EP4374440A1 - Plant for producing electricity comprising a fuel cell and a chemical reactor capable of producing the fuel for said cell by means of the heat released by said same cell, and associated method - Google Patents

Plant for producing electricity comprising a fuel cell and a chemical reactor capable of producing the fuel for said cell by means of the heat released by said same cell, and associated method

Info

Publication number
EP4374440A1
EP4374440A1 EP22751368.6A EP22751368A EP4374440A1 EP 4374440 A1 EP4374440 A1 EP 4374440A1 EP 22751368 A EP22751368 A EP 22751368A EP 4374440 A1 EP4374440 A1 EP 4374440A1
Authority
EP
European Patent Office
Prior art keywords
cell
dihydrogen
reactor
fuel
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22751368.6A
Other languages
German (de)
French (fr)
Inventor
Bruno SANGLÉ-FERRIÈRE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marbeuf Conseil et Recherche SAS
Original Assignee
Marbeuf Conseil et Recherche SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marbeuf Conseil et Recherche SAS filed Critical Marbeuf Conseil et Recherche SAS
Publication of EP4374440A1 publication Critical patent/EP4374440A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1233Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1266Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing bismuth oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/245Stationary reactors without moving elements inside placed in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electricity production installation comprising a non-galvanic fuel cell.
  • Hydrogen fuel cells are known to operate at high temperatures, ranging in particular from 450°C to 1000°C. In these cells, the hydrogen is oxidized, either at the cathode, if the hydrogen crosses the electrolyte in ionic form towards it, or at the anode if the oxygen crosses the electrolyte towards the anode as in the case of SOFC solid oxide batteries. The energy efficiency of all these fuel cells, however, rarely exceeds 60% of the energy.
  • the document JP 2005 306624 A describes the use of the heat produced by the combustion in a burner of the residual gases of the pile, to provide thermal energy to the reactors where the stages of separation and concentrations of products intended for the production of hydrogen but does not recycle all the heat given off by the electrolyte nor the electrodes of the cell in which the dihydrogen reacts with the dioxygen, possibly using only the part of the said heat transferred to the dioxygens and dihydrogens which do not have not reacted, and further requiring a combustion chamber in which the dioxygen burns the dihydrogen outside the electrochemical cell while the dihydrogen can be separated from the water with which it can be mixed at the outlet of the anode by simple cooling under a pressure lower than the critical pressure of water, to be reintroduced at the inlet of said cell, or to be separated by a membrane.
  • the document JP H09 320627 A describes an installation which makes it possible to use, when starting up the installation, the heat produced by a fuel cell using phosphoric acid as electrolyte.
  • the fuel cell is completely fueled by the chemical reactions taking place in the hydrogen and oxygen production unit which operates with the contribution of the heat given off by the fuel cell.
  • This installation does not allow recycling of the products of the electrochemical reaction of the cell, for the production of dihydrogen and dioxygen.
  • the installation creates toxic co-products, the phosphorus reacting with the hydrogen.
  • the present invention relates to a method for producing electricity implementing a non-galvanic fuel cell, said method making it possible to valorize the heat given off by said cell to generate fuel for said fuel cell by a thermal dissociation process, applied to the product of the same chemical composition as that produced by said cell, at least part of the heat given off by said cell being supplied to at least one of the endothermic reactions of said dissociation process, and the oxidizers and fuels of the fuel cell react directly with each other outside of said stack.
  • the fuel enters the installation and mixes with the fuel possibly resulting from the reactors of the chemical cycle to be introduced into a fuel cell, said fuel cell producing electricity which is one of the products of the installation, as well that a product which is partly extracted from the installation in and partly recycled towards the chemical cycle reactors, the heat released by the fuel cell being transferred to the chemical cycle which produces fuel.
  • the fuel cell is for example a solid oxide hydrogen cell whose combustion product is water, formed at the electrode in contact with the hydrogen.
  • a dihydrogen concentrator (150) is advantageously arranged to extract the water from the water-dihydrogen mixture, for example consisting of a metallic membrane, of vanadium covered with silicon oxide on each face, themselves covered with a fine 20 micron layer of platinum as described in the article: 'Hydrogen-permeable metal membranes for high-temperature gas separations' published by David Edlund, Dwayne Friesen, Bruce Johnson and William Pledge in 1994 in the journal 'Gas Separation and Purification' Volume 8.
  • thermal dissociation of water is for example the iodine sulfur cycle or any other similar cycle from hydrogen halide using for example bromine or chlorine instead of iodine, during which the reactions following used are respectively 2 H 2 S0 4 ® 2 SO2 + 2 H2O + O2; 2 HBr Br2 + Fh;
  • each of the products of the thermal dissociation of water can then be used in part by the hydrogen fuel cell.
  • the products dissociated by the thermal dissociation process all come from the overall chemical reaction taking place in the cell, and all the products resulting from the thermal dissociation are consumed by said cell.
  • the sulfur iodine cycle allows in a first reaction at for example 120°C between di-iodine, sulfur dioxide and water to produce hydrogen iodide and sulfuric acid (I2 + SO2 + 2 H2O ® 2 Hl +H2SO4), the hydrogen iodide being recycled in a first endothermic reaction at for example 650°C in di-iodine and dihydrogen (2 Hl ® I2 + H2) and the sulfuric acid in dioxide of sulphur, water and dioxygen (2 H 2 S0 ® 2 SO2 + 2 H2O + O2) in a second endothermic reaction, for example at 830° C.; the heat necessary for the first and/or the second endothermic reaction coming from the hydrogen fuel cell, either by means of a thermal connection between the said fuel cell and the reactor(s) of the first and/or of the second endothermic reaction, or transported to said reactors by the water released from the hydrogen fuel cell during its operation.
  • the thermal water dissociation process can use an alkali metal hydride in which water mixed with the alkali metal reacts to form a hydride of the alkali metal and oxygen (H2O + 2 Me -> 2MeH + 1 ⁇ 2 O2) while the alkali metal hydride is transformed in another reactor into metal and dihydrogen (2MeH -> 2Me + H2).
  • an alkali metal hydride in which water mixed with the alkali metal reacts to form a hydride of the alkali metal and oxygen (H2O + 2 Me -> 2MeH + 1 ⁇ 2 O2) while the alkali metal hydride is transformed in another reactor into metal and dihydrogen (2MeH -> 2Me + H2).
  • the dissociation of water can be made using Iron III chloride and Iron II chloride (6FeCl2 + 8 FI2O -> 2Fe 3 0 4 + 12HCI + 2H 2 ; 2Fe 3 0 4 + 12HCI + 3CI 2 -> 6FeCI 3 + 6H2O + 0 2 and 6FeCI 3 -> 6FeCI 2 +3CI 2 ).
  • the dissociation of water can be done using vanadium chloride and vanadium tetrachloride (CI2 + H2 -> 2HCI + 1 ⁇ 2 O2; 2HCI + VCI2 -> 2VCI 3 + H 2 ; 2VCI 3 -> VCI 2 + VCI 4 ; 2VCU -> 2VCI 3 + Cl 2 )
  • the process for the thermal dissociation of water can use hydrocarbons, methane reacting for example in a first reactor with water to form dihydrogen and carbon monoxide (CFU+FhO -> CO + 3H2), carbon monoxide and dihydrogen reacting in a second reactor to form methanol (CO+2FI2 -> CH 3 OH), methanol reacting in a third reactor with arsenate to form arsenious anhydride and dioxygen (CFI 3 OFI + As2 ⁇ 4 -> 1 ⁇ 2 As 2 0 3 + 1 ⁇ 2 O2), a fourth and a fifth reactor allowing the formation of arsenate and dioxygen from arsenious anhydride (1/2 AS2O5 -> 1 ⁇ 2 As 2 0 3 + 1 ⁇ 2 O2 and 1 ⁇ 2 AS2O5 + 1 ⁇ 2 As 2 0 3 -> As 2 0 4 ).
  • the present invention also relates to an installation for the production of electricity making it possible to implement the method for producing electricity described above.
  • the installation
  • At least one fuel cell generating electricity and using a fuel, such as dihydrogen, as reducing fuel and operating at a given operating temperature, said cell being connected to a main source of dihydrogen;
  • a fuel such as dihydrogen
  • a chemical reactor/chemical production unit thermally connected to said cell and allowing the chemical production of fuel from the product of the reaction taking place in the cell, or from a chemical compound of the same composition, via at least an endothermic chemical reaction that takes place at a temperature less than or equal to said operating temperature of said cell, and
  • said chemical reactor/said chemical production unit comprises at least one main compartment/main reactor allowing the chemical production of dihydrogen and di-iodine from hydrogen iodide (Hl ), a first secondary compartment/first secondary reactor allowing the chemical production of dioxygen from sulfuric acid (H 2 SO 4 ), and/or at least a second secondary compartment which allows the reaction between the di-iodine, the sulfur and water, which produces hydrogen iodide and sulfuric acid.
  • This second secondary compartment therefore contains diatomic iodine, water and sulfur dioxide and possibly the products of this reaction, that is to say hydrogen iodide and sulfuric acid.
  • Said first compartment/secondary reactor and/or said reactor/main compartment are thermally connected to said stack.
  • the production unit further comprises means for introducing di-iodine produced in said main compartment/reactor to the second compartment/secondary reactor, means for introducing sulfuric acid produced in said second compartment/secondary reactor in said first compartment/secondary reactor and means for introducing the dioxygen produced in said first compartment/secondary reactor to said cell so that the latter serves there as oxidizer.
  • the cycles of the hydrogen/dioxygen production reactions are not limited according to the invention. This may be, for example, one of the water splitting processes described above.
  • the fuel cell of the installation of the invention is connected to a main source of fuel and to a main source of oxidizer.
  • the supply of fuel and oxidizer provided by the operation of the chemical unit or the chemical reactor is an additional contribution.
  • the chemical reactor/said chemical production unit comprises at least one main compartment/main reactor allowing the production of dihydrogen from hydrogen iodide, a first secondary compartment/first secondary reactor allowing the reaction between two molecules of sulfuric acid to produce in particular dioxygen and at least one second secondary compartment/second secondary reactor which allows the reaction between di-iodine, sulfur oxide and water to produce sulfuric acid and hydrogen iodide.
  • the cycle used is then that described in figure 1.
  • the installation according to the invention therefore makes it possible to produce, at the same time, electricity, dihydrogen and dioxygen, which are used as fuel in the cell within said installation itself.
  • the heat generated continuously by the hydrogen fuel cell during its operation is used for the production of dihydrogen and/or dioxygen during endothermic reactions and the remaining heat, if any, can still be used for the production electricity by a turbine or for heating, for example.
  • the cell is thermally connected only to said first reactor/secondary compartment, the main reactor being thermally connected to the first secondary reactor and the second secondary reactor to the main reactor.
  • the cell is thermally connected to the three reactors.
  • the chemical production unit includes reactors thermally connected to each other, either directly by contact or by a heat transfer fluid circuit.
  • the use of a heat exchanger operating with a heat transfer fluid makes it possible to regulate the flow of heat transmitted by regulating the flow of heat transfer fluid.
  • a heat transfer fluid can circulate in the walls of the main reactor to lower the temperature and transfer the calories which have passed through said walls, which are themselves preferably surrounded by thermal insulation, to the second secondary reactor.
  • the chemical reactor or the chemical production unit can be configured to receive directly by convection or conduction the heat given off by the cell.
  • the installation may also comprise thermal connection means between said stack and said main reactor/compartment and/or between said stack and said first reactor/secondary compartment which make it possible in particular to continuously supply the heat given off by said fuel cell and regulate the amount of heat supplied.
  • thermal connection means can be or include, for example, a heat transfer fluid circuit circulating between the cell, close to the anode and the cathode, and the reactor.
  • the endothermic chemical reaction 2HI® I2 + H2 can take place in the gas phase at 830°C.
  • the main compartment therefore contains hydrogen iodide and possibly the reaction products (namely dihydrogen and di-iodine).
  • the first compartment/secondary reactor allowing the reaction between two molecules of sulfuric acid to produce dioxygen (this compartment/reactor therefore contains at least sulfuric acid and possibly the products of the reaction, i.e. carbon dioxide sulfur, water and oxygen).
  • the second compartment/secondary reactor allows the reaction between di-iodine, sulfur oxide and water, which produces hydrogen iodide and sulfuric acid.
  • This second compartment/secondary reactor therefore contains diatomic iodine, water and sulfur dioxide and possibly the products of this reaction, that is to say hydrogen iodide and sulfuric acid.
  • Said secondary compartments/reactors may be thermally connected to said main compartment and/or to said stack. Indeed, the publication entitled “Sulfur-lodineThermochemical Cycle”, by P.
  • the aforementioned Sulfur-Iodine cycle makes it possible, using high heat, to produce hydrogen.
  • the I2 + SO 2 + 2 H 2 O 2 Hl + H 2 SO 4 reaction operates at 120°C.
  • the two endothermic reactions: 2 H 2 S0 4 ® 2 SO2 + 2 H2O + O2 and 2 Hl I2 + H2 are preferably carried out, respectively at 830° C. and 650° C., the SOFC cell preferably operating at 860° C. or more.
  • reactor allowing the reaction between A and B encompasses a reactor containing the reactants A and B and optionally the products and by-products of this reaction.
  • said operating temperature of said cell is greater than or equal to 850°C or 860°C. It is advantageously less than or equal to 1000°C or 1100°C.
  • the battery is not limited according to the invention. It can be a proton exchange membrane hydrogen fuel cell or a solid oxide hydrogen fuel cell (SOFC). It may also for example also be a direct methanol cell, for example with a solid oxide electrolyte whose fuel is methanol; the reactions then being at the anode: CH3OH + 3 O 2 CO2 + 2 H2 O + 6 e and at the cathode: O2 + 4 e 2 O 2 ; then the carbon dioxide separated from the water, for example cooling and pressurizing, for example at 30° C.
  • SOFC solid oxide hydrogen fuel cell
  • the cell is advantageously chosen from solid oxide fuel cells, which have a high operating temperature, that is to say, greater than 850°C.
  • the solid electrolyte of the SOFC battery (“solid oxide fuel cells”) is not limited.
  • this is a solid electrolyte of metal oxide(s) type, it can, for example, be chosen from yttrium oxides stabilized with zirconium (YSZ), scandium oxides stabilized with zirconium , (ScSZ), gadolinium doped with/with cerium oxides (GDC), bismuth stabilized with erbium oxide(s) (ERB), cerium oxides doped with one or more samarium oxides and mixtures of at least two of these oxides.
  • YSZ yttrium oxides stabilized with zirconium
  • ScSZ scandium oxides stabilized with zirconium ,
  • GDC gadolinium doped with/with cerium oxides
  • ERB bismuth stabilized with erbium oxide(s)
  • solid electrolyte containing or consisting of ceramics it can, for example, be chosen from ceramics and in particular composite ceramics containing salts of cerium oxide(s), (CSCs).
  • CSCs cerium oxide(s),
  • the means of introduction into chemical reactors can be simple pipes possibly equipped with nozzles preceded by compressors.
  • the phase of di-iodine and sulfuric acid during their reintroduction is not limiting according to the invention. They can be liquid or gaseous, independently of each other, depending on the temperature and pressure conditions in the separators that equip the outlets of the reactor compartments.
  • the installation of the invention thus makes it possible to produce both dihydrogen and dioxygen which are used in the electrochemical reaction of the cell.
  • the installation of the invention can therefore operate with a reduced supply of dihydrogen and/or external oxygen. It is therefore particularly ecological and proves to be economically advantageous.
  • the installation of the invention can be used to produce electric current, for example for industrial or domestic use, added to one or more electric motors for moving vehicles.
  • the present invention also relates to a method for producing electricity by means of a fuel cell using dihydrogen as reducing fuel according to which the heat produced during the operation of said fuel cell is continuously used to chemically generate dihydrogen via the endothermic chemical reaction 2 H1 I2 + H2, said hydrogen then possibly being introduced into said cell to serve there as fuel.
  • thermally connected indicate that two or more elements are in a thermal relationship either directly, by contact allowing the phenomenon of conduction, or by means of a suitable liquid or gaseous heat transfer fluid.
  • solid oxide designates, within the meaning of the invention, a metal oxide allowing the transport of O 2 ions .
  • solid oxide fuel cell designate any electrochemical device making it possible to produce electricity by oxidation of a fuel and comprising a solid electrolyte which may be a solid metal oxide, a mixture of metal oxides or a ceramic.
  • Fig. 1 represents a schematic view of a particular embodiment of the present invention.
  • Fig. 2 represents a diagram of the various flows of matter and energy necessary for the invention, entering, leaving and internal to the installation.
  • Fig. 3 represents a diagram of the various flows of material and energy necessary for the invention, entering, leaving and internal to the installation, the fuel being methanol.
  • Fig. 4 represents a diagram of the various flows of material and energy necessary for the invention, using a dihydrogen-water separator making it possible to maintain the proportion of dihydrogen in the gaseous mixture supplied to the anode of the cell stable. Examples
  • the installation comprises a cell 1, which is a solid metal oxide fuel cell. Despite its operation at high temperature (from 850° C. to 1000° C.), battery 1 gives off heat.
  • Cell 1 is thermally connected to a chemical reactor 3, which has three compartments. A thermal gradient is present in the chemical reactor 3 in order to ensure the appropriate reaction temperatures.
  • the two upper compartments of the reactor are thermally connected to each other.
  • the chemical reactor 3 comprises a main compartment 310 which is central in FIG. 1.
  • a first secondary compartment 311 is located above the main compartment 310. This first secondary compartment 311 is arranged so as to first recover the heat produced by the battery 1 so that the temperature within it is higher than in the main compartment 310.
  • a second secondary compartment 312 is arranged under the main compartment 310; the di-iodine from the separator 14 is advantageously brought into the tank 312 at a temperature of 120° C. in liquid form; a mixture of water and sulfur dioxide is supplied from the separator 65 and from a supply of water introduced via line 164, preferably also at a temperature of 120° C., and preferably under a pressure allowing that the two components of this gaseous mixture are liquid, the partial pressure of the sulfur dioxide being for example 50 bars.
  • the temperature of the second secondary compartment 312 is lower than that of the main compartment 310.
  • the two upper compartments are thermally connected so that the heat is transmitted from the first secondary compartment to the main compartment.
  • the arrangement of the compartments is not limited to that shown in Fig. 1.
  • the compartments may not have a common wall through which the heat is transmitted.
  • a heat transfer liquid whose speed is regulated circulates between the 3 compartments to heat said compartments and maintain them at the temperature necessary for the chemical reactions they house, if these are the site of endothermic reactions.
  • the residual heat resulting from the operation of the installation is evacuated at the level of the second secondary compartment 312, for example by means of a circuit cooling (not shown) in which circulates a heat transfer liquid. A portion of this circuit crosses said compartment or is in contact with the wall of the latter.
  • This heat can be used, for example, to produce electricity by means of a turbine.
  • the installation may also comprise an electricity production turbine.
  • the installation comprises a gas separator 14 whose inlet is located at the outlet of the main compartment 310.
  • the outlet of this separator 14 is connected by a pipe 141 to the battery and by a pipe 142 to the second secondary compartment 312
  • the separator 14 can operate for example by concomitant expansion and cooling of the gas coming from the compartment 310, the di-iodine becoming liquid, between 184°C and its critical temperature being 545.8°C.
  • the liquid di-iodine is then optionally recompressed to reach the operating pressure of reactor 312.
  • the installation also comprises a separator 16 arranged at the entrance to the main compartment 310.
  • the entrance to the separator 16 is connected via a pipe 161 to the second secondary compartment 312.
  • the exit from the separator 16 is connected on the one hand to the main compartment 310 via a pipe 162 and on the other hand to the first compartment 311 via another pipe 163.
  • liquid bars The reaction product mixture from reactor 312 is therefore preferably withdrawn from said reactor 312 after the reaction is complete.
  • the pressure of the hydrogen iodide is advantageously lowered to the operating pressure of the reactor 310, for example 10 bars.
  • a third separator 65 has its inlet connected to the first secondary compartment 311 (pipe not referenced and indicated by an arrow in FIG. 1) and its outlet connected by a first pipe (not shown) to the battery 1 and by a second pipe (not shown), to the second secondary compartment 312.
  • the separator 65 operates for example by one or a series of compressions followed by cooling of the gas resulting from the decomposition of the sulfuric acid.
  • Battery 1 produces electricity supplying a network not shown in Fig. 1, by consuming dihydrogen.
  • the heat given off by cell 1 is used to heat the first secondary compartment 311 of chemical reactor 3. In the particular embodiment represented here, only this compartment is thermally connected to cell 1.
  • the acid sulfur reacts on itself to produce water, oxygen and sulfur dioxide.
  • the reaction products are separated in the separator 65; the sulfur dioxide and the water are brought into the second secondary compartment 312; the oxygen is brought to cell 1 to serve, in addition to the oxygen brought elsewhere, for example from the outside air, to the oxidation-reduction reaction which takes place in the latter.
  • the reaction which takes place in the main compartment 310 produces gaseous di-iodine and gaseous dihydrogen. These produced gases are separated in the separator 14; the dihydrogen is routed (via line 141) to cell 1 to react there. The gaseous iodine leaving the separator 14 is routed via line 142 to the second secondary compartment 312.
  • iodine reacts with sulfur dioxide and water from the first secondary compartment to produce hydrogen iodide (HI) and sulfuric acid.
  • HI hydrogen iodide
  • sulfuric acid is brought into the first secondary compartment by line 163 connected to separator 16.
  • the fuel 201 enters the installation 200 and mixes with the fuel 203 from the chemical cycle reactors 212 to be introduced at 205 into the fuel cell 207.
  • the oxidant is introduced into the installation (202) to be mixed there with the oxidant 204 from the chemical cycle reactors 212, to be introduced at 206 into the fuel cell 207.
  • the fuel cell produces electricity 209 which is one of the products of the installation, as well as a product, for example water which is partly extracted from the installation at 211 and partly recycled at 210 to the reactors of the chemical cycle .
  • the heat 208 given off by the battery 207 is transferred to the chemical cycle 212.
  • the chemical cycle produces fuel 203; oxidant 204 and, optionally, residual heat 213 extracted from the installation.
  • the methanol 501 enters the installation 500 and mixes with the methanol 503 from the chemical cycle reactors 512 to be introduced at 505 into the direct methanol fuel cell 507.
  • the oxygen is introduced into the installation 502 to be mixed with the dioxygen 504 from the reactors of the chemical cycle 512, to be introduced at 506 into the fuel cell 507.
  • the fuel cell produces electricity 509 which is one of the products of the installation, as well as water and carbon dioxide 511 which are partly extracted from the installation at 511 and partly recycled at 510 to the reactors of the chemical cycle.
  • the heat 508 released by the battery 507 is transferred to the chemical cycle 512.
  • the chemical cycle produces methanol 503; oxygen 504 and possibly residual heat 513 extracted from the installation.
  • the gaseous mixture brought to the anode of cell 1 is put into circulation, that is to say brought and withdrawn by the pipe or pipes 153 to be in thermal and gaseous communication with the device 150 which is in thermal contact by the connection 152 with the reactor 310 at a temperature of approximately 650° C. to which said gas mixture is therefore cooled.
  • the gaseous mixture is enriched in dihydrogen in the device 150 using one or more metal membrane(s) which makes it possible to extract the dihydrogen and/or the water which is rejected by the pipe 154.
  • This water is advantageously used in part (not shown), to supply the dihydrogen production cycle, being then introduced into the pipe 164.
  • the heat from this water is advantageously brought to the reactor 312 (not shown) or else to heat the dihydrogen and /or dioxygen introduced into the installation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

The present invention relates to a method for producing electricity comprising a fuel cell which enables the heat released by the cell to be used to generate fuel for said fuel cell by means of a thermal dissociation method applied to the product of the same chemical composition as that produced by the cell, at least part of the heat released by the cell being added to at least one of the endothermic reactions of said dissociation method.

Description

INSTALLATION DE PRODUCTION D’ELECTRICITE COMPORTANT UNE PILE A COMBUSTIBLE ET UN REACTEUR CHIMIQUE APTE A PRODUIRE LE CARBURANT DE LADITE PILE GRACE A LA CHALEUR DEGAGEE PAR LA MEME DITE PILE- PROCEDE ASSOCIE ELECTRICITY PRODUCTION FACILITY COMPRISING A FUEL CELL AND A CHEMICAL REACTOR CAPABLE OF PRODUCING FUEL FOR SAID BATTERY THANKS TO THE HEAT RELEASED BY THE SAME SAID BATTERY- ASSOCIATED PROCESS
Domaine technique Technical area
La présente invention concerne une installation de production d’électricité comprenant une pile à combustible non galvanique. The present invention relates to an electricity production installation comprising a non-galvanic fuel cell.
Art antérieur Prior art
Les piles à combustible à hydrogène sont connues pour fonctionner à de hautes températures, allant notamment de 450°C à 1000°C. Dans ces piles, l’hydrogène est oxydé, soit à la cathode, si l’hydrogène traverse l’électrolyte sous forme ionique vers celle-ci, soit à l’anode si l’oxygène traverse l’électrolyte vers l’anode comme dans le cas des piles SOFC à oxyde solide. Le rendement énergétique de toutes ces piles à combustible n’excède cependant rarement que 60% de l’énergie. Hydrogen fuel cells are known to operate at high temperatures, ranging in particular from 450°C to 1000°C. In these cells, the hydrogen is oxidized, either at the cathode, if the hydrogen crosses the electrolyte in ionic form towards it, or at the anode if the oxygen crosses the electrolyte towards the anode as in the case of SOFC solid oxide batteries. The energy efficiency of all these fuel cells, however, rarely exceeds 60% of the energy.
Il est connu d’utiliser la chaleur dégagée par ces piles lors de leur fonctionnement pour faire fonctionner des turbines qui elles aussi fournissent de l’électricité. On parle alors de coproduction. Néanmoins, la valorisation de la chaleur dégagée en production d’électricité ne s’avère pas suffisante. It is known to use the heat released by these batteries during their operation to operate turbines which also provide electricity. We then speak of co-production. However, the recovery of the heat released in the production of electricity is not sufficient.
Le document JP 2005 306624 A décrit l’utilisation de la chaleur produite par la combustion dans un bruleur des gaz résiduels de la pile, pour apporter de l’énergie thermique aux réacteurs où ont lieu les étapes de séparation et de concentrations de produits destinés à la production d’hydrogène mais ne recycle pas toute la chaleur dégagée par l’électrolyte ni les électrodes de la pile dans laquelle le dihydrogène réagit avec le dioxygène, n’utilisant éventuellement que la partie de la dite chaleur transférée aux dioxygènes et dihydrogènes qui n’ont pas réagi , et nécessitant de plus une chambre de combustion dans laquelle le dioxygène brûle le dihydrogène en dehors de la pile électrochimique alors que le dihydrogène peut être séparé de l’eau auquel il peut être mêlé à la sortie de l’anode par simple refroidissement sous une pression inférieure à la pression critique de l’eau, pour être réintroduit en entrée de ladite pile, ou bien être séparé par une membrane. The document JP 2005 306624 A describes the use of the heat produced by the combustion in a burner of the residual gases of the pile, to provide thermal energy to the reactors where the stages of separation and concentrations of products intended for the production of hydrogen but does not recycle all the heat given off by the electrolyte nor the electrodes of the cell in which the dihydrogen reacts with the dioxygen, possibly using only the part of the said heat transferred to the dioxygens and dihydrogens which do not have not reacted, and further requiring a combustion chamber in which the dioxygen burns the dihydrogen outside the electrochemical cell while the dihydrogen can be separated from the water with which it can be mixed at the outlet of the anode by simple cooling under a pressure lower than the critical pressure of water, to be reintroduced at the inlet of said cell, or to be separated by a membrane.
Le document JP H09 320627 A décrit une installation qui permet d’utiliser au démarrage de l’installation, la chaleur produite par une pile à combustible utilisant l’acide phosphorique comme électrolyte. La pile à combustible est totalement alimentée par les réactions chimiques ayant lieu dans l’unité de production d’hydrogène et de dioxygène laquelle fonctionne avec l’apport de la chaleur dégagée par la pile. Cette installation ne permet pas de recyclage des produits de la réaction électrochimique de la pile, pour la production de dihydrogène et de dioxygène. Par ailleurs, l’installation crée des coproduits toxiques, le phosphore réagissant avec l’hydrogène. The document JP H09 320627 A describes an installation which makes it possible to use, when starting up the installation, the heat produced by a fuel cell using phosphoric acid as electrolyte. The fuel cell is completely fueled by the chemical reactions taking place in the hydrogen and oxygen production unit which operates with the contribution of the heat given off by the fuel cell. This installation does not allow recycling of the products of the electrochemical reaction of the cell, for the production of dihydrogen and dioxygen. In addition, the installation creates toxic co-products, the phosphorus reacting with the hydrogen.
Les documents US 2020/306624 A et EP 1 851 816 A2 décrivent des procédés de reformage d’hydrocarbures qui permettent la production d’hydrogène. Documents US 2020/306624 A and EP 1 851 816 A2 describe hydrocarbon reforming processes which allow the production of hydrogen.
Ullmnn’s Encyclopedia of Industrial Chemistry (ISBN 978-3-52-730673-2) décrit, dans son chapitre « Hyfdrogen2, Production » divers procédés chimiques de production d’hydrogène, dont des procédés de décomposition de l’eau en dihydrogène et dioxygène. Ullmnn's Encyclopedia of Industrial Chemistry (ISBN 978-3-52-730673-2) describes in its chapter "Hyfdrogen2, Production" various chemical processes for the production of hydrogen, including processes for the decomposition of water into dihydrogen and dioxygen.
Problème technique Technical problem
Aucun de ces procédés ne permet cependant d’améliorer l’efficacité de la production d’énergie électrique d’une pile à combustible en décrivant un procédé où une installation dont les intrants sont les mêmes que ceux de ladite pile à combustible, par récupération de la chaleur produite par ladite pile. Or, hormis le problème de combustion partielle du carburant de la pile, notamment le dihydrogène, le rendement d’une pile à hydrogène est affecté notablement par son dégagement thermique qui a lieu à ses électrodes mais aussi dans son électrolyte traversée par des ions. None of these methods, however, makes it possible to improve the efficiency of the electrical energy production of a fuel cell by describing a method where an installation whose inputs are the same as those of said fuel cell, by recovering the heat produced by said battery. However, apart from the problem of partial combustion of the fuel of the cell, in particular dihydrogen, the performance of a hydrogen cell is significantly affected by its thermal release which takes place at its electrodes but also in its electrolyte through which ions pass.
Brève description de l’invention Brief description of the invention
La présente invention concerne un procédé de production d’électricité mettant en œuvre une pile à combustible non galvanique, ledit procédé permettant de valoriser la chaleur dégagée par ladite pile pour générer du carburant pour ladite pile à combustible par un procédé de dissociation thermique, appliqué au produit de même composition chimique que celui produit par ladite pile, une partie au moins de la chaleur dégagée par ladite pile étant apportée à au moins l’une des réactions endothermiques dudit procédé de dissociation, et les comburants et carburants de la pile à combustible ne réagissant pas directement entre eux en dehors de ladite pile. Le carburant entre dans l’installation et se mélange au carburant éventuellement issu des réacteurs du cycle chimique pour être introduit dans une pile à combustible, ladite pile à combustible produisant de l’électricité qui est l’un des produits de l’installation, ainsi qu’un produit qui est en partie extraite de l’installation en et en partie recyclé vers les réacteurs du cycle chimique, la chaleur dégagée par la pile étant transférée vers le cycle chimique qui produit du carburant. The present invention relates to a method for producing electricity implementing a non-galvanic fuel cell, said method making it possible to valorize the heat given off by said cell to generate fuel for said fuel cell by a thermal dissociation process, applied to the product of the same chemical composition as that produced by said cell, at least part of the heat given off by said cell being supplied to at least one of the endothermic reactions of said dissociation process, and the oxidizers and fuels of the fuel cell react directly with each other outside of said stack. The fuel enters the installation and mixes with the fuel possibly resulting from the reactors of the chemical cycle to be introduced into a fuel cell, said fuel cell producing electricity which is one of the products of the installation, as well that a product which is partly extracted from the installation in and partly recycled towards the chemical cycle reactors, the heat released by the fuel cell being transferred to the chemical cycle which produces fuel.
La pile à combustible est par exemple une pile à hydrogène à oxyde solide dont le produit de la combustion est de l’eau, formée à l’électrode en contact avec l’hydrogène. Un concentrateur de dihydrogène (150) est avantageusement agencé pour extraire l’eau du mélange eau-dihydrogène, par exemple constitué d’une membrane métallique , de vanadium recouverte d’oxyde de silicium sur chaque face , elles- mêmes recouvertes d’une fine couche de 20micronsmetres de platine comme décrite dans l’artice :’ Hydrogen-permeable métal membranes for high-temperature gas séparations’ publié par David Edlund, Dwayne Friesen, Bruce Johnson and William Pledge en 1994 dans la revue ‘Gas Séparation and Purification’ Volume 8. The fuel cell is for example a solid oxide hydrogen cell whose combustion product is water, formed at the electrode in contact with the hydrogen. A dihydrogen concentrator (150) is advantageously arranged to extract the water from the water-dihydrogen mixture, for example consisting of a metallic membrane, of vanadium covered with silicon oxide on each face, themselves covered with a fine 20 micron layer of platinum as described in the article: 'Hydrogen-permeable metal membranes for high-temperature gas separations' published by David Edlund, Dwayne Friesen, Bruce Johnson and William Pledge in 1994 in the journal 'Gas Separation and Purification' Volume 8.
Procédés de dissociation de l’eau Water splitting processes
Le procédé de dissociation thermique de l’eau est par exemple le cycle iode souffre ou tout autre cycle similaire à partir d’halogénure d’hydrogène utilisant par exemple du brome ou du chlore à la place de l’iode, au cours duquel les réactions suivantes utilisées sont respectivement 2 H2S04 ® 2 SO2 + 2 H2O + O2 ; 2 HBr Br2 + Fh ; The process of thermal dissociation of water is for example the iodine sulfur cycle or any other similar cycle from hydrogen halide using for example bromine or chlorine instead of iodine, during which the reactions following used are respectively 2 H 2 S0 4 ® 2 SO2 + 2 H2O + O2; 2 HBr Br2 + Fh;
2HBr Br2 + H2 et : 2 H2S04 2 S02 + 2 H20 + 02 ; 2HCI Cl2 + H2 ; 2HCI2HBr Br 2 + H 2 and: 2 H 2 S0 4 2 S0 2 + 2 H 2 0 + 0 2 ; 2HCl Cl 2 + H2; 2HCI
CI2 + H2. Chacun des produits de la dissociation thermique de l’eau peut alors être utilisés en partie par la pile à hydrogène. En variante les produits dissociés par le procédé de dissociation thermique sont tous issus de la réaction chimique globale ayant lieu dans la pile, et tous les produits issus de la dissociation thermiques sont consommés par ladite pile. CI2 + H2 . Each of the products of the thermal dissociation of water can then be used in part by the hydrogen fuel cell. As a variant, the products dissociated by the thermal dissociation process all come from the overall chemical reaction taking place in the cell, and all the products resulting from the thermal dissociation are consumed by said cell.
Le cycle iode soufre permet dans une première réaction à par exemple 120°C entre du di-iode, du dioxyde de soufre et de l’eau de produire de l’iodure d’hydrogène et de l’acide sulfurique (I2 + SO2 + 2 H2O ® 2 Hl +H2SO4), l’iodure d’hydrogène étant recyclé dans une première réaction endothermique à par exemple 650°C en di-iode et dihydrogène (2 Hl ® I2 + H2) et l’acide sulfurique en dioxyde de soufre, eau et dioxygène ( 2 H2S0 ® 2 SO2 + 2 H2O + O2) dans une seconde réaction endothermique, par exemple à 830°C ; la chaleur nécessaire à la première et/ou à la seconde réaction endothermique provenant de la pile à hydrogène, soit par le biais d’une connexion thermique entre ladite pile et le ou les réacteurs de la première et/ ou de la seconde réaction endothermique, soit transportée vers les dits réacteurs par l’eau se dégageant de la pile à hydrogène lors de son fonctionnement. The sulfur iodine cycle allows in a first reaction at for example 120°C between di-iodine, sulfur dioxide and water to produce hydrogen iodide and sulfuric acid (I2 + SO2 + 2 H2O ® 2 Hl +H2SO4), the hydrogen iodide being recycled in a first endothermic reaction at for example 650°C in di-iodine and dihydrogen (2 Hl ® I2 + H2) and the sulfuric acid in dioxide of sulphur, water and dioxygen (2 H 2 S0 ® 2 SO2 + 2 H2O + O2) in a second endothermic reaction, for example at 830° C.; the heat necessary for the first and/or the second endothermic reaction coming from the hydrogen fuel cell, either by means of a thermal connection between the said fuel cell and the reactor(s) of the first and/or of the second endothermic reaction, or transported to said reactors by the water released from the hydrogen fuel cell during its operation.
Alternativement, le procédé de dissociation thermique de l’eau peut utiliser un hydrure de métal alcalin dans lequel l’eau mélangée au métal alcalin réagit pour former un hydrure du métal alcalin et du dioxygène (H2O + 2 Me -> 2MeH + ½ O2) tandis que l’hydrure du métal alcalin se transforme dans un autre réacteur en métal et dihydrogène (2MeH -> 2Me + H2). Alternativement encore la dissociation de l’eau peut être faite à l’aide de Chlorure de Fer III et de chlorure de Fer II (6FeCl2 + 8 FI2O -> 2Fe304 + 12HCI + 2H2 ; 2Fe304 + 12HCI + 3CI2 -> 6FeCI3 + 6H2O + 02 et 6FeCI 3 -> 6FeCI2 +3CI2). Alternatively, the thermal water dissociation process can use an alkali metal hydride in which water mixed with the alkali metal reacts to form a hydride of the alkali metal and oxygen (H2O + 2 Me -> 2MeH + ½ O2) while the alkali metal hydride is transformed in another reactor into metal and dihydrogen (2MeH -> 2Me + H2). Alternatively still the dissociation of water can be made using Iron III chloride and Iron II chloride (6FeCl2 + 8 FI2O -> 2Fe 3 0 4 + 12HCI + 2H 2 ; 2Fe 3 0 4 + 12HCI + 3CI 2 -> 6FeCI 3 + 6H2O + 0 2 and 6FeCI 3 -> 6FeCI 2 +3CI 2 ).
Alternativement encore la dissociation de l’eau peut être faite à l’aide de chlorure de Vanadium et de Tétrachlorure de vanadium (CI2 + H2 -> 2HCI + ½ O2 ; 2HCI + VCI2 -> 2VCI3 + H2 ; 2VCI3 -> VCI2 + VCI4 ; 2VCU -> 2VCI3 + Cl2) Alternatively still the dissociation of water can be done using vanadium chloride and vanadium tetrachloride (CI2 + H2 -> 2HCI + ½ O2; 2HCI + VCI2 -> 2VCI 3 + H 2 ; 2VCI 3 -> VCI 2 + VCI 4 ; 2VCU -> 2VCI 3 + Cl 2 )
Dans une autre version encore, le procédé de dissociation thermique de l’eau peut utiliser des hydrocarbures, du méthane réagissant par exemple dans un premier réacteur avec de l’eau pour former du dihydrogène et du monoxyde de carbone (CFU+FhO -> CO + 3H2) , le monoxyde de carbone et du dihydrogène réagissant dans un second réacteur pour former du méthanol (CO+2FI2 -> CH3OH), le méthanol réagissant dans un troisième réacteur avec de l’arséniate pour former de l’anhydre arsénieux et du dioxygène (CFI3OFI + As2Û4 -> ½ As203 + ½ O2), un quatrième et un cinquième réacteur permettant de former de l’arséniate et du dioxygène à partir de l’anhydre arsénieux (1/2 AS2O5 -> ½ As203 + ½ O2 et ½ AS2O5 + ½ As203 -> As204). La présente invention concerne aussi une installation de production d’électricité permettant de mettre en œuvre le procédé de production d 'électricité décrit ci-dessus. L’installation comprenant par exemple : In yet another version, the process for the thermal dissociation of water can use hydrocarbons, methane reacting for example in a first reactor with water to form dihydrogen and carbon monoxide (CFU+FhO -> CO + 3H2), carbon monoxide and dihydrogen reacting in a second reactor to form methanol (CO+2FI2 -> CH 3 OH), methanol reacting in a third reactor with arsenate to form arsenious anhydride and dioxygen (CFI 3 OFI + As2Û 4 -> ½ As 2 0 3 + ½ O2), a fourth and a fifth reactor allowing the formation of arsenate and dioxygen from arsenious anhydride (1/2 AS2O5 -> ½ As 2 0 3 + ½ O2 and ½ AS2O5 + ½ As 2 0 3 -> As 2 0 4 ). The present invention also relates to an installation for the production of electricity making it possible to implement the method for producing electricity described above. The installation including for example:
- au moins une pile à combustible générant de l’électricité et utilisant un carburant, tel que le dihydrogène, en tant que combustible réducteur et fonctionnant à une température de fonctionnement donnée, ladite pile étant connectée à une source principale de dihydrogène ; - at least one fuel cell generating electricity and using a fuel, such as dihydrogen, as reducing fuel and operating at a given operating temperature, said cell being connected to a main source of dihydrogen;
- un réacteur chimique/unité de production chimique thermiquement connecté(e) à ladite pile et permettant la production chimique du carburant à partir du produit de la réaction ayant lieu dans la pile, ou d’un composé chimique de même composition, via au moins une réaction chimique endothermique qui a lieu à une température inférieure ou égale à ladite température de fonctionnement de ladite pile, et - a chemical reactor/chemical production unit thermally connected to said cell and allowing the chemical production of fuel from the product of the reaction taking place in the cell, or from a chemical compound of the same composition, via at least an endothermic chemical reaction that takes place at a temperature less than or equal to said operating temperature of said cell, and
- des moyens permettant d’introduire dans ladite pile le dihydrogène produit dans ledit réacteur chimique. - means for introducing into said cell the dihydrogen produced in said chemical reactor.
Dans un exemple préféré de réalisation de l’invention, ledit réacteur chimique/ladite unité de production chimique comporte au moins un compartiment principal/réacteur principal permettant la production chimique de dihydrogène et de di- iode à partir d’iodure d’hydrogène (Hl), un premier compartiment secondaire/premier réacteur secondaire permettant la production chimique de dioxygène à partir d’acide sulfurique (H2SO4), et/ou au moins un deuxième compartiment secondaire qui permet la réaction entre le di-iode, le dioxyde de soufre et l’eau, laquelle produit de l’iodure d’hydrogène et de l’acide sulfurique. Ce deuxième compartiment secondaire contient donc de l'iode diatomique, de l’eau et du dioxyde de soufre et éventuellement les produits de cette réaction, c’est-à-dire l’iodure d’hydrogène et l’acide sulfurique. Ledit premier compartiment/réacteur secondaire et/ou ledit réacteur/compartiment principal sont thermiquement connectés à ladite pile. L’unité de production comporte en outre des moyens d’introduction de di-iode produit dans ledit compartiment/réacteur principal vers le deuxième compartiment/réacteur secondaire, des moyens d’introduction de l’acide sulfurique produit dans ledit deuxième compartiment/réacteur secondaire dans ledit premier compartiment/réacteur secondaire et des moyens d’introduction du dioxygène produit dans ledit premier compartiment/réacteur secondaire vers ladite pile pour que ce dernier y serve de comburant. In a preferred embodiment of the invention, said chemical reactor/said chemical production unit comprises at least one main compartment/main reactor allowing the chemical production of dihydrogen and di-iodine from hydrogen iodide (Hl ), a first secondary compartment/first secondary reactor allowing the chemical production of dioxygen from sulfuric acid (H 2 SO 4 ), and/or at least a second secondary compartment which allows the reaction between the di-iodine, the sulfur and water, which produces hydrogen iodide and sulfuric acid. This second secondary compartment therefore contains diatomic iodine, water and sulfur dioxide and possibly the products of this reaction, that is to say hydrogen iodide and sulfuric acid. Said first compartment/secondary reactor and/or said reactor/main compartment are thermally connected to said stack. The production unit further comprises means for introducing di-iodine produced in said main compartment/reactor to the second compartment/secondary reactor, means for introducing sulfuric acid produced in said second compartment/secondary reactor in said first compartment/secondary reactor and means for introducing the dioxygen produced in said first compartment/secondary reactor to said cell so that the latter serves there as oxidizer.
Les cycles des réactions de production de dihydrogène/dioxygène ne sont pas limitées selon l’invention. Il peut s’agir par exemple de l’un des procédés de dissociation de l’eau décrits ci-dessus. The cycles of the hydrogen/dioxygen production reactions are not limited according to the invention. This may be, for example, one of the water splitting processes described above.
La pile à combustible de l’installation de l’invention est connectée à une source principale de carburant et à une source principale de comburant. L’apport en carburant et comburant fournis par le fonctionnement de l’unité chimique ou le réacteur chimique est un apport complémentaire. The fuel cell of the installation of the invention is connected to a main source of fuel and to a main source of oxidizer. The supply of fuel and oxidizer provided by the operation of the chemical unit or the chemical reactor is an additional contribution.
Avantageusement, le réacteur chimique/ladite unité de production chimique comporte au moins un compartiment principal/réacteur principal permettant la production de dihydrogène à partir d’iodure d’hydrogène, un premier compartiment secondaire/premier réacteur secondaire permettant la réaction entre deux molécules d’acide sulfurique pour produire notamment du dioxygène et au moins un deuxième compartiment secondaire/deuxième réacteur secondaire qui permet la réaction entre le di-iode, l’oxyde de soufre et l’eau pour produire de l’acide sulfurique et de l’iodure d’hydrogène. Le cycle utilisé est alors celui décrit dans la figure 1. Advantageously, the chemical reactor/said chemical production unit comprises at least one main compartment/main reactor allowing the production of dihydrogen from hydrogen iodide, a first secondary compartment/first secondary reactor allowing the reaction between two molecules of sulfuric acid to produce in particular dioxygen and at least one second secondary compartment/second secondary reactor which allows the reaction between di-iodine, sulfur oxide and water to produce sulfuric acid and hydrogen iodide. The cycle used is then that described in figure 1.
L’installation selon l’invention permet donc de produire, dans un même temps, de l’électricité, du dihydrogène et du dioxygène, lesquels sont utilisés comme combustible dans la pile au sein même de ladite installation. La chaleur générée en continu par la pile à combustible à hydrogène lors de son fonctionnement est utilisée pour la production de dihydrogène et/ou de dioxygène lors de réaction endothermiques et le reliquat de chaleur, s’il existe, peut encore servir éventuellement à la production d’électricité par une turbine ou pour le chauffage, par exemple. The installation according to the invention therefore makes it possible to produce, at the same time, electricity, dihydrogen and dioxygen, which are used as fuel in the cell within said installation itself. The heat generated continuously by the hydrogen fuel cell during its operation is used for the production of dihydrogen and/or dioxygen during endothermic reactions and the remaining heat, if any, can still be used for the production electricity by a turbine or for heating, for example.
Selon une variante combinable à chacun des modes de réalisation précités, la pile est thermiquement connectée uniquement audit premier réacteur/compartiment secondaire, le réacteur principal étant connecté thermiquement au premier réacteur secondaire et le second réacteur secondaire au réacteur principal. According to a variant that can be combined with each of the aforementioned embodiments, the cell is thermally connected only to said first reactor/secondary compartment, the main reactor being thermally connected to the first secondary reactor and the second secondary reactor to the main reactor.
Selon une autre variante, la pile est thermiquement connectée aux trois réacteurs. L’unité de production chimique comprend des réacteurs thermiquement connectés entre eux, soit directement par contact, soit par un circuit de fluide caloporteur. L’utilisation d’un échangeur de chaleur fonctionnant avec un fluide caloporteur permet de réguler le flux de chaleur transmis par la régulation du flux de fluide caloporteur. Un fluide caloporteur peut circuler dans les parois du réacteur principal pour en abaisser la température et transférer les calories qui ont traversé lesdites parois, elle-même de préférence entourées d’isolants thermiques, vers le deuxième réacteur secondaire.According to another variant, the cell is thermally connected to the three reactors. The chemical production unit includes reactors thermally connected to each other, either directly by contact or by a heat transfer fluid circuit. The use of a heat exchanger operating with a heat transfer fluid makes it possible to regulate the flow of heat transmitted by regulating the flow of heat transfer fluid. A heat transfer fluid can circulate in the walls of the main reactor to lower the temperature and transfer the calories which have passed through said walls, which are themselves preferably surrounded by thermal insulation, to the second secondary reactor.
Le réacteur chimique ou l’unité de production chimique peut être configuré(e) pour recevoir directement par convexion ou conduction la chaleur dégagée par la pile. L’installation peut également comporter des moyens de connexion thermique entre ladite pile et ledit réacteur/compartiment principal et/ou entre ladite pile et ledit premier réacteur/compartiment secondaire qui permettent d’apporter notamment en continu la chaleur dégagée par ladite pile à combustible et de réguler la quantité de chaleur apportée. Ces moyens de connexion thermique peuvent être ou comporter, par exemple, un circuit de fluide caloporteur circulant entre la pile, proche d l’anode et de la cathode, et le réacteur. La réaction chimique endothermique 2HI® I2 + H2, peut avoir lieu en phase gazeuse à 830°C. Le compartiment principal contient donc de l’iodure d’hydrogène et éventuellement les produits de la réaction (à savoir le dihydrogène et le di-iode). The chemical reactor or the chemical production unit can be configured to receive directly by convection or conduction the heat given off by the cell. The installation may also comprise thermal connection means between said stack and said main reactor/compartment and/or between said stack and said first reactor/secondary compartment which make it possible in particular to continuously supply the heat given off by said fuel cell and regulate the amount of heat supplied. These thermal connection means can be or include, for example, a heat transfer fluid circuit circulating between the cell, close to the anode and the cathode, and the reactor. The endothermic chemical reaction 2HI® I2 + H2 can take place in the gas phase at 830°C. The main compartment therefore contains hydrogen iodide and possibly the reaction products (namely dihydrogen and di-iodine).
Le premier compartiment/réacteur secondaire permettant la réaction entre deux molécules d’acide sulfurique pour produire du dioxygène (ce compartiment/réacteur contient donc au moins de l’acide sulfurique et éventuellement les produits de la réaction c’est-à-dire du dioxyde de soufre, de l’eau et du dioxygène). Le deuxième compartiment/réacteur secondaire permet la réaction entre le di-iode, l’oxyde de soufre et l’eau, laquelle produit de l’iodure d’hydrogène et de l’acide sulfurique. Ce deuxième compartiment/réacteur secondaire contient donc de l’iode diatomique, de l’eau et du dioxyde de soufre et éventuellement les produits de cette réaction, c’est-à-dire l’iodure d’hydrogène et l’acide sulfurique. Lesdits compartiments/réacteurs secondaires peuvent être thermiquement connectés audit compartiment principal et/ou à ladite pile. En effet, la publication intitulée « Sulfur-lodineThermochemical Cycle », de P. Pickard, et publiée le 17 mai 2006 dans la revue Sandia National Labs, décrit une série de réactions permettant une production de dihydrogène respectueuse de l’environnement. Le cycle Soufre-Iode précité permet, à l’aide de chaleur élevée de produire de l’hydrogène. La réaction I2 + SO2 + 2 H2O 2 Hl +H2SO4 fonctionne à 120 °C. Les deux réactions endothermiques : 2 H2S04 ® 2 SO2 + 2 H2O + O2 et 2 Hl I2 + H2 sont effectuées de préférence, respectivement à 830 °C et 650 °C, la pile SOFC fonctionnant elle de préférence à 860°C ou plus. The first compartment/secondary reactor allowing the reaction between two molecules of sulfuric acid to produce dioxygen (this compartment/reactor therefore contains at least sulfuric acid and possibly the products of the reaction, i.e. carbon dioxide sulfur, water and oxygen). The second compartment/secondary reactor allows the reaction between di-iodine, sulfur oxide and water, which produces hydrogen iodide and sulfuric acid. This second compartment/secondary reactor therefore contains diatomic iodine, water and sulfur dioxide and possibly the products of this reaction, that is to say hydrogen iodide and sulfuric acid. Said secondary compartments/reactors may be thermally connected to said main compartment and/or to said stack. Indeed, the publication entitled “Sulfur-lodineThermochemical Cycle”, by P. Pickard, and published on May 17, 2006 in the journal Sandia National Labs, describes a series of reactions allowing the production of dihydrogen which respects the environment. The aforementioned Sulfur-Iodine cycle makes it possible, using high heat, to produce hydrogen. The I2 + SO 2 + 2 H 2 O 2 Hl + H 2 SO 4 reaction operates at 120°C. The two endothermic reactions: 2 H 2 S0 4 ® 2 SO2 + 2 H2O + O2 and 2 Hl I2 + H2 are preferably carried out, respectively at 830° C. and 650° C., the SOFC cell preferably operating at 860° C. or more.
Dans toute la présente demande, l’expression « réacteur permettant la réaction entre A et B » englobe un réacteur contenant les réactifs A et B et éventuellement les produits et sous-produits de cette réaction. Throughout the present application, the expression “reactor allowing the reaction between A and B” encompasses a reactor containing the reactants A and B and optionally the products and by-products of this reaction.
Avantageusement, ladite température de fonctionnement de ladite pile est supérieure ou égale à 850°C ou 860°C. Elle est avantageusement inférieure ou égale à 1000°C ou 1100°C. Advantageously, said operating temperature of said cell is greater than or equal to 850°C or 860°C. It is advantageously less than or equal to 1000°C or 1100°C.
La pile n’est pas limitée selon l’invention. Il peut s’agir d’une pile à combustible à hydrogène à membrane échangeuse de protons ou d’une pile à combustible à hydrogène à oxyde solide (SOFC). Il peut aussi s’agir par exemple aussi d’une pile méthanol- direct, par exemple à électrolyte en oxyde solide dont le combustible est du méthanol ; les réactions étant alors à l’anode : CH3OH + 3 O2 CO2 + 2 H2 O + 6 e et à la cathode : O2 + 4 e 2 O2 ; puis le dioxyde de carbone séparé de l’eau par exemple refroidissement et mise sous pression par exemple à 30°C sous 1 atmosphère pour que l’eau devienne liquide tandis que le dioxyde de carbone reste gazeux ; l’eau étant régénérée en dihydrogène par l’un des procédés décrits ci-dessus de dissociation de l’eau, puis le di hydrogène réagissant dans un réacteur séparé avec le dioxyde de carbone pour former du méthanol selon la réaction : CO2 + 3 H2 -> CH3OH + H20 The battery is not limited according to the invention. It can be a proton exchange membrane hydrogen fuel cell or a solid oxide hydrogen fuel cell (SOFC). It may also for example also be a direct methanol cell, for example with a solid oxide electrolyte whose fuel is methanol; the reactions then being at the anode: CH3OH + 3 O 2 CO2 + 2 H2 O + 6 e and at the cathode: O2 + 4 e 2 O 2 ; then the carbon dioxide separated from the water, for example cooling and pressurizing, for example at 30° C. under 1 atmosphere, so that the water becomes liquid while the carbon dioxide remains gaseous; the water being regenerated into dihydrogen by one of the processes described above for dissociation of water, then the dihydrogen reacting in a separate reactor with carbon dioxide to form methanol according to the reaction: CO 2 + 3 H2 -> CH3OH + H20
La pile est avantageusement choisie parmi les piles à combustible à oxyde solide, lesquelles ont une température de fonctionnement élevée, c’est-à-dire, supérieure à 850°C. The cell is advantageously chosen from solid oxide fuel cells, which have a high operating temperature, that is to say, greater than 850°C.
Selon l’invention, l’électrolyte solide de la pile SOFC (« solid oxide fuel cells ») n’est pas limité. S’agissant d’un électrolyte solide de type oxyde(s) métallique(s), il peut, par exemple, être choisi parmi les oxydes d’yttrium stabilisés avec du zirconium, (YSZ) , les oxydes de scandium stabilisés avec du zirconium, (ScSZ), le gadolinium dopés à/aux oxydes de cérium (GDC), le bismuth stabilisé par l’oxyde(s) d’erbium (ERB), les oxydes de cérium dopés avec un ou des oxydes de samarium et les mélanges d’au moins deux de ces oxydes. According to the invention, the solid electrolyte of the SOFC battery (“solid oxide fuel cells”) is not limited. As this is a solid electrolyte of metal oxide(s) type, it can, for example, be chosen from yttrium oxides stabilized with zirconium (YSZ), scandium oxides stabilized with zirconium , (ScSZ), gadolinium doped with/with cerium oxides (GDC), bismuth stabilized with erbium oxide(s) (ERB), cerium oxides doped with one or more samarium oxides and mixtures of at least two of these oxides.
S’agissant d’un électrolyte solide contenant ou constitué de céramique, il peut, par exemple, être choisi parmi les céramiques et en particulier, les céramiques composites contenant des sels d’oxyde(s) de cérium, (CSCs). As this is a solid electrolyte containing or consisting of ceramics, it can, for example, be chosen from ceramics and in particular composite ceramics containing salts of cerium oxide(s), (CSCs).
Les moyens d’introduction dans les réacteurs chimiques peuvent être de simples conduites équipées éventuellement de buses précédées de compresseurs. La phase du di-iode et de l’acide sulfurique lors de leur réintroduction n’est pas limitative selon l’invention. Ils peuvent être liquides ou gazeux, indépendamment l’un de l’autre, en fonction des conditions de température et de pression dans les séparateurs qui équipent les sorties des compartiments du réacteur. The means of introduction into chemical reactors can be simple pipes possibly equipped with nozzles preceded by compressors. The phase of di-iodine and sulfuric acid during their reintroduction is not limiting according to the invention. They can be liquid or gaseous, independently of each other, depending on the temperature and pressure conditions in the separators that equip the outlets of the reactor compartments.
L’installation de l’invention permet ainsi de produire à la fois du dihydrogène et du dioxygène lesquels sont utilisés dans la réaction électrochimique de la pile. L’installation de l’invention peut donc fonctionner avec un apport réduit de dihydrogène et/ou d’oxygène externe. Elle est donc particulièrement écologique et s’avère être économiquement avantageuse. L’installation de l’invention peut être utilisée pour produire du courant électrique par exemple à destination industrielle, domestique, adjoint à un ou des moteurs électriques pour mouvoir des véhicules. The installation of the invention thus makes it possible to produce both dihydrogen and dioxygen which are used in the electrochemical reaction of the cell. The installation of the invention can therefore operate with a reduced supply of dihydrogen and/or external oxygen. It is therefore particularly ecological and proves to be economically advantageous. The installation of the invention can be used to produce electric current, for example for industrial or domestic use, added to one or more electric motors for moving vehicles.
La présente invention concerne également un procédé de production d’électricité au moyen d’une pile à combustible utilisant le dihydrogène en tant que combustible réducteur selon lequel on utilise en continu la chaleur produite lors du fonctionnement de ladite pile à combustible pour générer chimiquement du dihydrogène via la réaction chimique endothermique 2 Hl I2 + H2, ledit hydrogène étant ensuite éventuellement introduit dans ladite pile pour y servir de combustible. The present invention also relates to a method for producing electricity by means of a fuel cell using dihydrogen as reducing fuel according to which the heat produced during the operation of said fuel cell is continuously used to chemically generate dihydrogen via the endothermic chemical reaction 2 H1 I2 + H2, said hydrogen then possibly being introduced into said cell to serve there as fuel.
Définitions Definitions
Les termes « thermiquement connecté(e) » indiquent que deux ou plusieurs éléments sont en relation thermique soit directe, par contact permettant le phénomène de conduction, ou par l’intermédiaire d’un fluide liquide ou gazeux caloporteur adapté.The terms “thermally connected” indicate that two or more elements are in a thermal relationship either directly, by contact allowing the phenomenon of conduction, or by means of a suitable liquid or gaseous heat transfer fluid.
Le terme « oxyde solide » désigne au sens de l’invention un oxyde métallique permettant le transport des ions O2 . The term “solid oxide” designates, within the meaning of the invention, a metal oxide allowing the transport of O 2 ions .
Les termes « pile à combustible à oxyde solide » désignent tout dispositif électrochimique permettant de produire de l’électricité par oxydation d’un combustible et comprenant un électrolyte solide pouvant être un oxyde métallique solide, un mélange d’oxydes métalliques ou une céramique. The terms “solid oxide fuel cell” designate any electrochemical device making it possible to produce electricity by oxidation of a fuel and comprising a solid electrolyte which may be a solid metal oxide, a mixture of metal oxides or a ceramic.
Figures tricks
La présente invention, ses caractéristiques et les divers avantages qu’elle procure apparaîtront mieux à la lecture de la description qui suit, présentée à titre d’exemple illustratif et non limitatif, et qui fait référence aux figures 1 à 4 annexées : The present invention, its characteristics and the various advantages it provides will appear better on reading the following description, presented by way of illustrative and non-limiting example, and which refers to the appended figures 1 to 4:
La Fig. 1 représente une vue schématique d’un mode de réalisation particulier de la présente invention ; et Fig. 1 represents a schematic view of a particular embodiment of the present invention; and
La Fig. 2 représente un schéma des divers flux de matière et d’énergie nécessaires à l’invention, entrant, sortant et internes à l’installation. Fig. 2 represents a diagram of the various flows of matter and energy necessary for the invention, entering, leaving and internal to the installation.
La Fig. 3 représente un schéma des divers flux de matière et d’énergie nécessaires à l’invention, entrant, sortant et internes à l’installation, le carburant étant du méthanol. La Fig. 4 représente un schéma des divers flux de matière et d’énergie nécessaires à l’invention, utilisant un séparateur dihydrogène -eau permettant de maintenir stable la proportion de dihydrogène dans le mélange gazeux apporté à l’anode de la pile. Exemples Fig. 3 represents a diagram of the various flows of material and energy necessary for the invention, entering, leaving and internal to the installation, the fuel being methanol. Fig. 4 represents a diagram of the various flows of material and energy necessary for the invention, using a dihydrogen-water separator making it possible to maintain the proportion of dihydrogen in the gaseous mixture supplied to the anode of the cell stable. Examples
En référence à la Fig. 1, un premier mode de réalisation de l’invention va maintenant être décrit. L’installation comporte une pile 1, laquelle est une pile à combustible à oxyde métallique solide. Malgré son fonctionnement à haute température (de 850°C à 1000° C), la pile 1 dégage de la chaleur. La pile 1 est thermiquement connectée à un réacteur chimique 3, lequel comporte trois compartiments. Un gradient thermique est présent dans le réacteur chimique 3 afin d’assurer les températures de réaction adaptées. Les deux compartiments supérieurs du réacteur sont thermiquement connectés entre eux. Le réacteur chimique 3 comporte un compartiment principal 310 qui est central sur la Fig. 1. Un premier compartiment secondaire 311 est situé au- dessus du compartiment principal 310. Ce premier compartiment secondaire 311 est disposé de manière à récupérer en premier la chaleur produite par la pile 1 de sorte que la température en son sein est plus élevée que dans le compartiment principal 310. Un deuxième compartiment secondaire 312 est disposé sous le compartiment principal 310; le di-iode issu du séparateur 14 est avantageusement amené dans la cuve 312 à une température de 120°C sous forme liquide ; un mélange d’eau et de dioxyde de soufre est amené en provenance du séparateur 65 et d’un apport d’eau introduit par la conduite 164 , de préférence aussi à une température de 120°C, et de préférence sous une pression permettant que les deux composantes de ce mélange gazeux soit liquides, la pression partielle du dioxyde de soufre étant par exemple de 50bars. With reference to FIG. 1, a first embodiment of the invention will now be described. The installation comprises a cell 1, which is a solid metal oxide fuel cell. Despite its operation at high temperature (from 850° C. to 1000° C.), battery 1 gives off heat. Cell 1 is thermally connected to a chemical reactor 3, which has three compartments. A thermal gradient is present in the chemical reactor 3 in order to ensure the appropriate reaction temperatures. The two upper compartments of the reactor are thermally connected to each other. The chemical reactor 3 comprises a main compartment 310 which is central in FIG. 1. A first secondary compartment 311 is located above the main compartment 310. This first secondary compartment 311 is arranged so as to first recover the heat produced by the battery 1 so that the temperature within it is higher than in the main compartment 310. A second secondary compartment 312 is arranged under the main compartment 310; the di-iodine from the separator 14 is advantageously brought into the tank 312 at a temperature of 120° C. in liquid form; a mixture of water and sulfur dioxide is supplied from the separator 65 and from a supply of water introduced via line 164, preferably also at a temperature of 120° C., and preferably under a pressure allowing that the two components of this gaseous mixture are liquid, the partial pressure of the sulfur dioxide being for example 50 bars.
La température du deuxième compartiment secondaire 312 est inférieure à celle du compartiment principal 310. Sur la Fig. 1, les deux compartiments supérieurs sont thermiquement connectés de sorte que la chaleur se transmet du premier compartiment secondaire vers le compartiment principal. L’agencement des compartiments n’est pas limité à celui représenté sur la Fig. 1. En particulier, les compartiments peuvent ne pas avoir une paroi commune à travers laquelle la chaleur se transmet. Par example, un liquide caloporteur dont la vitesse est régulée circule entre les 3 compartiments pour réchauffer lesdits compartiments et les maintenir à la température nécessaire aux réactions chimiques qu’ils abritent, si ceux-ci sont le lieu de réactions endothermiques. The temperature of the second secondary compartment 312 is lower than that of the main compartment 310. In FIG. 1, the two upper compartments are thermally connected so that the heat is transmitted from the first secondary compartment to the main compartment. The arrangement of the compartments is not limited to that shown in Fig. 1. In particular, the compartments may not have a common wall through which the heat is transmitted. For example, a heat transfer liquid whose speed is regulated circulates between the 3 compartments to heat said compartments and maintain them at the temperature necessary for the chemical reactions they house, if these are the site of endothermic reactions.
La chaleur résiduelle résultant du fonctionnement de l’installation est évacuée au niveau du second compartiment secondaire 312, par exemple au moyen d’un circuit de refroidissement (non représenté) dans lequel circule un liquide caloporteur. Une portion de ce circuit traverse ledit compartiment ou est en contact avec la paroi de ce dernier. Cette chaleur peut servir, par exemple à produire de l’électricité au moyen d’une turbine. A cet effet, l’installation peut également comprendre une turbine de production d’électricité. The residual heat resulting from the operation of the installation is evacuated at the level of the second secondary compartment 312, for example by means of a circuit cooling (not shown) in which circulates a heat transfer liquid. A portion of this circuit crosses said compartment or is in contact with the wall of the latter. This heat can be used, for example, to produce electricity by means of a turbine. For this purpose, the installation may also comprise an electricity production turbine.
Toujours en référence à la Fig. 1, l’installation comporte un séparateur à gaz 14 dont l’entrée est disposée à la sortie du compartiment principal 310. La sortie de ce séparateur 14 est connectée par une conduite 141 à la pile et par une conduite 142 au deuxième compartiment secondaire 312. Le séparateur 14 peut fonctionner par exemple par détente et refroidissement concomitants du gaz issu du compartiment 310, le di-iode devenant liquide, entre 184°C et sa température critique étant de 545.8°C. Le di-iode liquide est ensuite éventuellement recompressé pour atteindre la pression de fonctionnement du réacteur 312. Still with reference to FIG. 1, the installation comprises a gas separator 14 whose inlet is located at the outlet of the main compartment 310. The outlet of this separator 14 is connected by a pipe 141 to the battery and by a pipe 142 to the second secondary compartment 312 The separator 14 can operate for example by concomitant expansion and cooling of the gas coming from the compartment 310, the di-iodine becoming liquid, between 184°C and its critical temperature being 545.8°C. The liquid di-iodine is then optionally recompressed to reach the operating pressure of reactor 312.
L’installation comporte également un séparateur 16 disposé à l’entrée du compartiment principal 310. L’entrée du séparateur 16 est connectée via une conduite 161 au second compartiment secondaire 312. La sortie du séparateur 16 est connectée d’une part au compartiment principal 310 via une conduite 162 et d’autre part au premier compartiment 311 via une autre conduite 163. A la température de 120°C, l’iodure d’hydrogène Hl est gazeux et les autres composants dont l’acide sulfurique sont, sous 50 bars liquides. Le mélange du produit de la réaction du réacteur 312 est donc de préférence extrait dudit réacteur 312 après la fin de la réaction. La pression de l’iodure d’hydrogène est avantageusement abaissée à la pression de fonctionnement du réacteur 310, par exemple 10 bars. The installation also comprises a separator 16 arranged at the entrance to the main compartment 310. The entrance to the separator 16 is connected via a pipe 161 to the second secondary compartment 312. The exit from the separator 16 is connected on the one hand to the main compartment 310 via a pipe 162 and on the other hand to the first compartment 311 via another pipe 163. liquid bars. The reaction product mixture from reactor 312 is therefore preferably withdrawn from said reactor 312 after the reaction is complete. The pressure of the hydrogen iodide is advantageously lowered to the operating pressure of the reactor 310, for example 10 bars.
Un troisième séparateur 65 comporte son entrée reliée au premier compartiment secondaire 311 (conduite non référencée et indiquée par une flèche sur la Fig. 1) et sa sortie reliée par une première conduite (non représentée) à la pile 1 et par une deuxième conduite (non représentée), au deuxième compartiment secondaire 312. Le séparateur 65 fonctionne par exemple par une ou une série de compressions suivies de refroidissement du gaz issu de la décomposition de l’acide sulfurique. A third separator 65 has its inlet connected to the first secondary compartment 311 (pipe not referenced and indicated by an arrow in FIG. 1) and its outlet connected by a first pipe (not shown) to the battery 1 and by a second pipe ( not shown), to the second secondary compartment 312. The separator 65 operates for example by one or a series of compressions followed by cooling of the gas resulting from the decomposition of the sulfuric acid.
Le fonctionnement de l’installation va maintenant être décrit en référence à la Fig. 1. Dans le compartiment principal 310, la réaction chimique suivante a lieu : The operation of the installation will now be described with reference to FIG. 1. In the main compartment 310, the following chemical reaction takes place:
2HI® I2 + H2. Cette réaction a lieu à une température d’environ 650°C en phase gazeuse. 2HI® I2 + H2. This reaction takes place at a temperature of about 650°C in the gas phase.
Dans le premier compartiment secondaire 311, la réaction chimique suivante a lieu : 2H2S04® 2SO2 + 2 H2O + O2. Cette réaction a lieu à une température d’environ 830°C en phase gazeuse. In the first secondary compartment 311, the following chemical reaction takes place: 2H 2 S0 4 ® 2SO2 + 2 H2O + O2. This reaction takes place at a temperature of about 830°C in the gas phase.
Dans le second compartiment secondaire, la réaction chimique suivante a lieu : In the second secondary compartment, the following chemical reaction takes place:
I2 + SO2 + 2H2O ® 2HI + H2SO4. Cette réaction est endothermique et a lieu à une température de l’ordre de 120°C, le di-iode liquide, mélangé à l’eau et au dioxyde de soufre liquides réagissant avantageusement entre eux ou, alternativement par exemple, le di-iode sous forme liquide étant vaporisé dans une atmosphère composée de vapeur d’eau et de dioxyde de soufre. I2 + SO2 + 2H2O ® 2HI + H2SO4. This reaction is endothermic and takes place at a temperature of the order of 120° C., the liquid di-iodine, mixed with liquid water and sulfur dioxide reacting advantageously with each other or, alternatively for example, the di-iodine in liquid form being vaporized in an atmosphere composed of water vapor and sulfur dioxide.
La pile 1 produit de l’électricité alimentant un réseau non représenté sur la Fig. 1 , en consommant du dihydrogène. La chaleur dégagée par la pile 1 est utilisée pour chauffer le premier compartiment secondaire 311 du réacteur chimique 3. Dans le mode de réalisation particulier ici représenté, seul ce compartiment est thermiquement connecté à la pile 1. Dans ce premier compartiment secondaire, l’acide sulfurique réagit sur lui-même pour produire de l’eau, du dioxygène et du dioxyde de soufre. Les produits de la réaction sont séparés dans le séparateur 65 ; le dioxyde de soufre et l’eau sont amenés dans le second compartiment secondaire 312 ; le dioxygène est amené vers la pile 1 pour servir, en plus de l’oxygène amené par ailleurs, par exemple en provenance de l’air extérieur, à la réaction d’oxydoréduction qui a lieu dans cette dernière. Battery 1 produces electricity supplying a network not shown in Fig. 1, by consuming dihydrogen. The heat given off by cell 1 is used to heat the first secondary compartment 311 of chemical reactor 3. In the particular embodiment represented here, only this compartment is thermally connected to cell 1. In this first secondary compartment, the acid sulfur reacts on itself to produce water, oxygen and sulfur dioxide. The reaction products are separated in the separator 65; the sulfur dioxide and the water are brought into the second secondary compartment 312; the oxygen is brought to cell 1 to serve, in addition to the oxygen brought elsewhere, for example from the outside air, to the oxidation-reduction reaction which takes place in the latter.
Du fait de la chaleur apportée, soit directement de la pile 1 , soit après transit dans le premier compartiment secondaire 311, la réaction qui a lieu dans le compartiment principal 310 produit du di-iode gazeux et du dihydrogène gazeux. Ces gaz produits sont séparés dans le séparateur 14 ; le dihydrogène est acheminé (via la conduite141) vers la pile 1 pour y réagir. L’iode gazeux sortant du séparateur 14 est acheminé via la conduite 142 vers le deuxième compartiment secondaire 312. Due to the heat supplied, either directly from the cell 1, or after transit in the first secondary compartment 311, the reaction which takes place in the main compartment 310 produces gaseous di-iodine and gaseous dihydrogen. These produced gases are separated in the separator 14; the dihydrogen is routed (via line 141) to cell 1 to react there. The gaseous iodine leaving the separator 14 is routed via line 142 to the second secondary compartment 312.
Dans le deuxième compartiment secondaire 312, l’iode réagit avec le dioxyde de soufre et l’eau provenant du premier compartiment secondaire pour produire de l’iodure d’hydrogène (Hl) et de l’acide sulfurique. Ces produits sont séparés dans le séparateur 16 ; l’iodure d’hydrogène est séparé et amené vers le compartiment principal 310 afin d’alimenter la réaction dans ce dernier ; l’acide sulfurique est amené dans le premier compartiment secondaire par la conduite 163 reliée au séparateur 16. Figure 2 In the second secondary compartment 312, iodine reacts with sulfur dioxide and water from the first secondary compartment to produce hydrogen iodide (HI) and sulfuric acid. These products are separated in the separator 16; the hydrogen iodide is separated and brought to the main compartment 310 in order to feed the reaction in the latter; the sulfuric acid is brought into the first secondary compartment by line 163 connected to separator 16. Figure 2
Le carburant 201 entre dans l’installation 200 et se mélange au carburant 203 issu des réacteurs du cycle chimique 212 pour être introduit en 205 dans la pile à combustible 207. De même, le comburant est introduit dans l’installation (202) pour y être mélangé au comburant 204 issu des réacteurs du cycle chimique 212, pour être introduit en 206 dans la pile à combustible 207. La pile à combustible produit de l’électricité 209 qui est l’un des produit de l’installation, ainsi qu’un produit, par exemple de l’eau qui est en partie extraite de l’installation en 211 et en parti recyclée en 210 vers les réacteurs du cycle chimique. La chaleur 208 dégagée par la pile 207 est transférée vers le cycle chimique 212. Le cycle chimique produit du carburant 203 ; du comburant 204 et, éventuellement une chaleur résiduelle 213 extraite de l’installation. The fuel 201 enters the installation 200 and mixes with the fuel 203 from the chemical cycle reactors 212 to be introduced at 205 into the fuel cell 207. Similarly, the oxidant is introduced into the installation (202) to be mixed there with the oxidant 204 from the chemical cycle reactors 212, to be introduced at 206 into the fuel cell 207. The fuel cell produces electricity 209 which is one of the products of the installation, as well as a product, for example water which is partly extracted from the installation at 211 and partly recycled at 210 to the reactors of the chemical cycle . The heat 208 given off by the battery 207 is transferred to the chemical cycle 212. The chemical cycle produces fuel 203; oxidant 204 and, optionally, residual heat 213 extracted from the installation.
Figure 3 Figure 3
Le méthanol 501 entre dans l’installation 500 et se mélange au méthanol 503 issu des réacteurs du cycle chimique 512 pour être introduit en 505 dans la pile à combustible méthanol direct 507. De même, le dioxygène est introduit dans l’installation 502 pour y être mélangé au dioxygène 504 issu des réacteurs du cycle chimique 512, pour être introduit en 506 dans la pile à combustible 507. La pile à combustible produit de l’électricité 509 qui est l’un des produits de l’installation, ainsi que de l’eau et du dioxyde de carbone 511 qui sont en partie extrait de l’installation en 511 et en parti recyclée en 510 vers les réacteurs du cycle chimique. La chaleur 508 dégagée par la pile 507 est transférée vers le cycle chimique 512. Le cycle chimique produit du méthanol 503 ; du dioxygène 504 et, éventuellement une chaleur résiduelle 513 extraite de l’installation. The methanol 501 enters the installation 500 and mixes with the methanol 503 from the chemical cycle reactors 512 to be introduced at 505 into the direct methanol fuel cell 507. Similarly, the oxygen is introduced into the installation 502 to be mixed with the dioxygen 504 from the reactors of the chemical cycle 512, to be introduced at 506 into the fuel cell 507. The fuel cell produces electricity 509 which is one of the products of the installation, as well as water and carbon dioxide 511 which are partly extracted from the installation at 511 and partly recycled at 510 to the reactors of the chemical cycle. The heat 508 released by the battery 507 is transferred to the chemical cycle 512. The chemical cycle produces methanol 503; oxygen 504 and possibly residual heat 513 extracted from the installation.
Figure 4 Figure 4
Le mélange gazeux apporté à l’anode de la pile 1 est mis en circulation c’est à dire apporté et retiré par la ou les conduites 153 pour être en communication thermique et gazeuse avec le dispositif 150 qui est en contact thermique par la liaison 152 avec le réacteur 310 à une température d’environ 650°C à laquelle le dit mélange gazeux est donc refroidi. Le mélange gazeux est enrichi en dihydrogène dans le dispositif 150 à l’aide d’une ou plusieurs membranes métallique(s) qui permet d’en extraire le dihydrogène et /ou l’eau qui est rejetée par la conduite 154. Cette eau est avantageusement utilisée en partie (non représenté), pour alimenter le cycle de production de dihydrogène, étant alors introduite dans la conduite 164. De même la chaleur de cette eau est avantageusement apportée au réacteur 312 (non représenté) ou bien pour chauffer le dihydrogène et/ou dioxygène introduits dans l’installation. The gaseous mixture brought to the anode of cell 1 is put into circulation, that is to say brought and withdrawn by the pipe or pipes 153 to be in thermal and gaseous communication with the device 150 which is in thermal contact by the connection 152 with the reactor 310 at a temperature of approximately 650° C. to which said gas mixture is therefore cooled. The gaseous mixture is enriched in dihydrogen in the device 150 using one or more metal membrane(s) which makes it possible to extract the dihydrogen and/or the water which is rejected by the pipe 154. This water is advantageously used in part (not shown), to supply the dihydrogen production cycle, being then introduced into the pipe 164. Similarly, the heat from this water is advantageously brought to the reactor 312 (not shown) or else to heat the dihydrogen and /or dioxygen introduced into the installation.

Claims

Revendications Claims
1. Procédé de production d’électricité mettant en œuvre une pile à combustible non galvanique (1), ledit procédé permettant de valoriser la chaleur dégagée par la pile (1) pour générer du carburant pour ladite pile à combustible par un procédé de dissociation thermique, appliqué à un produit de même composition chimique que l’un des produits de ladite pile, une partie au moins de la chaleur dégagée par ladite pile étant apportée à au moins l’une des réactions endothermiques dudit procédé de dissociation. 1. Method for producing electricity implementing a non-galvanic fuel cell (1), said method making it possible to recover the heat given off by the cell (1) to generate fuel for said fuel cell by a thermal dissociation process , applied to a product of the same chemical composition as one of the products of said stack, at least part of the heat given off by said stack being supplied to at least one of the endothermic reactions of said dissociation process.
2. Procédé selon la revendication précédente, les comburants et carburants de la pile à combustible ne réagissant pas directement entre eux en dehors de ladite pile. 2. Method according to the preceding claim, the oxidizers and fuels of the fuel cell not reacting directly with each other outside of said cell.
3. Procédé selon la revendication 1 ou 2, caractérisée en ce que le carburant entre dans l’installation et se mélange au carburant éventuellement issu des réacteurs du cycle chimique pour être introduit dans ladite pile à combustible (1), ladite pile à combustible (1) produisant de l’électricité qui est l’un des produit de l’installation, ainsi qu’au moins un produit qui est en partie extrait de l’installation en et en partie recyclé vers les réacteurs du cycle chimique, la chaleur dégagée par la pile(1) étant transférée vers le cycle chimique qui produit du carburant. 3. Method according to claim 1 or 2, characterized in that the fuel enters the installation and mixes with the fuel possibly resulting from the reactors of the chemical cycle to be introduced into the said fuel cell (1), the said fuel cell ( 1) producing electricity which is one of the products of the installation, as well as at least one product which is partly extracted from the installation and partly recycled to the reactors of the chemical cycle, the heat released by the cell(1) being transferred to the chemical cycle which produces fuel.
4. Procédé selon l’une des revendications précédentes chacun des produits de la dissociation thermique étant utilisés en partie par la pile. 4. Method according to one of the preceding claims, each of the thermal dissociation products being used in part by the cell.
5. Procédé selon l’une des revendications précédentes, une partie du ou des produits de la pile étant utilisés pour la dissociation chimique. 5. Method according to one of the preceding claims, a part of the product or products of the cell being used for the chemical dissociation.
6. Procédé selon l’une quelconque des revendications 1 à 5, dans lequel la pile à combustible (1 ) générant de l’électricité utilise du dihydrogène en tant que combustible réducteur et fonctionne à une température de fonctionnement donnée, ladite pile (1) étant connectée à une source principale de dihydrogène, et le procédé de dissociation thermique de l’eau étant le cycle iode soufre dans lequel les réactions chimiques suivantes sont réalisées : a. 2 H2S04® 2 S02 + 2 H20 + 02 b. 2 Hl ® l2 + H2 c. l2 + S02 + 2 H20 ® 2 Hl +H2S04 6. Method according to any one of claims 1 to 5, wherein the fuel cell (1) generating electricity uses dihydrogen as reducing fuel and operates at a given operating temperature, said cell (1) being connected to a main source of dihydrogen, and the process of thermal dissociation of water being the sulfur iodine cycle in which the following chemical reactions are carried out: a. 2 H 2 S0 4 ® 2 S0 2 + 2 H 2 0 + 0 2 b. 2 Hl ® l 2 + H 2 tbsp. l 2 + S0 2 + 2 H 2 0 ® 2 Hl +H 2 S0 4
7. Procédé selon l’une quelconque des revendications 1 à 5, dans lequel la pile à combustible (1 ) générant de l’électricité utilise du dihydrogène en tant que combustible réducteur et fonctionne à une température de fonctionnement donnée, ladite pile (1) étant connectée à une source principale de dihydrogène, et le procédé de dissociation thermique de l’eau étant un cycle utilisant du brome et au cours duquel les réactions suivantes sont utilisées : a. 2 H2S04® 2 S02 + 2 H20 + 02 b. 2 HBr ® Br2 + H2 c. Br2 + S02 + 2 H20 2 HBr +H2SO4 7. Method according to any one of claims 1 to 5, wherein the fuel cell (1) generating electricity uses dihydrogen as reducing fuel and operates at a given operating temperature, said cell (1) being connected to a main source of dihydrogen, and the thermal water dissociation process being a cycle using bromine and during which the following reactions are used: a. 2 H 2 S0 4 ® 2 S0 2 + 2 H 2 0 + 0 2 b. 2 HBr ® Br 2 + H 2 tbsp. Br 2 + S0 2 + 2 H 2 0 2 HBr +H 2 SO 4
8. Procédé selon l’une quelconque des revendications 1 à 5 dans lequel la pile à combustible (1 ) générant de l’électricité utilise du dihydrogène en tant que combustible réducteur et fonctionne à une température de fonctionnement donnée, ladite pile (1) étant connectée à une source principale de dihydrogène et le procédé de dissociation thermique de l’eau est un cycle soufre utilisant du chlore et au cours duquel les réactions suivantes sont utilisées : a. 2 H2S04® 2 S02 + 2 H20 + 02 b. 2 HCI® Cl2 + H2 c. Cl2 + S02 + 2 H20 2 HCl +H2S04 8. Method according to any one of claims 1 to 5 wherein the fuel cell (1) generating electricity uses dihydrogen as reducing fuel and operates at a given operating temperature, said cell (1) being connected to a main source of dihydrogen and the process of thermal dissociation of water is a sulfur cycle using chlorine and during which the following reactions are used: a. 2 H 2 S0 4 ® 2 S0 2 + 2 H 2 0 + 0 2 b. 2 HCI® Cl 2 + H 2 c. Cl 2 + S0 2 + 2 H 2 0 2 HCl +H 2 S0 4
9. Procédé selon l’une quelconque des revendication 1 à 5 dans lequel la pile à combustible (1 ) générant de l’électricité utilise du dihydrogène en tant que combustible réducteur et fonctionne à une température de fonctionnement donnée, ladite pile (1) étant connectée à une source principale de dihydrogène et le procédé de dissociation thermique de l’eau utilise un hydrure de métal alcalin dans lequel l’eau mélangée au métal alcalin réagit pour former un hydrure du métal alcalin et du dioxygène (H2O + 2 Me -> 2MeH + ½ O2) tandis que l’hydrure du métal alcalin se transforme dans un autre réacteur en métal et dihydrogène (2MeH -> 2Me + H2). 9. Method according to any one of claims 1 to 5 wherein the fuel cell (1) generating electricity uses dihydrogen as reducing fuel and operates at a given operating temperature, said cell (1) being connected to a main source of dihydrogen and the thermal water dissociation process uses an alkali metal hydride in which water mixed with the alkali metal reacts to form a hydride of the alkali metal and dioxygen (H 2 O + 2 Me -> 2MeH + ½ O 2 ) while the alkali metal hydride is transformed in another reactor into metal and dihydrogen (2MeH -> 2Me + H 2 ).
10. Procédé selon l’une des revendication 1 à 5 dans lequel la pile à combustible (1) générant de l’électricité utilise du dihydrogène en tant que combustible réducteur et fonctionne à une température de fonctionnement donnée, ladite pile (1) étant connectée à une source principale de dihydrogène et le procédé de dissociation thermique de l’eau utilise du Chlorure de Fer III et du chlorure de Fer II (6FeCl2 + 8 H20 -> 2Fe304 + 12HCI + 2H2 ; 2Fe304 + 12HCI + 3CI2 -> 6FeCI3 + 6H2O + 02 et 6FeCI 3 -> 6FeCI2 +3CI2). 10. Method according to one of claims 1 to 5 wherein the fuel cell (1) generating electricity uses dihydrogen as reducing fuel and operates at a given operating temperature, said cell (1) being connected to a main source of dihydrogen and the process of thermal dissociation of water uses Iron III chloride and Iron II chloride (6FeCl 2 + 8 H 2 0 -> 2Fe 3 0 4 + 12HCl + 2H 2 ; 2Fe 3 0 4 + 12HCI + 3CI 2 -> 6FeCI 3 + 6H2O + 0 2 and 6FeCI 3 -> 6FeCI 2 +3CI 2 ).
11. Procédé selon l’une des revendication 1 à 5 dans lequel la pile à combustible (1) générant de l’électricité utilise du dihydrogène en tant que combustible réducteur et fonctionne à une température de fonctionnement donnée, ladite pile (1) étant connectée à une source principale de dihydrogène et le procédé de dissociation thermique de l’eau utilise du chlorure de Vanadium et du Tétrachlorure de vanadium (Cl2 + H2 -> 2HCI + ½ 02 ; 2HCI + VCI2 -> 2VCI3 + H2 ; 2VCI3 -> VCI2 + VCU ; 2VCU -> 2VCI3 + Cl2). 11. Method according to one of claims 1 to 5 wherein the fuel cell (1) generating electricity uses dihydrogen as reducing fuel and operates at a given operating temperature, said cell (1) being connected to a main source of dihydrogen and the dissociation process thermal water uses vanadium chloride and vanadium tetrachloride (Cl 2 + H 2 -> 2HCI + ½ 0 2 ; 2HCI + VCI2 -> 2VCI 3 + H 2 ; 2VCI 3 -> VCI 2 + VCU; 2VCU -> 2VCI 3 + Cl 2 ).
12. Procédé selon l’une des revendication 1 à 5 dans lequel la pile à combustible (1) générant de l’électricité utilise du dihydrogène en tant que combustible réducteur et fonctionne à une température de fonctionnement donnée, ladite pile (1) étant connectée à une source principale de dihydrogène et le procédé de dissociation thermique de l’eau utilise des hydrocarbures. 12. Method according to one of claims 1 to 5 wherein the fuel cell (1) generating electricity uses dihydrogen as reducing fuel and operates at a given operating temperature, said cell (1) being connected to a main source of dihydrogen and the thermal water dissociation process uses hydrocarbons.
13. Procédé selon la revendication 12 caractérisé en ce que, l’hydrocarbure étant du méthane réagissant par exemple dans un premier réacteur avec de l’eau pour former du dihydrogène et du monoxyde de carbone (CH4+H2O -> CO + 3H2) , le monoxyde de carbone et du dihydrogène réagissant dans un second réacteur pour former du méthanol (CO+2H2 -> CH3OH), le méthanol réagissant dans un troisième réacteur avec de l’arséniate pour former de l’anhydre arsénieux et du dioxygène (CH3OH + AS2O4 -> ½ AS2O3 + ½ O2), un quatrième et un cinquième réacteur permettant de former de l’arséniate et du dioxygène à partir de l’anhydre arsénieux (1/2 AS2O5 -> ½ AS2O3 + ½ O2 et ½ AS2O5 + ½ AS2O3 -> AS2O4)· 13. Method according to claim 12 characterized in that, the hydrocarbon being methane reacting for example in a first reactor with water to form dihydrogen and carbon monoxide (CH 4 +H 2 O -> CO + 3H 2 ), carbon monoxide and dihydrogen reacting in a second reactor to form methanol (CO+2H 2 -> CH 3 OH), methanol reacting in a third reactor with arsenate to form anhydrous arsenate and dioxygen (CH3OH + AS 2 O 4 -> ½ AS 2 O3 + ½ O 2 ), a fourth and a fifth reactor allowing the formation of arsenate and dioxygen from arsenious anhydride (1/2 AS2O5 -> ½ AS2O3 + ½ O2 and ½ AS2O5 + ½ AS2O3 -> AS2O4)
14. Procédé selon l’une des revendication 1 à 5 dans lequel la pile à combustible (1) générant de l’électricité utilise du méthanol en tant que combustible. 14. Method according to one of claims 1 to 5 wherein the fuel cell (1) generating electricity uses methanol as fuel.
15. Installation de production d’électricité permettant la mise en œuvre du procédé selon l’une quelconque des revendications 1 à 6 et comprenant : 15. Installation for the production of electricity allowing the implementation of the method according to any one of claims 1 to 6 and comprising:
- au moins une pile à combustible (1) générant de l’électricité et utilisant le dihydrogène en tant que combustible réducteur et fonctionnant à une température de fonctionnement donnée, ladite pile (1) étant connectée à une source principale de dihydrogène ; - at least one fuel cell (1) generating electricity and using dihydrogen as reducing fuel and operating at a given operating temperature, said cell (1) being connected to a main source of dihydrogen;
- un réacteur chimique/unité de production chimique (3) thermiquement connecté(e) à ladite pile et permettant la production chimique de dihydrogène via une réaction chimique endothermique qui a lieu à une température inférieure ou égale à ladite température de fonctionnement de ladite pile (1), et - a chemical reactor/chemical production unit (3) thermally connected to said cell and allowing the chemical production of dihydrogen via an endothermic chemical reaction which takes place at a temperature lower than or equal to said operating temperature of said cell ( 1), and
- des moyens (141) permettant d’introduire dans ladite pile (1) le dihydrogène produit dans ledit réacteur chimique (3), caractérisée en ce que ledit réacteur chimique/ladite unité de production chimique (3) comporte au moins un compartiment principal/réacteur principal (310) permettant la production chimique de dihydrogène, un premier compartiment secondaire/premier réacteur secondaire (311) permettant la production chimique de dioxygène, et en ce que ledit premier compartiment/réacteur secondaire (311 ) et/ou ledit réacteur/compartiment principal (310) sont thermiquement connectés à ladite pile (1), en ce qu’elle comporte en outre des moyens d’introduction (142) de l'iode diatomique produit dans ledit compartiment/réacteur principal (310) vers ledit deuxième compartiment/réacteur secondaire (312), des moyens d’introduction de l’acide sulfurique produit dans ledit deuxième compartiment/réacteur secondaire (312) dans ledit premier compartiment/réacteur secondaire (311) et des moyens d’introduction du dioxygène produit dans ledit premier compartiment/réacteur secondaire (311) vers ladite pile (1) pour que ce dernier y serve de combustible.- means (141) for introducing into said cell (1) the dihydrogen produced in said chemical reactor (3), characterized in that said chemical reactor/said chemical production unit (3) comprises at least one main compartment/ main reactor (310) allowing the chemical production of dihydrogen, a first secondary compartment/first secondary reactor (311) allowing the chemical production of dioxygen, and in that said first compartment/secondary reactor (311) and/or said reactor/main compartment (310) are thermally connected to said cell (1), in that it further comprises means for introduction (142) of the diatomic iodine produced in said main compartment/reactor (310) to said second compartment/secondary reactor (312), means for introducing the sulfuric acid produced in said second compartment/secondary reactor ( 312) in said first compartment/secondary reactor (311) and means for introducing the dioxygen produced in said first compartment/secondary reactor (311) to said cell (1) so that the latter serves there as fuel.
16. Installation selon la revendication 15, caractérisée en ce que ledit réacteur chimique/ladite unité de production chimique (3) comporte au moins un compartiment principal/réacteur principal (310) permettant la production chimique de dihydrogène et de di-iode à partir d’iodure d’hydrogène, un premier compartiment secondaire/premier réacteur secondaire (311) permettant la production chimique de dioxygène à partir de la réaction entre deux molécules d’acide sulfurique et au moins un deuxième compartiment secondaire/deuxième réacteur secondaire qui permet la réaction entre le di-iode, l’oxyde de soufre et l’eau, laquelle produit de l’iodure d’hydrogène et de l’acide sulfurique. 16. Installation according to claim 15, characterized in that said chemical reactor/said chemical production unit (3) comprises at least one main compartment/main reactor (310) allowing the chemical production of dihydrogen and di-iodine from hydrogen iodide, a first secondary compartment/first secondary reactor (311) allowing the chemical production of dioxygen from the reaction between two molecules of sulfuric acid and at least a second secondary compartment/second secondary reactor which allows the reaction between di-iodine, sulfur oxide and water, which produces hydrogen iodide and sulfuric acid.
17. Installation permettant la production d’électricité caractérisée en ce qu’elle comprend l’utilisation d’un procédé selon l’une quelconque des revendications 1 à 14. 17. Installation allowing the production of electricity characterized in that it comprises the use of a method according to any one of claims 1 to 14.
18. Installation permettant la fusion nucléaire caractérisée en ce qu’elle comprend l’utilisation d’un procédé selon l’une quelconque des revendications 1 à 14. 18. Installation allowing nuclear fusion characterized in that it comprises the use of a method according to any one of claims 1 to 14.
EP22751368.6A 2021-07-21 2022-07-18 Plant for producing electricity comprising a fuel cell and a chemical reactor capable of producing the fuel for said cell by means of the heat released by said same cell, and associated method Pending EP4374440A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2107884A FR3125648B1 (en) 2021-07-21 2021-07-21 Electricity production installation comprising a hydrogen fuel cell and a chemical reactor capable of producing dihydrogen – associated process
PCT/EP2022/070100 WO2023001779A1 (en) 2021-07-21 2022-07-18 Plant for producing electricity comprising a fuel cell and a chemical reactor capable of producing the fuel for said cell by means of the heat released by said same cell, and associated method

Publications (1)

Publication Number Publication Date
EP4374440A1 true EP4374440A1 (en) 2024-05-29

Family

ID=78049345

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22751368.6A Pending EP4374440A1 (en) 2021-07-21 2022-07-18 Plant for producing electricity comprising a fuel cell and a chemical reactor capable of producing the fuel for said cell by means of the heat released by said same cell, and associated method

Country Status (7)

Country Link
US (1) US20230022610A1 (en)
EP (1) EP4374440A1 (en)
KR (1) KR20240035586A (en)
CN (1) CN117981127A (en)
AU (1) AU2022315507A1 (en)
FR (1) FR3125648B1 (en)
WO (1) WO2023001779A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3915139B2 (en) * 1996-05-30 2007-05-16 トヨタ自動車株式会社 Fuel cell power generator
JP2005306624A (en) * 2004-04-16 2005-11-04 Mitsubishi Heavy Ind Ltd Apparatus for producing hydrogen
KR100853977B1 (en) * 2004-12-22 2008-08-25 혼다 기켄 고교 가부시키가이샤 Fuel cell system
US8304138B2 (en) * 2010-05-26 2012-11-06 Ford Global Technologies, Llc Fuel cell system and method of use
CN107077893B (en) * 2014-05-29 2019-09-17 辉光能源公司 Produce electricl energy the dynamical system at least one of thermal energy
US11616249B2 (en) * 2019-03-22 2023-03-28 Bloom Energy Corporation Solid oxide fuel cell system with hydrogen pumping cell with carbon monoxide tolerant anodes and integrated shift reactor
US11691071B2 (en) 2019-03-29 2023-07-04 The Regents Of The University Of Michigan Peripersonal boundary-based augmented reality game environment

Also Published As

Publication number Publication date
WO2023001779A1 (en) 2023-01-26
AU2022315507A1 (en) 2024-02-01
FR3125648B1 (en) 2024-04-12
CN117981127A (en) 2024-05-03
FR3125648A1 (en) 2023-01-27
US20230022610A1 (en) 2023-01-26
KR20240035586A (en) 2024-03-15

Similar Documents

Publication Publication Date Title
EP2422394B1 (en) Device comprising a fuel cell for producing electricity for a submarine
EP1571727B1 (en) Apparatus and method for operation of a high temperature fuel cell system using recycled anode exhaust
US8916300B2 (en) Ammonia fueled SOFC system
CA2797280C (en) Device for storing and restoring electrical energy
JP2006309982A (en) Solid oxide fuel cell system
CA2343740A1 (en) Solid oxide fuel cell which operates with an excess of fuel
EP1670090B1 (en) Molten carbonate fuel cell, operating method thereof, sintering furnace, and power generator
JPS61114478A (en) Fuel cell device
US20220056597A1 (en) Electrochemical apparatus and hydrogen generation method
JP2007128680A (en) Fuel cell system
WO2011011286A2 (en) Operation of fuel cell systems with reduced carbon formation and anode leading edge damage
KR20140114907A (en) Method and arrangement for utilizing recirculation for high temperature fuel cell system
US7122269B1 (en) Hydronium-oxyanion energy cell
CN111509279B (en) In-situ hydrogen production fuel cell system
JP4570904B2 (en) Hot standby method of solid oxide fuel cell system and its system
JP7181065B2 (en) Reactor and fuel cell power generation system
EP4374440A1 (en) Plant for producing electricity comprising a fuel cell and a chemical reactor capable of producing the fuel for said cell by means of the heat released by said same cell, and associated method
JP7148364B2 (en) Reactor and fuel cell power generation system
CN105580179B (en) Use the integrated power generation of solid oxide fuel cell and chemical production
KR101817432B1 (en) Fuel cell system
CN213340447U (en) Integrated system of solid oxide fuel cell and solid oxide electrolytic cell
JP5502521B2 (en) Fuel cell system
TWI478432B (en) Operation of fuel cell systems with reduced carbon formation and anode leading edge damage
JP7515120B2 (en) Electrochemical device and hydrogen generation method
JP2004047159A (en) Fuel cell generator

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR