EP4366678A1 - Procédé de coloration de matière kératinique comprenant l'application d'un composé d'organosilicium, d'un composé de coloration, d'un réactif d'étanchéité et d'un agent de prétraitement alcalin - Google Patents

Procédé de coloration de matière kératinique comprenant l'application d'un composé d'organosilicium, d'un composé de coloration, d'un réactif d'étanchéité et d'un agent de prétraitement alcalin

Info

Publication number
EP4366678A1
EP4366678A1 EP22731184.2A EP22731184A EP4366678A1 EP 4366678 A1 EP4366678 A1 EP 4366678A1 EP 22731184 A EP22731184 A EP 22731184A EP 4366678 A1 EP4366678 A1 EP 4366678A1
Authority
EP
European Patent Office
Prior art keywords
agent
group
acid
pigments
organic silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22731184.2A
Other languages
German (de)
English (en)
Inventor
Juergen Schoepgens
Torsten LECHNER
Phillip Jaiser
Avni TAIRI
Carolin Kruppa
Marc NOWOTTNY
Carsten MATHIASZYK
Andreas Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP4366678A1 publication Critical patent/EP4366678A1/fr
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/86Polyethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/58Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing atoms other than carbon, hydrogen, halogen, oxygen, nitrogen, sulfur or phosphorus
    • A61K8/585Organosilicon compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8152Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring
    • A61Q5/065Preparations for temporary colouring the hair, e.g. direct dyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/42Colour properties
    • A61K2800/43Pigments; Dyes
    • A61K2800/432Direct dyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/87Application Devices; Containers; Packaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/88Two- or multipart kits
    • A61K2800/884Sequential application

Definitions

  • Process for coloring keratinous material comprising the use of an organosilicon compound, a coloring compound, a sealing agent and an alkaline pretreatment agent
  • agent (a) is characterized by its content of at least one organic silicon compound (a1).
  • agent (b) contains at least one sealing reagent (b1).
  • agent (a) or agent (b) or both agents (a) and (b) contain at least one color-providing compound from the group of pigments and/or direct dyes.
  • kits-of-parts for dyeing keratin material, in particular human hair, which is made up separately of at least three agents (a′), (a′′) and (b) and a pretreatment agent (v) includes.
  • the agent (a) used in the method described above can be prepared from the agents (a') and (a").
  • a multi-component packaging unit for coloring keratin material, in particular human hair, which, separately from one another, contains at least four means (a'), (a"), (a"') and (b) and a pretreating agent (v).
  • the agent (a) used in the process described above can be prepared from the agents (a'), (a") and (a"').
  • Oxidation colorants are usually used for permanent, intensive colorations with good fastness properties and good gray coverage. Such colorants usually contain oxidation dye precursors, so-called developer components and coupler components, which form the actual dyes with one another under the influence of oxidizing agents such as hydrogen peroxide. Oxidation coloring agents are characterized by very long-lasting coloring results.
  • color pigments are generally understood to mean insoluble, color-imparting substances. These are present in undissolved form in the form of small particles in the coloring formulation and are only deposited from the outside on the hair fibers and/or the surface of the skin. Therefore, they can usually be removed without leaving any residue with a few washes with detergents containing surfactants.
  • Various products of this type are available on the market under the name of hair mascara.
  • EP 2168633 B1 deals with the task of producing long-lasting hair coloring using pigments.
  • the document teaches that when using the combination of a pigment, an organic silicon compound, a film-forming polymer and a solvent, colorations can be produced on hair which are particularly resistant to abrasion and/or shampooing.
  • the object of the present invention was to provide a dyeing system with pigments which has fastness properties comparable to oxidative dyeing.
  • the fastness to washing should be outstanding, but the use of the oxidation dye precursors otherwise usually used for this purpose should be avoided.
  • an even and long-lasting coloring should also be achieved.
  • the above object can be achieved in an excellent manner if keratin materials, in particular human hair, are dyed using a process in which first an alkaline pretreatment agent (v) and then at least two agents (a) and (b) applied to the keratin materials (hair).
  • the first agent (a) contains at least one organic silicon compound from the group of silanes having one, two or three silicon atoms.
  • the second means (b) contains at least one sealing reagent.
  • agent (a) or agent (b) or both agents (a) and (b) contain at least one color-providing compound from the group of pigments and/or direct dyes.
  • keratinic material When using the three agents (v), (a) and (b) in a dyeing process, keratinic material could be dyed with particularly high color intensity and high fastness properties.
  • a surprisingly uniform and long-lasting application of the at least one coloring compound could be achieved by pretreating the keratinic material with an alkaline pretreatment agent.
  • a first object of the present invention is a method for coloring keratin material, in particular human hair, comprising the following steps:
  • agent (v) to the keratin material, the agent (v) containing:
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • agent (a) to the keratin material, the agent (a) containing:
  • an agent (b) to the keratinic material, the agent (b) including:
  • (b1) at least one sealing agent, where at least one of the agents (a) and (b) also contains at least one color-providing compound from the group of pigments and/or direct dyes.
  • the alkaline pretreatment removes the fatty acid 18-methyleicosanoic acid covalently bound to the surface of the cuticle of the keratin material through an ester or thioester bond. Cleavage of the ester or thioester bond and removal of the covalently bound 18-methyleicosanoic acid renders the keratinic material hydrophilic and creates additional reactive sites on the surface of the keratinic material. The other reactive points on the surface of the keratin material can in particular be negatively charged.
  • the organosilicon compounds (a1) and/or their condensation and/or hydrolysis products can interact with the negative charges.
  • Keratinic material means hair, skin, nails (such as fingernails and/or toenails). Wool, fur and feathers also fall under the definition of keratin material.
  • Keratinic material is preferably understood to mean human hair, human skin and human nails, in particular fingernails and toenails. Very particularly preferably, keratin material is understood as meaning human hair.
  • an alkaline pretreatment agent (v) is first applied to the keratin material, in particular human hair.
  • the pretreatment agent (v) is characterized by a content of at least one polyethylene glycol with an average molecular weight of 200 to 8000 g/mol (v1), at least one aliphatic alcohol (v2) and at least one alkalizing agent (v3).
  • the alkaline pretreatment agent (v) used in the dyeing process contains at least one polyethylene glycol having an average molecular weight of 200 to 8,000 g/mol as a constituent (v1) essential to the invention.
  • polyethylene glycol is a liquid, paste-like or solid polymer with the general empirical formula C 2 nH 4 n+ 2 0 n+i .
  • Polyethylene glycols with an average molecular weight of 200 to 400 g/mol are liquid, polyethylene glycols with an average molecular weight of >400 to 600 g/mol are in the form of a paste and polyethylene glycols with an average molecular weight of >1,000 g/mol are solid.
  • the agent used in the method (v) contains a polyethylene glycol with an average molecular weight of 200 to 8000 g/mol (v1) a polyethylene glycol with an average molecular weight of 400 g/mol.
  • the agent (v) used in the method contains at least two polyethylene glycols with an average molecular weight of 200 to 8000 g/mol (v1).
  • the agent (v) used in the method comprises a first polyethylene glycol with an average molecular weight of 400 g/mol and a second polyethylene glycol with an average molecular weight of 6000 g/mol.
  • the alkaline pretreatment agent (v) used in the dyeing process contains at least one aliphatic alcohol as the second constituent (v2) essential to the invention.
  • the aliphatic alcohol is in particular a linear or branched, saturated or unsaturated alcohol having 1 to 22 carbon atoms and 0, 1, 2 or 3 double bonds.
  • Typical representatives are, for example, methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, tert-butanol, n-pentanol, caproic alcohol, caprylic alcohol, 2-ethylhexanol, capric alcohol, myristyl alcohol, lauryl alcohol, cetyl alcohol, palmitoleyl alcohol, stearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselyl alcohol, linolyl alcohol, linolenyl alcohol, behenyl alcohol or erucyl alcohol.
  • the aliphatic alcohol is preferably a linear or branched, saturated alcohol having 1 to 6 carbon atoms, which is preferably selected from the group consisting of ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, tert. -Butanol and mixtures thereof. Most preferably, the aliphatic alcohol includes ethanol.
  • the alkaline pretreatment agent (v) used in the dyeing process contains at least one alkalizing reagent as the third component (v3) essential to the invention.
  • Suitable alkalizing reagents include, in particular, alkali metal hydroxides, alkaline earth metal hydroxides, basic amino acids and/or amines.
  • the pretreatment agent (v) comprises at least one alkalizing reagent (v3) comprising an alkali metal hydroxide.
  • Alkaline hydroxides are a class of chemical compounds made up of an alkali metal cation and the hydroxide anion.
  • the alkali hydroxides are: lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide and cesium hydroxide.
  • the at least one alkali metal hydroxide very particularly preferably comprises potassium hydroxide.
  • the pretreatment agent (v) comprises at least one alkalizing agent (v3) comprising potassium hydroxide.
  • the pretreatment agent (v) comprises:
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol, comprising a polyethylene glycol with an average molecular weight of 400 g/mol,
  • (v2) at least one aliphatic alcohol comprising ethanol and (v3) at least one basifying agent comprising potassium hydroxide.
  • the pretreatment agent (v) contains 40 to 80% by weight, more preferably 45 to 75% by weight and very particularly preferably 50 to 70% by weight, based in each case on the total weight of the pretreatment agent (v) to which at least one polyethylene glycol having an average molecular weight of 200 to 8,000 (v1).
  • the pretreatment agent (v) contains 10 to 50% by weight, more preferably 15 to 45% by weight and very particularly preferably 20 to 40% by weight, based in each case on the total weight of the Pretreatment agent (v) on which at least one aliphatic alcohol (v2).
  • the pretreatment agent (v) contains from 0.5 to 5% by weight, more preferably from 0.75 to 2% by weight and entirely particularly preferably 1 to 1.5% by weight, based in each case on the total weight of the pretreatment agent (v), of the at least one alkalizing reagent (v3).
  • Alkalizing reagents in the form of alkali metal hydroxides are usually used in the form of aqueous solutions.
  • the pretreatment agent (v) further comprises water.
  • the pretreatment agent (v) contains from 0.5 to 10% by weight, based on the total weight of the pretreatment agent (v), of water.
  • the pretreatment agent (v) comprises:
  • (v1) 50 to 70% by weight, based on the total weight of the pretreatment agent (v), of at least one polyethylene glycol having an average molecular weight of 200 to 8000 g/mol, comprising a polyethylene glycol having an average molecular weight of 400 g/mol,
  • agents (a) and (b) are applied to the keratin material, in particular human hair, after the pretreatment agent (v).
  • the two means (a) and (b) are different from each other.
  • the agent (a) preferably contains the ingredient (a1) essential to the invention in a cosmetic carrier, particularly preferably in an aqueous or aqueous-alcoholic cosmetic carrier.
  • This cosmetic carrier can be liquid, gel or cream.
  • Pasty, solid or powdery cosmetic carriers can also be used for the production of agent (a).
  • Such carriers are, for example, creams, emulsions, gels or foaming solutions containing surfactants, such as shampoos, foam aerosols, foam formulations or other preparations which are suitable for use on the hair.
  • the cosmetic carrier preferably contains at least 2% by weight of water, based on its weight. The water content is more preferably above 10% by weight, even more preferably above 20% by weight and particularly preferably above 40% by weight.
  • the cosmetic carrier can also be aqueous-alcoholic.
  • aqueous-alcoholic solutions are to be understood as meaning aqueous solutions containing 2 to 70% by weight of a C 1 -C 4 alcohol, in particular ethanol or isopropanol.
  • the agents can also contain other organic solvents, such as methoxybutanol, benzyl alcohol, ethyl diglycol or 1,2-propylene glycol. All water-soluble organic solvents are preferred.
  • the agent (a) contains at least one organic silicon compound from the group of silanes having one, two or three silicon atoms as the ingredient (a1) essential to the invention.
  • the agent (a) particularly preferably contains at least one organic silicon compound (a1) selected from silanes having one, two or three silicon atoms, the organic silicon compound comprising one or more hydroxyl groups and/or hydrolyzable groups per molecule.
  • organic silicon compounds (a1) or organic silanes contained in the agent (a) are reactive compounds.
  • Organic silicon compounds are compounds that either have a direct silicon-carbon bond (Si-C) or in which the carbon is bonded to the silicon via an oxygen, nitrogen, or sulfur atom. atom is linked.
  • the organic silicon compounds of the present invention are compounds containing one to three silicon atoms.
  • the organic silicon compounds particularly preferably contain one or two silicon atoms.
  • silane stands for a group of chemical compounds based on a silicon backbone and hydrogen.
  • organic silanes some or all of the hydrogen atoms are replaced by organic groups such as (substituted) alkyl groups and/or alkoxy groups.
  • organic silanes Some of the hydrogen atoms in the organic silanes can also be replaced by hydroxyl groups.
  • a method is characterized by the use of an agent (a) on the keratin material, the agent (a) containing at least one organic silicon compound (a1) selected from silanes having one, two or three silicon atoms , wherein the organic silicon compound further comprises one or more hydroxyl groups or hydrolyzable groups per molecule.
  • a method is characterized by the use of an agent (a) on the keratin material, the agent (a) containing at least one organic silicon compound (a1) selected from silanes having one, two or three silicon atoms wherein the organic silicon compound further comprises one or more basic chemical functions and one or more hydroxyl groups or hydrolyzable groups per molecule.
  • This basic group or basic chemical function can be, for example, an amino group, an alkylamino group, a dialkylamino group or a trialkylamino group, which is preferably linked to a silicon atom via a linker.
  • the basic group is preferably an amino group, a C 1 -C6 alkylamino group or a di(C 1 -C 6 )alkylamino group.
  • the hydrolyzable group or groups is preferably a C.sub.1 -C.sub.6 alkoxy group, in particular an ethoxy group or a methoxy group. It is preferred if the hydrolyzable group is bonded directly to the silicon atom. If, for example, the hydrolyzable group is an ethoxy group, the organic silicon compound preferably contains a structural unit R'R"R"'Si-O-CH 2 -CH 3 .
  • the radicals R', R" and R"' represent the three remaining free valences of the silicon atom.
  • agent (a) contains at least one organic silicon compound selected from silanes having one, two or three silicon atoms, the organic silicon compound preferably having one or more basic chemical functions and one or more hydroxyl groups or hydrolyzable groups per molecule.
  • the agent (a) contains at least one organic silicon compound (a1) of the formula (I) and/or (II).
  • the compounds of formulas (I) and (II) are organic silicon compounds selected from silanes having one, two or three silicon atoms, the organic silicon compound comprising one or more hydroxyl groups and/or hydrolyzable groups per molecule.
  • the method is characterized in that an agent is applied to the keratin material (or the human hair), the agent (a) containing at least one organic silicon compound (a) of the formula (I) and/or ( II) contains, RiR 2 NL-Si(OR 3 )a(R4)b (I), where
  • R2 independently represent a hydrogen atom or a Ci-C6-alkyl group
  • - L is a linear or branched, divalent Ci-C2o-alkylene group
  • R3 stands for a hydrogen atom or a Ci-C6-alkyl group
  • - a is an integer from 1 to 3
  • R5', R5" independently represent a hydrogen atom or a C1-C6- alkyl group
  • R6, R6' and R6" independently represent a Ci-C6-alkyl group
  • Ci-C2o-alkylene group independently represent a linear or branched, divalent Ci-C2o-alkylene group
  • R7 and Re independently represent a hydrogen atom, a Ci-C6-alkyl group, a hydroxy-Ci-C6-alkyl group, a C2-C6-alkenyl group, an amino-Ci-C6-alkyl group or a group of the formula (III ) stand
  • - c' is an integer from 1 to 3
  • Ci-C6-alkyl group examples are the groups methyl, ethyl, propyl, isopropyl, n-butyl, s-butyl and t-butyl, n-pentyl and n-hexyl.
  • Propyl, ethyl and methyl are preferred alkyl radicals.
  • Examples of a C 2 -C6 alkenyl group are vinyl, allyl, but-2-enyl, but-3-enyl and isobutenyl, preferred C 2 -C6 alkenyl radicals are vinyl and allyl.
  • a hydroxy-Ci-C6- alkyl group are a hydroxymethyl, a 2-hydroxyethyl, a 2-hydroxypropyl, a 3-hydroxypropyl, a 4-hydroxybutyl group, a 5-hydroxypentyl and a 6-hydroxyhexyl group; a 2-hydroxyethyl group is particularly preferred.
  • Examples of an amino-Ci-C6-alkyl group are the aminomethyl group, the 2-aminoethyl group, the 3-aminopropyl group. The 2-aminoethyl group is particularly preferred.
  • Examples of a linear bivalent Ci-C 2 o-alkylene group are, for example, the methylene group (-CH 2 -), the ethylene group (-CH 2 -CH 2 -), the propylene group (-CH 2 -CH 2 -CH 2 - ) and the butylene group (-CH 2 - CH 2 -CH 2 -CH 2 -).
  • the propylene group (-CH 2 -CH 2 -CH 2 -) is particularly preferred.
  • divalent alkylene groups can also be branched. Examples of branched, divalent C3-C 2 o-alkylene groups are (-CH 2 -CH(CH3)-) and (-CH 2 -CH(CH3)-CH 2 - )
  • the radicals Ri and R 2 independently represent a hydrogen atom or a C1-C6 alkyl group.
  • the radicals Ri and R 2 are very particularly preferably both a hydrogen atom.
  • the organic silicon compound In the middle part of the organic silicon compound is the structural unit or the linker -L- which stands for a linear or branched, divalent Ci-C 2 o-alkylene group.
  • a divalent Ci-C 2 o-alkylene group can also be referred to as a divalent or divalent Ci-C 2 o-alkylene group, which means that each group L can form two bonds. One bond is from the amino group RIR 2 N to the linker L and the second bond is between the linker L and the silicon atom.
  • -L- preferably stands for a linear, divalent (ie divalent) Ci-C 2 o-alkylene group. More preferably -L- is a linear bivalent Ci-C6-alkylene group. Particularly preferably -L- stands for a methylene group (-CH 2 -), an ethylene group (-CH 2 -CH 2 -), a propylene group (-CH 2 -CH 2 -CH 2 -) or a butylene group (-CH 2 - CH2 - CH2 - CH2- ). L is very particularly preferably a propylene group (-CH 2 -CH 2 -CH 2 -).
  • the linear propylene group (-CH2-CH2-) can alternatively also be referred to as propane-1,3-diyl group.
  • the radical R3 stands for a hydrogen atom or a Ci-C6-alkyl group and the radical R4 stands for a Ci-C6-alkyl group.
  • R3 and R4 are particularly preferably, independently of one another, a methyl group or an ethyl group.
  • a represents an integer of 1 to 3
  • b represents an integer of 3 - a. If a is the number 3, then b is equal to 0. If a is the number 2, then b is equal to 1. If a is the number 1, then b is equal to 2.
  • the agent (a) contains at least one organic silicon compound (a1) of the formula (I) in which the radicals R3, R4 independently represent a methyl group or an ethyl group.
  • the agent (a) contains at least one organic silicon compound of the formula (I) in which the radicals R3, R4 are independently a methyl group or stand for an ethyl group.
  • agent (a) contains at least one organic silicon compound of the formula (I) in which the radical a represents the number 3.
  • the remainder b stands for the number 0.
  • the agent (a) used in the process is characterized in that it contains at least one organic silicon compound (a1) of the formula (I), where
  • R3, R4 independently represent a methyl group or an ethyl group
  • a method is characterized in that the agent (a) contains at least one organic silicon compound (a1) of the formula (I),
  • R2 both represent a hydrogen atom
  • - L is a linear, divalent Ci-C6-alkylene group, preferably a propylene group (-CH2-CH2-CH2-) or an ethylene group (-CH2-CH2-),
  • R3 represents a hydrogen atom, an ethyl group or a methyl group
  • R4 represents a methyl group or an ethyl group
  • Organic silicon compounds of the formula (I) which are particularly suitable for solving the problem of the invention are --(3-aminopropyl)triethoxysilane
  • a method is characterized in that the agent (a) contains at least one organic silicon compound (a1) which is selected from the group consisting of
  • organic silicon compounds of the formula (I) are commercially available.
  • (3-aminopropyl)trimethoxysilane is commercially available from Sigma-Aldrich.
  • (3-Aminopropyl)triethoxysilane is also commercially available from Sigma-Aldrich.
  • the agent contains at least one organic silicon compound (a1) of the formula (II)
  • organosilicon compounds of the formula (II) carry the silicon-containing groups (R50) c (R6)dSi- and -Si(R6')d'(OR5')c at both ends
  • an organic silicon compound of the formula (II) contains at least one group from the group consisting of -(A)- and - [NR 7 -(A')j- and -[0-(A”)j- and -[ NR 8 -(A''')]-
  • the radicals R5, R5', R5'' independently stand for a hydrogen atom or for a Ci-C6- alkyl group.
  • the radicals R6, R6' and R6" independently stand for a Ci-C6-alkyl group.
  • c is an integer of 1 to 3
  • d is an integer of 3 - c. If c is the number 3, then d is equal to 0. If c is the number 2, then d is equal to 1. If c is 1, then d is 2.
  • c' represents an integer from 1 to 3, and d' represents the integer 3 - c'. If c' represents the number 3, then d' equals 0. If c' represents the number 2, then d' equals 1 . If c' is the number 1, then d' is 2.
  • a method is characterized in that the agent (a) contains at least one organic silicon compound (a1) of the formula (II),
  • R5 and R5' independently represent a methyl group or an ethyl group
  • the radicals e, f, g and h can independently represent the number 0 or 1, where at least one radical from e, f, g and h is different from zero.
  • the abbreviations e, f, g and h therefore define which of the groups -(A) e - and -[NR7-(A')] f and -[0-(A”)] g - and -[NRs - (A''')] h -are located in the central part of the organosilicon compound of formula (II).
  • e and f both represent the number 1.
  • g and h both represent the number 0.
  • the radicals A, A', A", A"' and A”" independently represent a linear or branched, divalent C 1 -C 20 -alkylene group.
  • the radicals A, A′, A′′, A′′′′ and A′′′′ are preferably, independently of one another, a linear, divalent C 1 -C 20 -alkylene group.
  • the radicals A, A′, A′′, A′′′′ and A′′′′ are more preferably, independently of one another, a linear divalent Ci-C6-alkylene group.
  • the radicals A, A′, A′′, A′′′′ and A′′′′ independently stand for a methylene group (-CH2-), an ethylene group (-CH2-CH2-), a propylene group (-CH2-CH2-CH2 -) or a butylene group (-CH2-CH2-CH2-).
  • the radicals A, A′, A′′, A′′′′ and A′′′′ are very particularly preferably a propylene group (-CH2-CH2-CH2-).
  • the divalent C 1 -C 20 -alkylene group can alternatively also be referred to as a divalent or divalent C 1 -C 20 -alkylene group, by which is meant that each moiety A, A', A", A"' and A"" can form two bonds.
  • the linear propylene group (-CH2-CH2-CH2-) can alternatively also be referred to as propane-1,3-diyl group.
  • the organic silicon compound of formula (II) contains a structural moiety -[NR7-(A')]-.
  • the organic silicon compound of formula (II) contains a structural moiety -[NR8-(A''')]-.
  • radicals R7und Rs independently represent a hydrogen atom, a C1-C6-alkyl group, a hydroxy-Ci-C6-alkyl group, a C2-C6-alkenyl group, an amino-Ci-C6-alkyl group or a group of the formula (iii)
  • the radicals R7 and R8 are very particularly preferably, independently of one another, a hydrogen atom, a methyl group, a 2-hydroxyethyl group, a 2-alkenyl group, a 2-aminoethyl group or a group of the formula (III).
  • the organic silicon compound contains the [NR7-(A')] moiety but not the -[NR8-(A''')] moiety the radical R7 for a group of the formula (III), then the agent (a) contains an organic silicon compound with 3 reactive silane groups.
  • a method is characterized in that the agent (a) contains at least one organic silicon compound (a1) of the formula (II),
  • - A and A' independently represent a linear, bivalent Ci-C6-alkylene group
  • a method is characterized in that the agent (a) contains at least one organic silicon compound of the formula (II), where
  • - A and A' independently represent a methylene group (-CH2-), an ethylene group (-CH2-CH2-) or a propylene group (-CH2-CH2-CH2), and
  • R7 represents a hydrogen atom, a methyl group, a 2-hydroxyethyl group, a 2-alkenyl group, a 2-aminoethyl group or a group of formula (III).
  • Organic silicon compounds of the formula (II) which are highly suitable for achieving the object of the invention are -3-(trimethoxysilyl)-N-[3-(trimethoxysilyl)propyl]-1-propanamine
  • organic silicon compounds of the formula (II) are commercially available.
  • bis(trimethoxysilylpropyl)amine with CAS number 82985-35-1 can be purchased from Sigma-Aldrich.
  • bis[3-(triethoxysilyl)propyl]amine with CAS number 13497-18-2 is commercially available from Sigma-Aldrich.
  • N-methyl-3-(trimethoxysilyl)-N-[3-(trimethoxysilyl)propyl]-1-propanamine is referred to as bis(3-trimethoxysilylpropyl)-N-methylamine and is commercially available from Sigma-Aldrich or Fluorochem .
  • 3-(triethoxysilyl)-N,N-bis[3-(triethoxysilyl)propyl]-1-propanamine with CAS number 18784-74-2 can be purchased from Fluorochem or Sigma-Aldrich.
  • a method is characterized in that the agent (a) contains at least one organic silicon compound (a1) which is selected from the group consisting of
  • the agent (a) used in the method on the keratinic material contains at least one organic silicon compound of the formula (IV).
  • the compounds of formula (IV) are organosilicon compounds selected from silanes having one, two or three silicon atoms, where the organosilicon compound comprises one or more hydroxyl groups and/or hydrolyzable groups per molecule.
  • organic silicon compound(s) of the formula (IV) can also be referred to as silanes of the alkyl-alkoxy-silanes or alkyl-hydroxy-silanes type,
  • Rg stands for a Ci-Ci8-alkyl group
  • - Rio represents a hydrogen atom or a Ci-C6-alkyl group
  • - R11 stands for a Ci-C6-alkyl group
  • - k is an integer from 1 to 3
  • - m is the integer 3 - k.
  • the method is characterized in that the agent (a) contains at least one organic silicon compound (a1) of the formula (IV).
  • Rg stands for a Ci-Ci8-alkyl group
  • R11 is a Ci-C6-alkyl group, k is an integer from 1 to 3, and m is the integer 3-k.
  • agent (a) contains at least one further organic silicon compound of formula (IV) in addition to the organic silicon compound or compounds of formula (I).
  • Rg stands for a Ci-Ci8-alkyl group
  • - Rio represents a hydrogen atom or a Ci-C6-alkyl group
  • - k is an integer from 1 to 3
  • - m is the integer 3 - k.
  • agent (a) contains at least one further organic silicon compound of formula (IV) in addition to the organic silicon compound or compounds of formula (II).
  • Rg stands for a Ci-Ci8-alkyl group
  • - Rio represents a hydrogen atom or a Ci-C6-alkyl group
  • - k is an integer from 1 to 3
  • agent (a) contains at least one further organic silicon compound of formula (IV) in addition to the organic silicon compound or compounds of formula (I) and/or (II).
  • Rg stands for a Ci-Ci8-alkyl group
  • - Rio represents a hydrogen atom or a Ci-C6-alkyl group
  • - k is an integer from 1 to 3
  • - m is the integer 3 - k.
  • the radical Rg stands for a C1-C18 alkyl group.
  • This Ci-Ci8-alkyl group is saturated and can be linear or branched.
  • Rg preferably stands for a linear Ci-Ci8-alkyl group.
  • Rg preferably represents a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-octyl group, an n-dodecyl group or an n-octadecyl group.
  • Rg is particularly preferably a methyl group, an ethyl group, an n-hexyl group or an n-octyl group.
  • the radical R10 is a hydrogen atom or a C1-C6-alkyl group.
  • R10 particularly preferably represents a methyl group or an ethyl group.
  • the radical Rn stands for a C1-C6-alkyl group.
  • Rn particularly preferably represents a methyl group or an ethyl group.
  • k is an integer of 1 to 3
  • m is an integer of 3 - k. If k is the number 3, then m is equal to 0. If k is the number 2, then m is equal to 1. If k is the number 1, then m is equal to 2.
  • Organic silicon compounds of the formula (IV) are particularly suitable for achieving the object of the invention
  • a method is characterized in that the agent (a) contains at least one organic silicon compound (a1) of the formula (IV), which is selected from the group consisting of
  • a method is characterized in that agent (a)—based on the total weight of agent (a)—prefers one or more organic silicon compounds (a1) in a total amount of 0.1 to 20% by weight 1 to 15% by weight and more preferably 2 to 8% by weight.
  • Agent (a) particularly preferably contains one or more organic silicon compounds of the formula (I) and/or (II) in a total amount of from 0.1 to 10% by weight, based on the total weight of agent (a). 0.5 to 5% by weight and more preferably 0.5 to 3% by weight.
  • a method is characterized in that the agent (a) - based on the total weight of the agent (a) - one or more organic silicon compounds of the formula (I) and / or (II) in a total amount of 0.1 to 10% by weight, preferably 0.5 to 5% by weight and particularly preferably 0.5 to 3% by weight.
  • Agent (a) particularly preferably contains - based on the total weight of agent (a) - one or more organic silicon compounds of the formula (IV) in a total amount of 0.1 to 20% by weight, preferably 2 to 15% by weight. % and more preferably 4 to 9% by weight.
  • a method is characterized in that the agent (a) - based on the total weight of the agent (a) - one or more organic silicon compounds of the formula (IV) in a total amount of 0.1 to 20% by weight , preferably 2 to 15% by weight and particularly preferably 3.2 to 10% by weight.
  • a method is characterized in that agent (a) contains at least two organic silicon compounds which are structurally different from one another.
  • a method is characterized in that an agent (a) which contains at least one organic silicon compound of the formula (I) and at least one organic silicon compound of the formula (IV) is applied to the keratinic material.
  • a method is characterized in that an agent (a) containing at least one organic silicon compound of the formula (I) selected from the group consisting of (3-aminopropyl)triethoxysilane and (3-aminopropyl)trimethoxysilane, and additionally contains at least one organic silicon compound of formula (IV) selected from the group consisting of methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, hexyltrimethoxysilane and hexyltriethoxysilane.
  • a method is characterized in that the agent (a) - based on the total weight of the agent (a) - contains:
  • At least one first organic silicon compound (a1) selected from the group consisting of (3-aminopropyl)trimethoxysilane, (3-aminopropyl)triethoxysilane, (2-aminoethyl)trimethoxysilane, (2-aminoethyl )triethoxysilane, (3-dimethylaminopropyl)trimethoxysilane, (3-dimethylaminopropyl)triethoxysilane, (2-dimethylaminoethyl)trimethoxysilane and (2-dimethylaminoethyl)triethoxysilane, and
  • a1 selected from the group consisting of methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, octadecyltrimethoxysilane and octadecyltriethoxysilane.
  • a1 selected from the group consisting of methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltri
  • agent (a) contains one or more organic silicon compounds from a first group in a total amount of from 0.5 to 5% by weight.
  • the organic silicon compounds of this first group are selected from the group consisting of (3-aminopropyl)trimethoxysilane, (3-aminopropyl)triethoxysilane, (2-aminoethyl)trimethoxysilane, (2-aminoethyl)triethoxysilane, (3-dimethylaminopropyl)trimethoxysilane, (3- dimethylaminopropyl)triethoxysilane (2-dimethylaminoethyl)trimethoxysilane and/or (2-dimethylaminoethyl)triethoxysilane.
  • agent (a) contains one or more organic silicon compounds from a second group in a total amount of from 3.2 to 10% by weight.
  • the organic silicon compounds of this second group are selected from the group consisting of methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, octadecyltrimethoxysilane and octadecyltriethoxysilane.
  • agent (a) can contain both the organosilicon compounds having at least one hydrolyzable group and their hydrolysis and/or condensation products.
  • agent (a) can contain both the organosilicon compounds having at least one hydroxyl group and their condensation products.
  • a condensation product is a product that is formed by reaction of at least two organic silicon compounds each having at least one hydroxyl group or hydrolyzable group per molecule with elimination of water and/or elimination of an alkanol.
  • the condensation products can be, for example, dimers, but also trimers or oligomers, the condensation products being in equilibrium with the monomers. Depending on the amount of water used or consumed in the hydrolysis, the equilibrium shifts from monomeric organic silicon compounds to the condensation product.
  • agent (a) is packaged in the form of an aqueous agent which has an alkaline pH.
  • the method is characterized in that the agent (a) has a pH in the range from 8.5 to 12, more preferably in the range from 9 to 11.5 and particularly preferably in the range from 9.5 to 11 having.
  • the method for treating keratinous material includes not only the use of agents (v) and (a) but also the use of agent (b).
  • the agent (b) is characterized in that it contains at least one sealing reagent (b1).
  • agent (b) on the keratinic material treated with agent (a) results in the colorations achieved in the process being made more durable.
  • agent (b) can improve the fastness to washing and the fastness to rubbing of the dyeings obtained in the process.
  • the sealing agent (b1) comprises a compound selected from the group consisting of film-forming polymers, alkalizing agents, acidifying agents and mixtures thereof.
  • the sealing agent comprises a film-forming polymer.
  • Polymers are understood to be macromolecules with a molecular weight of at least 1000 g/mol, preferably at least 2500 g/mol, particularly preferably at least 5000 g/mol, which consist of identical, repeating organic units.
  • the polymers of the present invention can be synthetically produced polymers produced by the polymerization of one type of monomer or by the polymerization of different types of monomers which are structurally different from one another. If the polymer is made by polymerizing one type of monomer, it is called a homo-polymer. If structurally different types of monomers are used in the polymerization, the resulting polymer is referred to as a copolymer.
  • the maximum molecular weight of the polymer depends on the degree of polymerization (number of polymerized monomers) and the batch size and is also determined by the polymerization method. For the purposes of the present invention, it is preferred if the maximum molecular weight of the film-forming polymer as sealing agent (b1) is no more than 10 7 g/mol, preferably no more than 10 6 g/mol and particularly preferably no more than 10 5 g/mol amounts to.
  • a film-forming polymer is a polymer which is able to form a film on a substrate, for example on a keratin material or a keratin fiber.
  • the formation of a film can be demonstrated, for example, by examining the keratinic material treated with the polymer under a microscope.
  • the film-forming polymers (b1) in the agent (b) can be hydrophilic or hydrophobic. In a first embodiment, it may be preferable to use at least one hydrophobic, film-forming polymer as sealing agent (b1) on average (b).
  • a hydrophobic polymer is understood to mean a polymer that has a solubility in water at 25° C. (760 mmHg) of less than 1% by weight.
  • the water solubility of the film-forming hydrophobic polymer can be determined, for example, in the following way. 1 g of the polymer is placed in a beaker. Water is made up to 100 g. A stir bar is added and the mixture is warmed to 25°C on a magnetic stirrer with stirring. Stir for 60 minutes. The aqueous mixture is then assessed visually. If the polymer-water mixture cannot be assessed visually due to a high level of turbidity in the mixture, the mixture is filtered. If some undissolved polymer remains on the filter paper, the solubility of the polymer is less than 1% by weight.
  • Particularly suitable film-forming, hydrophobic polymers are, for example, polymers from the group of copolymers of acrylic acid, copolymers of methacrylic acid, homopolymers or copolymers of acrylic acid esters, homopolymers or copolymers of methacrylic acid esters, homopolymers or copolymers of acrylic acid amides, homopolymers or methacrylic acid amide copolymers, vinylpyrrolidone copolymers, vinyl alcohol copolymers, vinyl acetate copolymers, ethylene homopolymers or copolymers, propylene homopolymers or copolymers, styrene homopolymers or copolymers, polyurethanes, polyesters and/or or the polyamides.
  • an agent (b) is characterized in that it contains at least one film-forming, hydrophobic polymer as sealing agent (b1), which is selected from the group of copolymers of acrylic acid, copolymers of methacrylic acid, homopolymers or copolymers of acrylic acid - Esters, homopolymers or copolymers of methacrylic esters, homopolymers or copolymers of acrylic acid amides, homopolymers or copolymers of methacrylic acid amides, copolymers of vinylpyrrolidone, copolymers of vinyl alcohol, copolymers of vinyl acetate, homopolymers or copolymers of ethylene, of homopolymers or Copolymers of propylene, homopolymers or copolymers of styrene, polyurethanes, polyesters and/or polyamides.
  • sealing agent (b1) is selected from the group of copolymers of acrylic acid, copolymers of methacrylic acid, homopolymers or cop
  • the film-forming hydrophobic polymers selected from the group of synthetic polymers, polymers obtainable by free-radical polymerization or natural polymers have proven to be particularly suitable for solving the problem of the invention.
  • film-forming hydrophobic polymers can be selected from the homopolymers or copolymers of olefins, such as cycloolefins, butadiene, isoprene or styrene, vinyl ethers, vinyl amides, the esters or amides of (meth)acrylic acid having at least one Ci-C2o-alkyl group, an aryl group or a C2-C10 hydroxyalkyl group.
  • olefins such as cycloolefins, butadiene, isoprene or styrene
  • vinyl ethers vinyl amides
  • esters or amides of (meth)acrylic acid having at least one Ci-C2o-alkyl group, an aryl group or a C2-C10 hydroxyalkyl group.
  • Further film-forming hydrophobic polymers can be selected from the homo- or copolymers of isooctyl (meth)acrylate, isononyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, isopentyl (meth)acrylate, n-butyl( meth)acrylate, isobutyl (meth)acrylate, ethyl (meth)acrylate, methyl (meth)acrylate, tert-butyl (meth)acrylate, stearyl (meth)acrylate, hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate , 3-hydroxypropyl (meth)acrylate and/or mixtures thereof.
  • film-forming hydrophobic polymers can be selected from the homo- or copolymers of (meth)acrylamide, N-alkyl (meth)acrylamides, in particular those with C2-C18 alkyl groups, such as N-ethylacrylamide, N-tert-butylacrylamide, le N- Octylacrylamide, N-Di(C1-C4)alkyl(meth)acrylamide.
  • copolymers of acrylic acid, methacrylic acid or their C 1 -C 6 alkyl esters such as are sold under the INCI declaration Acrylates Copolymers.
  • a suitable commercial product is, for example, Aculyn® 33 from Rohm & Haas.
  • copolymers of acrylic acid, methacrylic acid or their C 1 -C 6 alkyl esters and the esters of an ethylenically unsaturated acid and an alkoxylated fatty alcohol preference is also given to copolymers of acrylic acid, methacrylic acid or their C 1 -C 6 alkyl esters and the esters of an ethylenically unsaturated acid and an alkoxylated fatty alcohol.
  • Suitable ethylenically unsaturated acids are, in particular, acrylic acid, methacrylic acid and itaconic acid;
  • suitable alkoxylated fatty alcohols are, in particular, steareth-20 or ceteth-20.
  • Very particularly preferred polymers on the market are, for example, Aculyn® 22 (Acrylates/Steareth-20 Methacrylate Copolymer), Aculyn® 28 (Acrylates/Beheneth-25 Methacrylate Copolymer), Structure 2001® (Acrylates/Steareth-20 Itaconate Copolymer) , Structure 3001® (Acrylates/Ceteth-20 Itaconate Copolymer), Structure Plus® (Acrylates/Aminoacrylates C10-30 Alkyl PEG-20 Itaconate Copolymer), Carbopol® 1342, 1382, Ultrez 20, Ultrez 21 (Acrylates/C10-30 Alkyl Acrylate Crosspolymer), Synthalen W2000® (Acrylates/Palmeth-25 Acrylate Copolymer) or the Soltex OPT sold by Rohm and Haas (Acrylates/C 12-22 alkyl methacrylate copolymer).
  • Suitable polymers based on vinyl monomers are the homo- and copolymers of N-vinylpyrrolidone, vinylcaprolactam, vinyl-(C1-C6-)alkylpyrrole, vinyloxazole, vinylthiazole, vinylpyrimidine or vinylimidazole.
  • copolymers octylacrylamide/acrylic lates/butylaminoethyl methacrylate copolymers such as those sold commercially by NATIONAL STARCH under the trade names AMPHOMER® or LOVOCRYL® 47, are also particularly suitable, as are the copolymers of acrylates/octylacrylamide, which are marketed under the trade names DERMACRYL ® LT and DERMACRYL® 79 are sold by NATIONAL STARCH.
  • Suitable polymers based on olefins are the homo- and copolymers of ethylene, propylene, butene, isoprene and butadiene.
  • the film-forming hydrophobic polymers used can be block copolymers which comprise at least one block of styrene or styrene derivatives.
  • These block copolymers can be copolymers which, in addition to a styrene block, contain one or more other blocks, such as styrene/ethylene, styrene/ethylene/butylene, styrene/butylene, styrene/isoprene, styrene/butadiene.
  • Corresponding polymers are sold commercially by BASF under the trade name “Luvitol HSB”.
  • agent (b) contained at least one film-forming polymer as sealing agent (b1), which was selected from the group consisting of homopolymers and copolymers of acrylic acid, the homopolymers and copolymers of methacrylic acid, homopolymers and copolymers of acrylic acid esters, homopolymers and copolymers of methacrylic acid esters, homopolymers and copolymers of acrylic acid amides, homopolymers and copolymers of methacrylic acid amides, homopolymers and copolymers of vinylpyrrolidone, homopolymers and copolymers vinyl alcohol, vinyl acetate homopolymers and copolymers, ethylene homopolymers and copolymers, propylene homopolymers and copolymers, styrene homopolymers and copolymers, polyurethanes, polyesters and polyamides.
  • sealing agent (b1) was selected from the group consisting of homopolymers and copolymers of acrylic acid, the homo
  • a method is characterized in that the agent (b) contains at least one film-forming polymer as sealing agent (b1), which is selected from the group consisting of homopolymers and copolymers of acrylic acid, homopolymers and copolymers of methacrylic acid, homopolymers and Copolymers of acrylic acid esters, homopolymers and copolymers of methacrylic acid esters, homopolymers and copolymers of acrylic acid amides, homopolymers and copolymers of methacrylic acid amides, homopolymers and copolymers of vinylpyrrolidone, homopolymers and copolymers of vinyl alcohol, homopolymers and copolymers of Vinyl acetate, ethylene homopolymers and copolymers, propylene homopolymers and copolymers, styrene homopolymers and copolymers, polyurethanes, polyesters and polyamides.
  • sealing agent (b1) is selected from the group consisting of homopolymers and
  • sealing agent (b1) on average (b).
  • a hydrophilic polymer is understood as meaning a polymer that has a solubility in water at 25° C. (760 mmHg) of more than 1% by weight, preferably more than 2% by weight.
  • the water solubility of the film-forming hydrophilic polymer can be determined, for example, in the following way. 1 g of the polymer is placed in a beaker. It is made up to 100 g with water. A stir bar is added and the mixture is warmed to 25°C on a magnetic stirrer with stirring. Stir for 60 minutes. The aqueous mixture is then assessed visually. A fully dissolved polymer appears macroscopically homogeneous. If the polymer-water mixture cannot be assessed visually due to a high level of turbidity in the mixture, the mixture is filtered. If no undissolved polymer remains on the filter paper, then the solubility of the polymer is greater than 1% by weight.
  • Nonionic, anionic and cationic polymers can be used as film-forming, hydrophilic polymers.
  • Suitable film-forming, hydrophilic polymers can be, for example, from the group of polyvinylpyrrolidone (co)polymers, polyvinyl alcohol (co)polymers, vinyl acetate (co)polymers, carboxyvinyl (co)polymers, acrylic acid (co)polymers, methacrylic acid (co)polymers, natural gums, polysaccharides and/or acrylamide (co)polymers.
  • an agent (b) is characterized in that it contains at least one film-forming, hydrophilic polymer as sealing agent (b1), which is selected from the group consisting of polyvinylpyrrolidone (PVP) and the copolymers of polyvinylpyrrolidone.
  • the agent contains polyvinylpyrrolidone (PVP) as the film-forming, hydrophilic polymer. Surprisingly, the wash fastness of the dyeings that could be obtained with PVP-containing agents (b) was very good.
  • PVP polyvinylpyrrolidone
  • polyvinylpyrrolidones are available, for example, under the name Luviskol® K from BASF SE, in particular Luviskol® K 90 or Luviskol® K 85 from BASF SE.
  • PVP K30 which is marketed by Ashland (ISP, POI Chemical), can also be used as a further polyvinylpyrrolidone (PVP) that is explicitly very particularly well suited.
  • PVP K 30 is a polyvinylpyrrolidone that is very soluble in cold water and has the CAS number 9003-39-8. The molecular weight of PVP K 30 is around 40000 g/mol.
  • polyvinylpyrrolidones are the substances known under the trade names LUVITEC K 17, LUVITEC K 30, LUVITEC K 60, LUVITEC K 80, LUVITEC K 85, LUVITEC K 90 and LUVITEC K 115 and are available from BASF.
  • film-forming hydrophilic polymers from the group of polyvinylpyrrolidone copolymers as sealing agent (b1) has also led to particularly good and washfast color results.
  • vinylpyrrolidone-vinyl ester copolymers such as those sold under the trade name Luviskol® (BASF)
  • Luviskol® VA 64 and Luviskol® VA 73, each vinyl pyrrolidone/vinyl acetate copolymers are particularly preferred nonionic polymers.
  • styrene/VP copolymer and/or a vinylpyrrolidone-vinyl acetate copolymer and/or a VP/DMAPA acrylate copolymer and/or a VP/vinyl caprolactam/DMAPA acrylate copolymer are very particularly preferably used in the cosmetic compositions .
  • Vinylpyrrolidone-vinyl acetate copolymers are sold by BASF SE under the name Luviskol® VA.
  • a VP/vinyl caprolactam/DMAPA acrylates copolymer is sold by Ashland Inc. under the trade name Aquaflex® SF-40.
  • a VP/DMAPA Acrylates Copolymer is sold, for example, under the name Styleze CC-10 by Ashland and is a highly preferred vinylpyrrolidone-containing copolymer.
  • copolymers of polyvinylpyrrolidone are the copolymers obtained by reacting N-vinylpyrrolidone with at least one other monomer from the group consisting of V-vinylformamide, vinyl acetate, ethylene, propylene, acrylamide, vinylcaprolactam, vinylcaprolactone and/or vinyl alcohol .
  • an agent (b) is characterized in that it contains at least one film-forming, hydrophilic polymer as sealing agent (b1), which is selected from the group consisting of polyvinylpyrrolidone (PVP), vinylpyrrolidone/vinyl acetate copolymers, vinylpyrrolidone/ styrene copolymers, vinyl pyrrolidone/ethylene copolymers, vinyl pyrrolidone/propylene copolymers, vinyl pyrrolidone/vinyl caprolactam copolymers, vinyl pyrrolidone/vinyl formamide copolymers and/or vinyl pyrrolidone/vinyl alcohol copolymers.
  • PVP polyvinylpyrrolidone
  • vinylpyrrolidone/vinyl acetate copolymers vinylpyrrolidone/styrene copolymers
  • vinyl pyrrolidone/ethylene copolymers vinyl pyrrolidone/propylene copolymers
  • Another suitable copolymer of vinylpyrrolidone is the polymer known under the INCI name maltodextrin/VP copolymer.
  • the agent (b) can contain at least one nonionic, film-forming, hydrophilic polymer as the sealing agent (b1).
  • a nonionic polymer is a polymer which, in a protic solvent--such as water, for example--under standard conditions does not carry any structural units with permanently cationic or anionic groups which have to be compensated for by counterions while maintaining electroneutrality.
  • Cationic groups include, for example, quaternized ammonium groups, but not protonated amines.
  • Anionic groups include, for example, carboxyl and sulfonic acid groups.
  • copolymers of N-vinylpyrrolidone and vinyl acetate are used, it is preferred if the molar ratio of the structural units from the monomer N-vinylpyrrolidone to the structural units of the polymer from the monomer vinyl acetate is in the range from 20:80 to 80:20, in particular from 30 to 70 to 60 to 40.
  • Suitable copolymers of vinylpyrrolidone and vinyl acetate are available, for example, under the trade names Luviskol® VA 37, Luviskol® VA 55, Luviskol® VA 64 and Luviskol® VA 73 from BASF SE.
  • Another particularly preferred polymer is selected from the polymers with the INCI designation VP/methacrylamide/vinyl imidazole copolymer, which are available, for example, under the trade name Luviset Clear from BASF SE.
  • Another very particularly preferred nonionic, film-forming, hydrophilic polymer is a copolymer of N-vinylpyrrolidone and N,N-dimethylaminopropylmethacrylamide, which, for example, has the INCI name VP/DMAPA Acrylates Copolymer z. B. is sold under the trade name Styleze® CC 10 by the company ISP.
  • a cationic polymer is the copolymer of N-vinylpyrrolidone, N-vinylcaprolactam, N-(3-dimethylaminopropyl)methacrylamide and 3-(methacryloylamino)propyl-lauryldimethylammonium chloride (INCI name: Polyquaternium-69), which is sold, for example, under the trade name AquaStyle ® 300 (28-32% by weight of active substance in an ethanol-water mixture, molecular weight 350,000) is sold by ISP.
  • AquaStyle ® 300 28-32% by weight of active substance in an ethanol-water mixture, molecular weight 350,000
  • Vinylpyrrolidone-vinylimidazolium methochloride copolymers such as those offered under the names Luviquat ® FC 370, FC 550 and the INCI name Polyquaternium-16 as well as FC 905 and HM 552,
  • Vinylpyrrolidone-vinylcaprolactam-acrylate terpolymers as are commercially available with acrylic acid esters and acrylic acid amides as the third monomer building block, for example under the name Aquaflex® SF 40.
  • Polyquaternium-11 is the reaction product of diethyl sulfate with a copolymer of vinylpyrrolidone and dimethylaminoethyl methacrylate.
  • Suitable commercial products are, for example, under the names Dehyquart® CC 11 and Luviquat® PQ 11 PN from BASF SE or Gafquat 440, Gafquat 734, Gafquat 755 or Gafquat 755N from Ashland Inc.
  • Polyquaternium-46 is the reaction product of vinylcaprolactam and vinylpyrrolidone with methylvinylimidazolium methosulfate and is available, for example, under the name Luviquat® Hold from BASF SE. Polyquaternium-46 is preferably used in an amount of 1 to 5% by weight, based on the total weight of the cosmetic composition. It is most preferred that Polyquaternium-46 is used in combination with a cationic guar compound. In fact, it is highly preferred that Polyquaternium-46 is used in combination with a cationic guar compound and Polyquaternium-11.
  • Suitable anionic, film-forming, hydrophilic polymers are acrylic acid polymers, which can be present in uncrosslinked or crosslinked form.
  • Corresponding products are sold commercially, for example, under the trade names Carbopol 980, 981, 954, 2984 and 5984 by the company Lubrizol or else under the names Synthalen M and Synthalen K by the company 3V Sigma (The Sun Chemicals, Inter Harz).
  • Suitable film-forming, hydrophilic polymers from the group of natural gums are xanthan gum, gellan gum and carob gum.
  • Suitable film-forming, hydrophilic polymers from the group of polysaccharides are hydroxyethyl cellulose, hydroxypropyl cellulose, ethyl cellulose and carboxymethyl cellulose.
  • suitable film-forming, hydrophilic polymers from the group of acrylamides are polymers which are prepared from monomers of (meth)acrylamido-C1-C4-alkylsulfonic acid or the salts thereof.
  • Corresponding polymers can be selected from the polymers of polyacrylamidomethanesulfonic acid, polyacrylamidoethanesulfonic acid, polyacrylamidopropanesulfonic acid, poly2-acrylamido-2-methylpropanesulfonic acid, poly-2-methylacrylamido-2-methylpropanesulfonic acid and/or poly-2-methylacrylamido-n-butanesulfonic acid.
  • Preferred polymers of poly(meth)arylamido-C1-C4-alkylsulfonic acids are crosslinked and at least 90% neutralized. These polymers can be crosslinked or non-crosslinked.
  • Crosslinked and completely or partially neutralized polymers of the poly-2-acrylamido-2-methylpropanesulfonic acid type are known by the INCI names "ammonium polyacrylamido-2-methylpropanesulfonate” or "ammonium polyacryldimethyltauramide".
  • Another preferred polymer of this type is the crosslinked poly-2-acrylamido-2methyl-propanesulfonic acid polymer sold by Clariant under the trade name Hostacerin AMPS, which is partially neutralized with ammonia.
  • agent (b) contains at least one anionic, film-forming polymer as sealing agent (b1).
  • agent (b) contains at least one film-forming polymer as sealing agent (b1) which comprises at least one structural unit of the formula (PI) and at least one structural unit of the formula (P-II).
  • M is a hydrogen atom or ammonium (NH4), sodium, potassium, 1 magnesium or 14 calcium.
  • agent (b) contains at least one film-forming polymer as sealing agent (b1) which comprises at least one structural unit of formula (PI) and at least one structural unit of formula (PI I).
  • M is a hydrogen atom or ammonium (NH4), sodium, potassium, 1 magnesium or 14 calcium.
  • NH4 ammonium
  • PI formula konvenously atom
  • M is a hydrogen atom
  • the structural unit of formula (PI) is based on an acrylic acid unit.
  • the structural unit of formula (P-I) is based on the sodium salt of acrylic acid.
  • the structural unit of formula (P-I) is based on the potassium salt of acrylic acid.
  • the film-forming polymer or polymers (b1) are preferably used in specific amounts in the agent (b).
  • the agent (b) - based on the total weight of the agent (b) - one or more film-forming polymers as sealing agent (b1) in a total amount of 0.1 to 18% by weight, preferably from 1 to 16% by weight, more preferably from 5 to 14.5% by weight and very particularly preferably from 8 to 12% by weight.
  • a method is characterized in that the agent (b) - based on the total weight of the agent (b) - one or more film-forming polymers as sealing agent (b1) in a total amount of 0.1 to 18% by weight , preferably from 1 to 16% by weight, more preferably from 5 to 14.5% by weight and very particularly preferably from 8 to 12% by weight.
  • agent (b) comprising a film-forming polymer as sealing agent (b1)
  • the optionally colored film initially produced by the use of agent (a) is to be sealed and/or fixed.
  • the film-forming polymer (b1) is deposited in the form of a further film on the possibly colored film produced in the first layer.
  • agent (b) also contains at least one coloring compound
  • the color impression of a colored film produced in the first step is enhanced or modified depending on the coloring compound used, or the treated keratin material is colored by forming a second colored film on a first uncolored film receive.
  • the sealing reagent (b1) contains an alkalizing agent.
  • the alkalizing agent is particularly preferably selected from the group consisting of ammonia, C2-C6 alkanolamines, basic amino acids, alkali metal hydroxides and alkaline earth metal hydroxides.
  • agent (b) contains at least one alkalizing agent as sealing agent (b1), which is selected from the group consisting of ammonia, C2-C6 alkanolamines, basic amino acids, alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal silicates, alkali metal metasilicates, alkaline earth metal silicates, alkaline earth metal metasilicates, alkali metal carbonates and alkaline earth metal carbonates.
  • alkalizing agent as sealing agent (b1) which is selected from the group consisting of ammonia, C2-C6 alkanolamines, basic amino acids, alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal silicates, alkali metal metasilicates, alkaline earth metal silicates, alkaline earth metal metasilicates, alkali metal carbonates and alkaline earth metal carbonates.
  • composition (b) contains ammonia as sealing agent (b1).
  • composition (b) contained at least one C2-C6-alkanolamine as the sealing agent (b1).
  • the alkanolamines which can be used in composition (b) can be selected, for example, from the group of primary amines with a C2-C6-alkyl skeleton which carries at least one hydroxyl group.
  • Preferred alkanolamines are selected from the group formed by 2-aminoethan-1-ol (monoethanolamine), 3-aminopropan-1-ol, 4-aminobutan-1-ol, 5-aminopentan-1-ol, 1-aminopropane -2-ol, 1-aminobutan-2-ol, 1-aminopentan-2-ol, 1-aminopentan-3-ol, 1-aminopentan-4-ol, 3-amino-2-methylpropan-1-ol , 1-amino-2-methylpropan-2-ol, 3-aminopropane-1,2-diol, 2-amino-2-methylpropan-1,3-diol.
  • a method according to the invention is characterized in that the composition (b) contains at least one alkalizing agent from the group of alkanolamines as sealing agent (b1), which is preferably selected from the group of 2-aminoethan-1-ol (monoethanolamine) , 3-aminopropan-1-ol, 4-aminobutan-1-ol, 5-aminopentan-1-ol, 1-aminopropan-2-ol, 1-aminobutan-2-ol, 1-aminopentan-2-ol, 1 - Aminopentan-3-ol, 1-aminopentan-4-ol, 3-amino-2-methylpropan-1-ol, 1-amino-2-methylpropan-2-ol, 3-aminopropan-1,2-diol and 2- Amino-2-methylpropane-1,3-diol.
  • the alkalizing agent from the group of alkanolamines as sealing agent (b1) which is preferably selected from the group of 2-a
  • composition (b) contained at least one basic amino acid as sealing reagent (b1).
  • amino acid in the sense of the invention is an organic compound which contains at least one protonatable amino group and at least one -COOH- or one -SO3H- group in its structure.
  • Preferred amino acids are amino carboxylic acids, in particular ⁇ -(alpha)-amino carboxylic acids and w-amino carboxylic acids, with ⁇ -amino carboxylic acids being particularly preferred.
  • basic amino acids are to be understood as meaning those amino acids which have an isoelectric point pI greater than 7.0.
  • Basic a-amino carboxylic acids contain at least one asymmetric carbon atom.
  • both possible enantiomers can be used equally as a specific compound or mixtures thereof, in particular as racemates.
  • the basic amino acids are preferably selected from the group formed from arginine, lysine, ornithine and histidine, particularly preferably from arginine and lysine.
  • the method is therefore characterized in that the sealing reagent (b1) is an alkalizing agent comprising a basic amino acid from the group arginine, lysine, ornithine and/or histidine.
  • the method is characterized in that the agent (b) contains at least one alkalizing agent from the group of basic amino acids as sealing reagent (b1), which is preferably selected from the group of arginine, lysine, ornithine and histidine.
  • the agent (b) contains at least one alkalizing agent from the group of basic amino acids as sealing reagent (b1), which is preferably selected from the group of arginine, lysine, ornithine and histidine.
  • the agent (b) contains at least one alkali metal hydroxide as the sealing agent (b1).
  • Sodium hydroxide and potassium hydroxide, for example, can be mentioned as highly suitable alkali metal hydroxides.
  • composition (b) as a sealing agent (b1) an alkalizing agent comprising at least one contained alkaline earth metal hydroxide.
  • alkaline earth metal hydroxide Magnesium hydroxide, calcium hydroxide and barium hydroxide, for example, can be mentioned as highly suitable alkaline earth metal hydroxides.
  • agent (b) contained at least one alkali metal silicate and/or alkali metal metasilicate as sealing agent (b1).
  • suitable alkali metal silicates are sodium silicate and potassium silicate.
  • suitable alkali metal metasilicates are sodium metasilicate and potassium metasilicate.
  • agent (b) contained at least one alkali metal carbonate and/or alkaline earth metal carbonate as sealing agent (b1).
  • suitable alkali metal carbonates are sodium carbonate and potassium carbonate.
  • suitable alkaline earth metal carbonates are magnesium carbonate and calcium carbonate.
  • sealing reagent (b1) in the form of an alkalizing agent, ammonia, C2-C6 alkanolamines, basic amino acids and alkali metal hydroxides have proven to be particularly well suited.
  • agent (b) comprises at least one alkalizing agent selected from the group consisting of ammonia, C2-C6 alkanolamines, basic amino acids and alkali metal hydroxides as sealing agent (b1).
  • agent (b) contains at least one alkalizing agent selected from the group consisting of ammonia, 2-aminoethan-1-ol and 3-aminopropan-1 as sealing agent (b1).
  • the agent (b) contains the alkalizing agent as a sealing agent (b1) in a cosmetic carrier, preferably in an aqueous cosmetic carrier.
  • agent (b) - based on the total weight of agent (b) - contains 5.0 to 99.0% by weight, preferably 15.0 to 97.0% by weight. %, more preferably 25.0 to 97.0% by weight, even more preferably 35.0 to 97.0% by weight and most preferably 45.0 to 97.0% by weight of water.
  • the method is characterized in that the agent (b) - based on the total weight of the agent (b) - 5.0 to 99.0 wt .-%, preferably 15.0 to 97.0% by weight, more preferably 25.0 to 97.0% by weight, even more preferably 35.0 to 97.0% by weight and very particularly preferably 45.0 to 97.0% by weight. -% contains water.
  • the alkalizing agents contained in the agent (b) exert an influence on the pH of the agent (b). It was found here that certain alkaline pH values in particular have an advantageous effect on the dyeing performance that can be achieved in the process and the fastness properties of the dyeings.
  • the agent (b), comprising an alkalizing agent as a sealing agent (b1) has a pH of 7.0 to 12.0, preferably from 7.5 to 11.5, more preferably from 8 .0 to 11.0 and very particularly preferably from 8.5 to 9.5.
  • the pH can be measured using the usual methods known from the prior art, such as, for example, measuring the pH using glass electrodes using combination measuring chains or using pH indicator paper.
  • agent (b) contains an alkalizing agent as sealing agent (b1) and has a pH of 7.0 to 12.0, preferably 7.5 to 11.5 , more preferably from 8.0 to 11.0 and very particularly preferably from 8.5 to 9.5.
  • the pH values for the purposes of the present invention are pH values measured at a temperature of 22.degree.
  • the sealing reagent (b1) contains an acidifying agent.
  • the acidifying agent is selected from the group consisting of inorganic acids, organic acids, and mixtures thereof.
  • agent (b) contains at least one inorganic acid as sealing agent (b1).
  • Suitable inorganic acids are, for example, phosphoric acid, sulfuric acid and/or hydrochloric acid, sulfuric acid being particularly preferred.
  • the method is characterized in that the agent (b) contains at least one acidifying agent from the group of inorganic acids as the sealing agent (b1), which is preferably selected from the group consisting of phosphoric acid, sulfuric acid, hydrochloric acid and mixtures thereof.
  • the method is characterized in that the agent (b) contains sulfuric acid as the sealing agent (b1).
  • the agent (b) contains at least one organic acid as the sealing reagent (b1).
  • the organic acid is preferably selected from the group consisting of formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, pivalic acid, oxalic acid, malonic acid, succinic acid,
  • Glutaric acid Glutaric acid, glyceric acid, glyoxylic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, propiolic acid, crotonic acid, isocrotonic acid, elaidic acid, maleic acid, fumaric acid, muconic acid, citraconic acid, mesaconic acid, camphoric acid, benzoic acid, o,m,p-phthalic acid, naphthoic acid, toluoic acid, Hydratropic acid, atropic acid, cinnamic acid, isonicotinic acid, nicotinic acid, bicarbamic acid, 4,4'-dicyano-6,6'-binicotinic acid, 8-carbamoyloctanoic acid, 1,2,4-pentanetricarboxylic acid, 2-pyrrolecarboxylic acid, 1,2,4,6, 7-naphthalenepentaacetic acid
  • the method is characterized in that the agent (b) contains at least one acidifying agent from the group of organic acids as the sealing agent (b1), the organic acid preferably being selected from the group consisting of formic acid, acetic acid, propionic acid, Butyric Acid, Isobutyric Acid, Valeric Acid, Isovaleric Acid, Pivalic Acid, Oxalic Acid, Malonic Acid, Succinic Acid,
  • the agent (b) contains at least one acidifying agent from the group of organic acids as the sealing agent (b1), the organic acid preferably being selected from the group consisting of formic acid, acetic acid, propionic acid, Butyric Acid, Isobutyric Acid, Valeric Acid, Isovaleric Acid, Pivalic Acid, Oxalic Acid, Malonic Acid, Succinic Acid,
  • Glutaric acid Glutaric acid, glyceric acid, glyoxylic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, propiolic acid, crotonic acid, isocrotonic acid, elaidic acid, maleic acid, fumaric acid, muconic acid, citraconic acid, mesaconic acid, camphoric acid, benzoic acid, o,m,p-phthalic acid, naphthoic acid, toluoic acid, Hydratropic acid, atropic acid, cinnamic acid, isonicotinic acid, nicotinic acid, bicarbamic acid, 4,4'-dicyano-6,6'-binicotinic acid, 8-carbamoyloctanoic acid, 1,2,4-pentanetricarboxylic acid, 2-pyrrolecarboxylic acid, 1,2,4,6, 7-naphthalenepentaacetic acid
  • the method is characterized in that the agent (b) contains acetic acid as the sealing agent (b1).
  • acidifying agents include methanesulfonic acid and/or 1-hydroxyethane-1,1-diphosphonic acid.
  • sealing reagents (b1) in the form of an acidifying agent sulfuric acid and/or acetic acid have proven to be particularly well suited.
  • the method is characterized in that the agent (b) comprises at least one acidifying agent selected from the group consisting of sulfuric acid, acetic acid and mixtures thereof as the sealing agent (b1).
  • the agent (b) contains the acidifying agent as a sealing agent (b1) in a cosmetic carrier, preferably in an aqueous cosmetic carrier.
  • the acidifying agents contained in the composition (b) exert an influence on the pH of the composition (b). It was found here that acidic pH values also have an advantageous effect on the dyeing performance that can be achieved in the process and on the fastness properties of the dyeings.
  • the agent (b), comprising an acidifying agent as a sealing agent (b1) has a pH of 2.0 to 6.5, preferably from 3.0 to 6.0, more preferably from 4 .0 to 6.0 and most preferably from 4.5 to 5.5.
  • the pH can be measured using the usual methods known from the prior art, such as, for example, measuring the pH using glass electrodes using combination measuring chains or using pH indicator paper.
  • agent (b) contains an acidifying agent as sealing agent (b1) and has a pH of from 2.0 to 6.5, preferably from 3.0 to 6.0 , more preferably from 4.0 to 6.0 and most preferably from 4.5 to 5.5.
  • the pH values for the purposes of the present invention are pH values measured at a temperature of 22.degree.
  • agents (a) and (b) described above can also contain one or more optional ingredients. However, it is essential to the invention that at least one of agents (a) and (b) also contains at least one color-providing compound from the group of pigments and/or direct dyes. It can be preferred that the agent (a) contains at least one coloring compound selected from the group consisting of pigments and/or substantive dyes in addition to the at least one organic silicon compound from the group of silanes having one, two or three silicon atoms (a1). .
  • agent (a) and agent (b) each also contain at least one color-providing compound selected from the group consisting of pigments and/or direct dyes.
  • agent (a) and/or agent (b) also contains at least one coloring compound from the group of pigments.
  • pigments are understood to mean coloring compounds which have a solubility in water at 25° C. of less than 0.5 g/l, preferably less than 0.1 g/l, even more preferably less than 0. Possess 05 g/L.
  • the water solubility can be determined, for example, using the method described below: 0.5 g of the pigment is weighed out in a glass beaker. A stir bar is added. Then one liter of distilled water is added. This mixture is heated to 25°C with stirring on a magnetic stirrer for one hour. If undissolved components of the pigment are still visible in the mixture after this period, the solubility of the pigment is below 0.5 g/L. If the pigment-water mixture cannot be assessed visually due to the high intensity of the pigment, which may be present in finely dispersed form, the mixture is filtered.
  • the solubility of the pigment is below 0.5 g/L.
  • Suitable pigments can be of inorganic and/or organic origin.
  • agent (a) and/or agent (b) also contains at least one coloring compound from the group of inorganic and/or organic pigments.
  • Preferred pigments are selected from synthetic or natural inorganic pigments.
  • Inorganic pigments of natural origin can be made, for example, from chalk, ochre, umber, green earth, burnt terra di sienna or graphite.
  • black pigments such as B. iron oxide black, colored pigments such. B. ultramarine or iron oxide red and fluorescent or phosphorescent pigments can be used.
  • Colored metal oxides, metal hydroxides and metal oxide hydrates, mixed phase pigments, sulfur-containing silicates, silicates, metal sulfides, complex metal cyanides, metal sulfates, metal chromates and/or metal molybdates are particularly suitable.
  • Particularly preferred pigments are black iron oxide (CI 77499), yellow iron oxide (CI 77492), red and brown iron oxide (CI 77491), manganese violet (CI 77742), ultramarines (sodium aluminum sulfosilicates, CI 77007, Pigment Blue 29), hydrated chromium oxide (CI77289 ), Iron Blue (Ferric Ferrocyanide, CI77510) and/or Carmine (Cochineal).
  • pigments are colored pearlescent pigments. These are usually based on mica and/or mica and can be coated with one or more metal oxides. Mica belongs to the layered silicates. The most important representatives of these silicates are muscovite, phlogopite, paragonite, biotite, lepidolite and margarite. To produce the pearlescent pigments in combination with metal oxides, the mica, mainly muscovite or phlogopite, is coated with a metal oxide.
  • agent (a) and/or agent (b) also contains at least one coloring compound from the group of pigments, which is selected from the group of colored metal oxides, metal hydroxides, metal oxide hydrates, silicates, Metal sulphides, complex metal cyanides, metal sulphates, bronze pigments and/or colored pigments based on natural or synthetic mica coated with at least one metal oxide and/or one metal oxychloride.
  • at least one coloring compound from the group of pigments which is selected from the group of colored metal oxides, metal hydroxides, metal oxide hydrates, silicates, Metal sulphides, complex metal cyanides, metal sulphates, bronze pigments and/or colored pigments based on natural or synthetic mica coated with at least one metal oxide and/or one metal oxychloride.
  • the method is characterized in that the agent (a) and/or the agent (b) contains at least one coloring compound from the group of pigments, which is selected from pigments based on natural or synthetic mica one or more metal oxides from the group consisting of titanium dioxide (CI 77891), black iron oxide (CI 77499), yellow iron oxide (CI 77492), red and/or brown iron oxide (CI 77491 , CI 77499), manganese violet (CI 77742), ultramarines ( Sodium aluminum sulfosilicates, CI 77007, Pigment Blue 29), hydrated chromium oxide (CI 77289), chromium oxide (CI 77288) and/or iron blue (Ferric Ferrocyanide, CI 77510).
  • the agent (a) and/or the agent (b) contains at least one coloring compound from the group of pigments, which is selected from pigments based on natural or synthetic mica one or more metal oxides from the group consisting of titanium dioxide (CI 77891), black iron oxide (CI
  • Suitable pigments are based on metal oxide-coated platelet-shaped borosilicates. These are, for example, with tin oxide, iron oxide (s), silicon dioxide and / or Titanium dioxide coated. Such borosilicate-based pigments are available, for example, under the name MIRAGE from Eckart or Reflecks from BASF SE.
  • agent (a) is characterized in that it contains at least one coloring compound from the group of inorganic pigments selected from the group consisting of black iron oxide (CI 77499), yellow iron oxide (CI 77492), red iron oxide (CI 77491) and mixtures thereof.
  • Yellow iron oxide (or iron oxide yellow) is the designation for FeO(OH), in the Color Index under C.l. Pigment Yellow 42 listed.
  • Red iron oxide (or iron oxide red) is the designation for Fe 2 03, listed in the Color Index under Cl Pigment Red 101. Depending on the particle size, red iron oxide pigments can be made very yellowish (small particle size) to very bluish (coarse particles).
  • Black iron oxide (or iron oxide black) is listed in the Color Index under Cl Pigment Black 11. Iron oxide black is ferromagnetic. The chemical formula is often given as Fe3Ü 4 , but in reality there is a mixed crystal of Fe 2 Ü3 and FeO with an inverse spinel structure. Additional black pigments are obtained by doping with chromium, copper or manganese.
  • Brown black iron oxide usually does not refer to a defined pigment, but to a mixture of yellow, red and/or black iron oxide.
  • Iron oxide pigments usually have particle diameters in the range from 2000 to 4000 nm. For some applications, in particular for cosmetic purposes, it can be advantageous to use iron oxide pigments with significantly smaller particle diameters. For example, hair dyeings with iron oxide pigments that have a particle diameter in the range from 100 to 1000 nm, more preferably 150 nm to 700 nm, exhibit better durability and better gray coverage.
  • an agent (a) which also comprises a coloring compound from the group of pigments and/or substantive dyes, the coloring compound comprising a pigment from the group of iron oxide pigments and the iron oxide pigment having a particle diameter in the range of 100 to 1000 nm, more preferably 150 nm 700 nm.
  • pigments are commercially available, for example under the trade names Rona®, Colorona®, Xirona®, Dicrona® and Timiron® from Merck, Ariabel® and Unipure® from Sensient, Prestige® or SynCrystal from the company Eckart Cosmetic Colors, Flamenco®, Cellini®, Cloisonne®, Duocrome®, Gemtone®, Timica®, MultiReflections, Chione from BASF SE and Sunshine® from Sunstar.
  • particularly preferred pigments with the trade name Unipure® are, for example:
  • agent (a) and/or agent (b) used in the process can also contain one or more color-imparting compounds from the group of organic pigments.
  • the organic pigments are correspondingly insoluble organic dyes or lakes, for example from the group of nitroso, nitro, azo, xanthene, anthraquinone, isoindolinone, isoindoline, quinacridone, perinone, perylene , diketopyrrolopyrrole, indigo, thioindido, dioxazine, and/or triarylmethane compounds can be selected.
  • Particularly suitable organic pigments are, for example, carmine, quinacridone, phthalocyanine, sorghum, blue pigments with the Color Index numbers CI 42090, CI 69800, CI 69825, CI 73000, CI 74100, CI 74160, yellow pigments with the Color Index numbers CI 11680 , CI 11710, CI 15985, CI 19140, CI 20040, CI 21100, CI 21108, CI 47000, CI 47005, green pigments with the Color Index numbers CI 61565, CI 61570, CI 74260, orange pigments with the Color
  • agent (a) and/or agent (b) contains at least one coloring compound from the group of organic pigments selected from the group consisting of carmine, quinacridone, phthalocyanine , sorghum, blue pigments with the Color Index numbers CI 42090, CI 69800, CI 69825, CI 73000, CI 74100, CI 74160, yellow pigments with the Color Index numbers CI 11680, CI 11710, CI 15985, CI 19140, CI 20040, CI 21100, CI 21108, CI 47000, CI 47005, green pigments with the Color Index numbers CI 61565, CI 61570, CI 74260, orange pigments with the Color Index numbers CI 11725, CI 15510, CI 45370, CI 71105, red pigments with the Color Index numbers CI 12085, CI 12120, CI 12370, CI 12420, CI 124
  • the organic pigment can also be a colored lake.
  • the term colored lake is understood to mean particles comprising a layer of absorbed dyes, the particle-dye unit being insoluble under the above conditions.
  • the particles can be, for example, inorganic substrates, which can be aluminum, silica, calcium borosilicate, calcium aluminum borosilicate or aluminum.
  • Alizarin color lake for example, can be used as the color lake.
  • agent (a) and/or agent (b) can also contain one or more coloring compounds from the group of organic pigments.
  • agent (a) and/or agent (b) contains at least one color-providing compound from the group of organic pigments, which is selected from the group from carmine, quinacridone, phthalocyanine, sorghum, blue pigments with the Color Index numbers CI 42090, CI 69800, CI 69825, CI 73000, CI 74100, CI 74160, yellow pigments with the Color Index numbers CI 11680, CI 11710, CI 15985, CI 19140, CI 20040, CI 21100, CI 21108, CI 47000, CI 47005, green pigments with the Color Index numbers CI 61565, CI 61570, CI 74260, orange pigments with the Color Index numbers CI 11725, CI 15510, CI 45370, CI 71105, red pigments with the Color Index numbers CI 12085, CI 12120, CI 12370, CI 12420
  • suitable coloring compounds from the group of pigments are inorganic and/or organic pigments which have been modified with a polymer.
  • the polymer modification can, for example, increase the affinity of the pigments for the respective material of the at least one layer.
  • agent (a) and/or the agent (b) it is also possible to use so-called metallic effect pigments as the coloring compound.
  • the metallic effect pigments can contain, in particular, pigments based on a lamellar substrate flake, pigments based on lenticular substrate flakes and/or pigments based on substrate flakes which comprise “vacuum metallized pigments” (VMP).
  • VMP vacuum metallized pigments
  • the substrate flakes comprise a metal, preferably aluminum, or an alloy.
  • Metal substrate flake-based metallic effect pigments preferably have a coating which acts, inter alia, as a protective layer.
  • Suitable metal effect pigments include, for example, the pigments Alegrace® Marvelous, Alegrace® Spotify or Alegrace® Aurous from Schlenk Metallic Pigments.
  • metal effect pigments are the aluminum-based pigments from the SILVERDREAM series and the pigments from Eckart's VISIONAIRE series based on aluminum or on metal alloys containing copper/zinc.
  • the use of the aforementioned pigments in the composition (a) and/or (b) is particularly preferred. Furthermore, it is preferred if the pigments used have a specific particle size. On the one hand, this particle size leads to a uniform distribution of the pigments in the polymer film formed and, on the other hand, avoids a rough feel on the hair or skin after the cosmetic agent has been applied. It is therefore advantageous according to the invention if the at least one pigment has an average particle size Dso of from 1 to 50 ⁇ m, preferably from 5 to 45 ⁇ m, preferably from 10 to 40 ⁇ m, in particular from 14 to 30 ⁇ m.
  • the mean particle size For example, D50 can be determined using dynamic light scattering (DLS).
  • agent (a) - based on the total weight of agent (a) - also contains one or more coloring compound(s) in the form of pigments in a total amount of 0.01 to 10 wt .-%, preferably from 0.1 to 8% by weight, more preferably from 0.2 to 6% by weight and very particularly preferably from 0.5 to 4.5% by weight.
  • the method is characterized in that the agent (b) - based on the total weight of the agent (b) - also one or more coloring compound (s) in the form of pigments in a total amount of 0.01 to 10% by weight, preferably from 0.1 to 8% by weight, more preferably from 0.2 to 6% by weight and very particularly preferably from 0.5 to 4.5% by weight.
  • the agents (a) and/or agents (b) used in the process may also contain one or more direct dyes as the coloring compound(s).
  • Direct dyes are dyes that are applied directly to the hair and do not require an oxidative process to form the color. Direct dyes are usually nitrophenylenediamines, nitroaminophenols, azo dyes, anthraquinones, triarylmethane dyes or indophenols.
  • the substantive dyes for the purposes of the present invention have a solubility in water (760 mmHg) at 25° C. of more than 0.5 g/l and are therefore not to be regarded as pigments.
  • the substantive dyes for the purposes of the present invention preferably have a solubility in water (760 mmHg) at 25° C. of more than 1 g/l.
  • Direct dyes can be divided into anionic, cationic and nonionic direct dyes.
  • agent (a) and/or agent (b) also contains at least one anionic, cationic and/or nonionic direct dye as the coloring compound.
  • agent (a) and/or agent (b) also contains at least one color-providing compound from the group of anionic, nonionic and/or cationic direct dyes.
  • suitable cationic direct dyes are Basic Blue 7, Basic Blue 26, Basic Violet 2 and Basic Violet 14, Basic Yellow 57, Basic Red 76, Basic Blue 16, Basic Blue 347 (Cationic Blue 347/Dystar), HC Blue no. 16, Basic Blue 99, Basic Brown 16, Basic Brown 17, Basic Yellow 57, Basic Yellow 87, Basic Orange 31, Basic Red 51, Basic Red 76
  • nonionic direct dyes which can be used are nonionic nitro and quinone dyes and neutral azo dyes.
  • Suitable nonionic substantive dyes are those under the international designations or trade names HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, HC Yellow 12, HC Orange 1, Disperse Orange 3, HC Red 1, HC Red 3, HC Red 10, HC Red 11, HC Red 13, HC Red BN, HC Blue 2, HC Blue 11, HC Blue 12, Disperse Blue 3, HC Violet 1, Disperse Violet 1, Disperse Violet 4, Disperse Black 9 known compounds, as well as 1,4-diamino-2-nitrobenzene, 2-amino-4-nitrophenol, 1,4-bis-(2-hydroxyethyl)-amino-2-nitrobenzene, 3-nitro-4-(2-hydroxyethyl)-aminophenol, 2-(2-Hydroxyethyl)amino-4,6-dinitrophenol, 4-[(2-Hydroxyethyl)amino
  • agent (a) and/or agent (b) also contains at least one anionic direct dye as the coloring compound.
  • Anionic direct dyes are also referred to as acid dyes.
  • Acid dyes are understood as meaning direct dyes which have at least one carboxylic acid group (-COOH) and/or one sulfonic acid group (-SO3H).
  • -COOH carboxylic acid group
  • -SO3H sulfonic acid group
  • the protonated forms (-COOH, -SO3H) of the carboxylic acid or sulfonic acid groups are in equilibrium with their deprotonated forms (-COO-, -SO3 _ before).
  • the proportion of the protonated forms increases.
  • the carboxylic acid groups or sulfonic acid groups are present in deprotonated form and are neutralized with appropriate stoichiometric equivalents of cations to maintain electroneutrality.
  • the acid dyes can also be used in the form of their sodium salts and/or their potassium salts.
  • the acid dyes for the purposes of the present invention have a solubility in water (760 mmHg) at 25° C. of more than 0.5 g/l and are therefore not to be regarded as pigments.
  • the acid dyes for the purposes of the present invention preferably have a solubility in water (760 mmHg) at 25° C. of more than 1 g/l.
  • alkaline earth metal salts such as, for example, calcium salts and magnesium salts
  • aluminum salts of acid dyes often have poorer solubility than the corresponding alkali metal salts. If the solubility of these salts is below 0.5 g/L (25 °C, 760 mmHg), they do not fall under the definition of a substantive dye.
  • An essential feature of acid dyes is their ability to form anionic charges, with the carboxylic acid or sulfonic acid groups responsible for this usually being linked to different chromophoric systems.
  • Suitable chromophoric systems are found, for example, in the structures of nitrophenylenediamines, nitroaminophenols, azo dyes, anthraquinone dyes, triarylmethane dyes, xanthene dyes, rhodamine dyes, oxazine dyes and/or indophenol dyes.
  • agent (a) and/or agent (b) also contains at least one anionic direct dye as coloring compound, which is selected from Group of nitrophenylenediamines, nitroaminophenols, azo dyes, anthraquinone dyes, triarylmethane dyes, xanthene dyes, rhodamine dyes, oxazine dyes and/or indophenol dyes, where the dyes from the aforementioned group each have at least one carboxylic acid group (-COOH), a sodium carboxylate group (-COONa), a potassium carboxylate group (-COOK), a sulfonic acid group (-SO3H), a sodium sulfonate group (-SOsNa) and/or a potassium sulfonate group (-SO3K).
  • anionic direct dye as coloring compound which is selected from Group of nitrophenylenediamines, nitroaminophenols, azo dyes, anthraquinone dye
  • Acid Yellow 1 (D&C Yellow 7, Citronin A, Ext. D&C Yellow No. 7, Japan Yellow 403, CI 10316, COLIPA n° B001), Acid Yellow 3 (COLI PA n° : C 54, D&C Yellow N° 10, Quinoline Yellow, E104, Food Yellow 13), Acid Yellow 9 (CI 13015), Acid Yellow 17 (CI 18965), Acid Yellow 23 (COLIPA n ° C 29, Covacap Jaune W 1100 (LCW), Sicovit Tartrazine 85 E 102 (BASF), Tartrazine, Food Yellow 4, Japan Yellow 4, FD&C Yellow No.
  • Acid Yellow 1 (D&C Yellow 7, Citronin A, Ext. D&C Yellow No. 7, Japan Yellow 403, CI 10316, COLIPA n° B001), Acid Yellow 3 (COLI PA n° : C 54, D&C Yellow N° 10, Quinoline Yellow, E104, Food Yellow 13), Acid Yellow 9 (CI 13015), Acid Yellow 17 (CI 18965), Acid Yellow 23 (COLIPA n
  • Acid Yellow 36 (CI 13065), Acid Yellow 121 ( CI 18690), Acid Orange 6 (CI 14270), Acid Orange 7 (2-Naphthol orange, Orange II, CI 15510, D&C Orange 4, COLIPA n° C015), Acid Orange 10 (Cl 16230; Orange G sodium salt), Acid Orange 11 (CI 45370), Acid Orange 15 (CI 50120), Acid Orange 20 (CI 14600), Acid Orange 24 (BROWN 1; CI
  • Acid Green 50 (Brilliant Acid Green BS, Cl 44090, Acid Brilliant Green BS, E 142), Acid Black 1 (Black n° 401, Naphthalene Black 10B, Amido Black 10B, CI 20 470, COLIPA n° B15), Acid Black 52 (CI 15711), Food Yellow 8 (CI 14270), Food Blue 5, D&C Yellow 8, D&C Green 5, D&C Orange 10, D&C Orange 11 , D&C Red 21 , D&C Red 27, D&C Red 33, D&C Violet 2 and/or D&C Brown 1.
  • the water solubility of the anionic direct dyes can be determined, for example, in the following way. 0.1 g of the anionic direct dye are placed in a beaker. A stir bar is added. Then 100 ml of water are added. This mixture is heated to 25°C on a magnetic stirrer with stirring. Stir for 60 minutes. The aqueous mixture is then assessed visually. If there are still undissolved residues, the amount of water is increased - for example in steps of 10 ml. Water is added until the amount of dye used has completely dissolved. If the dye-water mixture cannot be assessed visually due to the high intensity of the dye, the mixture is filtered. If a proportion of undissolved dyes remains on the filter paper, the solubility test is repeated with a larger amount of water. If 0.1 g of the anionic direct dye dissolves in 100 ml of water at 25 °C, the solubility of the dye is 1 g/L.
  • Acid Yellow 1 is named 8-Hydroxy-5,7-dinitro-2-naphthalenesulfonic acid disodium salt and has a solubility in water of at least 40 g/L (25°C).
  • Acid Yellow 3 is a mixture of the sodium salts of mono- and disulfonic acids of 2-(2-quinolyl)-1H-indene-1,3(2H)-dione and has a water solubility of 20 g/L (25°C).
  • Acid Yellow 9 is the disodium salt of 8-hydroxy-5,7-dinitro-2-naphthalenesulfonic acid, its water solubility is above 40 g/L (25 °C).
  • Acid Yellow 23 is the trisodium salt of 4,5-dihydro-5-oxo-1-(4-sulfophenyl)-4-((4- sulfophenyl)azo)-1 H-pyrazole-3-carboxylic acid and good in at 25 °C Water soluble.
  • Acid Orange 7 is the sodium salt of 4-[(2-hydroxy-1-naphthyl)azo]benzenesulfonate. Its water solubility is more than 7 g/L (25 °C).
  • Acid Red 18 is the trisodium salt of 7-hydroxy-8-[(E)-(4-sulfonato-1-naphthyl)-diazenyl)]-1,3-naphthalenedisulfonate and has a very high water solubility of more than 20% by weight. %.
  • Acid Red 33 is the disodium salt of 5-amino-4-hydroxy-3-(phenylazo)-naphthalene-2,7-disulphonate, its water solubility is 2.5 g/L (25 °C).
  • Acid Red 92 is the disodium salt of 3,4,5,6-tetrachloro-2-(1,4,5,8-tetrabromo-6-hydroxy-3-oxoxanthen-9-yl)benzoic acid, its water solubility specified as greater than 10 g/L (25 °C).
  • Acid Blue 9 is the disodium salt of 2-( ⁇ 4-[N-ethyl(3-sulfonatobenzyl)amino]phenyl ⁇ 4-[(N-ethyl(3-sulfonatobenzyl)imino]-2,5-cyclohexadien-1- ylidene ⁇ methyl)-benzenesulfonate and has a water solubility of more than 20% by weight (25 °C).
  • agent (a) and/or agent (b) also contains at least one color-providing compound from the group of anionic direct dyes, which is selected from the group consisting of Acid Yellow 1, Acid Yellow 3, Acid Yellow 9, Acid Yellow 17, Acid Yellow 23, Acid Yellow 36, Acid Yellow 121, Acid Orange 6, Acid Orange 7, Acid Orange 10, Acid Orange 11, Acid Orange 15, Acid Orange 20, Acid Orange 24 , Acid Red 14, Acid Red, Acid Red 27, Acid Red 33, Acid Red 35, Acid Red 51 ,
  • the substantive dye(s), in particular the anionic substantive dyes, can be used in different amounts in agent (a) and/or agent (b), depending on the desired color intensity. Particularly good results could be obtained if the agent (a) and/or the agent (b)—in each case based on its total weight—also contained one or more direct dyes as the coloring compound in a total amount of from 0.01 to 10% by weight. , preferably from 0.1 to 8% by weight, more preferably from 0.2 to 6% by weight and very particularly preferably from 0.5 to 4.5% by weight.
  • the method is characterized in that the agent (a) and / or the agent - based on the total weight of the agent (a) and / or the agent (b) - also one or more direct dyes as a coloring compound in a total amount of from 0.01 to 10% by weight, preferably from 0.1 to 8% by weight, more preferably from 0.2 to 6% by weight and very particularly preferably from 0.5 to 4.5% by weight % contains.
  • a method for dyeing keratinic material, in particular human hair comprising the following steps:
  • agent (v) to the keratin material, the agent (v) containing:
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • agent (a) to the keratin material, the agent (a) containing:
  • At least one organic silicon compound from the group of silanes having one, two or three silicon atoms at least one coloring compound comprising at least one inorganic pigment selected from the group of colored metal oxides, metal hydroxides, metal oxide hydrates, silicates, metal sulfides, complexes metal cyanides, metal sulfates, bronze pigments and mixtures thereof,
  • agent (b) to the keratinic material, the agent (b) containing:
  • Method for coloring keratinic material, in particular human hair comprising the following steps:
  • agent (v) to the keratin material, the agent (v) containing:
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • agent (a) to the keratin material, the agent (a) containing:
  • VMP vacuum metallized pigment
  • agent (b) to the keratinic material, the agent (b) containing:
  • a method for dyeing keratinic material, in particular human hair comprising the following steps:
  • agent (v) to the keratin material, the agent (v) containing:
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • agent (a) to the keratin material, the agent (a) containing:
  • agent (b) to the keratinic material, the agent (b) containing:
  • Method for coloring keratinic material, in particular human hair comprising the following steps:
  • agent (v) to the keratin material, the agent (v) containing:
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • agent (a) to the keratin material, the agent (a) containing:
  • an agent (b) to the keratinic material containing: (b1) at least one sealing agent comprising a film-forming polymer and at least one coloring compound comprising at least one pigment selected from the group consisting of pigments based on a lamellar, metallic substrate flake, pigments based on a lenticular, metallic substrate flake, pigments based on a metallic substrate platelet, which includes a "vacuum metallized pigment” (VMP), and mixtures thereof.
  • VMP vacuum metallized pigment
  • a method for dyeing keratinic material, in particular human hair comprising the following steps:
  • agent (v) to the keratin material, the agent (v) containing:
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • agent (a) to the keratin material, the agent (a) containing:
  • agent (b) to the keratinic material, the agent (b) containing:
  • (b1) at least one sealing agent, comprising a film-forming polymer, and at least one coloring compound, comprising a pigment, comprising a) a substrate platelet, comprising mica, and ß) a coating, comprising at least a first metal oxide (hydrate) layer, comprising PO2, Sn0 2 and/or iron oxide(s).
  • a method for dyeing keratinic material, in particular human hair comprising the following steps:
  • agent (v) to the keratin material, the agent (v) containing:
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • agent (a) to the keratin material, the agent (a) containing:
  • agent (b) to the keratinic material, the agent (b) containing:
  • (b1) at least one sealing agent, comprising a film-forming polymer, and at least one coloring compound, comprising a pigment, comprising a) a substrate platelet, comprising borosilicate glass, and ß) a coating, comprising at least a first metal oxide (hydrate) layer, comprising " PO2 , SnC>2, S1O2, and/or iron oxide(s).
  • a method for dyeing keratinic material, in particular human hair comprising the following steps:
  • agent (v) to the keratin material, the agent (v) containing:
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • agent (a) to the keratin material, the agent (a) containing:
  • agent (b) to the keratinic material, the agent (b) containing:
  • a method for dyeing keratinic material, in particular human hair comprising the following steps:
  • agent (v) to the keratin material, the agent (v) containing:
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • agent (b) to the keratinic material, the agent (b) containing:
  • Method for coloring keratinic material, in particular human hair comprising the following steps:
  • agent (v) to the keratin material, the agent (v) containing:
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • agent (a) to the keratin material, the agent (a) containing:
  • agent (b) to the keratinic material, the agent (b) containing:
  • a method for dyeing keratinic material, in particular human hair comprising the following steps:
  • agent (v) to the keratin material, the agent (v) containing:
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • agent (a) to the keratin material, the agent (a) containing:
  • agent (b) to the keratinic material, the agent (b) containing:
  • (b1) at least one sealing agent comprising a film-forming polymer and at least one coloring compound comprising at least one pigment selected from the group consisting of pigments based on a lamellar, metallic substrate flake, pigments based on a lenticular, metallic substrate flake, pigments based on a metallic substrate platelet, which includes a "vacuum metallized pigment” (VMP), and mixtures thereof.
  • VMP vacuum metallized pigment
  • a method for dyeing keratinic material, in particular human hair comprising the following steps: - Application of an agent (v) to the keratin material, the agent (v) containing:
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • agent (a) to the keratin material, the agent (a) containing:
  • agent (b) to the keratinic material, the agent (b) containing:
  • (b1) at least one sealing agent, comprising a film-forming polymer, and at least one coloring compound, comprising a pigment, comprising a) a substrate platelet, comprising mica, and ß) a coating, comprising at least a first metal oxide (hydrate) layer, comprising " PO2 , Sn0 2 and/or iron oxide(s).
  • a method for dyeing keratinic material, in particular human hair comprising the following steps:
  • agent (v) to the keratin material, the agent (v) containing:
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • agent (a) to the keratin material, the agent (a) containing:
  • agent (b) to the keratinic material, the agent (b) containing:
  • a method for dyeing keratinic material, in particular human hair comprising the following steps:
  • agent (v) to the keratin material, the agent (v) containing:
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • agent (a) to the keratin material, the agent (a) containing:
  • agent (b) to the keratinic material, the agent (b) containing:
  • a method for dyeing keratinic material, in particular human hair comprising the following steps:
  • agent (v) to the keratin material, the agent (v) containing:
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • agent (a) to the keratin material, the agent (a) containing:
  • VMP vacuum metallized pigment
  • agent (b) to the keratinic material, the agent (b) containing:
  • a method for dyeing keratinic material, in particular human hair comprising the following steps:
  • agent (v) to the keratin material, the agent (v) containing:
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • agent (a) to the keratin material, the agent (a) containing:
  • agent (b) to the keratinic material, the agent (b) containing:
  • (b1) at least one sealing agent, comprising a film-forming polymer, and at least one coloring compound from the group of pigments and/or substantive dyes, comprising at least one pigment selected from the group consisting of pigments based on a lamellar, metallic substrate flake, pigments Base of a lenticular, metallic substrate flake, pigments based on a metallic substrate flake, which includes a "vacuum metallized pigment” (VMP), and mixtures thereof.
  • VMP vacuum metallized pigment
  • the agents can additionally contain one or more surfactants.
  • surfactants is understood as meaning surface-active substances. A distinction is made between anionic surfactants consisting of a hydrophobic residue and a negatively charged hydrophilic head group, amphoteric surfactants, which carry both a negative and a compensating positive charge, and cationic surfactants, which have a positively charged charge in addition to a hydrophobic residue have hydrophilic group, and nonionic surfactants, which have no charges but strong dipole moments and are highly hydrated in aqueous solution.
  • Zwitterionic surfactants are those surface-active compounds which carry at least one quaternary ammonium group and at least one —COO (_) or —SO 3 (_) group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines, such as the N-alkyl-N,N-dimethylammonium glycinates, for example coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N,N-dimethylammonium glycinates, for example cocoacylaminopropyldimethylammonium glycinate, and 2-alkyl -3-carboxymethyl-3-hydroxyethylimidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group, and cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
  • a preferred zwitterionic surfactant is the fatty acid amide derivative known by the
  • Ampholytic surfactants are surface-active compounds which contain at least one free amino group and at least one --COOH or --SOsH group in addition to a Cs - C24 -alkyl or -acyl group in the molecule and are capable of forming inner salts.
  • ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-alkyltaurines, N-alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids, each with about 8 to 24 C -atoms in the alkyl group.
  • amphoteric or zwitterionic surfactants are alkyl betaines, alkyl amido betaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines.
  • ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethylaminopropionate and C12 - Cie -acylsarcosine.
  • the agents can also additionally contain at least one nonionic surfactant.
  • Suitable nonionic surfactants are alkyl polyglycosides and alkylene oxide adducts with fatty alcohols and fatty acids with 2 to 30 moles of ethylene oxide per mole of fatty alcohol or fatty acid. Preparations with good properties are also obtained if they contain, as nonionic surfactants, fatty acid esters of ethoxylated glycerol which have been reacted with at least 2 moles of ethylene oxide.
  • Particularly preferred nonionic surfactants are alkyl polyglycosides, especially alkyl polyglucosides.
  • the agents can also contain at least one cationic surfactant.
  • Cationic surfactants are understood as meaning surfactants, ie surface-active compounds, each with one or more positive charges. Cationic surfactants only contain positive charges. These surfactants are usually built up from a hydrophobic part and a hydrophilic head group, with the hydrophobic part usually consisting of one Hydrocarbon skeleton (e.g. consisting of one or two linear or branched alkyl chains), and the positive charge(s) are localized in the hydrophilic head group. Examples of cationic surfactants are examples of cationic surfactants.
  • the cationic charge can also be part of a heterocyclic ring (e.g. an imidazolium ring or a pyridinium ring) in the form of an onium structure.
  • the cationic surfactant can also contain other uncharged functional groups, as is the case with esterquats, for example.
  • the cationic surfactants are used in a total amount of 0.1 to 45% by weight, preferably 1 to 30% by weight and very particularly preferably 1 to 15% by weight, based on the total weight of the agent in question.
  • the agents can also contain at least one anionic surfactant.
  • anionic surfactants Surface-active agents with exclusively anionic charges (neutralized by a corresponding counter-cation) are referred to as anionic surfactants.
  • anionic surfactants are fatty acids, alkyl sulfates, alkyl ether sulfates and ether carboxylic acids with 12 to 20 carbon atoms in the alkyl group and up to 16 glycol ether groups in the molecule.
  • the anionic surfactants are used in a total amount of 0.1 to 45% by weight, preferably 1 to 30% by weight and very particularly preferably 1 to 15% by weight, based on the total weight of the agent in question.
  • Agent (a) and/or agent (b) may also contain a matting agent.
  • Suitable matting agents include, for example, (modified) starches, waxes, talc and/or (modified) silicic acids.
  • the amount of matting agent is preferably between 0.1 and 10% by weight, based on the total amount of agent (a) or agent (b).
  • Agent (a) preferably contains a matting agent.
  • Agent (a) and/or agent (b) may also contain a thickener.
  • agent (a) and/or (b) When using the agents (a) and/or (b), they must not be too thin and drip down from the keratin material. For this reason, it may be preferred that agent (a) and/or (b) further contains a thickener. Within the scope of one embodiment, a method for coloring keratinic material is therefore preferred, which is characterized in that agent (a) and/or agent (b) also contains a thickener.
  • the agents can also contain other active ingredients, auxiliaries and additives, such as solvents, fatty components such as C8-C30 fatty acid triglycerides, C8-C30 fatty acid monoglycerides, C8-C30 fatty acid diglycerides and/or hydrocarbons; structurants such as glucose, maleic acid and lactic acid, hair conditioning compounds such as phospholipids, e.g.
  • lecithin and cephalins perfume oils, dimethylisosorbide and cyclodextrins; fiber structure-improving active ingredients, in particular mono-, di- and oligosaccharides such as glucose, galactose, fructose, fructose and lactose; dyes for coloring the agent; anti-dandruff agents such as Piroctone Olamine, Zinc Omadine and Climbazole; amino acids and oligopeptides; Protein hydrolyzates based on animals and/or plants, and in the form of their fatty acid condensation products or optionally anionically or cationically modified derivatives; vegetable oils; sunscreens and UV blockers; Active ingredients such as panthenol, pantothenic acid, pantolactone, allantoin, pyrrolidinone carboxylic acids and their salts, and bisabolol; Polyphenols, in particular hydroxycinnamic acids, 6,7-dihydroxycoumarins, hydroxybenzoic acids, catechins, tannin
  • the person skilled in the art will select these further substances in accordance with the desired properties of the agents. With regard to other optional components and the amounts of these components used, express reference is made to the relevant handbooks known to those skilled in the art.
  • the additional active ingredients and auxiliaries are preferably used in the preparations according to the invention in amounts of 0.0001 to 25% by weight, in particular 0.0005 to 15% by weight, based on the total weight of the respective composition.
  • the agents (v), (a) and (b) are applied to the keratinic materials, in particular to human hair.
  • the means (v), (a) and (b) are the ready-to-use means.
  • the means (v), (a) and (b) are different from each other. Agents (a) and (b) can in principle be used simultaneously or successively, successive use being preferred. Means (v) is applied before means (a) and (b).
  • agent (v) was applied to the keratin materials in a first step
  • agent (a) was applied to the keratin materials in a second step
  • agent (b) in a third step was applied.
  • a method for treating keratinic material, in particular for coloring keratinic material, in particular human hair, is therefore particularly preferred, comprising the following steps in the order given:
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • (b1) at least one sealing agent, where at least one of the agents (a) and (b) also contains at least one color-providing compound from the group of pigments and/or direct dyes.
  • the agents (v), (a) and (b) are also particularly preferably used within one and the same coloring process, which means that between the use of the agents (v ) and (b) a period of no more than a few hours.
  • agent (v) is used first, then agent (a) and then agent (b), with the period between the application of agents (v) and (b) is at most 24 hours, preferably at most 12 hours and particularly preferably at most 6 hours.
  • a characteristic feature of agent (a) is its content of at least one reactive organic silicon compound (a1). The reactive organic silicon compound or compounds (a1) enter into an oligomerization or polymerization reaction and in this way functionalize the hair surface as soon as it comes into contact with it.
  • a second agent (b) is now applied to the hair.
  • agent (b) comprising at least one film-forming polymer as sealing agent (b1)
  • this enters into an interaction with the silane film and in this way is bound to the keratinic materials.
  • the formation of the silane film is positively influenced during the use of agent (b), comprising at least one alkalizing agent or acidifying agent as sealing agent (b1).
  • agent (b) comprising at least one alkalizing agent or acidifying agent as sealing agent (b1).
  • the desired coloration of the keratinic material takes place with the aid of the color-providing compound in agent (a) and/or in agent (b).
  • the coloring can be done with a colored silane film (the coloring compound is only in medium
  • the coloring compound is only in agent (b) and this contains a film-forming polymer as a sealing agent (b1)) or through a colored silane film and through a colored polymer film (agent (a) and (b) each contain at least one color-providing compound and agent (b) contains a film-forming polymer as sealing agent (b1)).
  • rinsing out the keratinic material with water in steps (3), (6) and (9) of the method is understood to mean that only water is used for the rinsing out process, without using any other means (v), ( a) and (b) different means would be used.
  • the agent (v) is first applied to the keratin materials, in particular human hair.
  • agent (v) is allowed to act on the keratin materials.
  • exposure times of 1 minute to 60 minutes, preferably 2 minutes to 25 minutes and very particularly preferably 10 minutes to 20 minutes on the hair have proven to be particularly advantageous.
  • the agent (v) is rinsed out of the keratinic materials before the agent (a) is applied to the hair in the subsequent step.
  • the agent (a) is applied to the keratin materials, in particular human hair.
  • the agent (a) After application, the agent (a) is left to act on the keratin materials.
  • exposure times of 10 seconds to 30 minutes, preferably 20 seconds to 20 minutes and very particularly preferably 30 seconds to 15 minutes on the hair have proven particularly advantageous.
  • agent (a) can now be rinsed from the keratinic materials before agent (b) is applied to the hair in the subsequent step.
  • step (7) agent (b) is now applied to the keratinic materials. After application, the agent (b) is now allowed to act on the hair.
  • step (9) agent (b) (and any agent (a) still present) is then rinsed out of the keratinic material with water.
  • the sequence of steps (1) to (9) preferably takes place within 24 hours.
  • agent (a) contains a class of highly reactive compounds which, when used, can undergo hydrolysis or oligomerization and/or polymerization. Due to their high reactivity, these organic silicon compounds form a film on the keratin material.
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • the agent (a') itself is preferably formulated with little or no water.
  • a method is characterized in that the agent (a') - based on the total weight of the agent (a') - has a water content of 0.001 to 10 % by weight, preferably from 0.5 to 9% by weight, more preferably from 1 to 8% by weight and very particularly preferably from 1.5 to 7% by weight.
  • Agent (a”) can also contain a thickener.
  • a method is characterized in that the agent (a"') - based on the total weight of the agent (a") - has a water content of 15 to 99.9% by weight, preferably 35 to 99% by weight. -%, more preferably from 55 to 99% by weight, even more preferably from 65 to 99% by weight and most preferably from 75 to 99% by weight.
  • the ready-to-use agent (a) is prepared by mixing agents (a') and (a").
  • the user can first stir or spill the agent (a'), which contains the organic silicon compound(s) (a1), with the water-containing agent (a").
  • the user can now apply this mixture of (a') and (a") to the keratin materials - either directly after their production or after a short reaction time of 10 seconds to 20 minutes.
  • the user can apply the means (b) as described above.
  • an agent (a′′′′) is also used in the process, which comprises at least one color-providing compound from the group of pigments and/or direct dyes.
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • the first agent (a') contains at least one organic silicon compound (a1) from the group of silanes having one, two or three silicon atoms,
  • the third agent (a''') contains at least one coloring compound from the group of pigments and/or substantive dyes
  • the ready-to-use agent (a) is prepared by mixing agents (a'), (a") and (a"').
  • the user can first combine the agent (a'), which contains the organic silicon compound(s) (a1), with the agent containing water (a") and then with the agent (a''') containing the at least one coloring compound. stir or spill.
  • the user can now apply this mixture of (a'), (a") and (a"') to the keratin materials - either directly after their production or after a short reaction time of 10 seconds to 20 minutes. Following this, the user can apply the means (b) as described above.
  • the user can first mix the agent (a"'), which contains the at least one color-providing compound, with the water-containing agent (a") and then with the agent (a'), which contains the organic silicon compound(s) (a1 ) contains, stir or spill.
  • the ready-to-use agent (b) can also only be prepared shortly before the agent (b) is used, especially if it contains at least one coloring compound.
  • the ready-to-use agent (b) is prepared, for example, by mixing agents (b') and (b").
  • the user can stir or spill the agent (b'), which contains the sealing reagent (b1), and the agent (b"), which contains the at least one coloring compound.
  • the user can now use this mixture of (b') and (b") - either directly after during production or after a short reaction time of 10 seconds to 20 minutes - to the keratinic materials.
  • the at least one color-providing compound from the group of pigments and direct dyes is preferably used in the form of a pigment suspension, comprising the at least one color-providing compound and a liquid carrier medium.
  • the carrier medium is preferably non-aqueous.
  • the carrier medium can include a silicone oil, for example.
  • the means (a) and (b) can also each comprise the liquid carrier medium in addition to the two ingredients (a1) and (b1) that are mandatory in each case and the at least one coloring compound.
  • Multi-component packaging unit (kit-of-partsj
  • the user is preferably provided with all the means required in the form of a multi-component packaging unit (kit-of-parts).
  • a second object of the present invention is therefore a multi-component packaging unit (kit-of-parts) for coloring keratinic material, comprising a first container made up separately from one another with an agent (v), the agent (v) containing:
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • (b1) at least one sealing reagent, wherein the components (a1) and (b1) have been disclosed in detail above and at least one of the agents (a") and (b) also at least one coloring compound from the group of pigments and/or substantive ones contains dyes.
  • a preferred embodiment comprises a multi-component packaging unit (kit-of-parts) for dyeing keratinic material, comprising made up separately from one another - a first container with an agent (v), the agent (v) containing:
  • (b1) at least one sealing reagent, wherein components (v1), (v2), (v3), (a1) and (b1) have been disclosed in detail above.
  • a multi-component packaging unit for coloring keratin material, which is made up separately from one another
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • agent (a') contains: at least one organic silicon compound (a1) from the group of silanes having one, two or three silicon atoms, and
  • (b1) at least one sealing reagent, wherein components (v1), (v2), (v3), (a1) and (b1) have been disclosed in detail above.
  • a multi-component packaging unit for dyeing keratin material, comprehensively manufactured separately from one another, is preferred
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • agent (a') contains: at least one organic silicon compound (a1) from the group of silanes having one, two or three silicon atoms, and
  • agent (a) contains: at least one coloring compound from the group of pigments and/or direct dyes, and
  • (b1) at least one sealing reagent, wherein components (v1), (v2), (v3), (a1) and (b1) have been disclosed in detail above.
  • a multi-component packaging unit for coloring keratin material, which is made up separately from one another
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • agent (a') contains: at least one organic silicon compound (a1) from the group of silanes having one, two or three silicon atoms, and
  • (b1) at least one sealing agent, comprising a film-forming polymer, and also a coloring compound from the group of pigments and/or substantive dyes, wherein the components (v1), (v2), (v3), (a1) and (b1 ) were disclosed in detail above.
  • a multi-component packaging unit for coloring keratin material is preferred, comprising a first container made up separately from one another with an agent (v), the agent (v) containing:
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • (v2) at least one aliphatic alcohol and (v3) at least one alkalizing reagent, a second container with an agent (a'), the agent (a') containing: at least one organic silicon compound (a1) from the group of silanes with one, two or three silicon atoms, and a third container with an agent (a"), the agent (a") containing:
  • (b1) at least one sealing reagent, comprising a film-forming polymer, and a sixth container with an agent (b"), wherein the agent (b") contains: at least one coloring compound from the group of pigments and/or substantive dyes, wherein components (v1), (v2), (v3), (a1) and (b1) have been disclosed in detail above.
  • a multi-component packaging unit for coloring keratin material is preferred, comprising a first container made up separately from one another with an agent (v), the agent (v) containing:
  • (v1) at least one polyethylene glycol with an average molecular weight of 200 to 8,000 g/mol
  • (v2) at least one aliphatic alcohol and (v3) at least one alkalizing agent, a second container with an agent (a'), the agent (a') containing: at least one organic silicon compound (a1) from the group of silanes with a, two or three silicon atoms, and a third container with an agent (a"), the agent (a") containing:
  • (b1) at least one sealing reagent, comprising a film-forming polymer, and a fifth container with an agent (b"), wherein the agent (b") contains: at least one coloring compound from the group of pigments and/or substantive dyes, wherein components (v1), (v2), (v3), (a1) and (b1) have been disclosed in detail above.
  • the pH of the two pretreatment agents (v-l) and (v-ll) was 15 and 15.2.
  • the ready-to-use agent (a) was prepared by mixing 5 g of agent (a'), 5 g of agent (a"') and 15 g of agent (a").
  • the pH of agent (a) was adjusted to a value of 10.5 by adding ammonia or lactic acid.
  • agent (a) was massaged into the respective strands of hair and left to act for 10 minutes.
  • the strands were then rinsed out with water.
  • agent (b) was applied to the strand of hair, left to act for 3 minutes and then rinsed out with water as well.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Cosmetics (AREA)

Abstract

L'invention concerne un procédé de coloration de matière kératinique, en particulier de cheveux humains, comprenant les étapes suivantes consistant à : - appliquer un agent (v) sur la matière kératinique, ledit agent (v) contenant : (v1) au moins un polyéthylène glycol ayant une masse moléculaire moyenne de 200 à 8 000 g/mol, (v2) au moins un alcool aliphatique et (v3) au moins un réactif d'alcalinisation ; - appliquer un agent (a) sur la matière kératinique, ledit agent (a) contenant : (a1) au moins un composé d'organosilicium à partir du groupe comprenant des silanes avec un, deux ou trois atomes de silicium ; et appliquer un agent (b) à la matière kératinique, ledit agent (b) contenant : (b1) au moins un réactif d'étanchéité, au moins un des agents (a) et (b) contenant également au moins un composé de coloration du groupe des pigments et/ou des agents de coloration directe.
EP22731184.2A 2021-07-06 2022-05-31 Procédé de coloration de matière kératinique comprenant l'application d'un composé d'organosilicium, d'un composé de coloration, d'un réactif d'étanchéité et d'un agent de prétraitement alcalin Pending EP4366678A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021207098.1A DE102021207098A1 (de) 2021-07-06 2021-07-06 Verfahren zum Färben von keratinischem Material, umfassend die Anwendung von einer siliciumorganischen Verbindung, einer farbgebenden Verbindung, eines Versiegelungsreagenz und eines alkalischen Vorbehandlungsmittels
PCT/EP2022/064674 WO2023280469A1 (fr) 2021-07-06 2022-05-31 Procédé de coloration de matière kératinique comprenant l'application d'un composé d'organosilicium, d'un composé de coloration, d'un réactif d'étanchéité et d'un agent de prétraitement alcalin

Publications (1)

Publication Number Publication Date
EP4366678A1 true EP4366678A1 (fr) 2024-05-15

Family

ID=82100174

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22731184.2A Pending EP4366678A1 (fr) 2021-07-06 2022-05-31 Procédé de coloration de matière kératinique comprenant l'application d'un composé d'organosilicium, d'un composé de coloration, d'un réactif d'étanchéité et d'un agent de prétraitement alcalin

Country Status (5)

Country Link
US (1) US20240165005A1 (fr)
EP (1) EP4366678A1 (fr)
CN (1) CN117651543A (fr)
DE (1) DE102021207098A1 (fr)
WO (1) WO2023280469A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2845001B1 (fr) * 2002-09-27 2006-06-30 Oreal Composition antipenetrante de pretraitement capillaire a base de polymere(s)oxyethylene(s)et procede utilisant une telle composition pour limiter la penetration dans la peau de colorants
EP2168633B1 (fr) 2008-09-30 2016-03-30 L'Oréal Composition cosmétique comprenant un composé organique du silicium comportant au moins une fonction basique, un polymère filmogène hydrophobe, un pigment et un solvant volatil
CN107278150B (zh) * 2015-02-17 2021-04-09 诺赛尔股份有限公司 用于在角蛋白纤维上提供包含颜料的薄膜的方法
DE102018207024A1 (de) * 2018-05-07 2019-11-07 Henkel Ag & Co. Kgaa Mittel zum Färben von Haaren enthaltend mindestens eine organische Siliciumverbindung, einen direktziehenden Farbstoff und ein filmbildendes, hydrophobes Polymer
DE102019204801A1 (de) * 2019-04-04 2020-10-08 Henkel Ag & Co. Kgaa Erhöhung der Stabilität von Mitteln zur Behandlung von Keratinmaterial

Also Published As

Publication number Publication date
CN117651543A (zh) 2024-03-05
WO2023280469A1 (fr) 2023-01-12
DE102021207098A1 (de) 2023-01-12
US20240165005A1 (en) 2024-05-23

Similar Documents

Publication Publication Date Title
WO2022184344A1 (fr) Procédé de teinture de matière kératinique comprenant l'utilisation d'un composé d'organosilicium, d'un composé de teinture, d'un réactif d'étanchéité et d'un agent de prétraitement
EP4301327A1 (fr) Procédé de coloration de matière kératinique comprenant l'utilisation d'un composé organosilicié, d'un polymère à fonction hydroxyamino, d'un composé de coloration et d'un réactif d'étanchéité
EP4181869A1 (fr) Procédé de teinture de matière kératinique, comprenant l'utilisation d'un composé organosilicié, d'un ester d'acide phosphorique et d'un composé colorant
WO2021259543A1 (fr) Procédé de coloration de matière kératinique, comprenant l'utilisation d'un composé de silicium organique, d'un dérivé de silanol alkylé, d'un composé colorant et d'un agent de post-traitement
WO2021180369A1 (fr) Procédé de coloration de matière kératinique, comprenant l'utilisation d'un composé d'organosilicium, d'un acide alginique, d'un composé colorant et d'un agent de post-traitement
WO2021121723A1 (fr) Procédé de teinture de la matière kératinique, comprenant l'utilisation d'un composé organosilicié, d'un ester d'acide hydroxycarboxylique, d'un diol et d'un composé colorant
EP4366678A1 (fr) Procédé de coloration de matière kératinique comprenant l'application d'un composé d'organosilicium, d'un composé de coloration, d'un réactif d'étanchéité et d'un agent de prétraitement alcalin
WO2023280470A1 (fr) Procédé de coloration de matière kératinique comprenant l'application d'un composé organosilicié, de polyéthylène glycols, d'un composé colorant et d'un agent de post-traitement
WO2022184337A1 (fr) Procédé de coloration de matière kératinique comprenant l'utilisation d'un composé organo-silicié, un composé colorant, un réactif d'étanchéité et un agent de pré-traitement
WO2023041322A1 (fr) Procédé de teinture de matière kératinique, comprenant l'utilisation d'un composé organosilicié, d'une hydroxyacétophénone, d'un composé de teinture et d'un agent de post-traitement
WO2022167186A1 (fr) Procédé de coloration de matière kératinique comprenant l'utilisation d'un composé organosilicié, de carboxyméthylcellulose (sel), d'un composé colorant et d'un agent de post-traitement
EP4167946A1 (fr) Procédé de coloration d'une matière kératinique, comprenant l'utilisation d'un composé organosilicié, d'un alkyl(poly)glycoside, d'un composé colorant et d'un agent de post-traitement
WO2021180370A1 (fr) Procédé de coloration de matière kératinique, comprenant l'utilisation d'un composé d'organosilicium, d'un ester de glycérol, d'un composé colorant et d'un agent de post-traitement
WO2023041284A1 (fr) Procédé de coloration de matière kératinique, comprenant l'utilisation d'un composé d'organosilicium, d'un acide aminé, d'un composé colorant et d'un agent de post-traitement
WO2021180378A1 (fr) Procédé de coloration de matière kératinique comprenant l'utilisation d'un composé organosilicié, d'acide hyaluronique (sel), d'un composé colorant et d'un agent de post-traitement
WO2022184336A1 (fr) Procédé de coloration de matière kératinique comprenant l'utilisation d'un composé organo-silicié, un composé colorant, un réactif d'étanchéité et un agent de post-traitement contenant un polymère
EP4301317A1 (fr) Procédé de coloration de matière kératinique comprenant l'utilisation d'un composé d'organosilicium, un composé de coloration, un réactif d'étanchéité et un agent de prétraitement contenant une enzyme
WO2021121715A1 (fr) Procédé de coloration de matériau kératinique, comprenant l'utilisation d'un composé d'organosilicium, d'un ester d'acide hydroxycarboxylique, d'un composé colorant et d'un agent de post-traitement
WO2021259539A1 (fr) Procédé de teinture de matière kératinique au moyen d'un éther de polyéthylène glycol d'un ester d'acide gras de propylène glycol
DE102021202045A1 (de) Verfahren zum Färben von keratinischem Material, umfassend die Anwendung von einer siliciumorganischen Verbindung, einer farbgebenden Verbindung und eines Polymer-haltigen Vorbehandlungsmittels
WO2022073696A1 (fr) Procédé de teinture de matériau kératinique comprenant l'utilisation d'un composé d'organosilicium, un composé de teinture, un réactif d'étanchéité et un agent de prétraitement
WO2021121716A1 (fr) Procédé de coloration de matériau kératinique, comprenant l'utilisation d'un composé d'organosilicium, de gomme laque, d'un composé colorant et d'un agent de post-traitement
WO2021121721A1 (fr) Procédé de teinture de matériau kératinique, comprenant l'utilisation d'un composé d'organosilicium, un composé de teinture et un agent de prétraitement

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR