According to certain aspects, the effective amount of an antibody in the radioimmunotherapy may include a total protein amount of at or less than 10mg/m2 (mg/m2 patient body surface area), such as about 6mg/m2, or 3mg/m2, or 2mg/m2, such as 1-10 mg/m2 or 2-10 mg/m2
[0058] As used herein, the term “subject” includes, without limitation, a mammal such as a human, a non-human primate, a dog, a cat, a horse, a sheep, a goat, a cow, a rabbit, a pig, a rat and a mouse. Where the subject is human, the subject can be of any age. For example, the subject can be 60 years or older, 65 or older, 70 or older, 75 or older, 80 or older, 85 or older, or 90 or older. Alternatively, the subject can be 50 years or younger, 45 or younger, 40 or younger, 35 or younger, 30 or younger, 25 or younger, or 20 or younger. For a human subject afflicted with cancer, the subject can be newly diagnosed, or relapsed and/or refractory, or in remission. The cancer may, for example, be metastatic or non-metastatic. The various aspects of the present invention may, for example, be for the treatment of a patient/ subject having an elevated level of circulating MDSCs, for example, a pati ent/ subject whose circulating MDSC level has been determined, for example, by immunoprofiling flow cytometry, to have a circulating MDSC level above a predetermined threshold level, for example, above the typical levels for a healthy (non-cancer) comparator group, such as an age-matched (or age group matched) healthy (non-cancer) comparator group. Accordingly, any of the methods of treatment disclosed herein may further include a step of determining the patient’ s/subject’s circulating MDSC level before administering a radiolabeled CD33 targeting agent to deplete MDSCs in the treatment of a proliferative disorder such as a solid tumor. The treatment step may, for example, be performed if the circulating MDSC exceeds the predetermined threshold value. Similarly, any of the methods of treatment disclosed herein may further include a step of determining the patient’ s/subject’s circulating MDSC level,
for example, by immunoprofiling flow cytometry, after administering a radiolabeled CD33 targeting agent to deplete MDSCs in the treatment of a proliferative disorder such as a solid tumor in order to determine the extent of depletion of MDSCs resulting from the treatment. Such profiling may, for example, be performed according to the methods disclosed in Apodaca et al., Characterization of a whole blood assay for quantifying myeloid-derived suppressor cells, Journal for ImmunoTherapy of Cancer volume 7, Article number: 230 (2019) in which, in brief, total MDSC are defined as CD45 + CD3’CD19’CD20’CD56’CD16’HLA-DR’CD33 + CD1 lb + cells, while the monocytic (M-MDSC) and polymorphonuclear subsets are defined as CD14+ or CD15+, respectively.
[0059] As used herein, “treating” a subject afflicted with a cancer may include, without limitation, (i) slowing, stopping or reversing the cancer's progression, (ii) slowing, stopping or reversing the progression of the cancer’s symptoms, (iii) reducing the likelihood of the cancer’s recurrence, and/or (iv) reducing the likelihood that the cancer’s symptoms will recur. According to certain preferred aspects, treating a subject afflicted with a cancer means (i) reversing the cancer's progression, ideally to the point of eliminating the cancer, and/or (ii) reversing the progression of the cancer’s symptoms, ideally to the point of eliminating the symptoms, and/or (iii) reducing or eliminating the likelihood of relapse (i.e., consolidation, which ideally results in the destruction of any remaining cancer cells).
[0060] “Therapeutically effective amount” or “effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve a therapeutic result. A therapeutically effective amount may vary according to factors such as the disease state, age, gender, and weight of the individual, and the ability of a therapeutic or a combination of therapeutics to elicit a desired response in the individual. Exemplary indicators of an effective therapeutic or combination of therapeutics include, for example, improved well-being of the subject/patient, reduction in a tumor burden, arrested or slowed growth of a tumor, and/or absence of metastasis of cancer cells to other locations in the body. According to certain aspects, “therapeutically effective amount” or “effective amount” refers to an amount of the therapeutic agent or combination of therapeutic agents that may deplete, cause a reduction in the overall number of and/or slow the proliferation of MDSCs and/or cancer cells, such as a reduction in the burden or amount of CD33 -expressing MDSC and/or cancer cells, and/or DR5 expressing-cancer
cells, and/or 5T4-expressing cancer cells, and/or HER2-expressing cancer cells, and/or HER3- expressing cancer cells
[0061] “Inhibits growth” refers to a measurable decrease or delay in the growth of a malignant cell(s) or tissue (e.g., tumor) in vitro or in vivo when contacted with a therapeutic or a combination of therapeutics, drugs and/or treatment modalities, when compared to the decrease or delay in the growth of the same cells or tissue in the absence of the therapeutic or the combination. Inhibition of growth of a malignant cell or tissue in vitro or in vivo may be at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%.
[0062] Throughout this application, various patents, patent applications, and other publications are cited. The disclosures of these patents, patent applications and other publications are hereby incorporated by reference in their entireties.
[0063] Unless otherwise defined or clear from the context in which presented, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the presently disclosed invention belongs. Although methods and materials similar or equivalent to those described herein may be used in the practice or testing described herein, suitable methods and materials are described below.
[0064] Radiotherapeutic CD33 targeting agents
[0065] The overexpression of CD33 is commonly found in myeloid-derived hematological malignancies, including AML, CML, and MDS and CD33 targeting agents are currently studied for the treatment of these disorders. However, in one aspect, the present invention provides novel compositions and methods for targeting CD33 in the treatment of proliferative disorders such as solid cancers and precancers and hematological proliferative disorders that do not have a myeloid origin, such as lymphomas and lymphocytic leukemias, and/or that do not substantially or at all express CD33 themselves.
[0066] Accordingly, in one aspect, the methods of treatment disclosed herein include administration of a radiolabeled CD33 targeting agent alone or in combination with other cancer therapeutic agents, such as radiolabeled targeting agents against cancer-associated antigens, drug conjugated targeting agents such as antibody drug conjugates against cancer-associated antigens, chemotherapy and immune checkpoint inhibition, or treatments, such as external beam radiation or brachytherapy, for the treatment of solid cancers and precancers and hematological proliferative
disorders that do not have a myeloid origin, such as lymphomas, lymphocytic and lymphocytic leukemias, and/or that do not substantially or at all express CD33.
[0067] Antibodies against human CD33, such as lintuzumab (HuM195), gemtuzumab, and vadastuximab that are known in the art may, for example, be radiolabeled for use in the various aspects of the invention. The full-length amino acid sequence of the lintuzumab light chain, including the leader sequence, is disclosed as SEQ ID NO: 114 herein. The mature light chain begins with the aspartic acid (D) residue at position 20. The full-length amino acid sequence of the lintuzumab heavy chain, including the leader sequence, is disclosed as SEQ ID NO: 115 herein. The mature heavy chain begins with the glutamine (Q) residue at position 20. Lintuzumab is also commercially available from Creative Biolabs (Shirley, NY USA) as Catalog No TAB-756. Gemtuzumab is commercially available from Creative Biolabs as Catalog No. TAB-013. Vadastuximab is commercially available from Creative Biolabs as Catalog No. TAB-471CQ. Such anti-CD33 antibodies or antigen binding fragments thereof may, for example, be radiolabeled with an alpha-emitting radionuclide, such as Actinium-225, to provide a radiolabeled CD33 targeting agent that is highly targeted for use in various aspects of the invention. The 225 Ac payload delivers high energy alpha particles directly to the CD33 expressing cells, such as MDSCs, in circulation or resident in tumors, generating lethal double strand DNA breaks without necessitating significant payload accumulation within the tumor cell, and providing therapeutic efficacy for even low target antigen expressing tumors. Due to its short path length, the range of its high energy alpha particle emission is only a few cell diameters thick, thereby limiting damage to nearby normal tissues. The radiolabeled antibody may, for example, be or include 225 Ac lintuzumab satetraxetan.
[0068] DR5 targeting agents
[0069] Humans express two functional death receptors (DR4 and DR5), also known as tumor necrosis factor-related apoptosis-inducing ligand receptors 1 and 2 (TRAIL-R1 and -R2), which become upregulated on cell surfaces as part of an immune surveillance mechanism to alert the immune system of the presence of virally infected or transformed cells. TRAIL, the ligand that binds death receptors, is expressed on immune cells such as T-cells and NK cells, and upon engagement of DR4 or DR5, TRAIL trimerizes the death receptor and induces an apoptotic cascade that is independent of p53 (Naoum, et el. (2017) Oncol. Rev. 11, 332). While DR4 and DR5 can be found expressed at low levels in some normal tissues (Spierings, et al. (2004) J.
Histochem. Cytochem., 52, 821-31), they are upregulated on the surface of many tumor tissues including renal (kidney), lung, acute myeloid leukemia (AML), cervical, and breast cancers.
[0070] Following the identification of death receptors as a viable therapeutic target, many DR4 and DR5-targeting antibodies and recombinant TRAIL (rTRAIL) proteins have been developed, including mapatumumab, conatumumab, lexatumumab, tigatuzumab, drozitumab, and LBY-135. Tigatuzumab has been evaluated in a Phase 2 clinical trial in triple negative breast cancer (TNBC) patients, wherein the expression of DR5 on both primary and metastatic tumor samples was confirmed, demonstrating that DR5 is a suitable target for directing therapeutic intervention in this cancer type and metastatic disease (Forero-Torres, et al. (2015) Clin. Cancer Res., 21, 2722-9).
[0071] In treatment regimens targeting solid tumors, such as breast cancer, radiation is typically used only to treat the site of the primary tumor after surgical resection and is only used palliatively for metastases. An alternative approach to achieve targeted delivery of radiation to both primary and metastatic tumors while sparing normal tissues from radiation toxicity is through use of a MDSC-targeting radiotherapeutic, as disclosed herein, in combination with a second agent directed to the tumor related antigen such as DR5.
[0072] Accordingly, DR5 targeting agents that may be employed in the present invention include at least antibodies, antibody fragments, antibody mimetics, peptides, ligands, and/or small molecules, which may be radiolabeled, drug-conjugated or unlabeled if therapeutically active without labeling. Such DR5 targeting agents may be used in combination with radiolabeled CD33 targeting agents of the invention for the treatment of DR5 -expressing cancers. Exemplary radiotherapeutics include ARCs targeted to DR5, such as radiolabeled monoclonal antibodies against DR5 (e.g., 225 Ac-labeled anti-DR5 mAb). Exemplary antibodies against DR5 that may be used include at least tigatuzumab (CD-1008) from Daiichi Sankyo, conatumumab (AMG 655) from Amgen, mapatumumab from AstraZeneca, lexatumumab (also known as ETR2-ST01) from Creative Biolabs (Shirley, NY, USA), LBY-135, and drozitumab from Genentech. Initial studies in mouse models may use the surrogate mouse antibody TRA-8 or MD5-1.
[0073] 5T4 targeting agents
[0074] Trophoblast glycoprotein (TBPG), also known as 5T4, is a glycoprotein that is categorized as an oncofetal antigen, meaning it is expressed on cells during fetal developmental stages but is not expressed in adult tissues except on tumors (Southall, P. J. et al. (1990) Br. J.
Cancer 61, 89-95). 5T4 is expressed widely across many different tumor types, including lung, breast, head and neck, colorectal, bladder, ovarian, pancreatic, and many others (Stem, P. L. & Harrop, R. (2017) Cancer Immunol. Immunother. 66, 415-426). Additional characteristics that make it amenable for targeting with a radiotherapeutic include a high rate of internalization, expression on the tumor periphery, and expression on cancer stem cells.
[0075] Several attempts have been made to develop therapeutics against tumors through 5T4 expression, including antibodies, vaccines, and cellular therapies. While an unlabeled 5T4- targeting antibody is not an effective therapeutic (Boghaert, et al. (2008) Int. J. Oncol. 32, 221- 234), armed antibodies such as antibody drug-conjugates (ADC) with toxins have been developed and tested preclinically. Only an auristatin based ADC developed by Pfizer was tested clinically, with no objective responses reported and toxicity related to the auristatin conjugate observed (Shapiro, G. I. et al. (2017) Invest. New Drugs 35, 315-323).
[0076] Accordingly, 5T4 targeting agents that may be employed in the present invention include at least antibodies, antibody fragments, antibody mimetics, peptides, ligands, and/or small molecules, which may be radiolabeled, drug-conjugated or unlabeled if therapeutically active without labeling. Such 5T4 targeting agents may be used in combination with radiolabeled CD33 targeting agents of the invention for the treatment of 5T4 -expressing cancers. Exemplary radiotherapeutics that may be used include ARCs targeted to 5T4, such as radiolabeled monoclonal antibodies against 5T4 (e.g., 225 Ac-labeled anti-5T4 mAb). Exemplary antibodies against 5T4 include at least MED 10641 developed by Medimmune/AstraZeneca; ALG.APV-527, developed by Aptevo Therapeutics/ Alligator Bioscience; Tb535, developed by Biotecnol/Chiome Bioscience; H6-DM5 developed by Guangdong Zhongsheng Pharmaceuticals; and ZV0508 developed by Zova Biotherapeutics.
[0077] HER2 targeting agents
[0078] According to certain aspects, the anti-HER2 antibody employed may be Trastuzumab or a different antibody that binds to an epitope of HER2 recognized by Trastuzumab and/or the antibody employed may be Pertuzumab or a different antibody that binds to an epitope of HER2 recognized by Pertuzumab, or antigen-binding fragments of the aforementioned antibodies. According to certain aspects, the anti-HER2 antibody may also be a multi-specific antibody, such as bispecific antibody, against any available epitope of HER3/HER2 such as MM-
111 and MM-141/Istiratumab from Merrimack Pharmaceuticals, MCLA-128 from Merus NV, and MEHD7945A/Duligotumab from Genentech.
[0079] The amino acid sequences of the heavy chain and the light chain of Trastuzumab reported by DrugBank Online are: heavy chain (SEQ ID NO: 116) and light chain (SEQ ID NO: 117) and a HER2 binding antibody including one or both of said chains may be embodied in or used in the various embodiments of the invention. The amino acid sequences of the heavy chain and the light chain of Pertuzumab reported by DrugBank Online are: heavy chain (SEQ ID NO: 118) and light chain (SEQ ID NO: 119) and a HER2 binding antibody including one or both of said chains may be embodied in or used in the various embodiments of the invention.
[0080] Accordingly, HER2 targeting agents that may be employed in the present invention include at least antibodies, antibody fragments, antibody mimetics, peptides, ligands, and/or small molecules, which may be radiolabeled, drug-conjugated, or unlabeled if therapeutically active without labeling. Such HER2 targeting agents may be used in combination with radiolabeled CD33 targeting agents of the invention for the treatment of HER2-expressing cancers. Exemplary radiotherapeutics include ARCs targeted to HER2, such as radiolabeled monoclonal antibodies against HER2 such as radiolabeled Trastuzumab and/or radiolabeled Pertuzumab. Applicants have successfully conjugated Trastuzumab with p-SCN-DOTA and radiolabeled the composition with 225 Ac or 177LU. Exemplary ADCs targeting HER2 that may be used include fam-trastuzumab deruxtecan-nxki (Enhertu®; AstraZeneca/Daiichi Sankyo) and Trastuzumab emtansine (Roche/ Genentech) .
[0081] HER3 targeting agents
[0082] The human epidermal growth factor receptor 3 (ErbB3, also known as HER3) is a receptor protein tyrosine kinase belonging to the epidermal growth factor receptor (EGFR) subfamily of receptor protein tyrosine kinases. The transmembrane receptor HER3 consists of an extracellular ligand-binding domain having a dimerization domain therein, a transmembrane domain, an intracellular protein tyrosine kinase-like domain and a C-terminal phosphorylation domain. Unlike the other HER family members, the kinase domain of HER3 displays very low intrinsic kinase activity.
[0083] The ligands neuregulin 1 or neuregulin 2 bind to the extracellular domain of HER3 and activate receptor-mediated signaling pathway by promoting dimerization with other dimerization partners such as HER2. Heterodimerization results in activation and
transphosphorylation of HER3's intracellular domain and is a means not only for signal diversification but also signal amplification. In addition, HER3 heterodimerization can occur in the absence of activating ligands and this is commonly termed ligand-independent HER3 activation. For example, when HER2 is expressed at high levels as a result of gene amplification (e.g. in breast, lung, ovarian or gastric cancer) spontaneous HER2/HER3 dimers can be formed. In this situation the HER2/HER3 is considered the most active ErbB signaling dimer and is therefore highly transforming.
[0084] Increased HER3 has been found in several types of cancer such as breast, lung, gastrointestinal and pancreatic cancers. Significantly, a correlation between the expression of HER2/HER3 and the progression from a non-invasive to an invasive stage has been shown (Alimandi et al. (1995) Oncogene 10: 1813-1821; DeFazio et al. (2000) Cancer 87:487-498).
[0085] Accordingly, HER3 targeting agents that may be employed in the present invention include at least antibodies, antibody fragments, antibody mimetics, peptides, ligands, and/or small molecules, which may be radiolabeled, drug-conjugated or unlabeled if therapeutically active without labeling. Such HER3 targeting agents may be used in combination with radiolabeled CD33 targeting agents of the invention for the treatment of HER3 -expressing cancers. Exemplary antibodies against HER3 that may be used include at least the monoclonal antibodies Patritumab, Seribantumab, Lumretuzumab, Elgemtumab, US-1402, AV-203, CDX-3379, and GSK2849330, or the bispecific antibodies MM-111, MM-141/Istiratumab, MCLA-128, and MEHD7945A/Duligotumab. Exemplary radiotherapeutics include ARCs targeted to HER3, such as radiolabeled forms of any of the aforementioned monoclonal antibodies against HER3 (e.g., 225Ac-anti-HER3 mAb) or radiolabeled antigen-binding fragments of the antibodies. An exemplary ADC targeting HER3 that may be used is patritumab deruxtecan (U3-1402, HER3- DXd; Daiichi Sankyo).
[0086] The following exemplary HER3 targeting agents may also be used, radiolabeled, drug-conjugated or unlabeled if therapeutically active without labeling, in combination or conjunction with a radiolabeled CD33 targeting agent to treat a cancer associated with MDSCs.
[0087] An exemplary HER3 antibody includes a murine monoclonal antibody against HER3 including a heavy chain having the amino acid sequence as set forth in SEQ ID NOV or 11 and/or a light chain having the amino acid sequence as set forth in SEQ ID NO: 10 or 12, or an antibody such as a humanized antibody derived from one or more of said sequences. An exemplary
HER3 antibody that may be radiolabeled and embodied in and/or used in the presently disclosed invention may include or a heavy chain with an N-terminal region having the sequence set forth in SEQ ID NO: 13 and/or a light chain with an N-terminal region having the sequence as set forth in SEQ ID NO: 14. A HER3 antibody that may be similarly embodied or used in various aspect of the invention may, for example, include the heavy chain variable region having the amino acid sequence as set forth in SEQ ID NO:7, and/or a light chain variable region having an amino acid sequence as set forth in SEQ ID NO:8; and/or a heavy chain including one or more of CDR1, CDR2 and CDR3 having the amino acid sequences respectively set forth in SEQ ID NOS: 1-3, and/or a light chain with one or more of the CDR1, CD2 and CDR3 having the amino acid sequences respectively set forth in SEQ ID NOS:4-6. A HER3 antibody embodied in and/or used in any of the aspects of the invention may, for example, include any combination of the aforementioned light chain sequences and/or heavy chain sequences.
[0088] An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO: 15, a CDR-H2 including SEQ ID NO: 16, and a CDR-H3 including SEQ ID NO: 17, and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO: 18, a CDR-L2 including SEQ ID NO: 19, and a CDR- L3 including SEQ ID NO:20. An exemplary An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:21 and/or an immunoglobulin light chain variable region including SEQ ID NO:22. An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:23 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO:24.
[0089] An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:25, a CDR-H2 including SEQ ID NO:26, and a CDR-H3 including SEQ ID NO:27; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO:28, a CDR-L2 including SEQ ID NO:29, and a CDR- L3 including SEQ ID NO:30. An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:31 and/or an immunoglobulin light chain variable region including SEQ ID NO:32.. An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:33 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO:34
[0090] An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:35, a CDR-H2 including SEQ ID NO:36, and a CDR-H3 including SEQ ID NO:37; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO: 38, a CDR-L2 including SEQ ID NO: 39, and a CDR- L3 including SEQ ID NO:40. An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:41, and/or an immunoglobulin light chain variable region SEQ ID NO:42. An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:43 and an immunoglobulin light chain amino acid sequence of SEQ ID NO:44.
[0091] An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:45, a CDR-H2 including SEQ ID NO:46, and a CDR-H3 including SEQ ID NO:47; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO:48, a CDR-L2 including SEQ ID NO:29, and a CDR- L3 including SEQ ID NO:49. An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:50 and/or an immunoglobulin light chain variable region including SEQ ID NO:51. An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:52 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO:53.
[0092] An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:54, a CDR-H2 including SEQ ID NO:55, and a CDR-H3 including SEQ ID NO:56; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO:28, a CDR-L2 including SEQ ID NO:29, and a CDR- L3 including SEQ ID NO:30. An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:57 and/or an immunoglobulin light chain variable region including SEQ ID NO: 58. An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:59 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO: 60.
[0093] An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:61, a CDR-H2 including SEQ ID NO:62, and a CDR-H3 including SEQ ID NO:63; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO:64, a CDR-L2 including SEQ ID NO:65, and a CDR-
L3 including SEQ ID NO:66. An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:67, and/or an immunoglobulin light chain variable region including SEQ ID NO: 68. An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO: 69 and an immunoglobulin light chain amino acid sequence of SEQ ID NO:70.
[0094] An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:71, a CDR-H2 including SEQ ID NO:72, and a CDR-H3 including SEQ ID NO:66; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO:28, a CDR-L2 including SEQ ID NO:29, and a CDR- L3 including SEQ ID NO:30. An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:73, and/or an immunoglobulin light chain variable region including SEQ ID NO:74. An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:75 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO:76.
[0095] An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:77 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO:78.
[0096] An exemplary HER3 antibody includes an immunoglobulin light chain variable region including SEQ ID NOS: 86, 87, 88, 89, 90 or 91 and/or a heavy chain variable region including SEQ ID NOS:79, 80, 81, 82, 83, 84 or 85.
[0097] An exemplary HER3 antibody includes an immunoglobulin heavy chain sequence including SEQ ID NO:92, 94, 95, 98 or 99 and/or an immunoglobulin light chain sequence including SEQ ID NO: 93, 96, 97, 100 or 101.
[0098] Exemplary HER3 antibodies also include Barecetamab (ISU104) from Isu Abxis Co and any of the HER3 antibodies disclosed in U.S. Patent No. 10,413,607.
[0099] Exemplary HER3 antibodies also include HMBD-001 (10D1F) from Hummingbird Bioscience Pte. and any of the HER3 antibodies disclosed in International Pub. Nos. WO 2019185164 and WO2019185878, U.S. Patent 10,662,241; and U.S. Pub. Nos. 20190300624, 20210024651, and 20200308275.
[0100] Exemplary HER3 antibodies also include the HER2/HER3 bispecific antibody MCLA-128 (i.e., Zenocutuzumab) from Merus N.V.; and any of the HER3 antibodies, whether
monospecific or multi-specific, disclosed in U.S. Pub. Nos. 20210206875, 20210155698, 20200102393, 20170058035, and 20170037145.
[0101] Exemplary HER3 antibodies also include the HER3 antibody Patritumab (U3- 1287), an antibody including heavy chain sequence SEQ ID NO: 106 and/or light chain sequence SEQ ID NO: 107 which are reported chains of Patritumab, and any of the HER3 antibodies disclosed in U.S. Patent Nos. 9,249,230 and 7,705,130 and International Pub. No. W02007077028.
[0102] Exemplary HER3 antibodies also include the HER3 antibody MM-121 and any of the HER3 antibodies disclosed in U.S. Patent No. 7,846,440 and International Pub. No. W02008100624.Exemplary HER3 antibodies also include the EGFR/HER3 bispecific antibody DL1 and any of the HER3 antibodies, whether monospecific or multi-specific, disclosed in U.S. Patent Nos. 9,327,035 and 8,597,652, U.S. Pub. No. 20140193414, and International Pub. No. W02010108127.
[0103] Exemplary HER3 antibodies also include the HER2/HER3 bispecific antibody MM-111 and any of the HER3 antibodies, whether monospecific or multi-specific, disclosed in U.S. Pub. Nos. 20130183311 and 20090246206 and International Pub. Nos. W02006091209 and W02005117973.
[0104] According to certain aspects, the HER3 targeting agent includes an anti-HER3 antibody that binds to an epitope of HER3 recognized by Patritumab from Daiichi Sankyo, Seribantumab (MM-121) from Merrimack Pharmaceuticals, Lumretuzumab from Roche, Elgemtumab from Novartis, GSK2849330 from GlaxoSmithKline, CDX-3379 of Celldex Therapeutics, EV20 and MP-RM-1 from MediPharma, Barecetamab (ISU104) from Isu Abxis Co., HMBD-001 (10D1F) from Hummingbird Bioscience Pte., REGN1400 from Regeneron Pharmaceuticals, and/or AV-203 from AVEO Oncology. According to certain aspects, the anti- HER3 antibody is selected from one or more of Patritumab, Seribantumab or an antibody including heavy chain sequence SEQ ID NO: 108 and/or light chain sequence SEQ ID NO: 109 which are reported for Seribantumab, Lumretuzumab or an antibody including heavy chain sequence SEQ ID NO: 110 and/or light chain sequence SEQ ID NO: 111 which are reported for Lumretuzumab, Elgemtumab or an antibody including heavy chain sequence SEQ ID NO: 112 and/or light chain sequence SEQ ID NO: 113 which are reported for Elgemtumab, AV-203, CDX-3379, GSK2849330, EV20, MP-RM-1, ISU104, HMBD-001 (10D1F), and REGN1400.
[0105] TROP2 targeting agents
[0106] Tumor-associated calcium signal transducer 2, also known as Trop-2 and as epithelial glycoprotein- 1 antigen (EGP-1), is a protein encoded by the human TACSTD2 gene which is overexpressed in carcinomas. Overexpression of TROP2 is associated with poor survival in human solid tumor patients. Cancers that may be targeted with a TROP2 targeting agent and treated with a radiolabeled or drug-conjugated TROP2 targeting agent in conjunction with a radiolabeled CD33 targeting agent according to the invention include but are not limited to carcinomas, squamous cell carcinomas, adenocarcinomas, non-small cell lung cancer (NSCLC), Small-cell lung cancer (SCLC), colorectal cancer, gastric adenocarcinoma, esophageal cancer, hepatocellular carcinoma, cholangiocarcinoma, ovarian epithelial cancer, breast cancer, metastatic breast cancer, triple negative breast cancer (TNBC), prostate cancer, hormone-refractory prostate cancer, pancreatic ductal adenocarcinoma, head and neck cancers, renal cell cancer, urinary bladder neoplasms, cervical cancer, endometrial cancer, uterine cancer, follicular thyroid cancer, and glioblastoma multiforme.
[0107] Exemplary TROP2 targeting agents that may be radiolabeled and/or drug- conjugated and used in conjunction with a radiolabeled CD33 targeting agent in the treatment of a proliferative disorder include the monoclonal antibodies Sacituzumab and Datopotamab, antibodies having one or both of the heavy chain and light chain of said antibodies, and antibodies having one or both of the heavy chain CDRs and the light chain CDRs of said antibodies, or TROP2-binding fragments of any of the aforementioned antibodies. Sacituzumab biosimilar is commercially available as Catalog No. A2175 from BioVision Incorporated (an Abeam company, Waltham, MA, USA). Datopotamab biosimilar is commercially available as Catalog No. PX- TA1653 from ProteoGenix (Schiltigheim, France). The TROP2 targeting agent used in conjunction with a radiolabeled CD33 targeting agent may, for example, include the ADC Sacituzumab govitecan (Trodelvy®, Daiichi Sankyo).
[0108] Exemplary TROP2 targeting agents that may be radiolabeled and/or drug conjugated and used in conjunction with a radiolabeled CD33 targetign agent in the treatment of a proliferative disorder include a monoclonal antibody having a heavy chain SEQ ID NO: 120 and/or a light chain SEQ ID NO: 125 (reported as the heavy and light chains of Sacituzumab), or an antibody including one or both of the heavy chain variable region (SEQ ID NO: 121) or the light chain variable region (SEQ ID NO: 126) of said chains, or an antibody including 1, 2, or 3 of the
heavy chain CDRs of said heavy chain (CDR H1-3: SEQ ID NOS: 122-124 respectively) and/or 1, 2 or 3 of the light chain CDRs of said light chain (CDR Ll-3 : SEQ ID NOS: 127-129 respectively), and any of the anti-human TROP antibodies disclosed in Pat. No. 7,238,785 (hRS7), U.S. Pat. No. 9,492,566, U.S. Pat. No. 10,195,517, or U.S. Pat. No. 11,116,846, or an antibody including one or both of the heavy chain and light chain variable regions of said antibodies, or an antibody including a heavy chain including 1, 2 or 3 of the heavy chain CDRs of any of said antibodies and/or a light chain including 1, 2, or 3 of the light chain CDRs of any of said antibodies.
[0109] Further exemplary TROP2 targeting agents that may be radiolabeled and/or drug conjugated and used in conjunction with a radiolabeled CD33 targeting agent in the treatment of a proliferative disorder include a monoclonal antibody heavy chain SEQ ID NO: 130 and/or a light chain SEQ ID NO: 135 (reported as the heavy and light chains of Datopotamab), or an antibody including one or both of the variable region of said heavy chain (SEQ ID NO: 131) and the variable region of said light chain (SEQ ID NO: 136, or an antibody including 1, 2, or 3 of the heavy chain CDRs of said heavy chain (CDRs 1-3: SEQ ID NOS: 132-134 respectively) and/or 1, 2 or 3 of the light chain CDRs of the said light chain (CDRH1-3: SEQ ID NOS: 137-139 respectively), and any of the anti-human TROP antibodies disclosed in IntT Pub. No. W02015098099 or U.S. Pub. No. 20210238303, or an antibody including one or both of the heavy chain and light chain variable regions of said antibodies, or an antibody including a heavy chain including 1, 2 or 3 of the heavy chain CDRs of any of said antibodies and/or a light chain including 1, 2, or 3 of the light chain CDRs of any of said antibodies.
[0110] Targeting agents for the treatment of lymphomas and lymphocytic leukemias
[0111] A number of different antigens including CD20, CD30, CD22, CD79 and CD19 may be used to preferentially target lymphoma and lymphocytic leukemia cells.
[0112] Accordingly, targeting agents that may be employed in the present invention include at least antibodies, antibody fragments, antibody mimetics peptides, and/or small molecules that target one or more of CD30, CD22, CD79 and CD19, and which may be radiolabeled, drug-conjugated or unlabeled. Such targeting agents may be used in combination with radiolabeled CD33 targeting agents of the invention for the treatment of CD20-, CD30-, CD22-, CD79- and CD19-expressing cancers. Exemplary monoclonal antibodies include: Rituximab (Rituxan®), Tositumomab (Bexxar®), and Ofatumumab (Arzerra®) targeting CD20; Brentuximab targeting CD30; Inotuzumab targeting CD22; Polatuzumab targeting CD79; and
Loncastuximab targeting CD 19. Exemplary radiotherapeutics that may be used include ARCs targeting one or more of CD20, CD30, CD22, CD79 and CD19, such as radiolabeled forms of any of the aforementioned monoclonal antibodies against CD20, CD30, CD22, CD79 or CD19 respectively or radiolabeled antigen-binding fragments thereof, for example, 225 Ac labeled forms thereof. Table 2 shows exemplary FDA-approved ADCs, their approved indications, and their targets that may be used in combination with a radiolabeled CD33 targeting agent according to the invention for the treatment of lymphomas and lymphocytic leukemias for cancers or precancerous proliferative disorders expressing the respective target for the agent.
TABLE 2
[0113] MU Cl targeting agents
[0114] Exemplary MUC1 targeting agents that may be radiolabeled and used in combination or conjunction with a radiolabeled CD33 targeting agent such as any of those disclosed herein for the treatment of a proliferative disorder such as a MUC1 expressing cancer, include hTAB004 (OncoTAb, Inc.) and any of the anti-MUCl antibodies disclosed in any of U.S. Pub. No. 20200061216 and U.S. Patent Nos.: 8,518,405; 9,090,698; 9,217,038; 9,546,217; 10,017,580; 10,507,251 10,517,966; 10,919,973; 11,136,410; and 11,161,911. An exemplary radiolabeled MUC1 targeting agent that may be used in combination or conjunction with a radiolabeled CD33 targeting agent according to the invention is 90Y IMMU-107 (hPAM4-Cide; Immunomedics, Inc.; Gilead Sciences, Inc.), or 177Lu or 225 Ac alternatively labeled versions thereof. Radiolabeled MUC1 targeting agents may be used in the treatment of MUC1 overexpressing cancers, such as MUC1 overexpressing solid tumors, such as pancreatic cancer,
locally advanced or metastatic pancreatic cancer and breast cancer, such as metastatic breast cancer, tamoxifen-resistant breast cancer, HER2-negative breast cancer, and triple negative breast cancer (TNBC).
[0115] LYPD3 (C4.4A) targeting agents
[0116] Exemplary LYPD3 (C4.4A) targeting agents that may be used, e.g., as radioconjugates or drug conjugates, in combination or conjunction with a radiolabeled CD33 targeting agent according to the invention include, for example, BAY 1129980 (a/k/a Lupartumab amadotin; Bayer AG, Germany) an Auristatin-based anti-C4.4A (LYPD3) ADC or its antibody component Lupartumab, IgGi mAb GT-002 (Glycotope GmbH, Germany) and any of those disclosed in U.S. Pub. No. 20210309711, 20210238292, 20210164985, 20180031566, 20170158775, or 20150030618, 20120321619, Canadian Patent Application No. CA3124332A1, Taiwan Application No. TW202202521A, or Int’l Pub. No. W02021260208, W02007044756, W02022042690, or WO2020138489. Such use may, for example, be for the treatment of a LYPD3 -expressing hematological or solid tumor cancer in a mammal, such as carcinomas, primary and metastatic transitional cell carcinomas (TCCs), adenocarcinomas, lung cancer, lung adenocarcinoma, non-small cell lung cancer (NSCLC), hepatocellular carcinoma (HCC), breast cancer, endocrine therapy -resistant breast cancer (such as tarn oxifen -resistant breast cancer), HER2 -positive breast cancer, triple negative breast cancer (TNBC), esophageal cancer, renal cell carcinomas, colorectal cancer, cervical cancer, head and neck cancer, urothelial cancer, skin cancer, melanoma, and acute myelogenous leukemia (AML).
[0117] It should be understood that wherever in this disclosure specific antibodies, specific antibody heavy chains and specific antibody light chains are disclosed, against CD33, 5T4, DR5, HER2, HER3, TROP2 or against any target, also intended to be disclosed for embodiment in or use in the various aspects of the invention are antibodies, such as but not limited to immunoglobulins, such as but not limited to IgG, that (i) include the heavy chain variable region of the disclosed antibody or heavy chain, (ii) include 1, 2 or 3 of the heavy chain CDRs (e.g., by Kabat definition) of the disclosed antibody or heavy chain, (iii) include the light chain variable region of the disclosed antibody or light chain, and/or (iv) include 1, 2 or 3 of the light chain CDRs (e.g., by Kabat definition) of the disclosed antibody or light chain. It should also be understood that wherever in this disclosure an antibody heavy chain or an antibody light chain is disclosed that includes an N-terminal leader sequence, also intended to be disclosed for embodiment in and
use in the various aspects of the invention are corresponding heavy chains and corresponding light chains that lack the leader sequence.
[0118] PSMA targeting agents
[0119] In one aspect of the invention a radiolabeled PSMA-targeting agent is used in combination or conjunction with a radiolabeled CD33 targeting agent for the treatment of a proliferative disorder. Radiolabeled PSMA-targeting agents that may be used include, for example, a radiolabeled anti-PSMA monoclonal antibody such as J591 labeled for example with 177LU or 225 Ac or Rosopatamab labeled for example with 177Lu or 225 Ac, or a radiolabeled PSMA- binding small molecule such as PSMA-617 labeled for example with 177Lu or 225 Ac, PSMA I&T labeled for example with 177Lu or 225 Ac, FrhPSMA-7 labeled for example with 177Lu, 64/67Cu- SAR-bisPSMA (Clarity Pharmaceuticals), CONV 01-a (Convergent Therapeutics, Inc.) labeled for example with 225 Ac, 177Lu-PSMA I&T-P + 225Ac-CONV01-a combination (Convergent Therapeutics, Inc.), 131I-1095 (Lantheus Holdings/Progenics Pharmaceuticals, Inc.), 131I PSMA- PK-Rx (Noria Therapeutics, Inc.; Bayer), or PSMA-R2 labeled for example with 177Lu, CTT1403 (Cancer Targeted Technology LLC) labeled for example with 177Lu, PNT2002 / Lu-177-PSMA- I&T (Point Biopharma Global Inc.), PNT2002 / Lu-177-PSMA-I&T + 225Ac-J591, TLX591 (177Lu-Rosopatamab; Telix Pharmaceuticals Ltd.), TLX-591-CHO (Telix Pharmaceuticals Ltd.), and 177LU-EB-PSMA-617 (Sinotau Radiopharmaceutical). Such agents may, for example, be used in combination or conjunction with a radiolabeled CD33 targeting agent for the treatment of prostate cancer, such as metastatic prostate cancer, castration-resistant prostate cancer (CRPC), metastatic CRPC (mCRPC), and/or hormone therapy resistant prostate cancer (anti-androgen therapy resistant prostate cancer). Any of the agents that include DOTA or a DOTA derivative as a chelator may alternatively be labeled with any therapeutically active radionuclide that can be chelated by DOTA, such as 225 Ac, 177Lu and 90Y.
[0120] Other radiolabeled cancer targeting agents
[0121] Still other radiolabeled cancer targeting agents may be used in combination or conjunction with a radiolabeled CD33 targeting agent, such as any of the following radiolabeled targeting agents:
[0122] a radiolabeled FAP targeting agent such as 177Lu-FAP-2286 (Clovis Oncology, Inc.) to treat, for example, solid tumors or any of the cancers disclosed herein;
[0123] a radiolabeled CCK2R targeting agents such as DEBIO 1124 / 177Lu-DOTA-PP- F11N (Debiopharm International SA) to treat, for example, advanced, unresectable pulmonary extrapulmonary small cell carcinoma, and thyroid cancer such as metastatic thyroid cancer, or any of the cancers disclosed herein;
[0124] a radiolabeled CDH3 (cadherin-3, P-cadherin) targeting agent such as 90Y labeled FF-21101 (FujiFilm Holdings Corporation / FujiFilm Toyama Chemical) to treat, for example, solid tumors such as epithelial ovarian peritoneal or fallopian tube carcinoma, TNBC, head and neck squamous cell carcinoma (HNSCC), cholangiocarcinoma, pancreatic, colorectal cancer, or any of the cancers disclosed herein;
[0125] a radiolabeled IGF-R1 targeting agent such as 225 Ac FPI-1434 (Fusion Pharmaceuticals, Inc.) to treat, for example, solid tumors expressing IGF-R1, or any of the cancers disclosed herein;
[0126] a radiolabeled CEACAM5 targeting agent such as 90Y-hMN14 and 90Y TF2 (Immunomedics, Inc.; Gilead Sciences Inc.) to treat, for example, solid tumors such as colon cancer, colorectal cancer, pancreatic cancer, breast cancer such as HER-negative breast cancer, and thyroid cancer such medullary thyroid carcinoma, or any of the cancers disclosed herein;
[0127] a radiolabeled CD22 targeting agent such as IMMU-102 (90Y-epratuzumab) (Immunomedics, Inc.; Gilead Sciences Inc.) to treat, for example, hematological malignancies such as CD22-positive acute lymphoblastic leukemia, non-Hodgkin lymphoma (NHL), stage in/IV DLBCL, follicular lymphoma, or any of the cancers disclosed herein;
[0128] a radiolabeled SSTR2 targeting agent such as Lutathera™ (lutetium Lu 177 dotatate; 177Lu-DOTAO-Tyr3-Octreotate; Novartis), Lutathera™ (lutetium Lu 177 dotatate) + 90Y-DOTATATE combination (Novartis), 177LU-OPS201 (Ipsen Pharmaceuticals) the combination 177LU-OPS201 / 177Lu-IPN01072 (Ipsen Pharmaceuticals), EBTATE (177Lu-DOTA- EB-TATE; Molecular Targeting Technologies, Inc.), ORM2110 (AlphaMedix™; Orano Med), and PNT2003 labeled for example with 177Lu (Point Biopharma Global Inc.), for the treatment of SSTR2 expressing cancers such as solid tumors, for example, neuroendocrine tumors, small cell lung cancer, breast cancer, prostate cancer such as metastatic prostate cancer, such as metastatic castration-resistant prostate cancer, neuroendocrine tumors, gastroenteropancreatico neuroendocrine tumors (GEP-NET), as well as such as locally advanced or metastatic forms thereof, or any of the cancers disclosed herein;
[0129] a radiolabeled SSTR2 and SSTR5 targeting agent such as Solucin™ (177Lu- Edotreotide; Isotopen Technologien Miinchen AG (ITM)) to treat, for example, neuroendocrine tumors, or any of the cancers disclosed herein;
[0130] a radiolabeled Neurotensin receptor type 1 (NTSR1) targeting agent such as 177Lu- IPN01087 / 177LU-3BP-227 or (Ipsen Pharmaceuticals) to treat, for example, solid tumors expressing NTSR1 such as pancreatic ductal adenocarcinoma, colorectal cancer, gastric cancer, squamous cell carcinoma of the head and neck, bone cancer, advanced cancer, recurrent disease, metastatic tumors, or any of the cancers disclosed herein;
[0131] a radiolabeled human Kallikrein-2 (hK2) targeting agent such as JNJ-69086420 (Janssen / Janssen Pharmaceutica NV) labeled for example with 225 Ac, to treat, for example, prostate cancer such as locally advance or metastatic prostate cancer, or any of the cancers disclosed herein;
[0132] a radiolabeled NET (via norepinephrine transporter) targeting agent such as 13 'l- MIBG (Jubilant Radioharma) to treat, for example, neuroblastoma such as relapsed/refractory neuroblastoma, or any of the cancers disclosed herein;
[0133] a radiolabeled neuroepinephrine transporter targeting agents such as Azedra™ (iobenguane 131I; Lantheus Holdings/Progenics Pharmaceuticals, Inc.) to treat, for example, glioma, paraglioma, malignant pheochromocytoma/paraganglioma, and malignant relapsed/refractory pheochromocytoma/paraganglioma, or any of the cancers disclosed herein;
[0134] a radiolabeled Integrin aVp6 targeting agent such as D0TA-ABM-5G, aVp6 Binding Peptide (ABP; Luminance Biosciences, Inc.) labeled for example with 177Lu, 225 Ac or 90Y, to treat, for example, solid tumors such as pancreatic cancer, or any of the cancers disclosed herein;
[0135] a radiolabeled CD37 targeting agent such as Betalutin™ (177Lu-lilotomab satetraxetan; Nordic Nanovector ASA) to treat, for example, hematological malignancies such as lymphomas, such as follicular lymphoma or non-Hodgkin lymphoma (NHL) such as relapsed and/or refractory forms thereof, or any of the cancers disclosed herein;
[0136] a radiolabeled GRPR targeting agent such as 177Lu-NeoB (Novartis) and 212Pb- DOTAM-GRPR1 (Orano Med) to treat GRPR-expressing cancers, for example, prostate cancer, such as advanced prostate cancer, locally advanced prostate cancer, metastatic prostate cancer, and castration-resistant prostate cancer, or any of the cancers disclosed herein;
[0137] a radiolabeled CXCR4 targeting agents such as PentixaTher™ (PentixaPharm GmbH) labeled with 177Lu, 90Y or 225 Ac to treat, for example, lymphoproliferative or myeloid malignancies, including relapsed and/or refractory forms thereof, or any of the cancers disclosed herein;
[0138] a radiolabeled Tenascin-C targeting agent such as 131I-F16SIP (Philogen S.p.A.) to treat, for example, solid tumors or hematological malignancies such as any of those disclosed herein;
[0139] a radiolabeled Fibronectin extradomain B (EBD) targeting agent such as 131I- L19SIP (Philogen S.p.A.)) to treat, for example, solid tumors such as solid tumor brain metastases and non-small cell lung cancer (NSCLC), or any of the cancers disclosed herein;
[0140] a radiolabeled LAT-1 targeting agent such as 4-131Iodo-L-phenylalanine (Telix Pharmaceuticals Ltd.) to treat, for example, glioblastoma such as recurrent glioblastoma, or any of the cancers disclosed herein;
[0141] a radiolabeled Carbonic Anhydrase IX (CAIX) targeting agent such as radiolabeled Girentuxumab (cG250) such as DOTA conjugated Girentuxumab (cG250) labeled for example with 177LU (such as TLX250; Telix Pharmaceuticals Ltd.), 225 Ac or 90Y, to treat, for example, renal cell carcinoma, such as ccRCC, or any of the cancers disclosed herein;
[0142] a radiolabeled CD66 targeting agent such as 90Y-besilesomab (90Y-anti-CD66- MTR; Telix Pharmaceuticals Ltd.) to treat, for example, leukemias, myelomas and lymphomas, such as any of those disclosed herein including pediatric and adult forms, or any of the cancers disclosed herein;
[0143] a radiolabeled B7-H3 targeting agents such as radiolabeled omburtumab, such 131I- 8H9 (1311-omburtumab; Y-mAbs Therapeutics, Inc.) and 177Lu-omburtamab (Y-mAbs Therapeutics, Inc.) to treat, for example, gliomas such as non-progressive diffuse pontine gliomas, such as non-progressive diffuse pontine gliomas previously treated with external beam radiation therapy, brain tumors, central nervous system tumors, neuroblastomas, sarcomas, leptomeningeal metastasis from solid tumors, and medulloblastoma, including in pediatric and adult forms, or any of the cancers disclosed herein;
[0144] a radiolabeled NKG2D ligand targeting agent such as a radiolabeled recombinant human NKG2D Fc chimeric protein, for example, Catalog No. 1299-NK from Biotechne (R&D Systems, Inc., Minneapolis, MN, USA) which includes Phe78-Val216 of Human NKG2D
(Accession # P26718) or a radiolabeled recombinant human NKG2D Fc chimeric protein including SEQ ID NO: 140 plus/minus an amino-terminal histidine tag such as (His)e, or a radiolabeled antibody or antigen-binding fragment thereof against an NKG2D ligand such as MICA, MICB, RAET1E/ULBP4, RAET1G/ULBP5, RAET1H/ULBP2, RAET1/ULBP1, RAET1L/ULBP6, or RAET1N/ULBP3 - to treat, for example solid tumors or hematological malignancies expressing one or more NKG2D ligands, or any of the cancers disclosed herein;
[0145] a radiolabeled GD2 targeting agent such as GD2-SADA:177Lu-DOTA (Y-mAbs Therapeutics, Inc.) to treat, for example, SCLC, melanoma, sarcoma or any of the cancers disclosed herein;
[0146] a radiolabeled Folate receptor alpha (FOLR1) targeting agent such as a radiolabeled anti-FOLRl antibody such as radiolabeled Mirvetuximab or Farletuzumab, to treat, for example, solid cancers such as ovarian cancer, lung cancer, NSCLC, breast cancer, TNBC, brain cancer, glioblastoma, colorectal cancer or any of the cancers disclosed herein;
[0147] a radiolabeled Nectin-4 targeting agent, such as a radiolabeled anti-Nectin-4 monoclonal antibody such as radiolabeled Enfortumab or radiolabeled forms of any of the anti- Nectin-4 antibodies or targeting agents disclosed in U.S. Pub. No. 20210130459, U.S. Pub. No. 20200231670, U.S. Patent No. 10,675,357, or Int’l Pub. No. WO2022051591, to treat, for example, solid tumors such as urothelial carcinoma, bladder carcinoma, breast cancer, TNBC, lung cancer, NSCLC, colorectal cancer, pancreatic cancer, endometrial cancer, ovarian cancer or any of the cancers disclosed herein;
[0148] a radiolabeled CUB-domain containing protein 1 (CDCP1) targeting agent such as a radiolabeled monoclonal antibody such as radiolabeled forms of any of the CDCP1 targeting agents and antibodies disclosed in U.S. Pub. No. 20210179729, U.S. Pub. No. 20200181281, U.S. Pub. No. 20090196873, U.S. Patent. No. 8,883,159, U.S. Patent No. 9,346,886, or Int’l Pub No. WO2021087575, to treat, for example, solid cancers such as breast cancer, TNBC, lung cancer, colorectal cancer, ovarian cancer, kidney cancer, liver cancer, HCC, pancreatic cancer, skin cancer, melanoma, or a hematological malignancy such as acute myeloid leukemia, or any of the cancers disclosed herein;
[0149] a radiolabeled Glypican-3 (GPC3) targeting agent such as a radiolabeled anti-GPC3 mAb such as the radiolabeled humanized IgGi mAb GC33 (a/k/a Codrituzumab; commercially available as Catalog No. TAB-H14 from Creative Biolabs), such as 225Ac-Macropa-GC33 (Bell
et al., Glypican-3-Targeted Alpha Particle Therapy for Hepatocellular Carcinoma. Molecules. 2020 Dec 22;26(1):4.) or a radiolabeled form of any of the anti-GPC3 antibodies or other targeting agents disclosed in U.S. Patent No. 10,118,959, U.S. Patent No. 10,093,746, U.S. Patent No. 10,752,697, U.S. Patent No. 9,932,406, U.S. Patent No. 9,217,033, U.S. Patent No. 8,263,077, U.S. Patent No. 7,871,613, U.S. Patent No. 7,867,734, U.S. Pub. No. 20190046659, U.S. Pub. No. 20180243451, U.S. Pub. No. 20170369561, or U.S. Pub. No. 20150315278, to treat GPC3- expressing cancers such as hepatocellular carcinoma, ovarian clear cell carcinoma, melanoma, NSCLC, squamous cell carcinoma of the lung, hepatoblastoma, nephroblastoma (Wilms tumor), yolk sac tumor, gastric carcinoma, colorectal carcinoma, head and neck cancer, and breast cancer.
[0150] a radiolabeled urokinase plasminogen activator receptor (uPAR) targeting agent, such as a radiolabeled monoclonal antibody such as radiolabeled MNPR-101 (huATN-658) such as MNPR-101 -PTC A- Ac225 (Monopar Therapeutics, Inc., Wilmette, IL, USA) or radiolabeled forms of any of the anti-uP AR antibodies or targeting agents disclosed in U.S. Patent No. 9,029,509, U.S. Pub. No. 20080199476, U.S. Pub. No. 20040204348 or Int’l Pub. No. WO2021257552, to treat, for example, solid cancers or hematological malignancies such as any of those disclosed herein; and/or
[0151] a radiolabeled LewisY antigen (LeY) targeting agent such as a radiolabeled anti- LeY monoclonal antibody such as radiolabeled forms of 3S1931 and/or of a humanized version thereof such as Hu3S1933, or of any of monoclonal antibodies B34, BR55-2, BR55/BR96, and IGN 133, or antigen binding fragments of any of the preceding antibodies, to treat, for example, solid tumors such as squamous cell lung carcinoma, lung adenocarcinoma, ovarian carcinoma, or colorectal adenocarcinoma or any of the cancers disclosed herein.
[0152] In still further embodiments of the invention, a radiolabeled targeting agent used in combination or conjunction a radiolabeled CD33 targeting agent for the treatment of a cancer or proliferative disorder such as any of those disclosed herein in a mammal, such as a human, includes a phospholipid-based cancer targeting agent. In certain embodiments, the phospholipid-based cancer targeting agent includes any of the radioactive phospholipid metal chelates disclosed in U.S. Pub. No. 20200291049, incorporated by reference herein, such as but not limited to
(a/k/a NM600) or a pharmaceutically acceptable salt thereof, chelated with a radionuclide, such as 225 Ac, 177Lu, or 90Y.
[0153] In certain aspects, the lipid based radiolabeled targeting agent used in combination or conjunction with a CD33 targeting agent includes any of the radiolabeled phospholipid compounds disclosed in U.S. Pub. No. 20140030187 or U.S. Patent No, 6,417,384, each incorporated by reference herein, such as but not limited to
i.e., 18-(p-iodophenyl)octadecyl phosphocholine, wherein iodine is 131I (a/k/a NM404 I- 131, and CLR 131), or a pharmaceutically acceptable salt thereof. In certain aspects, the phospholipid-based radiolabeled targeting agent used in conjunction with one or more CD47 blockades includes any of the phospholipid drug conjugate compounds disclosed in U.S. Patent No. 9,480,754, incorporated by reference herein.
[0154] Administration regimes for the radiotherapeutic s)
[0155] While one exemplary radiotherapeutic disclosed herein includes only one or more radiolabeled CD33 targeting agents, aspects involving combination use of the radiolabeled CD33 targeting agent(s) with one or more radiolabeled targeting agents against different proliferative disorder-associated antigens are also provided. In addition, further aspects provide a multi-specific CD33 targeting agent, such as an antibody, having CD33 as one target specificity and at least one
other target specificity against a different cancer-associated antigen such as but not limited to DR5, 5T4, HER2, HER3, or TROP2. In certain aspects, a radiolabeled multi-specific targeting agent may include a multi-specific antibody against a first epitope of CD33 and one or more further epitopes of CD33, and/or against an epitope of CD33 and an epitope of one or more additional different antigens such as but not limited to DR5, 5T4, HER2, HER3, or TROP2. Thus, the ARC may include a multi-specific antibody including at least a first target recognition component which specifically binds to an epitope of a first epitope of CD33, and one or more further target recognition components that specifically bind to one or more different epitopes of CD33 and/or to one or more different (non-CD33) antigens such as but not limited to DR5, 5T4, HER2, HER3, or TROP2.
[0156] Different antigens that may be targeted (in addition to CD33) using radiolabeled targeting agents, drug-conjugated targeting agents such as ADCs, or as unlabeled targeting agents if therapeutically active, or targeted by use of a bi- or multi-specific targeting agent targeting CD33 and the different antigen(s) include, for example, those differentially expressed on cells involved in hematological diseases or disorders, and/or cells involved in solid tumors. Different antigens that may be targeted include, for example, DR5, 5T4, HER2 (ERBB2; Her2/neu), HER3, TROP2, mesothelin, TSHR, CD19, CD123, CD22, CD30, CD45, CD171, CD138, CS-1, CLL- 1, GD2, GD3, B-cell maturation antigen (BCMA), T antigen (T Ag), Tn Antigen (Tn Ag), prostate specific membrane antigen (PSMA), R0R1, FLT3, fibroblast activation protein (FAP), a Somatostatin receptor, Somatostatin Receptor 2 (SSTR2), Somatostatin Receptor 5 (SSTR5), gastrin-releasing peptide receptor (GRPR), NKG2D ligands (such as MICA, MICB, RAET1E/ULBP4, RAET1G/ULBP5, RAET1H/ULBP2, RAET1/ULBP1, RAET1L/ULBP6, andRAETlN/ULBP3), tenascin, tenascin-C, CEACAM5, Cadherin-3, CCK2R, Neurotensin receptor type 1 (NTSR1), human Kallikrein 2 (hK2), norepinephrine transporter, Integrin alpha-V-beta-6, CD37, CD66, CXCR4, Fibronectin extradomain B (EBD), LAT-1, Carbonic anhydrase IX (CAIX), B7-H3 (a/k/a CD276), Disialoganglioside GD2 Antigen (GD2), calreticulin, phosphatidylserine, GRP78 (BiP), TAG72, CD38, CD44v6, CEA, EPCAM, B7H3, KIT, IL-13Ra2, interleukin- 11 receptor a (IL-1 IRa), PSCA, PRSS21, VEGFR2, LewisY, CD24, platelet-derived growth factor receptor-beta (PDGFR-beta), SSEA-4, CD20, Folate receptor alpha (FRa), LYPD3 (C4.4A), MUC1, epidermal growth factor receptor (EGFR), EGFRvIII, NCAM, Prostase, PAP, ELF2M, Ephrin B2, IGF-I receptor, CAIX, LMP2, gplOO, bcr-abl, tyrosinase, EphA2, Fucosyl GM1, sLe, GM3, TGS5,
HMWMAA, o-acetyl-GD2, Folate receptor beta, TEM1/CD248, TEM7R, CLDN6, GPRC5D, CXORF61, CD97, CD 179a, ALK, Poly sialic acid, PLAC1, GloboH, NY-BR-1, UPK2, HAVCR1, ADRB3, PANX3, GPR20, LY6K, OR51E2, TARP, WT1, NY-ESO-1, LAGE-la, MAGE-A1, legumain, HPV E6,E7, MAGE Al, MAGEA3, MAGEA3/A6, ETV6-AML, sperm protein 17, XAGE1, Tie 2, MAD-CT-1, MAD-CT-2, Fos-related antigen 1, prostein, survivin and telomerase, PCT A-l/Gal ectin 8, KRAS, MelanA/MARTl, Ras mutant, hTERT, sarcoma translocation breakpoints, ML-IAP, ERG (TMPRSS2 ETS fusion gene), NA17, PAX3, Androgen receptor, Cyclin B 1, MYCN, RhoC, TRP-2, CYP1B 1, BORIS, SART3, PAX5, OY- TES 1, LCK, AKAP-4, SSX2, RAGE-1, human telomerase reverse transcriptase, RU1, RU2, intestinal carboxyl esterase, mut hsp70-2, CD79a, CD79b, CD72, LAIR1, FCAR, LILRA2, CD300LF, CLEC12A, BST2, EMR2, LY75, GPC3, FCRL5, GPA7, and IGLL1.
[0157] In bi-/multi-specific antibody aspects of the invention, the first target recognition component may, for example, include one of: a first full-length heavy chain and a first full-length light chain, a first Fab fragment, or a first single-chain variable fragment (scFvs). Moreover, the first target recognition component may be derived from any of the monoclonal antibodies disclosed herein that are directed against CD33. Similarly, the second target recognition component may include one of: a second full length heavy chain and a second full length light chain, a second Fab fragment, or a second single-chain variable fragment (scFvs) and may, for example, be derived from targeting agents targeting, DR5, 5T4, HER2, HER3, TROP2, or any of the aforementioned different cancer-associated antigens.
[0158] Also provided are methods that include administration of one or more antibody radioconjugates (ARCs) against CD33 (which may have different epitope specificities) and administration of (i) one or more further ARCs against one or more different (non-CD33) antigens, and/or (i) at least two different ARCs against different epitopes of the same different (non-CD33) antigen.
[0159] According to certain aspects, the effective amount of the radiotherapeutic(s), such as any of the ARCs disclosed herein, is a maximum tolerated dose (MTD) of the single agent or combination.
[0160] According to certain aspects, when more than one ARC is administered, the ARCs may be administered at the same time. As such, according to certain aspects of the present invention, the ARCs may be provided in a single composition. Alternatively, the two ARCs may
be administered sequentially. As such, a first ARC may be administered before a second ARC, after the second ARC, or both before and after the second ARC. Moreover, the second ARC may be administered before the first ARC, after the first ARC, or both before and after the first ARC.
[0161] According to certain aspects, the ARC may be administered according to a dosing schedule selected from the group consisting of one every 7, 10, 12, 14, 20, 24, 28, 35, and 42 days throughout a treatment period, wherein the treatment period includes at least two doses.
[0162] According to certain aspects, the ARC may be administered according to a dose schedule that includes 2 doses, such as on days 1 and 5, 6, 7, 8, 9, or 10 of a treatment period, or days 1 and 8 of a treatment period.
[0163] Administration of the ARCs of the present invention, in addition to other therapeutic agents, may be provided in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be intratracheal, intranasal, epidermal and transdermal, oral or parenteral. Parenteral administration includes intravenous, intra-arterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration. In some embodiments a slow- release preparation including the targeting agents(s) and/or other therapeutic agents may be administered. The various agents may be administered as a single treatment or in a series of treatments that continue as needed and for a duration of time that causes one or more symptoms of the cancer to be reduced or ameliorated, or that achieves another desired effect.
[0164] The dose(s) may vary, for example, depending upon the identity, size, and condition of the subject, further depending upon the route by which the composition is to be administered and the desired effect. Appropriate doses of a therapeutic agent depend upon the potency with respect to the expression or activity to be modulated. The therapeutic agents may, for example, be administered to an animal (e.g., a human) at a relatively low dose at first, with the dose subsequently increased until an appropriate response is obtained.
[0165] The radiotherapeutics disclosed herein, such as any of the ARCs, may be administered simultaneously or sequentially with the one or more additional therapeutic agents. Moreover, when more than one additional therapeutic agent is included, the additional therapeutic agents may be administered simultaneously or sequentially with each other and/or with the radiotherapeutic.
[0166] Radiolabeling the targeting agent(s)
[0167] The targeting agent(s) may be labeled with a radioisotope such as an alpha emitter (e.g., 225 Ac) through conjugation of a chelator molecule, and chelation of the radioisotope.
[0168] According to certain aspects, the radiotherapeutic may be an antibody that may have reduced disulfide bonds such as by using reducing agents, which may then be converted to dehydroalanine for the purpose of conjugating with a bifunctional chelator molecule.
[0169] According to certain aspects, the radiotherapeutic may be an antibody that may have reduced disulfide bonds, such as by use of reducing agents, followed by conjugation via aryl bridges with a bifunctional chelator molecule. For example, according to certain aspects a linker molecule such as 3,5-bis(bromomethyl)benzene may bridge the free sulfhydryl groups on the antibody.
[0170] According to certain aspects, the radiotherapeutic may be an antibody that may have certain specific existing amino acids replaced with cysteine(s) that then can be used for sitespecific labeling, for example, using the compositions and methods described in U.S. Patent No. 11,000,604, incorporated by reference herein.
[0171] According to certain aspects, the radiotherapeutic may be radiolabeled through sitespecific conjugation of suitable bifunctional chelators. Exemplary chelator molecules that may be used include at least p-SCN-Bn-DOTA, NH2-D0TA, NH2-(CH2)I-2O-DOTA, NH2-(PEG)I-20- DOTA, HS-DOTA, HS-(CH2)I-20-DOTA, HS-(PEG)I-20-DOTA, dibromo-S-(CH2)i-20-DOTA, dibromo-S-(PEG)i.20-DOTA, p-SCN-Bn-DOTP, NH2-DOTP, NH2-(CH2)I.20-DOTP, NH2- (PEG)I-2O-DOTP, HS-DOTP, HS-(CH2)I-20-DOTP, HS-(PEG)I-20-DOTP, dibromo-S-(CH2)i.20- DOTP, and dibromo-S-(PEG)i-20-DOTP.
[0172] According to certain aspects, the chelator molecules may be attached to the radiotherapeutic targeting agent through a linker molecule.
[0173] Methods for conjugation and chelation of an exemplary radionuclide are discussed in more detail in Example 1.
[0174] CD47 blockades
[0175] The additional agent(s) administered with the radiolabeled CD33 targeting agent may include one or more CD47 blockades, such as any agent that interferes with, or reduces the activity and/or signaling between CD47 (e.g., on a target cell) and SIRPa (e.g., on a phagocytic cell) through interaction with either CD47 or SIRPa. Non-limiting examples of suitable CD47 blockades include CD47 and/or SIRPa reagents, including without limitation SIRPa polypeptides,
anti-SIRPa antibodies, soluble CD47 polypeptides, and anti-CD47 antibodies or antibody fragments.
[0176] As used herein, the term “CD47 blockade” refers to any agent that reduces the binding of CD47 (e.g., on a target cell) to SIRPa (e.g., on a phagocytic cell) or otherwise downregulates the “don’t eat me” signal of the CD47-. SIRPa pathway. Non-limiting examples of suitable anti-CD47 blockades include SIRPa reagents, including without limitation SIRPa polypeptides, anti-SIRPa antibodies, soluble CD47 polypeptides, and anti-CD47 antibodies or antibody fragments. According to certain aspects, a suitable anti-CD47 agent (e.g. an anti-CD47 antibody, a SIRPa reagent, etc.) specifically binds CD47 to reduce the binding of CD47 to SIRPa.
[0177] A CD47 blockade agent for use in the methods of the invention may, for example, up-regulate phagocytosis by at least 10% (e.g., at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 100%, at least 120%, at least 140%, at least 160%, at least 180%, or at least 200%) compared to phagocytosis in the absence of the agent. Similarly, an in vitro assay for levels of tyrosine phosphorylation of SIRPa may, for example, show a decrease in phosphorylation by at least 5% (e.g., at least 10%, at least 15%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or 100%) compared to phosphorylation observed in absence of the agent.
[0178] According to certain aspects, a SIRPa reagent may include the portion of SIRPa that is sufficient to bind CD47 at a recognizable affinity, which normally lies between the signal sequence and the transmembrane domain, or a fragment thereof that retains the binding activity. Accordingly, suitable CD47 blockades that may be employed include any of the SIRPa-IgG Fc fusion proteins and others disclosed in U.S. Patent No. 9,969,789 including without limitation the SIRPa-IgG Fc fusion proteins TTI-621 and TTI-622 (Trillium Therapeutics, Inc.), both of which preferentially bind CD47 on tumor cells while also engaging activating Fc receptors. A SIRPa- IgG Fc fusion protein including the amino acid sequence SEQ ID NO: 141, SEQ ID NO: 142, or SEQ ID NO: 143 may, for example, be used. Still other SIRPa Fc domain fusions proteins that may be used include ALX148 from Alx Oncology or any of those disclosed in IntT Pub. No WO2017027422 or U.S. Pat. No. 10,696,730.
[0179] According to certain aspects, an anti-CD47 agent includes an antibody that specifically binds CD47 (i.e., an anti-CD47 antibody) and reduces the interaction between CD47 on one cell (e.g., an infected cell) and SIRPa on another cell (e.g., a phagocytic cell). Non-limiting
examples of suitable antibodies include clones B6H12, 5F9, 8B6, and C3 (for example as described in International Pub. No. WO 2011/143624). Suitable anti-CD47 antibodies include fully human, humanized or chimeric versions of such antibodies.
[0180] Exemplary human or humanized antibodies useful for in vivo applications in humans due to their low antigenicity include at least monoclonal antibodies against CD47, such as Hu5F9-G4, a humanized monoclonal antibody available from Gilead as Magrolimab (Sikic, et al. (2019) Journal of Clinical Oncology 37:946); Lemzoparlimab and TJC4 from I-Mab Biopharma; AO-176 from Arch Oncology, Inc; AK117 from Akesobio Australia Pty; IMC-002 from Innovent Biologies; ZL-1201 from Zia Lab; SHR-1603 from Jiangsu HengRui Medicine Co.; and SRF231 from Surface Oncology. Bispecific monoclonal antibodies are also available, such as IBI-322, targeting both CD47 and PD-L1 from Innovent Biologies. An anti-huCD47 antibody that may be used in the various aspects of the invention may, for example, include the heavy chain set forth in SEQ ID NO: 145 and the light chain set forth in SEQ ID NO: 146, or be an antibody having a heavy chain including the three CDRs present in SEQ ID NO: 145 and a light chain including the three CDRs present in SEQ ID NO: 146, or be an antibody fragment such as an Fab, Fab2 or corresponding scFv molecule of any of the aforementioned antibodies.
[0181] AO-176, in addition to inducing tumor phagocytosis through blocking the CD47- SIRPa interaction, has been found to preferentially bind tumor cells versus normal cells (particularly RBCs where binding is negligible) and directly kills tumor versus normal cells.
[0182] Antibodies against SIRPa may also be used as CD47 blockades. Without limitation, anti-SIRPa antibodies (also referred to as SIRPa antibodies herein) that may be used in or embodied in any of the aspects of the invention include but are not limited to the following anti- SIRPa antibodies, antibodies that include one or both of the heavy chain and light chain variable regions of the following anti-SIRPa antibodies, antibodies that include one or both of the heavy chain and the light chain CDRs of any of the following anti-SIRPa antibodies, and antigen-binding fragments of any of said anti-SIRPa antibodies:
(1) ADU-1805 (Sairopa B.V.; Aduro) and any of the SIRPa antibodies disclosed in Inti. Pub. No. W02018190719 or U.S. Pat. No. 10,851,164;
(2) AL008 (Alector LLC) and any of the SIRPa antibodies disclosed in Inti. Pub. No. W02018107058, U.S. Pub. No. 20190275150, or U.S. Pub. No. 20210179728;
(3) AL008 (Apexigen, Inc.) and any of the SIRPa antibodies disclosed in Inti. Pub. No. WO2021174127 or U.S. App. No. 63/108,547;
(4) SIRP-1 and SIRP-2 (Arch Oncology, Inc.) and any of the SIRPa antibodies disclosed in Inti. Pub. No. WO2021222746, U.S. App. No. 63/107,200 or U.S. Pub. No. 20200297842;
(5) OSE-172 (a/k/a BI 765063; Boehringer Ingelheim) and any of the SIRPa antibodies disclosed in Inti. Pub. No. WO2017178653 or U.S. Pub. No. 20190127477;
(6) CC-95251 (Bristol Myers Squibb; Celgene) and any of the SIRPa antibodies disclosed in Inti. Pub. No. W02020068752 or U.S. Pub. No. 20200102387;
(7) ES004 (Elpiscience Biopharma) and any of the SIRPa antibodies disclosed in Inti. Pub. No. W02021032078 or U.S. Pub. No. 20210347908;
(8) FSI-189 (Gilead Sciences, Inc.; Forty Seven) and any of the SIRPa antibodies disclosed in Inti. Pub. No. WO2019023347, U.S. Pat. No. 10,961,318 or U.S. Pub. No. 20210171654;
(9) BYON4228 (Byondis B.V.; Synthon) and any of the SIRPa antibodies disclosed in Inti. Pub. No. WO2018210793, Inti. Pub. No. WO2018210795, or U.S. Pub. No. 20210070874;
(10) any of the SIRPa antibodies disclosed in Inti. Pub. No. WO2018057669, U.S. Pat. No. 11,242,404 or U.S. Pub. No. 20220002434 (Alexo Therapeutics Inc., now ALX Oncology Inc.);
(11) any of the SIRPa antibodies disclosed in Inti. Pub. No. W02015138600, U.S. Pat. No. 10,781,256 or U.S. Pat. No. 10,081,680 (Leland Stanford Junior University);
(12) BRI 05 (Bioray Pharma); or
(13) BSI-050 (Biosion, Inc.).
[0183] The CD47 blockade may alternatively, or additionally, include agents that modulate the expression of CD47 and/or SIRPa, such as phosphorodiamidate morpholino oligomers (PMO) that block translation of CD47 such as MBT-001 (PMO, morpholino, Sequence: 5'- CGTCACAGGCAGGACCCACTGCCCA-3') [SEQ ID NO: 144) or any of the PMO oligomer CD47 inhibitors disclosed in any of U.S. Patent No. 8,557,788, U.S. Patent No. 8,236,313, U.S. Patent No. 10,370,439 and Int’l Pub. No. W02008060785.
[0184] Small molecule inhibitors of the CD47-SIRPa axis may also be used, such as RRx- 001 (1 -bromoacetyl- 3,3 dinitroazetidine) from EpicentRx and Azelnidipine (CAS number 123524-52-7), or pharmaceutically acceptable salts thereof. Such small molecule CD47 blockades
may, for example, be administered at a dose of 5-100 mg/m2, 5-50 mg/m2, 5-25 mg/m2, 10-25 mg/m2, or 10-20 mg/m2, or in any of the dose ranges or at any of the doses described herein. Administration of RRx-001 may, for example, be once or twice weekly and be by intravenous infusion. The duration of administration may, for example, be at least four weeks.
[0185] Various CD47 blockades that may be used are found in Table 1 of Zhang, et al., (2020), Frontiers in Immunology vol 11, article 18, and in Table 3 below.
TABLE 3
[0186] Therapeutically effective doses of an anti-CD47 antibody or other protein CD47 blockade may, for example, be a dose that leads to sustained serum levels of the protein of about 40 pg/ml or more (e.g., about 50 ug/ml or more, about 60 ug/ml or more, about 75 ug/ml or more, about 100 ug/ml or more, about 125 ug/ml or more, or about 150 ug/ml or more). Therapeutically effective doses or administration of a CD47 blockade, such as an anti-CD47 antibody or SIRPa fusion protein or small molecule, include, for example, amounts of 0.05 - 10 mg/kg (agent
weight/ subject weight), such as at least 0.1 mg/kg, 0.5 mg/kg, 1.0 mg/kg, 1.5 mg/kg, 2.0 mg/kg,
2.5 mg/kg, 3.0 mg/kg, 3.5 mg/kg, 4.0 mg/kg, 4.5 mg/kg, 5.0 mg/kg, 5.5 mg/kg, 6.0 mg/kg,
6.5 mg/kg, 7.0 mg/kg, 7.5 mg/kg, 8.0 mg/kg, 8.5 mg/kg, 9.0 mg/kg; or not more than 10 mg/kg,
9.5 mg/kg, 9.0 mg/kg, 8.5 mg/kg, 8.0 mg/kg, 7.5 mg/kg, 7.0 mg/kg, 6.5 mg/kg, 6.0 mg/kg,
5.5 mg/kg, 5.0 mg/kg, 4.5 mg/kg, 4.0 mg/kg, 3.5 mg/kg, 3.0 mg/kg, 2.5 mg/kg, 2.0 mg/kg,
1.5 mg/kg, 1.0 mg/kg, or any combination of these upper and lower limits. Therapeutically effective doses of a small molecule CD47 blockade such as those disclosed herein also, for example, include 0.01 mg/kg to 1,000 mg/kg and any subrange or value of mg/kg therein such as 0.01 mg/kg to 500 mg/kg or 0.05 mg/kg to 500 mg/kg, or 0.5 mg/kg to 200 mg/kg, or 0.5 mg/kg to 150 mg/kg, or 1.0 mg/kg to 100 mg/kg, or 10 mg/kg to 50 mg/kg.
[0187] According to certain aspects, the anti-CD47 agent is a soluble CD47 polypeptide that specifically binds SIRPa and reduces the interaction between CD47 on one cell (e.g., an infected cell) and SIRPa on another cell (e.g., a phagocytic cell). A suitable soluble CD47 polypeptide can bind SIRPa without activating or stimulating signaling through SIRPa because activation of SIRPa would inhibit phagocytosis. Instead, suitable soluble CD47 polypeptides facilitate the preferential phagocytosis of infected cells over non-infected cells. Those cells that express higher levels of CD47 (e.g., infected cells) relative to normal, non-target cells (normal cells) will be preferentially phagocytosed. Thus, a suitable soluble CD47 polypeptide specifically binds SIRPa without activating/ stimulating enough of a signaling response to inhibit phagocytosis. In some cases, a suitable soluble CD47 polypeptide can be a fusion protein (for example, as described in U.S. Pub. No. 20100239579). Applicant’s U.S. Pub. No. 20220211886 and U.S. provisional application serial no. 63/104,386 filed October 22, 2020, each entitled Combination Radioimmunotherapy and CD47 Blockade in the Treatment of Cancer are incorporated by reference in their entireties herein.
[0188] Other immune checkpoint inhibitors
[0189] The following further immune checkpoint inhibitors may be used in combination with a radiolabeled CD33 targeting agent.
[0190] The immune checkpoint therapy may, for example, include an antibody against PD- 1 such as nivolumab, or any of the inhibitors of PD-1 biological activity (or its ligands) disclosed in U.S. Pat. No. 7,029,674. Other exemplary antibodies against PD-1 that may be used include: Anti-mouse PD-1 antibody Clone J43 (Cat #BE0033-2) from BioXcell; Anti-mouse PD-1
antibody Clone RMP1-14 (Cat #BE0146) from BioXcell; mouse anti-PD-1 antibody Clone EH12; Merck's MK-3475 anti-mouse PD-1 antibody (Keytruda®, pembrolizumab, lambrolizumab); and AnaptysBio's anti-PD-1 antibody, known as ANB011; antibody MDX-1 106 (ONO-4538); Bristol-Myers Squibb's human IgG4 monoclonal antibody nivolumab (Opdivo®, BMS-936558, MDX1 106); AstraZeneca's AMP-514, and AMP-224; and Pidilizumab (CT-011), CureTech Ltd.
[0191] The immune checkpoint therapy may, for example, include an inhibitor of PD-L1 such as an antibody (e.g., an anti-PD-Ll antibody, i.e., ICI antibody), RNAi molecule (e.g., anti- PD-L1 RNAi), antisense molecule (e.g., an anti-PD-Ll antisense RNA), dominant negative protein (e.g., a dominant negative PD-L1 protein), and/or small molecule inhibitor. An exemplary anti- PD-Ll antibody includes clone EH12, or any of Genentech's MPDL3280A (RG7446); anti-mouse PD-L1 antibody Clone 10F.9G2 (Cat #BE0101) from BioXcell; anti-PD-Ll monoclonal antibody MDX-1 105 (BMS-936559) and BMS-935559 from Bristol-Meyer's Squibb; MSB0010718C; mouse anti-PD-Ll Clone 29E.2A3; and AstraZeneca's MEDI4736 (Durvalumab).
[0192] The immune checkpoint therapy may, for example, include an inhibitor of PD-L2 or may reduce the interaction between PD-1 and PD-L2. Exemplary inhibitors of PD-L2 include antibodies (e.g., an anti-PD-L2 antibody, i.e., ICI antibody), RNAi molecules (e.g., an anti-PD-L2 RNAi), antisense molecules (e.g., an anti-PD-L2 antisense RNA), dominant negative proteins (e.g., a dominant negative PD-L2 protein), and small molecule inhibitors. Antibodies include monoclonal antibodies, humanized antibodies, deimmunized antibodies, and Ig fusion proteins.
[0193] The immune checkpoint therapy may, for example, include an inhibitor of CTLA- 4, such as an antibody against CTLA-4. An exemplary antibody against CTLA-4 includes ipilimumab. The anti-CTLA-4 antibody may block the binding of CTLA-4 to CD80 (B7-1) and/or CD86 (B7-2) expressed on antigen presenting cells. Exemplary antibodies against CTLA-4 further that may be used include: Bristol Meyers Squibb's anti-CTLA-4 antibody ipilimumab (also known as Yervoy®, MDX-010, BMS-734016 and MDX-101); anti-CTLA4 Antibody, clone 9H10 from Millipore; Pfizer's tremelimumab (CP-675,206, ticilimumab); and anti-CTLA-4 antibody clone BNI3 from Abeam. The immune checkpoint inhibitor may be a nucleic acid inhibitor of CTLA-4 expression.
[0194] The immune checkpoint therapy may, for example, include an inhibitor of LAG3. Lymphocyte activation gene-3 (LAG3) functions as an immune checkpoint in mediating peripheral T cell tolerance. LAG3 (also called CD223) is a transmembrane protein receptor expressed on
activated CD4 and CD8 T cells, y6 T cells, natural killer T cells, B-cells, natural killer cells, plasmacytoid dendritic cells and regulatory T cells. The primary function of LAG3 is to attenuate the immune response. LAG3 binding to MHC class II molecules results in delivery of a negative signal to LAG3 -expressing cells and down-regulates antigen-dependent CD4 and CD8 T cell responses. Thus, LAG3 negatively regulates the ability of T cells to proliferate, produce cytokines, and lyse target cells, termed as ‘exhaustion’ of T cells, and inhibition of LAG3 function may enhance T cell proliferation.
[0195] Monoclonal antibodies to LAG3 that may be used are known in the art and have been described, for example, in U.S. Pat. Nos. 5,976,877, 6,143,273, 6,197,524, 8,551,481, 10,898,571, and U.S. Appl. Pub. Nos. 20110070238, 20110150892, 20130095114, 20140093511, 20140127226, 20140286935, and in W095/30750, WO97/03695, WO98/58059,
W02004/078928, W02008/132601, WO2010/019570, W02014/008218, EP0510079B1, EP0758383B1, EP0843557B1, EP0977856B1, EP1897548B2, EP2142210A1, and
EP2320940B1. Additionally, peptide inhibitors of LAG3 that may be used are also known and described in U.S. Pub. No. 20200369766.
[0196] The immune checkpoint therapy may, for example, include an inhibitor of the TIM3 protein. T-cell immunoglobulin and mucin-domain containing-3 (TIM3), also known as hepatitis A virus cellular receptor 2 (HAVCR2), is a type-I transmembrane protein that functions as a key regulator of immune responses. TIM3 has been shown to induce T cell death or exhaustion after binding to galectin-9, and to play an important in regulating the activities of many innate immune cells (e.g., macrophages, monocytes, dendritic cells, mast cells, and natural killer cells; Han, 2013). Like many inhibitory receptors (e.g., PD-1 and CTLA-4), TIM3 expression has been associated with many types of chronic diseases, including cancer. TIM3+ T cells have been detected in patients with advanced melanoma, non-small cell lung cancer, or follicular B-cell non-Hodgkin lymphoma. And the presence of TIM3+ regulatory T cells have been described as an effective indicator of lung cancer progression. Thus, inhibition of TIM3 may enhance the functions of innate immune cells. Exemplary TIM3 inhibitors include antibodies, peptides, and small molecules that bind to and inhibit TIM3.
[0197] The immune checkpoint therapy may, for example, include an inhibitor of the VISTA protein. The V-domain Ig suppressor of T cell activation (VISTA or PD-L3) is primarily expressed on hematopoietic cells, and its expression is highly regulated on myeloid antigen-
presenting cells (APCs) and T cells. Expression of VISTA on antigen presenting cells (APCs) suppresses T cell responses by engaging its counter-receptor on T cells during cognate interactions between T cells and APCs. Inhibition of VISTA would enhance T cell-mediated immunity and anti-tumor immunity, suppressing tumor growth. In this regard, therapeutic intervention of the VISTA inhibitory pathway represents a novel approach to modulate T cell-mediated immunity, such as in combination with the presently disclosed radiolabeled calreticulin targeting agents.
[0198] The immune checkpoint therapy may, for example, include an inhibitor of A2aR, or an A2aR blockade. The tumor microenvironment exhibits high concentrations of adenosine due to the contribution of immune and stromal cells, tissue disruption, and inflammation. A predominant driver is hypoxia due to the lack of perfusion that can lead to cellular stress and secretion of large amounts of ATP. Multiple small molecule inhibitors and antagonistic antibodies against these targets, which may be employed in the various aspects of the present invention, have been developed and show promising therapeutic efficacy against different solid tumors in clinical trials. For example, A2aR antagonists SYN115 and Istradefylline have been shown to improve motor function in patients with Parkinson’s disease, and CPI-444 (NCT02655822, NCT03454451), PBF-509 (NCT02403193), NIR178 (NCT03207867), and AZD4635 (NCT02740985, NCT03381274) have been trialed for the treatment of various cancers. CPI-444 in combination with anti-PD-1 and anti-CTLA4 was highly effective in promoting CD8+ T cell responses and eliminating tumors in a preclinical. Additional exemplary A2aR inhibitors include, without limitation, the small molecule inhibitors SCH58261, ZM241365, and FSPTP.
[0199] The immune checkpoint therapy may, for example, include one or more modulators of an immune checkpoint protein or of more than one different immune checkpoint proteins. As such, the immune checkpoint therapy may include a first antibody or inhibitor against a first immune checkpoint protein and a second antibody or inhibitor against a second immune checkpoint protein.
[0200] DNA Damage Response inhibitors (DDRi)
[0201] The additional agents administered with the radiolabeled calreticulin targeting agent may be a DNA damage response inhibitor (DDRi). DNA damage can be due to endogenous factors, such as spontaneous or enzymatic reactions, chemical reactions, or errors in replication, or may be due to exogenous factors, such as UV or ionizing radiation or genotoxic chemicals. The repair pathways that overcome this damage are collectively referred to as the DNA damage
response or DDR. This signaling network acts to detect and orchestrate a cell's response to certain forms of DNA damage, most notably double strand breaks and replication stress. Following treatment with many types of DNA damaging drugs and ionizing radiation, cells are reliant on the DDR for survival. It has been shown that disruption of the DDR can increase cancer cell sensitivity to these DNA damaging agents and thus may improve patient responses to such therapies.
[0202] Within the DDR, there are several DNA repair mechanisms, including base excision repair, nucleotide excision repair, mismatch repair, homologous recombinant repair, and non-homologous end joining. Approximately 450 human DDR genes code for proteins with roles in physiological processes. Dysregulation of DDR leads to a variety of disorders, including genetic, neurodegenerative, immune, cardiovascular, and metabolic diseases or disorders and cancers. For example, the genes OGGI and XRCC1 are part of the base excision repair mechanism of DDR, and mutations in these genes are found in renal, breast, and lung cancers, while the genes BRCA1 and BRCA2 are involved in homologous recombination repair mechanisms and mutations in these genes leads to an increased risk of breast, ovarian, prostate, pancreatic, as well as gastrointestinal and hematological cancers, and melanoma.
[0203] Exemplary DDRi’s that may be employed include at least one or more antibodies or small molecules targeting poly(ADP -ribose) polymerase (i.e., a poly(ADP -ribose) polymerase inhibitor or PARPi). The PARPi may be a small molecule therapeutic selected from the group consisting of olaparib, niraparib, rucaparib, talazoparib, and a combination thereof. The PARPi may, for example, be provided in a subject effective amount including 0.1 mg/day - 1200 mg/day, such as 0.100 mg/day - 600 mg/day, or 0.25 mg/day - 1 mg/day. Exemplary subject effective amounts include 0.1 mg, 0.25 mg, 0.5 mg, 0.75 mg, 1.0 mg, 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 700 mg, 750 mg, 800 mg, 900 mg, and 1000 mg, taken orally in one or two doses per day. Another exemplary DDRi includes an inhibitor of Ataxia telangiectasia mutated (ATM), Ataxia tai angiectasia mutated and Rad-3 related (ATR), or Weel. Exemplary inhibitors of ATM that may be employed include KU-55933, KU-59403, wortmannin, CP466722, and KU-60019. Exemplary inhibitors of ATR include at least Schisandrin B, NU6027, NVP-BEA235, VE-821, VE-822, AZ20, and AZD6738. Exemplary inhibitors of Weel include AZD-1775 (i.e., adavosertib).
[0204] Other therapeutic agents
[0205] Further types of additional therapeutic agents relevant to treatment of the disease or condition being treated may be administered, for use in combination with the radiolabeled CD33 targeting agent. Such administration may be simultaneous, separate or sequential with the administration of the radiolabeled CD33 targeting agent. For simultaneous administration, the agents may be administered as one composition, or as separate compositions, as appropriate.
[0206] Exemplary additional therapeutic agents that may be used include but are not limited to chemotherapeutic agents, anti-inflammatory agents, immunosuppressive agents, immunomodulatory agents, or any combination thereof. Exemplary additional agents that may be used also include but are not limited to other targeted biologic agents such as unlabeled (“naked”) therapeutic antibodies (i.e., without a drug or radionuclide payload), antibody drug conjugates (ADCs), soluble receptors and soluble receptor fusion proteins both unlabeled and conjugated to a drug or radionuclide, and soluble receptor ligands and soluble receptor ligand fusion proteins both unlabeled and conjugated to a drug or radionuclide.
[0207] In one aspect of the invention, the further additional agent(s) includes one or more of dexamethasone, doxorubicin, bortezomib, lenalidomide, prednisone, carmustine, etoposide, cisplatin, vincristine, cyclophosphamide, and thalidomide.
[0208] According to certain aspects of the present invention, the methods may include administration of a cytokine such as granulocyte colony-stimulating factor (GCSF) after administration of the radiotherapeutic with or without one or more of the other agents or treatments described herein. The GCSF may be administered, for example, 7, 8, 9, 10, or 11 days after administration of the radiolabeled CD33 targeting agent.
[0209] Exemplary chemotherapeutic agents include, but are not limited to, anti -neoplastic agents including alkylating agents including: nitrogen mustards, such as mechlorethamine, cyclophosphamide, ifosfamide, melphalan and chlorambucil; nitrosoureas, such as carmustine (BCNU), lomustine (CCNU), and semustine (methyl-CCNU); Temodal™ (temozolamide), ethylenimines/methylmelamine such as thriethylenemelamine (TEM), triethylene, thiophosphoramide (thiotepa), hexamethylmelamine (HMM, altretamine); alkyl sulfonates such as busulfan; triazines such as dacarbazine (DTIC); antimetabolites including folic acid analogs such as methotrexate and trimetrexate, pyrimidine analogs such as 5 -fluorouracil (5FU), fluorodeoxyuridine, gemcitabine, cytosine arabinoside (AraC, cytarabine), 5-azacytidine, 2,2'- difluorodeoxy cytidine, purine analogs such as 6-mercaptopurine, 6-thioguamne, azathioprine, T-
deoxycoformycin (pentostatin), erythrohydroxynonyladenine (EHNA), fludarabine phosphate, and 2-chlorodeoxyadenosine (cladribine, 2-CdA); natural products including antimitotic drugs such as paclitaxel, vinca alkaloids including vinblastine (VLB), vincristine, and vinorelbine, taxotere, estramustine, and estramustine phosphate; pipodophylotoxins such as etoposide and teniposide; antibiotics such as actinomycin D, daunomycin (rubidomycin), doxorubicin, mitoxantrone, idarubicin, bleomycins, plicamycin (mithramycin), mitomycin C, and actinomycin; enzymes such as L-asparaginase; biological response modifiers such as interferon-alpha, IL-2, G- CSF and GM-CSF; miscellaneous agents including platinum coordination complexes such as oxaliplatin, cisplatin and carboplatin, anthracenediones such as mitoxantrone, substituted urea such as hydroxyurea, methylhydrazine derivatives including N-methylhydrazine (MIH) and procarbazine, adrenocortical suppressants such as mitotane (o, p-DDD) and aminoglutethimide; hormones and antagonists including adrenocorticosteroid antagonists such as prednisone and equivalents, dexamethasone and aminoglutethimide; Gemzar™ (gemcitabine), progestin such as hydroxyprogesterone caproate, medroxyprogesterone acetate and megestrol acetate; estrogen such as diethyl stilbestrol and ethinyl estradiol equivalents; antiestrogen such as tamoxifen; androgens including testosterone propionate and fluoxymesterone/equivalents; antiandrogens such as flutamide, gonadotropin-releasing hormone analogs and leuprolide; and non-steroidal antiandrogens such as flutamide. Therapies targeting epigenetic mechanism including, but not limited to, histone deacetylase inhibitors, demethylating agents (e.g., Vidaza) and release of transcriptional repression (ATRA) therapies can also be combined with antibodies of the invention.
[0210] According to certain aspects, the chemotherapeutic agent may include an agent selected from the group consisting of taxanes (e.g., paclitaxel (Taxol), docetaxel (Taxotere), modified paclitaxel (e.g., Abraxane and Opaxio), doxorubicin, sunitinib (Sutent), sorafenib (Nexavar), and other multikinase inhibitors, oxaliplatin, cisplatin and carboplatin, etoposide, gemcitabine, and vinblastine. In one embodiment the chemotherapeutic agent is selected from the group consisting of taxanes (like e.g. taxol (paclitaxel), docetaxel (Taxotere), modified paclitaxel (e.g. Abraxane and Opaxio)).
[0211] According to aspects of the presently disclosed invention, the chemotherapeutic agent may include an agent selected from 5 -fluorouracil (5-FU), leucovorin, irinotecan, and oxaliplatin. According to certain aspects, the chemotherapeutic agent includes 5-fluorouracil,
leucovorin and irinotecan (FOLFIRI). According to other aspects, the chemotherapeutic agent includes 5-fluorouracil, and oxaliplatin (FOLFOX).
[0212] According to aspects of the presently disclosed invention, the chemotherapeutic agent includes one or more agents selected from taxanes (e.g., docetaxel or paclitaxel) or a modified paclitaxel (e.g., Abraxane or Opaxio), doxorubicin), capecitabine and/or bevacizumab (Avastin) for the treatment of breast cancer; therapies with carboplatin, oxaliplatin, cisplatin, paclitaxel, doxorubicin (or modified doxorubicin (Caelyx or Doxil)), or topotecan (Hycamtin) for the treatment of ovarian cancer; therapies with a multi-kinase inhibitor, MKI, (Sutent, Nexavar, or 706) and/or doxorubicin for the treatment of kidney cancer; therapies with oxaliplatin, cisplatin and/or radiation for the treatment of squamous cell carcinoma; and therapies with taxol and/or carboplatin for the treatment of lung cancer.
[0213] The therapeutic agents may, for example, be administered according to any standard dose regime known in the field. For example, therapeutic agents may be administered at concentrations in the range of 1 to 500 mg/m2, the amounts being calculated as a function of patient surface area (m2). For example, exemplary doses of the chemotherapeutic paclitaxel may include 15 mg/m2 to 275 mg/m2, exemplary doses of docetaxel may include 60 mg/m2 to 100 mg/m2, exemplary doses of epithilone may include 10 mg/m2 to 20 mg/m2, and an exemplary dose of calicheamicin may include 1 mg/m2 to 10 mg/m2. While exemplary doses are disclosed herein which may be used, such are only provided for example and reference and are not intended to limit the dose ranges of the drug agents of the presently disclosed invention that may be used.
[0214] Exemplary anti-inflammatory agents that may be used may be selected from a steroidal drug and a NS AID (nonsteroidal anti-inflammatory drug). Other anti-inflammatory agents may be selected from aspirin and other salicylates, Cox-2 inhibitors (such as rofecoxib and celecoxib), NSAIDs (such as ibuprofen, fenoprofen, naproxen, sulindac, diclofenac, piroxicam, ketoprofen, diflunisal, nabumetone, etodolac, oxaprozin, and indomethacin), anti-IL6R antibodies, anti-IL8 antibodies, anti-IL15 antibodies, anti-IL15R antibodies, anti-CD4 antibodies, anti-CDl la antibodies (e.g., efalizumab), anti-alpha4/beta-l integrin (VLA4) antibodies (e.g natalizumab), CTLA4-1 g for the treatment of inflammatory diseases, prednisolone, prednisone, disease modifying antirheumatic drugs (DMARDs) such as methotrexate, hydroxychloroquine, sulfasalazine, pyrimidine synthesis inhibitors (such as leflunomide), IL-1 receptor blocking agents
(such as anakinra), TNF-a blocking agents (such as etanercept, infliximab, and adalimumab) and similar agents.
[0215] Exemplary immunosuppressive and/or immunomodulatory agents that may be used include cyclosporine, azathioprine, mycophenolic acid, mycophenolate mofetil, corticosteroids such as prednisone, methotrexate, gold salts, sulfasalazine, antimalarials, brequinar, leflunomide, mizoribine, 15-deoxyspergualine, 6-mercaptopurine, cyclophosphamide, rapamycin, tacrolimus (FK-506), OKT3, anti-thymocyte globulin, thymopentin, thymosin-a and similar agents.
[0216] According to certain aspects of the presently disclosed invention, the additional therapeutic agents may include an antimyeloma agent. Exemplary antimyeloma agents include dexamethasone, melphalan, doxorubicin, bortezomib, lenalidomide, prednisone, carmustine, etoposide, cisplatin, vincristine, cyclophosphamide, and thalidomide, several of which are indicated above as chemotherapeutic agents, anti-inflammatory agents, or immunosuppressive agents.
[0217] According to certain aspects of the presently disclosed invention, the additional therapeutic agents may include allopurinol, administered at a dose of 300-600 mg/day orally starting on day 1 of the treatment period and continuing for at least 7 days after the CD33 targeting agent. Prophylactic antibiotics and antifungal therapies may, for example, be included for those patients who have an absolute neutrophil count of less than 500/pl. Analgesics and antihistamines may also be included prior at administration of the CD33 targeting agent by infusion to reduce infusion-related reactions.
[0218] The additional therapeutic agents may be administered according to any standard dose regime known in the field. For example, therapeutic agents may be administered at concentrations in the range of 1 to 500 mg/m2, the amounts being calculated as a function of patient body surface area (m2). For example, exemplary doses of paclitaxel may include 15 mg/m2 to 275 mg/m2, exemplary doses of docetaxel may include 60 mg/m2 to 100 mg/m2, exemplary doses of epithilone may include 10 mg/m2 to 20 mg/m2, and an exemplary dose of calicheamicin may include 1 mg/m2 to 10 mg/m2. While exemplary doses are disclosed herein, such are only provided for example reference and are not intended to limit the dose ranges of the drug agents of the presently disclosed invention.
[0219] Without limitation, the following aspects of the invention are also disclosed in this application:
[0220] Aspect 1. Use of a radiolabeled molecule that specifically binds to CD33 in the preparation of a medicament for the treatment of (a) a solid tumor cancer or solid tumor premalignancy, such as any of those disclosed herein, in a mammalian subject, such as a human patient, not afflicted with a myeloid-derived hematological cancer or myeloid-derived hematological premalignancy, or (b) haemophagocytic lymphohistiocytosis (HLH) or macrophage activation syndrome (MAS) in a mammalian subject, such as a human patient.
[0001] Aspect 2. The use of aspect 1, wherein the radiolabeled molecule is a radiolabeled antibody, antibody fragment, antibody mimetic, peptide, ligand, or small molecule.
[0221] Aspect 3. The use of aspect 2, wherein the radiolabeled molecule is a radiolabeled antibody or antibody fragment.
[0222] Aspect 4. The use of aspect 3, wherein the radiolabeled antibody includes radiolabeled lintuzumab, radiolabeled gemtuzumab, radiolabeled vadastuximab, or any combination thereof.
[0223] Aspect 5. The use of any one of the preceding aspects, wherein the radiolabeled molecule includes a radiolabel selected from 131I, 125I, 123I, 90Y, 177Lu, 186Re, 188Re, 89Sr, 153Sm, 32P, 225 Ac, 213Po, 211At, 212Bi, 213Bi, 223Ra, 227Th, 149Tb, 161Tb, 47Sc, 67Cu, 134Ce, 137Cs, 212Pb or 103Pd, or any combination thereof.
[0224] Aspect 6. The use of any one of the preceding aspects, wherein the radiolabeled molecule includes the radiolabel 225 Ac.
[0225] Aspect 7. The use of any one of the preceding aspects, wherein the radiolabeled molecule includes a chelator that binds the radiolabel by chelation.
[0226] Aspect 8. The use of aspect 7, wherein the chelator comprises DOTA or a DOTA derivative.
[0227] Aspect 9. The use of aspect 8, wherein the radiolabeled molecule is 225 Ac-labeled lintuzumab.
[0228] Aspect 10. The use of any one of the preceding aspects, wherein the solid tumor cancer or solid tumor premalignancy includes ovarian cancer, non-small cell lung carcinoma, head and neck squamous cell cancer, pancreatic cancer, renal cancer, breast cancer, metastatic breast cancer, tamoxifen-resistant breast cancer, triple negative breast cancer, prostate cancer, castrationresistant prostate cancer (CRPC), pancreatic cancer, small cell lung carcinoma (SCLC), non-small cell lung carcinoma (NSCLC), hepatocellular carcinoma (HCC), cholangiocarcinoma, gastric
cancer, colorectal cancer, esophageal cancer, Barrett’s esophagus, osteosarcoma, dermatofibrosarcoma protuberans (DFSP), fibrosarcoma (fibroblastic sarcoma), chondrosarcoma, Ewing’s sarcoma, Kaposi’s sarcoma, rhabdomyosarcoma, liposarcoma, synovial sarcoma, pleomorphic sarcoma, gastrointestinal stromal tumor, leiomyosarcoma, or angiosarcoma, or any of those disclosed herein.
[0229] Aspect 11 . The use of any one of the preceding aspects, wherein the use is for the preparation of a medicament for the treatment of a solid tumor cancer or solid tumor premalignancy in a mammalian subject, such as a human patient, not afflicted with a hematological cancer or hematological premalignancy, in combination with immune checkpoint inhibition.
[0230] Aspect 12. The use of aspect 12, wherein the immune checkpoint inhibition includes a CD47 blockade.
[0231] Aspect 13. The use of aspect 12, wherein the immune checkpoint inhibition includes blockade of one or both of PD-1 or PD-L1.
[0232] Aspect 14. The use of aspect 12, wherein the immune checkpoint inhibition includes blockade of CTLA-4.
[0233] Aspect 15. The use of any one of aspects 1-14, wherein the solid tumor cancer or solid tumor premalignancy is a CD33 low-expressing or CD33-negative solid tumor cancer or solid tumor premalignancy.
[0234] Aspect 16. Use of a radiolabeled molecule that binds specifically to CD33 in the preparation of a medicament for killing myeloid-derived suppressor cells in a mammalian subject, such as a human patient, afflicted with a cancer or premalignancy or afflicted with haemophagocytic lymphohistiocytosis (HLH) or macrophage activation syndrome (MAS).
[0235] Aspect 17. The use of aspect 16, wherein the radiolabeled molecule is a radiolabeled antibody, antibody, antibody fragment, antibody mimetic, peptide, ligand, or small molecule.
[0236] Aspect 18. The use of aspect 17, wherein the radiolabeled molecule is a radiolabeled antibody or antibody fragment.
[0237] Aspect 19. The use of aspect 18, wherein the radiolabeled antibody includes radiolabeled lintuzumab, gemtuzumab, vadastuximab, or any combination thereof.
[0238] Aspect 20. The use of any one of aspects 16-19, wherein the radiolabeled molecule includes a radiolabel selected from 133I, 125I, 123I, 90 Y, 177Lu, 186Re, 188Re, 89Sr, 153 Sm, 32P, 225 Ac,
213Po, 211At, 212Bi, 213Bi, 223Ra, 227Th, 149Tb, 161Tb, 47Sc, 67Cu, 134Ce, 137Cs, 212Pb or 103Pd, or any combination thereof.
[0239] Aspect 21 . The use of any one of aspects 16-20, wherein the radiolabeled molecule includes the radiolabel 225Ac.
[0240] Aspect 22. The use of any one of aspects 16-21, wherein the radiolabeled molecule includes a chelator that binds the radiolabel by chelation.
[0241] Aspect 23. The use of aspect 22, wherein the chelator includes DOTA or a DOTA derivative.
[0242] Aspect 24. The use of aspect 23, wherein the radiolabeled molecule is 225 Ac- labeled lintuzumab.
[0243] Aspect 25. The use of any one of aspects 16-24, wherein the cancer or premalignancy includes ovarian cancer, head and neck squamous cell cancer, pancreatic cancer, renal cancer, breast cancer, metastatic breast cancer, tamoxifen-resistant breast cancer, triple negative breast cancer, prostate cancer, castration-resistant prostate cancer (CRPC), pancreatic cancer, small cell lung carcinoma (SCLC), non-small cell lung carcinoma (NSCLC), hepatocellular carcinoma (HCC), cholangiocarcinoma, gastric cancer, colorectal cancer, esophageal cancer, Barrett’s esophagus, osteosarcoma, dermatofibrosarcoma protuberans (DFSP), fibrosarcoma (fibroblastic sarcoma), chondrosarcoma, Ewing’s sarcoma, Kaposi’s sarcoma, rhabdomyosarcoma, liposarcoma, synovial sarcoma, pleomorphic sarcoma, gastrointestinal stromal tumor, leiomyosarcoma, or angiosarcoma, or any of those disclosed herein.
[0244] Aspect 26. The use of any one of aspects 16-24, wherein the use is for the preparation of a medicament for the treatment of a solid tumor cancer or solid tumor premalignancy in a mammalian subject, such as a human patient.
[0245] Aspect 27. The use of aspect 26, wherein the mammalian subject, such as human patient, is
(i) not afflicted with a myeloid-derived hematological cancer or myeloid-derived hematological premalignancy; or
(ii) not afflicted with a hematological cancer or hematological premalignancy.
[0246] Aspect 28. The use of any one of aspects 16-27, wherein the use is for the preparation of a medicament for the treatment of a cancer or premalignancy in a mammalian subject, such as a human patient, in combination with immune checkpoint inhibition.
[0247] Aspect 29. The use of aspect 28, wherein the immune checkpoint inhibition includes CD47 blockade.
[0248] Aspect 30. The use of aspect 28, wherein the immune checkpoint inhibition includes blockade of one or both of PD-1 or PD-L1.
[0249] Aspect 31. The use of aspect 28, wherein the immune checkpoint inhibition includes blockade of CTLA-4.
[0250] Aspect 33. The use of any one of aspects 16-31, wherein the solid tumor cancer or solid tumor premalignancy is a CD33 low-expressing or CD33-negative solid tumor cancer or solid tumor premalignancy.
[0251] Aspect 34. A method for treating (a) a solid tumor cancer or solid tumor premalignancy in a mammalian subject, such as a human patient, for example, a mammalian subject not afflicted with a myeloid-derived hematological cancer or myeloid-derived premalignancy or not afflicted with a hematological cancer or hematological premalignancy, (b) a non-myeloid derived hematological malignancy such as a lymphoma or lymphocytic leukemia in a mammalian subject, such as a human patient, or (c) haemophagocytic lymphohistiocytosis (HLH) or macrophage activation syndrome (MAS) in a mammalian subject, such as a human patient, including: administering a therapeutically effective amount of a radiolabeled molecule that binds specifically to CD33 to the mammalian subject.
[0252] Aspect 35. The method of aspect 34, wherein the radiolabeled molecule is a radiolabeled antibody, antibody, antibody fragment, antibody mimetic, peptide, ligand, or small molecule.
[0253] Aspect 36. The method of aspect 35, wherein the radiolabeled molecule is a radiolabeled antibody or antibody fragment.
[0254] Aspect 37. The method of aspect 36, wherein the radiolabeled antibody includes radiolabeled lintuzumab, gemtuzumab, vadastuximab, or any combination thereof.
[0255] Aspect 38. The method of any one of aspects 34-37, wherein the radiolabeled molecule includes a radiolabel selected from 131I, 125I, 123I, 90Y, 177Lu, 186Re, 188Re, 89Sr, 153Sm, 32P, 225 Ac, 213Po, 211At, 212Bi, 213Bi, 223Ra, 227Th, 149Tb, 161Tb, 47Sc, 67Cu, 134Ce, 137Cs, 212Pb or 103Pd, or any combination thereof.
[0256] Aspect 39. The method of any one of aspects 34-38, wherein the radiolabeled molecule includes the radiolabel 225 Ac.
[0257] Aspect 40. The method of any one of aspects 34-39, wherein the radiolabeled molecule includes a chelator that binds the radiolabel by chelation.
[0258] Aspect 41. The method of aspect 40, wherein the chelator includes DOTA or a DOTA derivative.
[0259] Aspect 42. The method of aspect 41, wherein the radiolabeled molecule is 225 Ac- labeled lintuzumab.
[0260] Aspect 43. The method of any one of aspects 34-43, wherein the solid tumor cancer or solid tumor premalignancy includes ovarian cancer, head and neck squamous cell cancer, pancreatic cancer, renal cancer, breast cancer, metastatic breast cancer, tamoxifen-sensitive tamoxifen-resistant breast cancer, triple negative breast cancer, prostate cancer, castration-resistant prostate cancer (CRPC), pancreatic cancer, small cell lung carcinoma (SCLC), non-small cell lung carcinoma (NSCLC), hepatocellular carcinoma (HCC), cholangiocarcinoma, gastric cancer, colorectal cancer, esophageal cancer, Barrett’s esophagus, osteosarcoma, dermatofibrosarcoma protuberans (DFSP), fibrosarcoma (fibroblastic sarcoma), chondrosarcoma, Ewing’s sarcoma, Kaposi’s sarcoma, rhabdomyosarcoma, liposarcoma, synovial sarcoma, pleomorphic sarcoma, gastrointestinal stromal tumor, leiomyosarcoma, or angiosarcoma, or any of those disclosed herein.
[0261] Aspect 44. The method of any one of aspects 34-43, further including administering at least one immune checkpoint inhibitor to the mammalian subject.
[0262] Aspect 45. The method of aspect 44, wherein the at least one immune checkpoint inhibitor includes a CD47 inhibitor.
[0263] Aspect 46. The method of aspect 45, wherein the at least one immune checkpoint inhibition includes one or both of a PD-1 or PD-L1 inhibitor.
[0264] Aspect 47. The method of aspect 45, wherein the immune checkpoint inhibition includes a CTLA-4 inhibitor.
[0265] Aspect 48. The method of any one of aspects 34-47, wherein the solid tumor cancer or solid tumor premalignancy is a CD33 low-expressing or CD33-negative solid tumor cancer or solid tumor premalignancy.
[0266] Aspect 49. A method for killing myeloid-derived suppressor cells (MDSCs) in a mammalian subject, such as a human patient, afflicted with a cancer or premalignancy or afflicted
with haemophagocytic lymphohistiocytosis (HLH) or macrophage activation syndrome (MAS), including: administering a radiolabeled molecule that binds specifically to CD33 to the mammalian subject in an amount effective to kill MDSCs in the mammalian subject.
[0267] Aspect 50. The method of aspect 49, wherein the radiolabeled molecule is a radiolabeled antibody, antibody fragment, antibody mimetic, peptide, or small molecule.
[0268] Aspect 51. The method of aspect 50, wherein the radiolabeled molecule is a radiolabeled antibody or antibody fragment.
[0269] Aspect 52. The method of aspect 51, wherein the radiolabeled antibody includes radiolabeled lintuzumab, gemtuzumab, vadastuximab, or any combination thereof.
[0270] Aspect 53. The method of any one of aspects 49-52, wherein the radiolabeled molecule includes a radiolabel selected from 131I, 125I, 123I, 90Y, 177Lu, 186Re, 188Re, 89Sr, 153Sm, 32P, 225 Ac, 213Po, 211At, 212Bi, 213Bi, 223Ra, 227Th, 149Tb, 161Tb, 47Sc, 67Cu, 134Ce, 137Cs, 212Pb or 103Pd, or any combination thereof.
[0271] Aspect 54. The method of any one of aspects 49-53, wherein the radiolabeled molecule includes the radiolabel 225 Ac.
[0272] Aspect 55. The method of any one of aspects 49-54, wherein the radiolabeled molecule includes a chelator that binds the radiolabel by chelation.
[0273] Aspect 56. The method of aspect 55, wherein the chelator is DOTA or a DOTA derivative.
[0274] Aspect 57. The method of aspect 23, wherein the radiolabeled molecule is 225 Ac- labeled lintuzumab.
[0275] Aspect 58. The method of any one of aspects 49-57, wherein the cancer or premalignancy includes ovarian cancer, non-small cell lung carcinoma, head and neck squamous cell cancer, pancreatic cancer, renal cancer, breast cancer, metastatic breast cancer, tamoxifen- resistant breast cancer, triple negative breast cancer, prostate cancer, castration-resistant prostate cancer (CRPC), pancreatic cancer, small cell lung carcinoma (SCLC), non-small cell lung carcinoma (NSCLC), hepatocellular carcinoma (HCC), cholangiocarcinoma, gastric cancer, colorectal cancer, esophageal cancer, Barrett’s esophagus, osteosarcoma, dermatofibrosarcoma protuberans (DFSP), fibrosarcoma (fibroblastic sarcoma), chondrosarcoma, Ewing’s sarcoma,
Kaposi’s sarcoma, rhabdomyosarcoma, liposarcoma, synovial sarcoma, pleomorphic sarcoma, gastrointestinal stromal tumor, leiomyosarcoma, or angiosarcoma, or any of those disclosed herein.
[0276] Aspect 59. The method of any one of aspects 49-58, wherein the method is for the treatment of a solid tumor cancer or solid tumor premalignancy in a mammalian subject, such as a human patient.
[0277] Aspect 60. The method of aspect 59, wherein the mammalian subject, such as human patient, is
(i) not afflicted with a myeloid-derived hematological cancer or myeloid-derived hematological premalignancy; or
(ii) not afflicted with a hematological cancer or hematological premalignancy.
[0278] Aspect 61. The method of any one of aspects 49-60, further including administering at least one immune checkpoint inhibitor to the mammalian subject.
[0279] Aspect 62. The method of aspect 61, wherein the at least one immune checkpoint inhibitor includes a CD47 inhibitor.
[0280] Aspect 63. The method of aspect 61 or 62, wherein the at least one immune checkpoint inhibitor includes one or both of PD-1 inhibitor or a PD-L1 inhibitor.
[0281] Aspect 64. The method of any one of aspects 61-63, wherein the at least one immune checkpoint inhibitor includes a CTLA-4 inhibitor.
[0282] Aspect 65. The method of any one of aspects 49-64, wherein the solid tumor cancer or solid tumor premalignancy is a CD33 low-expressing or CD33-negative solid tumor cancer or CD33 low-expressing or CD33-negative solid tumor premalignancy.
[0283] Aspect 66. A pharmaceutical composition, including: a therapeutically effective amount of a radiolabeled molecule that binds specifically to CD33 such as to human CD33; and a therapeutically effective amount of an immune checkpoint inhibitor.
[0284] Aspect 67. The pharmaceutical composition of aspect 66, further including at least one pharmaceutically acceptable excipient.
[0285] Aspect 68. The pharmaceutical composition of aspect 66 or 67, wherein the radiolabeled molecule is a radiolabeled antibody, antibody, antibody fragment, antibody mimetic, peptide, ligand, or small molecule.
[0286] Aspect 69. The pharmaceutical composition of aspect 68, wherein the radiolabeled molecule is a radiolabeled antibody or antibody fragment.
[0287] Aspect 70. The pharmaceutical composition of aspect 69, wherein the radiolabeled antibody includes radiolabeled lintuzumab, radiolabeled gemtuzumab, radiolabeled vadastuximab, or any combination thereof.
[0288] Aspect 71. The pharmaceutical composition of any one of aspects 66-70, wherein the radiolabeled molecule includes a radiolabel selected from 131I, 1251, 1231, 90Y, 177Lu, 186Re, 188Re, 89Sr, 153Sm, 32P, 225 Ac, 213Bi, 213Po, 211At, 212Bi, 213Bi, 223Ra, 227Th, 149Tb, 161Tb, 47Sc, 67Cu, 134Ce, 137Cs, 212Pb or 103Pd, or any combination thereof.
[0289] Aspect 72. The pharmaceutical composition of any one of 66-71 aspects, wherein the radiolabeled molecule includes the radiolabel 225 Ac.
[0290] Aspect 73. The pharmaceutical composition of any one of aspects 66-72, wherein the radiolabeled molecule includes a chelator that binds the radiolabel by chelation.
[0291] Aspect 74. The pharmaceutical composition of aspect 73, wherein the chelator includes DOTA or a DOTA derivative.
[0292] Aspect 75. The pharmaceutical composition of aspect 74, wherein the radiolabeled molecule is 225 Ac-labeled lintuzumab.
[0293] Aspect 76. The pharmaceutical composition of any one of aspects 66-75, wherein the at least one immune checkpoint inhibitor includes a CD47 inhibitor.
[0294] Aspect 77. The pharmaceutical composition of any one of aspects 66-76, wherein the at least one immune checkpoint inhibitor includes one or both of a PD-1 inhibitor and a PD- L1 inhibitor.
[0295] Aspect 78. The pharmaceutical composition of any one of aspects 66-77, wherein the at least one immune checkpoint inhibitor includes a CTLA-4 inhibitor.
[0296] Aspect 79. The pharmaceutical composition of any one of aspects 66-78, wherein the composition is for the treatment of a solid tumor cancer or solid tumor premalignancy in a mammalian subject, such as a human patient, not afflicted with a hematological cancer or hematological premalignancy.
[0297] Aspect 80. The pharmaceutical composition of aspect 79, wherein the solid tumor cancer or solid tumor premalignancy is a CD33 low-expressing or CD33-negative solid tumor cancer or CD33 low-expressing or CD33-negative solid tumor premalignancy.
[0298] Aspect 81. The pharmaceutical composition of aspect 79, wherein the solid tumor cancer or solid tumor premalignancy includes ovarian cancer, non-small cell lung carcinoma, head and neck squamous cell cancer, pancreatic cancer, renal cancer, breast cancer, metastatic breast cancer, tamoxifen-resistant breast cancer, triple negative breast cancer, prostate cancer, castrationresistant prostate cancer (CRPC), pancreatic cancer, small cell lung carcinoma (SCLC), non-small cell lung carcinoma (NSCLC), hepatocellular carcinoma (HCC), cholangiocarcinoma, gastric cancer, colorectal cancer, esophageal cancer, Barrett’s esophagus, osteosarcoma, dermatofibrosarcoma protuberans (DFSP), fibrosarcoma (fibroblastic sarcoma), chondrosarcoma, Ewing’s sarcoma, Kaposi’s sarcoma, rhabdomyosarcoma, liposarcoma, synovial sarcoma, pleomorphic sarcoma, gastrointestinal stromal tumor, leiomyosarcoma, or angiosarcoma, or any of those disclosed herein.
[0299] Aspect 82. The pharmaceutical composition of any one of aspects 66-78, wherein the composition is for killing myeloid-derived suppressor cells (MDSCs) in a mammalian subject, such as a human patient, afflicted with a cancer or premalignancy.
[0300] Aspect 83. The pharmaceutical composition of aspect 82, wherein the cancer or premalignancy is a CD33 low-expressing or CD33-negative cancer or premalignancy.
[0301] Aspect 84. The pharmaceutical composition of aspect 82, wherein the cancer or premalignancy includes ovarian cancer, non-small cell lung carcinoma, head and neck squamous cell cancer, pancreatic cancer, renal cancer, breast cancer, metastatic breast cancer, tamoxifen- resistant breast cancer, triple negative breast cancer, prostate cancer, castration-resistant prostate cancer (CRPC), pancreatic cancer, small cell lung carcinoma (SCLC), non-small cell lung carcinoma (NSCLC), hepatocellular carcinoma (HCC), cholangiocarcinoma, gastric cancer, colorectal cancer, esophageal cancer, or Barrett’s esophagus, osteosarcoma, dermatofibrosarcoma protuberans (DFSP), fibrosarcoma (fibroblastic sarcoma), chondrosarcoma, Ewing’s sarcoma, Kaposi’s sarcoma, rhabdomyosarcoma, liposarcoma, synovial sarcoma, pleomorphic sarcoma, gastrointestinal stromal tumor, leiomyosarcoma, or angiosarcoma, or any of those disclosed herein.
[0302] Aspect 85. A pharmaceutical composition for treating a solid tumor cancer or solid tumor premalignancy in a mammalian subject, such as a human patient, not afflicted with a myeloid-derived hematological cancer or myeloid-derived hematological premalignancy, including:
a therapeutically effective amount of a radiolabeled molecule that binds specifically to CD33.
[0303] Aspect 86. The pharmaceutical composition of aspect 85, wherein the radiolabeled molecule is a radiolabeled antibody, antibody, antibody fragment, antibody mimetic, peptide, ligand, or small molecule, peptide or small molecule.
[0304] Aspect 87. The pharmaceutical composition of aspect 86, wherein the radiolabeled molecule is a radiolabeled antibody or antibody fragment.
[0305] Aspect 88. The pharmaceutical composition of aspect 87, wherein the radiolabeled antibody includes radiolabeled lintuzumab, radiolabeled gemtuzumab, radiolabeled vadastuximab, or any combination thereof.
[0306] Aspect 89. The pharmaceutical composition of any one of aspects 85-88, wherein the radiolabeled molecule includes a radiolabel selected from 131I, 1251, 1231, 90Y, 177Lu, 186Re, 188Re, 89Sr, 153Sm, 32P, 225 Ac, 213Po, 2UAt, 212Bi, 213Bi, 223Ra, 227Th, 149Tb, 161Tb, 47Sc, 67Cu, 134Ce, 137Cs, 212Pb or 103Pd, or any combination thereof.
[0307] Aspect 90. The pharmaceutical composition of any one of aspects 85-89, wherein the radiolabeled molecule includes the radiolabel 225 Ac.
[0308] Aspect 91. The pharmaceutical composition of any one of aspects 85-90, wherein the radiolabeled molecule includes a chelator that binds the radiolabel by chelation.
[0309] Aspect 92. The pharmaceutical composition of aspect 91, wherein the chelator includes DOTA or a DOTA derivative.
[0310] Aspect 93. The pharmaceutical composition of aspect 92, wherein the radiolabeled molecule is 225 Ac-labeled lintuzumab.
[0311] Aspect 94. The pharmaceutical composition of any one of aspects 85-93, wherein the solid tumor cancer or solid tumor premalignancy includes ovarian cancer, head and neck squamous cell cancer, pancreatic cancer, renal cancer, breast cancer, metastatic breast cancer, tamoxifen-resistant breast cancer, triple negative breast cancer, prostate cancer, castration-resistant prostate cancer (CRPC), pancreatic cancer, small cell lung carcinoma (SCLC), non-small cell lung carcinoma (NSCLC), hepatocellular carcinoma (HCC), cholangiocarcinoma, gastric cancer, colorectal cancer, esophageal cancer, Barrett’s esophagus, osteosarcoma, dermatofibrosarcoma protuberans (DFSP), fibrosarcoma (fibroblastic sarcoma), chondrosarcoma, Ewing’s sarcoma,
Kaposi’s sarcoma, rhabdomyosarcoma, liposarcoma, synovial sarcoma, pleomorphic sarcoma, gastrointestinal stromal tumor, leiomyosarcoma, or angiosarcoma, or any of those disclosed herein.
[0312] Aspect 95. The pharmaceutical composition of any one of aspects 85-94, further including administering at least one immune checkpoint inhibitor to the mammalian subject.
[0313] Aspect 96. The pharmaceutical composition of aspect 95, wherein the at least one immune checkpoint inhibitor includes a CD47 inhibitor.
[0314] Aspect 97. The pharmaceutical composition of aspect 95 or 96, wherein the at least one immune checkpoint inhibition includes one or both of a PD-1 or PD-L1 inhibitor.
[0315] Aspect 98. The pharmaceutical composition of any one of aspects 95-97, wherein the immune checkpoint inhibition includes a CTLA-4 inhibitor.
[0316] Aspect 99. The pharmaceutical composition of any one of aspects 85-98, wherein the solid tumor cancer or solid tumor premalignancy is a CD33 low-expressing or CD33-negative solid tumor cancer or solid tumor premalignancy.
[0317] Aspect 100. The pharmaceutical composition of any one of aspects 85-99, further including at least one pharmaceutically acceptable excipient.
[0318] Aspect 101. A pharmaceutical composition for killing myeloid-derived suppressor cells (MDSCs) in a mammalian subject, such as a human patient, afflicted with a cancer or premalignancy or afflicted with haemophagocytic lymphohistiocytosis (HLH) or macrophage activation syndrome (MAS), including: a radiolabeled molecule that binds specifically to CD33 to the mammalian subject in an amount effective to kill MDSCs in the mammalian subject.
[0319] Aspect 102. The pharmaceutical composition of aspect 101, wherein the radiolabeled molecule is a radiolabeled antibody, antibody, antibody fragment, antibody mimetic, peptide, ligand, or small molecule.
[0320] Aspect 103. The pharmaceutical composition of aspect 102, wherein the radiolabeled molecule is a radiolabeled antibody.
[0321] Aspect 104. The pharmaceutical composition of aspect 103, wherein the radiolabeled antibody includes radiolabeled lintuzumab, radiolabeled gemtuzumab, radiolabeled vadastuximab, or any combination thereof.
[0322] Aspect 105. The pharmaceutical composition of any one of aspects 101-104, wherein the radiolabeled molecule includes a radiolabel selected from 134I, 125I, 123I, 90 Y, 177Lu, 186Re, 188Re, 89Sr, 153Sm, 32P, 225 Ac, 213Po, 211At, 212Bi, 213Bi, 223Ra, 227Th, 149Tb, 161Tb, 47Sc, 67Cu, 134Ce, 137Cs, 212Pb or 103Pd, or any combination thereof.
[0323] Aspect 106. The pharmaceutical composition of any one of aspects 101-105, wherein the radiolabeled molecule includes the radiolabel 225 Ac.
[0324] Aspect 107. The pharmaceutical composition of any one of aspects 101-106, wherein the radiolabeled molecule includes a chelator that binds the radiolabel by chelation.
[0325] Aspect 108. The pharmaceutical composition of aspect 107, wherein the chelator includes DOTA or a DOTA derivative.
[0326] Aspect 109. The pharmaceutical composition of aspect 108, wherein the radiolabeled molecule is 225 Ac-labeled lintuzumab.
[0327] Aspect 110. The pharmaceutical composition of any one of aspects 101-109, wherein the cancer or premalignancy includes ovarian cancer, non-small cell lung carcinoma, head and neck squamous cell cancer, pancreatic cancer, renal cancer, breast cancer, tamoxifen-resistant breast cancer, triple negative breast cancer, prostate cancer, castration-resistant prostate cancer (CRPC), pancreatic cancer, small cell lung carcinoma (SCLC), non-small cell lung carcinoma (NSCLC), hepatocellular carcinoma (HCC), cholangiocarcinoma, gastric cancer, colorectal cancer, esophageal cancer, Barrett’s esophagus, osteosarcoma, dermatofibrosarcoma protuberans (DFSP), fibrosarcoma (fibroblastic sarcoma), chondrosarcoma, Ewing’s sarcoma, Kaposi’s sarcoma, rhabdomyosarcoma, liposarcoma, synovial sarcoma, pleomorphic sarcoma, gastrointestinal stromal tumor, leiomyosarcoma, or angiosarcoma, or any of those disclosed herein.
[0328] Aspect 111. The pharmaceutical composition of any one of aspects 101-110, wherein the pharmaceutical composition is for the treatment of a solid tumor cancer or solid tumor premalignancy in a mammalian subject, such as a human patient.
[0329] Aspect 112. The pharmaceutical composition of aspect 111, wherein the mammalian subject, such as human patient, is not afflicted with a hematological cancer or hematological premalignancy.
[0330] Aspect 113. The pharmaceutical composition of any one of aspects 101-112, further including at least one immune checkpoint inhibitor.
[0331] Aspect 114. The pharmaceutical composition of aspect 113, wherein the at least one immune checkpoint inhibitor includes a CD47 inhibitor.
[0332] Aspect 115. The pharmaceutical composition of aspect 113 or 114, wherein the at least one immune checkpoint inhibitor includes one or both of PD-1 inhibitor and a PD-L1 inhibitor.
[0333] Aspect 116. The pharmaceutical composition of any one of aspects 113-115, wherein the at least one immune checkpoint inhibitor includes a CTLA-4 inhibitor.
[0334] Aspect 117. The pharmaceutical composition of any one of aspects 101-116, wherein the solid tumor cancer or solid tumor premalignancy is a CD33 low-expressing or CD33- negative solid tumor cancer or a CD33 low-expressing or CD33 -negative solid tumor cancer solid tumor premalignancy.
[0335] EXAMPLES
[0336] Example 1: Production of radiolabeled targeting agent
[0337] A targeting agent such as an antibody may, for example, be labeled with Indium- 111 (mIn) or Actinium-225 (225Ac) according to procedures detailed in any of U.S. Patent No. 10,420,851, International Pub. No. WO 2017/155937 and US Provisional Patent Application No. 63/042,651 filed December 9, 2019 and titled “Compositions and methods for preparation of sitespecific radioconjugates.”
[0338] Radiolabeling'. The antibody may be conjugated to a linker, such as any of the bifunctional chelators described herein and in the above indicated patent literature. An exemplary linker includes at least dodecane tetraacetic acid (DOTA), wherein a goal of the conjugation reaction is to achieve a DOTA-antibody ratio of 3 : 1 to 5 : 1. Chelation with the radionuclide mIn or 225 Ac may then be performed and efficiency and purity of the resulting niIn- or 225 Ac-labeled anti-CD33 antibody may be determined by HPLC and iTLC.
[0339] An exemplary labeling reaction for 225 Ac is as follows: A reaction including 15pl 0.15M NH4OAC buffer, pH=6.5 and 2pL (lOpg) DOTA-anti-CD33 (5 mg/ml) may be mixed in an Eppendorf reaction tube, and 4pL 225 Ac (10 pCi) in 0.05 M HC1 subsequently added. The contents of the tube may be mixed with a pipette tip and the reaction mixture incubated at 37°C for 90 min with shaking at 100 rpm. At the end of the incubation period, 3 pL of a ImM DTPA solution may be added to the reaction mixture and incubated at room temperature for 20 min to bind the unreacted 225 Ac into the 225Ac-DTPA complex. Instant thin layer chromatography with 10cm silica
gel strip and lOmM EDTA/normal saline mobile phase may be used to determine the radiochemical purity of 225Ac-DOTA-anti-CD33 through separating 225 Ac-labeled anti-CD33 (225Ac-DOTA-anti-CD33) from free 225 Ac (225Ac-DTPA). In this system, the radiolabeled antibody stays at the point of application and 225 Ac-DTPA moves with the solvent front. The strips may be cut in halves and counted in the gamma counter equipped with the multichannel analyzer using channels 72-110 for 225 Ac to exclude its daughters.
[0340] Purification: An exemplary radiolabeled targeting agent, such as 225Ac-DOTA- antibody, may be purified either on PD10 columns pre-blocked with 1% HSA or on Vivaspin centrifugal concentrators with a 50 kDa MW cut-off with 2 x 1.5 mL washes, 3 min per spin. HPLC analyses of the 225Ac-DOTA-antibody after purification may be conducted using a Waters HPLC system equipped with flow-through Waters UV and Bioscan Radiation detectors, using a TSK3000SW XL column eluted with PBS at pH=7.4 and a flow rate of Iml/min.
[0341] Example 2: Specificity and stability of CD33 ARC
[0342] Lintuzumab conjugated with Actinium-225 (Ac225) was tested for cytotoxicity against specific cell types which express CD33. For example, suspensions of HL60 (leukemia cells) were incubated with various doses of radiolabeled lintuzumab (lintuzumab- Ac225), and the dose at which 50% of the cells were killed (LD50) was found to be 8 pCi per mL of cell suspension.
[0343] In studies to access the reactivity of the radiolabeled lintuzumab with peripheral blood and bone marrow cells from nonhuman primate and human frozen tissues, the radiolabeled lintuzumab showed reactivity with mononuclear cells only, demonstrating specificity. Moreover, in studies to determine the stability of the radiolabel on the antibody, 10 normal mice (8-week-old Balb/c female mice from Taconic, Germantown, New York) were injected in the tail with 300 nCi radiolabeled lintuzumab (in 0.12ml). Serum samples taken over a 5 day period showed that the Actinium-225 remained bound to the lintuzumab, demonstrating the stability of the radiolabel on the antibody in vivo.
[0344] A maximum tolerated dose (MTD) of a single injection of the radiolabeled lintuzumab was determined to be 3pCi/kg patient weight. As a split dose (e.g., 2 equal doses administered 4-7 days apart), the MTD was determined to be 2pCi/kg per dose, or 4pCi/kg total. This data was determined by injections into patients with relapsed/refractory AML: 21 patients were injected with increasing doses of the radiolabeled lintuzumab - 0.5pCi/kg to 4pCi/kg. Determination of MTD was based on the severity of the adverse effects observed at each dose
level. Anti -leukemic effects included elimination of peripheral blood blasts in 13 of 19 evaluable patients. Twelve of 18 patients who were evaluable at 4 weeks following treatment had reductions in bone marrow blasts, including nine with reductions > 50%. Three patients treated with 1 pCi/kg, 3 pCi/kg and 4pCi/kg respectively had < 5% blasts after therapy.
[0345] Example 3: Human maximal tolerated dose and efficacy of CD33 ARC
[0346] A maximum tolerated dose (MTD) of fractionated doses of 225Ac-lintuzumab followed by Granulocyte Colony Stimulating factor (GCSF) support in each cycle may be determined using a dosing cycle of approximately 42 days. A cycle starts with administration of a fractionated dose of 225 Ac-labeled lintuzumab on Day 1 followed by the administration of GCSF on Day 9 and continuing GCSF per appropriate dosing instructions until absolute neutrophil count (ANC) is greater than 1,000, which is expected to occur within 5 - 10 days. On Days 14, 21, 28, 35 and 42 peripheral blood will be assessed for paraprotein burden. A bone marrow aspirate will be performed to assess plasmocyte infiltration on Day 42. If a response is a partial response or better but less than a complete response on Day 42, and the patient remains otherwise eligible, the patient will be re-dosed in a new cycle at the same dose level no sooner than 60 days after Day 1 of the first cycle. In absence of dose limiting toxicities, cycles will continue using the abovedescribed algorithm until the patient has received a cumulative dose of 4 pCi/kg of 225 Ac-labeled lintuzumab.
[0347] Example 4: 225Ac-lintuzumab depletes human cancer patient-derived MDSCs and human healthy donor MDSCs
[0348] The ability of 225Ac-labeled lintuzumab (anti-CD33 mAb) to kill MDSCs isolated from the PBMCs of human colorectal cancer (CRC) patients or from healthy human donors (HD) was tested.
[0349] Both CRC and HD PBMCs were obtained. In each case, anti-CD14 microbeads (Catalog No. 130-050-201, Miltenyi Biotec, Bergisch Gladbach, Germany) were used to isolate CD14-positive MDSCs (monocytic MDSCs, M-MDSCs). Anti-CD15 microbeads (Catalog No. 130-046-601, Miltenyi Biotec) were then used to selected CD15-positive MDSCs (granulocytic MFSCs, G-MDSCs) from the CD14-negative PBMC fraction. The isolated M-MDSCs and G- MDSCs were then pooled and immunophenotyped (using FITC labeled antibodies from Miltenyi Biotec and an Accuri™ C6 Plus flow cytometer (Becton Dickinson, Franklin Lakes, NJ USA)) confirming M-MDSC (CD14+, CD15', CDl lb+, HLA-DR7 low CD33+) and G-MDSC (CD14‘,
CD15+, CDl lb+, CD33+) profiles of the isolated cells. The Miltenyi Biotec fluorophore-labeled antibodies used for the immunophenotyping were CD14-FITC anti -Human Antibody (Catalog No.130-110-518), CD15-APC anti-Human Antibody (Catalog No. 130-113-482), CD33-FITC anti-Human Antibody (Catalog No. 130-111-018), CDl lb-APC anti-Human Antibody (Catalog No. 130-110-554), CD33-APC anti-Human Antibody (Catalog No. 130-111-020), CDl lb-FITC anti-Human Antibody (Catalog No. 130-110-552), and HLA-DR-FITC anti-Human Antibody (Catalog No. 130-111-788). The pooled MDSCs were then used in viability assays examining the effects of 225 Ac-labeled lintuzumab (specifically, 225 Ac-labeled conjugate of p-SCN-Bn-DOTA and lintuzumab) at different radiation doses versus non-radiolab eled lintuzumab control.
[0350] For each radiation dose of 225 Ac-labeled lintuzumab tested, the protein amount of the 225 Ac-labeled lintuzumab and the protein amount of the non-radiolab eled lintuzumab were the same in the experiment. Via-Probe red nucleic acid stain (Catalog No. 1 565803, Becton Dickinson) was used to assess viability of cells with the Accuri C6 Plus flow cytometer.
[0351] FIG. 1 shows results of a viability assay demonstrating that 225 Ac-labeled lintuzumab (anti-CD33 mAb) significantly depletes MDSCs isolated from a human colorectal cancer (CRC) patient versus non-radiolab eled lintuzumab control. In this experiment, 100,000 cells/well, 15 min 4°C treatment (radiolabeled or non-radiolab eled lintuzumab), and an endpoint of 48 hours were used.
[0352] FIG. 2 shows results of a viability assay demonstrating that 225 Ac-labeled lintuzumab (anti-CD33 mAb) significantly depletes MDSCs isolated from a healthy human donor (HD) versus non-radiolab eled lintuzumab control. In this experiment, 100,000 cells/well, 15 min 37°C treatment (radiolabeled or non-radiolab eled lintuzumab), and an endpoint of 48 hours were used.
[0353] While various specific embodiments have been illustrated and described herein, it will be appreciated that various changes can be made without departing from the spirit and scope of the invention(s). Moreover, features described in connection with one aspect of the invention may be used in conjunction with other aspects of the invention, even if not explicitly exemplified in combination within.
Claims
1. Use of a radiolabeled anti-CD33 antibody or radiolabeled CD33-binding antibody fragment in the preparation of a medicament for the treatment of a sarcoma in a human patient, wherein the sarcoma is osteosarcoma, dermatofibrosarcoma protuberans (DFSP), fibrosarcoma (fibroblastic sarcoma), chondrosarcoma, Ewing’s sarcoma, rhabdomyosarcoma, liposarcoma, synovial sarcoma, pleomorphic sarcoma, gastrointestinal stromal tumor, leiomyosarcoma, or angiosarcoma.
2. The use of claim 1, wherein the radiolabeled anti-CD33 antibody or radiolabeled CD33- binding antibody fragment comprises radiolabeled lintuzumab, a radiolabeled CD33- binding fragment of lintuzumab, radiolabeled gemtuzumab, a radiolabeled CD33-binding fragment of gemtuzumab, radiolabeled vadastuximab, a radiolabeled CD33-binding fragment of vadastuximab, or any combination thereof.
3. The use of claim 2, wherein the radiolabeled anti-CD33 antibody or radiolabeled CD33- binding fragment comprises radiolabeled lintuzumab or a radiolabeled CD33-binding antibody fragment of lintuzumab.
4. The use of any one of claims 1-3, wherein the radiolabeled anti-CD33 antibody or radiolabeled CD33-binding fragment comprises an alpha-particle emitting radiolabel.
5. The use of any one of claims 1-3, wherein the radiolabeled anti-CD33 antibody or radiolabeled CD33-binding fragment comprises a beta-particle emitting radiolabel.
6. The use of any one of claims 1-3, wherein the radiolabeled anti-CD33 antibody or radiolabeled CD33-binding fragment comprises a radiolabel selected from 131I, 125I, 123I, 90Y, 177LU, 186Re, 188Re, 89Sr, 153Sm, 32P, 225 Ac, 213Po, 211At, 212Bi, 213Bi, 223Ra, 227Th, 149Tb,
161Tb, 47Sc, 67Cu, 134Ce, 137Cs, 212Pb or 103Pd, or any combination thereof.
74 The use of any one of claims 1-3, wherein the radiolabeled anti-CD33 antibody or radiolabeled CD33-binding antibody fragment comprises the radiolabel 225Ac. The use of any one of the preceding claims, wherein the radiolabeled anti-CD33 antibody or radiolabeled CD33-binding antibody fragment comprises a chelator that binds the radiolabel by chelation. The use of claim 8, wherein the chelator comprises DOTA or a DOTA derivative. The use of claim 9, wherein the radiolabeled anti-CD33 antibody or CD33-binding antibody fragment is a 225 Ac-labeled lintuzumab, such as a 225 Ac-labeled conjugate of p- SCN-Bn-DOTA and lintuzumab. The use of any one of the preceding claims, wherein the use is for the preparation of a medicament for the treatment of a sarcoma in a human patient not afflicted with a hematological cancer or hematological premalignancy. The use of any one of the preceding claims, wherein the medicament is effective for killing myeloid-derived suppressor (MDSC) in the treatment of the sarcoma. A pharmaceutical composition comprising an anti-CD33 antibody or radiolabeled CD33- binding antibody fragment for the treatment of a sarcoma in a human patient, wherein the sarcoma is osteosarcoma, dermatofibrosarcoma protuberans (DFSP), fibrosarcoma (fibroblastic sarcoma), chondrosarcoma, Ewing’s sarcoma, rhabdomyosarcoma, liposarcoma, synovial sarcoma, pleomorphic sarcoma, gastrointestinal stromal tumor, leiomyosarcoma, or angiosarcoma. The pharmaceutical composition of claim 13, wherein the radiolabeled anti-CD33 antibody or radiolabeled CD33-binding antibody fragment comprises radiolabeled lintuzumab, a radiolabeled CD33-binding fragment of lintuzumab, radiolabeled gemtuzumab, a
75 radiolabeled CD33-binding fragment of gemtuzumab, radiolabeled vadastuximab, a radiolabeled CD33-binding fragment of vadastuximab, or any combination thereof. The pharmaceutical composition of claim 14, wherein the radiolabeled anti-CD33 antibody or radiolabeled CD33-binding fragment comprises radiolabeled lintuzumab or a radiolabeled CD33-binding antibody fragment of lintuzumab. The pharmaceutical composition of any one of claims 13-15, wherein the radiolabeled anti- CD33 antibody or radiolabeled CD33-binding fragment comprises an alpha-particle emitting radiolabel. The pharmaceutical composition of any one of claims 13-15, wherein the radiolabeled anti- CD33 antibody or radiolabeled CD33-binding fragment comprises a beta-particle emitting radiolabel. The pharmaceutical composition of any one of claims 13-15, wherein the radiolabeled anti- CD33 antibody or radiolabeled CD33-binding fragment comprises a radiolabel selected from 131I, 125I, 1231, 90Y, 177LU, 186Re, 188Re, 89Sr, 153Sm, 32P, 225 Ac, 213Po, 211At, 212Bi, 213Bi, 223Ra, 227Th, 149Tb, 161Tb, 47Sc, 67Cu, 134Ce, 137Cs, 212Pb or 103Pd, or any combination thereof. The pharmaceutical composition of any one of claims 13-15, wherein the radiolabeled anti- CD33 antibody or radiolabeled CD33-binding antibody fragment comprises the radiolabel 225 Ac. The pharmaceutical composition of any one of claims 13-19, wherein the radiolabeled anti- CD33 antibody or radiolabeled CD33-binding antibody fragment comprises a chelator that binds the radiolabel by chelation. The pharmaceutical composition of claim 20, wherein the chelator comprises DOTA or a DOTA derivative.
The pharmaceutical composition of claim 21, wherein the radiolabeled anti-CD33 antibody or CD33-binding antibody fragment is a 225 Ac-labeled lintuzumab, such as a 225 Ac-labeled conjugate of p-SCN-Bn-DOTA and lintuzumab. The pharmaceutical composition of any one of claims 13-22, for the treatment of a sarcoma in a human patient, not afflicted with a hematological cancer or hematological premalignancy. The pharmaceutical composition of any one of claims 13-23, wherein the pharmaceutical composition is effective for killing myeloid-derived suppressor (MDSC) in the treatment of the sarcoma. The pharmaceutical composition of any one of claims 13-24, for use in combination with at least one immune checkpoint therapy in the treatment of the sarcoma. The pharmaceutical composition of claim 25, wherein the at least one immune checkpoint therapy comprises one or more of a CD47 blockade, a PD-L1 inhibitor, a PD-1 inhibitor, and a CTLA-4 inhibitor. The pharmaceutical composition of any one of claims 13-26, further comprising at least one pharmaceutically acceptable excipient. A method for treating a sarcoma in a human subject, comprising administering a therapeutically effective amount of a radiolabeled anti-CD33 antibody or radiolabeled CD33-binding antibody fragment to a human subject in need of treatment for a sarcoma, wherein the sarcoma is osteosarcoma, dermatofibrosarcoma protuberans (DFSP), fibrosarcoma (fibroblastic sarcoma), chondrosarcoma, Ewing’s sarcoma, rhabdomyosarcoma, liposarcoma, synovial sarcoma, pleomorphic sarcoma, gastrointestinal stromal tumor, leiomyosarcoma, or angiosarcoma.
77 The method of claim 28, wherein the radiolabeled anti-CD33 antibody or radiolabeled CD33-binding antibody fragment comprises radiolabeled lintuzumab, a radiolabeled CD33-binding fragment of lintuzumab, radiolabeled gemtuzumab, a radiolabeled CD33- binding fragment of gemtuzumab, radiolabeled vadastuximab, a radiolabeled CD33- binding fragment of vadastuximab, or any combination thereof. The method of claim 29, wherein the radiolabeled anti-CD33 antibody or radiolabeled CD33-binding fragment comprises radiolabeled lintuzumab or a radiolabeled CD33- binding fragment of lintuzumab. The method of any one of claim 28-30, wherein the radiolabeled anti-CD33 antibody or radiolabeled CD33-binding fragment comprises an alpha-particle emitting radiolabel. The method of any one of claims 28-30, wherein the radiolabeled anti-CD33 antibody or radiolabeled CD33-binding fragment comprises a beta-particle emitting radiolabel. The method of any one of claims 28-30, wherein the radiolabeled anti-CD33 antibody or radiolabeled CD33-binding fragment comprises a radiolabel selected from 131I, 125I, 123I, 90Y, 177LU, 186Re, 188Re, 89Sr, 153Sm, 32P, 225 Ac, 213Po, 211At, 212Bi, 213Bi, 223Ra, 227Th, 149Tb, 161Tb, 47Sc, 67Cu, 134Ce, 137Cs, 212Pb or 103Pd, or any combination thereof. The method of any one of claims 28-30, wherein the radiolabeled anti-CD33 antibody or radiolabeled CD33-binding antibody fragment comprises the radiolabel 225Ac. The method of any one of claims 28-34, wherein the radiolabeled anti-CD33 antibody or radiolabeled CD33-binding antibody fragment comprises a chelator that binds the radiolabel by chelation. The method of claim 35, wherein the chelator comprises DOTA or a DOTA derivative.
78 The method of claim 36, wherein the radiolabeled anti-CD33 antibody or radiolabeled CD33-binding antibody fragment is a 225 Ac-labeled lintuzumab, such as a 225 Ac-labeled conjugate of p-SCN-Bn-DOTA and lintuzumab. The method of any one of claims 28-37, wherein the human subject is not afflicted with a hematological cancer or hematological premalignancy. The method of any one of claims 28-38, wherein the therapeutically effective amount is effective for killing myeloid-derived suppressor (MDSC) in the treatment of the sarcoma. The method of any one of claims 28-39, for use in combination with at least one immune checkpoint therapy. The method of claim 40, wherein the at least one immune checkpoint therapy comprises one or more of a CD47 blockade, a PD-L1 inhibitor, a PD-1 inhibitor, and a CTLA-4 inhibitor. The method of any one of claims 28-41, wherein the administering step comprises administering to the human subject a pharmaceutical composition comprising the radiolabeled anti-CD33 antibody or radiolabeled CD33-binding antibody fragment, and at least one pharmaceutically acceptable excipient.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163230431P | 2021-08-06 | 2021-08-06 | |
US17/532,919 US20220143228A1 (en) | 2020-10-22 | 2021-11-22 | Her3 radioimmunotherapy for the treatment of solid cancers |
PCT/US2022/075506 WO2023015322A1 (en) | 2021-08-06 | 2022-08-26 | Radioconjugates targeting cd33 in the treatment of cancers |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4380632A1 true EP4380632A1 (en) | 2024-06-12 |
Family
ID=85156367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22854141.3A Pending EP4380632A1 (en) | 2021-08-06 | 2022-08-26 | Radioconjugates targeting cd33 in the treatment of cancers |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4380632A1 (en) |
CA (1) | CA3228080A1 (en) |
WO (1) | WO2023015322A1 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018187074A1 (en) * | 2017-04-03 | 2018-10-11 | Immunomedics, Inc. | Subcutaneous administration of antibody-drug conjugates for cancer therapy |
AU2019225740A1 (en) * | 2018-02-20 | 2020-09-10 | Dragonfly Therapeutics, Inc. | Antibody variable domains targeting CD33, and use thereof |
EP4268831A3 (en) * | 2018-09-12 | 2024-05-22 | Fred Hutchinson Cancer Center | Reducing cd33 expression to selectively protect therapeutic cells |
US20220288244A1 (en) * | 2020-10-22 | 2022-09-15 | Actinium Pharmaceuticals, Inc. | Combination radioimmunotherapy and cd47 blockade in the treatment of cancer |
-
2022
- 2022-08-26 CA CA3228080A patent/CA3228080A1/en active Pending
- 2022-08-26 WO PCT/US2022/075506 patent/WO2023015322A1/en active Application Filing
- 2022-08-26 EP EP22854141.3A patent/EP4380632A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CA3228080A1 (en) | 2023-02-09 |
WO2023015322A1 (en) | 2023-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220211886A1 (en) | Combination radioimmunotherapy and cd47 blockade in the treatment of cancer | |
US20220288244A1 (en) | Combination radioimmunotherapy and cd47 blockade in the treatment of cancer | |
US20240197931A1 (en) | Radioimmunotherapy directed to ccr8 for depletion of tumor infiltrating regulatory t cells | |
US20220008570A1 (en) | Combination of radioimmunotherapy and immune checkpoint therapy in the treatment of cancer | |
CA3087346A1 (en) | Combination immunotherapy and chemotherapy for the treatment of a hematological malignancy | |
US20240216554A1 (en) | Radioimmunoconjugates directed to nkg2d ligands for the treatment of cancer | |
US20230092668A1 (en) | Radioconjugates targeting cd33 in the treatment of cancers | |
US20220143228A1 (en) | Her3 radioimmunotherapy for the treatment of solid cancers | |
WO2023028613A2 (en) | Radioimmunoconjugates targeting phosphatidylserine for use in the treatment of cancer | |
US20230302167A1 (en) | Radioconjugates targeting cd33 in the treatment of cancers | |
US20220251239A1 (en) | Combination radioimmunotherapy and cd47 blockade in the treatment of cancer | |
EP4380632A1 (en) | Radioconjugates targeting cd33 in the treatment of cancers | |
US20240226345A1 (en) | Radioimmunoconjugates targeting calreticulin for use in the treatment of cancer | |
EP4376856A1 (en) | Combination radioimmunotherapy and cd47 blockade in the treatment of cancer | |
US20230248855A1 (en) | Her3 radioimmunotherapy for the treatment of solid cancers | |
EP4210752A1 (en) | Trophoblast glycoprotein radioimmunotherapy for the treatment of solid cancers | |
WO2022109404A1 (en) | Her3 radioimmunotherapy for the treatment of solid cancers | |
EP4408486A1 (en) | Radioconjugates targeting grp78 for use in the treatment of cancer | |
WO2024138019A1 (en) | Her3 radioimmunotherapy for the treatment of solid cancers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20240212 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |