EP4368318A1 - Device and method for atomizing a melt stream by means of a atomizing gas - Google Patents
Device and method for atomizing a melt stream by means of a atomizing gas Download PDFInfo
- Publication number
- EP4368318A1 EP4368318A1 EP23208217.2A EP23208217A EP4368318A1 EP 4368318 A1 EP4368318 A1 EP 4368318A1 EP 23208217 A EP23208217 A EP 23208217A EP 4368318 A1 EP4368318 A1 EP 4368318A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nozzle
- atomizing
- melting
- induction coil
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000155 melt Substances 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims abstract description 13
- 238000000889 atomisation Methods 0.000 claims abstract description 25
- 238000002844 melting Methods 0.000 claims abstract description 21
- 230000008018 melting Effects 0.000 claims abstract description 20
- 230000006698 induction Effects 0.000 claims abstract description 18
- 239000000843 powder Substances 0.000 claims abstract description 16
- 239000000919 ceramic Substances 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims abstract description 3
- 239000000289 melt material Substances 0.000 claims abstract 2
- 239000002245 particle Substances 0.000 claims description 10
- 238000009826 distribution Methods 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 2
- 230000007704 transition Effects 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims 1
- 238000005192 partition Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- 239000007789 gas Substances 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
- B22F1/065—Spherical particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0836—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with electric or magnetic field or induction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0888—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid casting construction of the melt process, apparatus, intermediate reservoir, e.g. tundish, devices for temperature control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0892—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid casting nozzle; controlling metal stream in or after the casting nozzle
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/047—Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
Definitions
- the invention relates to a device for atomizing a metallic, intermetallic or ceramic melt stream by means of an atomizing gas to form a spherical powder with the features specified in the preamble of patent claim 1.
- the invention further relates to a method for atomizing a corresponding melt stream to form a spherical powder.
- the invention is based on the object of developing a generic atomization device in such a way that an effective atomization takes place which is particularly suitable for achieving smaller particle sizes.
- an atomizing nozzle with an exclusively divergent nozzle profile has an opening angle of at least 5°, in particular at least 10°, in particular at least 20°, in particular at least 30°, and/or a maximum of 90°, in particular a maximum of 75°, in particular a maximum of 60°.
- a corresponding opening angle is present at least in sections along the thickness direction, in particular over at least 50% of the thickness, in particular over the entire thickness, of the nozzle plate and/or the aperture.
- turbulence occurs in the atomizing gas flow both before and after the nozzle without the formation of a laminar flow, which is surprisingly beneficial for the production of spherical powders with very small particle diameters.
- a laminar flow along the divergent flank of the orifice can only develop up to an opening angle of less than 5° of the nozzle. At a larger opening angle, the flow breaks off. This flow separation and the associated turbulence occurs, depending on the specific edge formation, immediately after the gas enters the nozzle.
- the invention is further based on the object of developing a generic atomization method in such a way that an effective atomization takes place which is particularly suitable for achieving smaller particle sizes.
- the main components of the atomization device shown in the drawing are a melting chamber 1, an atomization chamber 2 (also called a powder chamber), an induction coil 3 arranged in the melting chamber 1 and a nozzle plate 4 arranged between the two chambers 1, 2, in which an atomization nozzle 5, which can be formed in the nozzle plate 4 or in a separate aperture 11, serves to connect these two chambers 1, 2.
- the rotationally symmetrical aperture 11 sits in a corresponding receptacle 12 in the nozzle plate 4 with an orientation that the center M of the atomization nozzle 5 lies in the axis of symmetry of the induction coil 3.
- the nozzle plate 4 is flat and aligned perpendicular to the flow direction of a melt stream 8.
- the material to be atomized is introduced in the form of a nozzle with a tip 6 (tip angle 30° to 60°) is partially introduced into the conical induction coil 3 with three turns, as is basically possible, for example, from the EN 41 02 101 A1 is known.
- the conicity of the induction coil 3 corresponds to the conicity of the tip 6 of the rod 7 to be sprayed. Induction coils with other numbers of turns, such as two turns, and different conicities of the coil and rod tip are possible.
- the tip 6 and in particular the surface of the tip 6 is inductively heated by medium-frequency current flowing through the induction coil 3 until a molten phase is formed on the surface.
- This melt stream 8 runs downwards along the conical surface and preferably drips from the tip 6 in the form of a continuous pouring jet.
- the mass flow of the pouring jet forming the melt stream 8 can preferably be varied via the inductively coupled electrical power in a wide range between 0.4 kg/min and 3 kg/min.
- a melt flow between 0.6 and 2.5 kg/min is considered particularly suitable for atomization.
- the rod 7 preferably rotates slowly around its axis of symmetry S and/or moves continuously downwards.
- the respective melting rate is determined from the diameter DS of the rod 7, which can be between 30 and 200 mm, and the set lowering speed.
- Rod diameters DS between 40 and 150 mm have proven to be particularly favorable in terms of process technology.
- the height adjustment of the induction coil 3 is preferably achieved by means of a linear suspension 9, which is only shown schematically in the drawing. This allows the free fall height of the pouring jet to the nozzle and thus, as mentioned above, the viscosity of the melt when entering the nozzle to be varied. This is because the melt temperature decreases with increasing fall height, particularly due to the emission of radiation power, which changes the viscosity of the melt when entering the nozzle and thus the resulting particle size distribution can be controlled in a targeted manner.
- Horizontal coil windings have also proven to be particularly advantageous, as they prevent the pouring stream from being deflected by electromagnetic forces when it leaves the coil's magnetic field, in contrast to rising coil windings.
- a certain degree of superheating of the melt can be achieved by placing the edge of the cone at a distance from the topmost turn, thus allowing the melt to fall through the induction field for longer.
- Distances between 3 mm and 50 mm have proven to be advantageous for reactive, high-melting metals and rods with a diameter of > 115 mm.
- the rotationally symmetrical atomizing nozzle 5 is located with its center in the symmetry axis S of rod 7 and coil 3 at the distance H below the lowest winding in the induction coil 3.
- the melt jet is radially surrounded by the gas flowing from the melting chamber 1 into the atomization chamber 2 used for atomization.
- the acceleration of the gas due to the falling pressure after the orifice 11 introduces tensions into the melt jet, causing it to atomize.
- the driving force for this is the positive pressure difference between the gas pressure P1 in the melting chamber 1 and the gas pressure P2 in the atomization chamber 2.
- This pressure difference is at least 0.2 bar, at most 25 bar.
- Technically particularly advantageous pressure differences are in the range between 3 bar and 21 bar.
- the atomizing gas accelerated by the pressure drop causes pressure and shear stresses on the outer skin of the melt jet.
- the melt velocity in the melt jet increases radially from the outside inwards.
- these pressure and shear stresses are instantly reduced by the melt jet filament breaking up into individual droplets, which solidify into spherical powder particles in the atomization chamber 2.
- the turbulences caused before and after the aperture 11 significantly support the atomization function, so that even very fine spherical powders can be produced with high yields.
- This process enables lower specific Ar consumption to be achieved because the pressure in the melting chamber can be maintained at lower flow rates.
- the lower outflow velocity after orifice 11 which is always below the speed of sound, improves the powder quality, particularly with regard to satellite formation.
- the outer diameter ⁇ A of the circular aperture 11 with the centrally arranged atomizing nozzle 5 is, for example, 60 mm to 100 mm, preferably 80 mm and the diameter ⁇ B of the inlet-side nozzle opening 13 is 5 mm to 18 mm, preferably 7 mm.
- the diameter ⁇ C of the outlet-side nozzle opening 14 of the atomizing nozzle 5 is between 10 mm and 30 mm, preferably 20 mm.
- the thickness d of the aperture 11 is 3 mm to 10 mm, preferably 4.5 mm.
- the aperture 11 shown has a divergent atomizing nozzle 5, the nozzle flank 15 of which has a cross-sectionally partially circular divergence profile, wherein the thickness d of the aperture 11 is smaller than the divergence partial circle radius Rz of the nozzle flank 15.
- the divergent atomizing nozzle 5 is provided with a nozzle flank 15 which has an internally conical divergence profile.
- the opening angle W is particularly preferably between 5° and 90°, in particular between 30° and 60°, preferably about 55°.
- the aperture 11 shown corresponds essentially to the embodiment according to Fig.4 , as far as the basic design as an internally conical atomizing nozzle 5 is concerned.
- this aperture 11 has a cross-sectionally partially circular rounding 18 with a small radius Rx in the area of the inlet-side nozzle opening 13 at the transition to the upper side 16 of the aperture 11.
- the angle ⁇ which is enclosed by the circle tangent at the intersection with the upper side 16 and the upper side 16 itself, can be between 90° and 150°.
- the angle ⁇ in this embodiment corresponds to the cone angle (90° - W).
- the atomizing nozzle 5 in Fig.6 is analogous to the embodiment according to Figure 5 at the inlet-side nozzle opening 13 is again provided with a small curve 18 with a radius Rx.
- the outlet-side nozzle opening 14 there is a similar curve 18 with a radius Ry.
- the angle ⁇ which the circle tangent to the curve 18 makes on the Intersection with the bottom side 17 and the bottom side 17 itself, between 0 and 60°.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Eine Vorrichtung zur Verdüsung eines metallischen, intermetallischen oder keramischen Schmelzstromes mittels eines Verdüsungsgases zu sphärischem Pulver, umfasst
- eine Schmelzkammer (1),
- eine Verdüsungskammer (2),
- eine Induktionsspule (3) in der Schmelzkammer (1),
- einem Schmelzmaterial, vorzugsweise Schmelzstab (7) in der Induktionsspule (3) und
- eine die Schmelz- und Verdüsungskammern (1, 2) miteinander verbindende, in einer Düsenplatte (4) angeordnete Zerstäubungsdüse (5) für den vom Schmelzmaterial durch die Induktionsspule (3) abgeschmolzenen Schmelzstrom (8), wobei die Zerstäubungsdüse (5) ein ausschließlich divergentes Düsenprofil mit einer Düsenflanke (15) aufweist, deren Öffnungswinkel (W) mindestens 5° beträgt. Ein Verfahren zur Verdüsung des Schmelzstromes.
A device for atomizing a metallic, intermetallic or ceramic melt stream by means of an atomizing gas to form spherical powder, comprising
- a melting chamber (1),
- an atomization chamber (2),
- an induction coil (3) in the melting chamber (1),
- a melting material, preferably melting rod (7) in the induction coil (3) and
- an atomizing nozzle (5) arranged in a nozzle plate (4) connecting the melting and atomizing chambers (1, 2) to one another for the melt stream (8) melted from the melt material by the induction coil (3), the atomizing nozzle (5) having an exclusively divergent nozzle profile with a nozzle flank (15) whose opening angle (W) is at least 5°. A method for atomizing the melt stream.
Description
Die vorliegende Patentanmeldung nimmt die Priorität der deutschen Patentanmeldung
Die Erfindung betrifft eine Vorrichtung zur Verdüsung eines metallischen, intermetallischen oder keramischen Schmelzstromes mittels eines Verdüsungsgases zu einem sphärischen Pulver mit den im Oberbegriff des Patentanspruches 1 angegebenen Merkmalen. Ferner betrifft die Erfindung ein Verfahren zur Verdüsung eines entsprechenden Schmelzstromes zu einem sphärischen Pulver.The invention relates to a device for atomizing a metallic, intermetallic or ceramic melt stream by means of an atomizing gas to form a spherical powder with the features specified in the preamble of
Viele metallbasierte additive Fertigungsverfahren benötigen feines, sphärisches, rieselfähiges Metallpulver, um geringe Schichtdicken sowie eine prozesssichere Pulverförderung- bzw. Pulveraufbringung zu gewährleisten. Die klassische EIGA-Verdüsungstechnologie zerstäubt einen freifallenden Schmelzstrahl mittels eines gerichteten Gasstrahls, der durch eine Ringspaltdüse umlaufend um den Schmelzestrahl gerichtet ist. Dieses Verfahren hat relativ geringe Ausbeuten im Bereich der feinen Pulver in einem Partikelgrößenbereich von 10 bis 70 µm bei vergleichsweise hohen spezifischen Ar-Verbräuchen.Many metal-based additive manufacturing processes require fine, spherical, free-flowing metal powder to ensure low layer thicknesses and reliable powder conveying and powder application. The classic EIGA atomization technology atomizes a free-falling melt jet using a directed gas jet that is directed around the melt jet through an annular gap nozzle. This process has relatively low yields in the area of fine powders in a particle size range of 10 to 70 µm with comparatively high specific Ar consumption.
Eine alternative Zerstäubungstechnologie mittels einer Lavaldüse an einer EIGA-Anlage ist aus der
Ein Lösungsansatz in dieser Richtung ist in der
Der Erfindung liegt nun die Aufgabe zugrunde, eine gattungsgemäße Zerstäubungsvorrichtung so weiterzubilden, dass eine wirkungsvolle und insbesondere für die Erzielung kleinerer Partikelgrößen geeignetere Zerstäubung stattfindet.The invention is based on the object of developing a generic atomization device in such a way that an effective atomization takes place which is particularly suitable for achieving smaller particle sizes.
Diese wird laut Kennzeichnungsteil des Anspruches 1 durch eine Zerstäubungsdüse mit einem ausschließlich divergenten Düsenprofil gelöst. Dabei weist die Profil-Düsenflanke einen Öffnungswinkel von mindestens 5°, insbesondere mindestens 10° insbesondere mindestens 20°, insbesondere mindestens 30°, und/oder maximal 90°, insbesondere maximal 75°, insbesondere maximal 60°, auf. Vorzugsweise liegt ein entsprechender Öffnungswinkel zumindest abschnittsweise entlang der Dickenrichtung, insbesondere über mindestens 50% der Dicke, insbesondere über die gesamte Dicke, der Düsenplatte und/oder der Blende vor.According to the characterizing part of
Bei einer Einleitung eines flüssigen Schmelzstrahls eines metallischen, intermetallischen oder keramischen Materials durch eine gasdurchströmte Blende mit divergentem Profil treten sowohl vor als auch nach der Düse Verwirbelungen im Verdüsungsgasstrom ohne Ausbildung einer laminaren Strömung auf, was überraschenderweise förderlich für die Erzeugung sphärischer Pulver mit sehr kleinen Partikeldurchmessern ist. Eine laminare Strömung entlang der divergenten Flanke der Blende kann sich lediglich bis zu einem Öffnungswinkel von kleiner 5° der Düse ausbilden. Bei größerem Öffnungswinkel reißt die Strömung ab. Dieser Strömungsabriss und die damit verbundene Verwirbelung erfolgt je nach konkreter Kantenausbildung unmittelbar nach dem Gaseintritt in die Düse.When a liquid melt jet of a metallic, intermetallic or ceramic material is introduced through a gas-flowing orifice with a divergent profile, turbulence occurs in the atomizing gas flow both before and after the nozzle without the formation of a laminar flow, which is surprisingly beneficial for the production of spherical powders with very small particle diameters. A laminar flow along the divergent flank of the orifice can only develop up to an opening angle of less than 5° of the nozzle. At a larger opening angle, the flow breaks off. This flow separation and the associated turbulence occurs, depending on the specific edge formation, immediately after the gas enters the nozzle.
Der Erfindung liegt ferner die Aufgabe zugrunde, ein gattungsgemäßes Zerstäubungsverfahren so weiterzubilden, dass eine wirkungsvolle und insbesondere für die Erzielung kleinerer Partikelgrößen geeignetere Zerstäubung stattfindet.The invention is further based on the object of developing a generic atomization method in such a way that an effective atomization takes place which is particularly suitable for achieving smaller particle sizes.
Diese wird gemäß Anspruch 12 durch eine Verfahren gelöst, bei dem eine Vorrichtung, aufweisend eine Zerstäubungsdüse mit einem ausschließlich divergenten Düsenprofil, bereitgestellt wird, womit das Verdüsungsgas auf eine Geschwindigkeit beschleunigt wird, die stets unter der Schallgeschwindigkeit liegt. Die Vorteile des Verfahrens entsprechen den Vorteilen der Vorrichtung. Das Verfahren ist vorzugsweise mit mindestens einem der Merkmale weitergebildet, die in Zusammenhang mit der Vorrichtung beschrieben sind.This is achieved according to
In den abhängigen Ansprüchen sind bevorzugte Weiterbildungen der Erfindung angegeben, die sich in erster Linie auf die Profilierung und Dimensionierung der Düsenöffnung beziehen. Insoweit kann zur Vermeidung von Wiederholungen auf die nachfolgende Beschreibung verschiedener Ausführungsformen der Erfindung mit ihren Merkmalen, Einzelheiten und Vorteilen anhand der beigefügten Zeichnungen verwiesen werden. Es zeigen:
- Fig. 1
- einen schematischen Axialschnitt einer Verdüsungsvorrichtung,
- Fig. 2
- eine Unteransicht einer Blende mit einer zentrischen Zerstäubungsdüse, sowie
- Fig. 3 bis 6
- Axial-Querschnitte von Düsenplatten entlang der Schnittlinie A-A nach
Fig. 2 mit Zerstäubungsdüsen in verschiedenen Ausführungsformen.
- Fig.1
- a schematic axial section of an atomization device,
- Fig.2
- a bottom view of a diaphragm with a centric atomizing nozzle, as well as
- Fig. 3 to 6
- Axial cross sections of nozzle plates along the section line AA to
Fig. 2 with atomizing nozzles in various designs.
Die in der Zeichnung dargestellten Hauptbestandteile der Verdüsungsvorrichtung sind eine Schmelzkammer 1, eine Verdüsungskammer 2 (auch Pulverkammer genannt), eine in der Schmelzkammer 1 angeordnete Induktionsspule 3 und eine zwischen den beiden Kammern 1, 2 angeordnete Düsenplatte 4, in der eine Zerstäubungsdüse 5, die in der Düsenplatte 4 oder in einer separaten Blende 11 ausgebildet sein kann, zur Verbindung dieser beiden Kammern 1, 2 dient. Die rotationssymetrische Blende 11 sitzt dabei in einer entsprechenden Aufnahme 12 in der Düsenplatte 4 mit einer Ausrichtung, dass der Mittelpunkt M der Zerstäubungsdüse 5 in der Symmetrieachse der Induktionsspule 3 liegt. Die Düsenplatte 4 ist eben und senkrecht zur Fließrichtung eines Schmelzstromes 8 ausgerichtet.The main components of the atomization device shown in the drawing are a
In der unter einem Argondruck P1 stehenden Schmelzkammer 1 wird das zu verdüsende Material in Form eines mit einer Spitze 6 (Spitzenwinkel 30° bis 60°) versehenen zylindrischen Stabes 7 in die konische Induktionsspule 3 mit drei Windungen teilweise eingeführt, wie dies beispielsweise grundsätzlich aus der
Dieser Schmelzstrom 8 läuft an der konischen Fläche nach unten und tropft vorzugsweise von der Spitze 6 in Form eines kontinuierlichen Gießstrahles ab.This
Der Massenfluss des den Schmelzstrom 8 bildenden Gießstrahles kann vorzugsweise über die induktiv eingekoppelte elektrische Leistung in einem breiten Bereich zwischen 0,4 kg/min und 3 kg/min variiert werden. Als für die Verdüsung besonders geeignet wird ein Schmelzstrom zwischen 0,6 und 2,5 kg/min angesehen.The mass flow of the pouring jet forming the
Während der Verdüsung rotiert der Stab 7 besonders bevorzugt langsam um seine Symmetrieachse S und/oder fährt kontinuierlich nach unten.During atomization, the rod 7 preferably rotates slowly around its axis of symmetry S and/or moves continuously downwards.
Aus dem Durchmesser DS des Stabes 7, der zwischen 30 und 200 mm liegen kann, und der eingestellten Absenkgeschwindigkeit ergibt sich die jeweilige Schmelzrate. Als prozesstechnisch besonders günstig haben sich Stabdurchmesser DS zwischen 40 und 150 mm erwiesen.The respective melting rate is determined from the diameter DS of the rod 7, which can be between 30 and 200 mm, and the set lowering speed. Rod diameters DS between 40 and 150 mm have proven to be particularly favorable in terms of process technology.
Durch eine in der Zeichnung lediglich schematisch dargestellte lineare Aufhängung 9 ist vorzugsweise die Höhenverstellbarkeit der Induktionsspule 3 realisiert. Hierdurch kann die freie Fallhöhe des Gießstrahles bis zur Düse und damit, wie oben erwähnt, die Viskosität der Schmelze beim Eintritt in die Düse variiert werden. Denn die Schmelzentemperatur verringert sich, insbesondere durch die Abgabe von Strahlungsleistung, mit steigender Fallhöhe, womit die Viskosität der Schmelze beim Eintritt in die Düse verändert und somit die entstehende Partikelgrößenverteilung gezielt gesteuert werden kann.The height adjustment of the
Als technisch sinnvoll haben sich insbesondere Abstände zwischen Zerstäubungsdüse 5 und Induktionsspule 3 von 3 bis 100 mm erwiesen. Bei kleineren Spulenabständen besteht die Gefahr von Spannungsüberschlägen von der Spule auf die Düse, bei größeren Abständen besteht die Gefahr der Aufspaltung des Gießstrahles vor dem Eintritt in die Düsenöffnung.Distances between the atomizing
Als weiterhin besonders vorteilhaft haben sich horizontale Spulenwindungen herausgestellt, da hiermit ein Auslenken des Gießstrahles durch elektromagnetische Kräfte bei Verlassen des Spulenmagnetfeldes im Gegensatz zu steigenden Spulenwindungen vermieden werden kann.Horizontal coil windings have also proven to be particularly advantageous, as they prevent the pouring stream from being deflected by electromagnetic forces when it leaves the coil's magnetic field, in contrast to rising coil windings.
Ein gewisses Maß an Überhitzung der Schmelze kann erzielt werden, indem die Kante des Kegels einen Abstand zur obersten Windung aufweist und somit die Schmelze länger durch das Induktionsfeld fällt. Als vorteilhaft für reaktive, hochschmelzende Metalle, sowie Stangen mit Durchmesser > 115mm haben sich Abstände zwischen 3 mm und 50 mm erwiesen.A certain degree of superheating of the melt can be achieved by placing the edge of the cone at a distance from the topmost turn, thus allowing the melt to fall through the induction field for longer. Distances between 3 mm and 50 mm have proven to be advantageous for reactive, high-melting metals and rods with a diameter of > 115 mm.
Die rotationssymmetrische Zerstäubungsdüse 5 befindet sich mit ihrem Mittelpunkt in der Symmetrieachse S von Stab 7 und Spule 3 mit dem Abstand H unterhalb der untersten Windung in der Induktionsspule 3.The rotationally symmetrical atomizing
Sie ist vorzugsweise in einer gesonderten, lösbar in der Düsenplatte 4 sitzenden Blende 11 angeordnet, die durch das Anpressen mit dem Druck P1 auf die vorzugsweise wassergekühlte Düsenplatte 4 indirekt gekühlt wird.It is preferably arranged in a
Der Schmelzstrahl wird von dem aus der Schmelzkammer 1 in die der Verdüsung dienende Verdüsungskammer 2 strömenden Gas radial umhüllt. Durch die Beschleunigung des Gases auf Grund des sinkenden Druckes nach der Blende 11 werden Spannungen in den Schmelzstrahl eingebracht, sodass dieser zerstäubt. Die Triebkraft hierfür ist die positive Druckdifferenz zwischen dem Gasdruck P1 in der Schmelzkammer 1 und dem Gasdruck P2 in der Verdüsungskammer 2. Diese Druckdifferenz beträgt mindestens 0,2 bar, höchstens 25 bar. Technisch besonders vorteilhafte Druckdifferenzen liegen im Bereich zwischen 3 bar und 21 bar.The melt jet is radially surrounded by the gas flowing from the
Auch bei hohen Druckdifferenzen P1 - P2 wird das Gas durch die Zerstäubungsdüse 5 der Blende 11 nicht auf Schallgeschwindigkeit beschleunigt, da kein konvergenter Einlauf zur laminaren Beschleunigung vorliegt. Unterschallströmungen können durch Druckabfall maximal bis auf die Schallgeschwindigkeit beschleunigt werden. Dies tritt jedoch aufgrund der Reibungsverluste nicht ein.Even at high pressure differences P1 - P2, the gas is not accelerated to the speed of sound by the
Das durch den Druckabfall beschleunigte Verdüsungsgas verursacht Druck- und Scherspannungen an der Außenhaut des Schmelzstrahls. Die Schmelzengeschwindigkeit im Schmelzstrahl nimmt dabei radial von au-ßen nach innen ab. Nach der Blende 11 bauen sich diese Druck- und Scherspannungen augenblicklich durch das Aufreißen des Schmelzstrahlfilaments in einzelne Tröpfchen ab, die in der Verdüsungskammer 2 zu sphärischen Pulverteilchen erstarren. Die vor und nach der Blende 11 hervorgerufenen Verwirbelungen unterstützen die Zerstäubungsfunktion erheblich, so dass auch sehr feine sphärische Pulver mit hohen Ausbeuten hergestellt werden können.The atomizing gas accelerated by the pressure drop causes pressure and shear stresses on the outer skin of the melt jet. The melt velocity in the melt jet increases radially from the outside inwards. After the
Durch dieses Verfahren können niedrigere spezifische Ar-Verbräuche realisiert werden, da der Druck in der Schmelzkammer bei niedrigeren Durchflussraten aufrechterhalten werden kann. Durch die niedrigere Ausflussgeschwindigkeit nach der Blende 11, die stets unter der Schallgeschwindigkeit liegt, verbessert sich die Pulverqualität insbesondere hinsichtlich der Satellitenbildung.This process enables lower specific Ar consumption to be achieved because the pressure in the melting chamber can be maintained at lower flow rates. The lower outflow velocity after
Anhand der
Die in
Bei der in
Der Öffnungswinkel W beträgt besonders bevorzugt zwischen 5° und 90°, insbesondere zwischen 30° und 60°, vorzugsweise etwa 55°.The opening angle W is particularly preferably between 5° and 90°, in particular between 30° and 60°, preferably about 55°.
Die in
Die Zerstäubungsdüse 5 in
Claims (15)
die Zerstäubungsdüse (5) ein ausschließlich divergentes Düsenprofil mit einer Düsenflanke (15) aufweist, deren Öffnungswinkel (W) mindestens 5° beträgt.Device for atomizing a metallic, intermetallic or ceramic melt stream by means of an atomizing gas to form spherical powder, comprising
the atomizing nozzle (5) has an exclusively divergent nozzle profile with a nozzle flank (15) whose opening angle (W) is at least 5°.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102022211865.0A DE102022211865A1 (en) | 2022-11-09 | 2022-11-09 | Device for atomizing a melt stream by means of an atomizing gas |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4368318A1 true EP4368318A1 (en) | 2024-05-15 |
Family
ID=88731537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP23208217.2A Pending EP4368318A1 (en) | 2022-11-09 | 2023-11-07 | Device and method for atomizing a melt stream by means of a atomizing gas |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP4368318A1 (en) |
DE (1) | DE102022211865A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022211865A1 (en) | 2022-11-09 | 2024-05-16 | Gfe Metalle Und Materialien Gmbh | Device for atomizing a melt stream by means of an atomizing gas |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4863509A (en) * | 1986-09-16 | 1989-09-05 | Centrem S.A. | Method and apparatus for producing and further processing metallic substances |
DE4102101A1 (en) | 1991-01-25 | 1992-07-30 | Leybold Ag | DEVICE FOR PRODUCING POWDER FROM METAL |
WO2015092008A1 (en) | 2013-12-20 | 2015-06-25 | Nanoval Gmbh & Co. Kg | Device and method for melting a material without a crucible and for atomizing the melted material in order to produce powder |
WO2019118723A1 (en) * | 2017-12-14 | 2019-06-20 | Arconic Inc. | High pressure metal melt and solidification process and apparatus |
DE102019214555A1 (en) | 2019-09-24 | 2021-03-25 | Ald Vacuum Technologies Gmbh | Device for atomizing a melt stream by means of a gas |
CN113857484A (en) * | 2020-06-30 | 2021-12-31 | 航天海鹰(哈尔滨)钛业有限公司 | Reduce gas atomization powder process device of satellite powder |
DE102022211865A1 (en) | 2022-11-09 | 2024-05-16 | Gfe Metalle Und Materialien Gmbh | Device for atomizing a melt stream by means of an atomizing gas |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE350416B (en) | 1971-08-24 | 1972-10-30 | Stora Kopparbergs Bergslags Ab | |
US3904381A (en) | 1972-12-29 | 1975-09-09 | Monsanto Co | Cast metal wire of reduced porosity |
DE3311343C2 (en) | 1983-03-29 | 1987-04-23 | Alfred Prof. Dipl.-Ing.Dr.-Ing. 7830 Emmendingen Walz | Process for producing fine metal powders and apparatus for carrying out the process |
-
2022
- 2022-11-09 DE DE102022211865.0A patent/DE102022211865A1/en active Pending
-
2023
- 2023-11-07 EP EP23208217.2A patent/EP4368318A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4863509A (en) * | 1986-09-16 | 1989-09-05 | Centrem S.A. | Method and apparatus for producing and further processing metallic substances |
DE4102101A1 (en) | 1991-01-25 | 1992-07-30 | Leybold Ag | DEVICE FOR PRODUCING POWDER FROM METAL |
WO2015092008A1 (en) | 2013-12-20 | 2015-06-25 | Nanoval Gmbh & Co. Kg | Device and method for melting a material without a crucible and for atomizing the melted material in order to produce powder |
WO2019118723A1 (en) * | 2017-12-14 | 2019-06-20 | Arconic Inc. | High pressure metal melt and solidification process and apparatus |
DE102019214555A1 (en) | 2019-09-24 | 2021-03-25 | Ald Vacuum Technologies Gmbh | Device for atomizing a melt stream by means of a gas |
US20220339701A1 (en) * | 2019-09-24 | 2022-10-27 | Ald Vacuum Technologies Gmbh | Device for atomizing a melt stream by means of a gas |
CN113857484A (en) * | 2020-06-30 | 2021-12-31 | 航天海鹰(哈尔滨)钛业有限公司 | Reduce gas atomization powder process device of satellite powder |
DE102022211865A1 (en) | 2022-11-09 | 2024-05-16 | Gfe Metalle Und Materialien Gmbh | Device for atomizing a melt stream by means of an atomizing gas |
Also Published As
Publication number | Publication date |
---|---|
DE102022211865A1 (en) | 2024-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68917132T2 (en) | METHOD AND DEVICE FOR SPRAYING A METAL MELT. | |
EP3083107B1 (en) | Device and method for melting a material without a crucible and for atomizing the melted material in order to produce powder | |
DE69229707T2 (en) | Controlled process for generating a powdered metal drop jet | |
EP0220418B1 (en) | Process and apparatus for making very fine spherical powder | |
EP4034320B1 (en) | Device for atomizing a melt stream by means of a gas | |
DE3505660A1 (en) | DEVICE AND METHOD FOR SPRAYING UNSTABLE MELTING FLOWS | |
EP4368318A1 (en) | Device and method for atomizing a melt stream by means of a atomizing gas | |
DE10126100A1 (en) | Production of a coating or a molded part comprises injecting powdered particles in a gas stream only in the divergent section of a Laval nozzle, and applying the particles at a specified speed | |
DE3505659A1 (en) | MELT SPRAYING WITH REDUCED GAS FLOW AND DEVICE FOR SPRAYING | |
AT409235B (en) | METHOD AND DEVICE FOR PRODUCING METAL POWDER | |
US3719733A (en) | Method for producing spherical particles having a narrow size distribution | |
WO2016184455A1 (en) | Device and method for atomizing molten materials | |
EP3983157B1 (en) | Method and device for splitting an electrically conductive liquid | |
EP1042093B1 (en) | Method and device for producing fine powder by atomizing molten materials with gases | |
DE3883256T2 (en) | DEVICE AND METHOD FOR ATOMIZING LIQUIDS, IN PARTICULAR MELTED METALS. | |
DE69321522T2 (en) | Device for atomizing molten metal | |
EP1658150A1 (en) | Device for atomizing a melt stream and method for atomizing high-fusion metals or ceramics | |
DE3505662A1 (en) | METHOD FOR THE PRODUCTION OF FINE POWDER FROM MOLTEN METAL AND A DEVICE FOR SPRAYING | |
DD227355A5 (en) | METHOD AND DEVICE FOR PRODUCING BALL-FUSED METALLIC PARTICLES | |
AT524161B1 (en) | PREPARATION OF A METAL POWDER | |
EP1222147B1 (en) | Method and device for producing powders that consist of substantially spherical particles | |
DE102018125605A1 (en) | Process for additive manufacturing of a component | |
AT523012B1 (en) | METHOD AND DEVICE FOR THE PRODUCTION OF A METAL POWDER | |
EP1356882A1 (en) | Device for producing metal powder | |
DE10002394C1 (en) | Method and device for producing powders formed from essentially spherical particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Free format text: CASE NUMBER: APP_40342/2024 Effective date: 20240708 |