EP4362608A1 - Dispositif d'alimentation en énergie à économie d'énergie - Google Patents
Dispositif d'alimentation en énergie à économie d'énergie Download PDFInfo
- Publication number
- EP4362608A1 EP4362608A1 EP22425051.4A EP22425051A EP4362608A1 EP 4362608 A1 EP4362608 A1 EP 4362608A1 EP 22425051 A EP22425051 A EP 22425051A EP 4362608 A1 EP4362608 A1 EP 4362608A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- power supply
- inductive load
- supply device
- resistive
- resistive inductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001939 inductive effect Effects 0.000 claims abstract description 61
- 238000010438 heat treatment Methods 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 7
- 238000004891 communication Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- 238000010521 absorption reaction Methods 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 229910001006 Constantan Inorganic materials 0.000 claims description 3
- 229910000896 Manganin Inorganic materials 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 2
- 229910001120 nichrome Inorganic materials 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000011017 operating method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/06—Control, e.g. of temperature, of power
- H05B6/062—Control, e.g. of temperature, of power for cooking plates or the like
Definitions
- the present invention relates to an energy saving power supply device.
- an object of the present invention is a device using the emission of radio frequency electromagnetic waves to power resistive loads and achieve energy savings.
- the present invention also relates to a heating system for an oven comprising said power supply device and a resistive inductive load.
- the present invention also relates to the method for operating said power supply device and the use of said power supply device to power a heating element of an oven.
- the present invention relates to an Internet of Things computer network.
- the heating of a resistance due to the Joule effect is due to the collision of the electrical charges, i.e. the electrons of the current flowing in said resistance, with the atoms of the resistive material.
- the number of impacts and the consequent bond breaking produce an emission of heat which represents the heating effect of the resistance. It is therefore a phenomenon of opposition to the current flow, i.e. an undesirable effect when compared to the normal applications of resistors.
- ⁇ T is the resistivity at the temperature T of the resistor
- ⁇ 0 is the resistivity at the temperature of 0°C
- ⁇ 0 is the temperature coefficient at 0°C
- T is the temperature value.
- the power efficiency can be increased by selecting a resistor of adequate size and with a temperature coefficient as high as possible. Furthermore, the resistivity and therefore the efficiency depend on the temperature behavior of the selected resistive material.
- an aim of the present invention is to provide a power supply device, which produces energy savings when connected to a resistive load such as for example a heating element of a three-phase industrial oven.
- a further aim of the invention is to provide a power supply device that also makes it possible to overcome the limits of the heating devices of known technology and to obtain the technical results described later.
- a further aim of the invention is to offer a control on the device, so as to intervene in real time, to optimise the output of the radio frequency generator, in such a way as to detect a specific resonance frequency depending on the resistive inductive load applied to the heating system.
- the description will be focused on an electrical device for powering an electrical resistance of an oven but it is very clear that it should not be considered limited to this specific use.
- the use of the described system can also be aimed at the heating of domestic environments, or at the industrial world where devices using electrical resistances are very energy-consuming and contribute in a sustained way to overload the plants distributing electrical power.
- a heating system R comprising a power supply device 1 and a resistive inductive load 30.
- the resistive inductive load 30 is electrically coupled to the power supply device 1 and produces heat when powered by said power supply device 1 at a specific resonance frequency for said resistive inductive load 30.
- the resistive inductive load 30 can be made of a material having inductive-capacitive properties, such as for example constantan, manganin, nichrome or another material. These materials have a high thermal efficiency when powered by an alternating current (AC) power grid with a nominal 50 Hertz frequency.
- AC alternating current
- constantan has the property of keeping its resistivity almost unchanged as the temperature varies.
- Manganin has a low coefficient of variation of resistivity as the temperature varies and is an alloy that is easy to draw but does not easily oxidise.
- the resistive inductive load 30 can be, for example, a commonly used commercial resistance, normally powered by a 220 volt power grid or, in case of 380 volt three-phase appliances, by a 380 volt power grid.
- the power supply device 1 comprises an electrical generator 20 which can be electrically coupled to said resistive inductive load 30 and is adapted to generate a radio frequency electromagnetic wave.
- the load will therefore be considered as an electrical dipole, in order to be able to use the reactive-capacitive part to resonate the resistive inductive load 30 in order to obtain energy savings.
- the electrical generator 20 can be powered by the power grid.
- the power grid For example, in the case of 380 volt three-phase appliances, three 19-inch rack power units can be used, in a star configuration without a central reference or in a delta configuration, with modules suitable for the maximum absorption of the power grid to power the power supply device. 1. In this way it is possible to obtain a stabilised voltage on the 380 volt three-phase.
- the electrical generator 20 can therefore be used as a power source for a heating element of an oven such as for example the resistive inductive load 30 of an electrical heating system R described above.
- the power supply device 1 further comprises a logic control unit U.
- the logic control unit U may comprise for example a voltage controlled oscillator (VCO) circuit comprising a control signal generation circuit and a Mosfet Gate Driver with dedicated integrated circuits.
- VCO voltage controlled oscillator
- the logic control unit U is adapted to perform 120 a frequency scan to determine a specific resonance frequency for said resistive inductive load 30, and to send 140 a command to said electrical generator 20 to power said resistive inductive load 30 with an electromagnetic wave at said specific resonance frequency for said resistive inductive load 30 as shown in the block diagram of the operating method in Figure 2 .
- the operating method described above therefore makes it possible to offer a current-controlled proportional feedback.
- Said feedback makes it possible to optimise the input-output parameters of the closed loop control system (P.I.D.) and to vary the frequency of the radio frequency generator 20 through for example a voltage-controlled oscillator circuit.
- P.I.D. closed loop control system
- the feedback system identifies the resonance frequency of the resistive inductive load 30 through a real-time control carried out by an algorithm which is performed by a processor.
- a processor For example, 32-bit microcontrollers with high clock frequencies and implementing digital signal processing algorithms, such as P.I.D. systems, can be used. Said P.I.D. systems can process system variations in real time to stabilise the input-output system.
- said radio frequency electromagnetic wave can be an asymmetrical square wave and can have a frequency of about 3 kHz, tuned to said specific resonance frequency for said resistive inductive load 30.
- the power supply device 1 may also include a band filter (not shown in the figure) with a high merit factor in order to reduce the harmonic components of the radio frequency electromagnetic wave at the output of the power supply device 1.
- the power supply device 1 may further comprise one or more metal panels 40 for shielding said resistive inductive load 30 and/or said electrical generator 20 from both induced and conducted electromagnetic emissions.
- the presence of said metal panels 40 allows the power supply device 1 to have an electromagnetic compatibility and to be considered a commercial product to be placed on the markets that complies with the European standards on the maximum emissions permitted by the directives in force.
- said power supply device 1 may comprise EMI shields and cables equipped with ferrite rings.
- said power supply device 1 can be assembled on a professional frame in an industrial standard 19" rack format strictly shielded with aluminum supporting structures and EMI shields.
- the power supply device 1 may include high-insulating photo couplers to protect the user from any electrical discharge caused by malfunction and/or breakdown of the machine in the high voltage area.
- the power supply device 1 can further comprise one or more protection circuits 50 electrically coupled to said one or more metal panels 40 and/or to said logic control unit U.
- Said protection circuits 50 comprise a sensor (not shown in the figure) adapted to detect a physical parameter associated with said one or more metal panels 40 and to communicate said physical parameter to said logic control unit U.
- the logic control unit U is able to read said physical parameter, and activate an alarm if said physical parameter reaches a threshold value.
- the protection circuits 50 can also be coupled to said resistive inductive load 30 and may comprise a further sensor (not shown in the figure). Said sensor can be configured to detect a further physical parameter associated with said resistive inductive load 30. The physical parameter detected by the sensor can be communicated to the logic control unit U which is configured to read said further physical parameter, and activate said alarm if said further physical parameter reaches a further threshold value.
- the sensors described above may comprise a temperature sensor, a voltage sensor, a vibrational sensor, and/or an accelerometer.
- the sensors may comprise one or more temperature sensors able to detect a temperature value of said one or more metal panels 40, and/or a temperature value of said resistive inductive load 30.
- the sensors may comprise a voltage sensor which detects a voltage value of said resistive inductive load 30. Additionally or alternatively, the sensors may comprise a vibrational sensor or an accelerometer for detecting an action of tampering with said power supply device 1.
- the power supply device 1 shown in Figure 1 may further comprise a power circuit 70 electrically connected to said electrical generator 20 for regulating the voltage at the output of said electric generator 20.
- Said power circuits may comprise at least one cooling system, for example with radiators made of black anodized aluminum and suitably cooled by low-noise fans.
- said power supply device 1 may comprise a power circuit 70 for regulating the output voltage, the maximum current and the power, with the aid of SCR diodes which control the duty cycle of the square wave at the output of the power supply device 1 and ensure that the resistive inductive load 30 is powered at its stabilised 220 volt rated voltage.
- the power supply device 1 may further comprise a switchgear 60 adapted to permute the electrical coupling between said resistive inductive load 30 and said electrical generator 20 and a further switchgear (not shown in the figure) for permuting the electrical coupling between said resistive inductive load 30 and said power grid.
- the logic control unit U can determine a first electrical absorption value when said resistive inductive load 30 is powered by the power grid and a second electrical absorption value when said resistive inductive load 30 is powered by said electrical generator. These absorption values can be compared later by the logic control unit U to determine an electricity saving value obtained using the power supply of the power supply device 1.
- the power supply device 1 described above can be an integral part of an Internet of Things (IoT) computer network.
- the computer network may therefore comprise at least one power supply device 1 as described with reference to Figure 1 .
- Said power supply devices 1 may therefore include a communication module (not shown in the figure) coupled to said logic control unit U and adapted to receive/transmit one or more control signals to control and/or check the operation of said at least one power supply device 1.
- a communication module (not shown in the figure) coupled to said logic control unit U and adapted to receive/transmit one or more control signals to control and/or check the operation of said at least one power supply device 1.
- the communication module may be communicatively coupled to a communication interface configured to receive/transmit said one or more control signals from/to said at least one communication module.
- the communication interface may be part of a remote server or remote device that allows the remote control of the device.
- Said communication interface may be coupled to display means, such as for example a display or monitor, configured to present said one or more control signals to an operator/user so as to remotely control the parameters of the power supply device 1 or of the heating system R.
- display means such as for example a display or monitor
- the end operator or end user can remotely control the energy saving system and from his/her smartphone or tablet can check both the electrical parameters and the actual energy savings obtained by the system.
- the parameters may include at least one of an instantaneous voltage, a minimum and maximum voltage, current, the resonance frequency, the active power, the reactive power, a grounding control, a ground-current differential-voltage neutral-ground-temperature resistance, energy savings, the consumption estimate, the cost estimate, the instant, daily, weekly and monthly consumption, the estimate of carbon dioxide present in the environment.
- the communication interface is also able to display an alert message to warn that the instrument has been tampered with.
- object of the invention it is possible to produce energy savings when it is connected to a resistive load, such as for example a heating element of a three-phase industrial oven.
- a second advantage is that said power supply device also makes it possible to overcome the limits of the heating devices of known technology and to obtain the technical results described above.
- a further advantage is that the method for operating said power supply device offers a control on said device, so as to intervene in real time, to optimise the output of the radio frequency generator, in such a way as to detect a specific resonance frequency according to the resistive inductive load applied to the heating system.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Ac-Ac Conversion (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22425051.4A EP4362608A1 (fr) | 2022-10-24 | 2022-10-24 | Dispositif d'alimentation en énergie à économie d'énergie |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22425051.4A EP4362608A1 (fr) | 2022-10-24 | 2022-10-24 | Dispositif d'alimentation en énergie à économie d'énergie |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4362608A1 true EP4362608A1 (fr) | 2024-05-01 |
Family
ID=84569235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22425051.4A Pending EP4362608A1 (fr) | 2022-10-24 | 2022-10-24 | Dispositif d'alimentation en énergie à économie d'énergie |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP4362608A1 (fr) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060118550A1 (en) * | 2003-08-26 | 2006-06-08 | De Rooij Michael A | Dual coil induction heating system |
US20110290787A1 (en) * | 2000-08-18 | 2011-12-01 | The Vollrath Company, L.L.C. | Induction heating and control system and method with high reliability and advanced performance features |
KR101832211B1 (ko) * | 2017-06-15 | 2018-02-26 | 주식회사 아미크론 | 자성 및 비자성 용기 겸용 유도가열 조리기 |
WO2022182066A1 (fr) * | 2021-02-26 | 2022-09-01 | 삼성전자 주식회사 | Dispositif de chauffage pour suivre une fréquence de résonance |
-
2022
- 2022-10-24 EP EP22425051.4A patent/EP4362608A1/fr active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110290787A1 (en) * | 2000-08-18 | 2011-12-01 | The Vollrath Company, L.L.C. | Induction heating and control system and method with high reliability and advanced performance features |
US20060118550A1 (en) * | 2003-08-26 | 2006-06-08 | De Rooij Michael A | Dual coil induction heating system |
KR101832211B1 (ko) * | 2017-06-15 | 2018-02-26 | 주식회사 아미크론 | 자성 및 비자성 용기 겸용 유도가열 조리기 |
WO2022182066A1 (fr) * | 2021-02-26 | 2022-09-01 | 삼성전자 주식회사 | Dispositif de chauffage pour suivre une fréquence de résonance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2413659B1 (fr) | Appareil de cuisson à induction muni d'un capteur de température pour mesurer la température de l'inducteur chauffant ou de la température de cuisson. | |
US8378599B2 (en) | Power transducer | |
CN103036203A (zh) | 保护电路 | |
EP3084944B1 (fr) | Appareil de conversion de courant et procédé de conversion de courant | |
CN108572689B (zh) | 开关电源、过温控制保护方法及功率控制方法 | |
EP4362608A1 (fr) | Dispositif d'alimentation en énergie à économie d'énergie | |
EP2160832A1 (fr) | Système d'attaque de moteur et procédé de protection du dispositif d'attaque de moteur | |
CN216288453U (zh) | 半导体电路 | |
JP2003333873A (ja) | 抵抗器の過熱保護方法 | |
CN103108423B (zh) | 一种单管电磁场发生器 | |
CN111965469A (zh) | 一种通过温度传感器进行避雷器在线监测的方法 | |
US20150003961A1 (en) | Fan system | |
KR102339324B1 (ko) | 전자회로의 온도 예측 및 관리방법 | |
CN210640808U (zh) | 一种设有匹配器的射频功率源装置 | |
JP2009299928A (ja) | 冷凍装置 | |
CN104460900A (zh) | 具有散热控制装置的服务器 | |
JP5094054B2 (ja) | 高周波加熱装置の運転状態を検出する状態検出装置 | |
CN209400093U (zh) | 一种带有测温传感器的igbt及其电磁炉电路 | |
CN113990859A (zh) | 半导体电路 | |
CN112000913A (zh) | 电阻温度辨识方法、斩波控制方法、电子设备和存储介质 | |
CN103175632B (zh) | 电气设备实时温度计算方法和保护装置 | |
CN106532873B (zh) | 一种车载供电电路的控制方法及装置 | |
CN102479125A (zh) | 散热测试装置与其测试方法 | |
CN216672873U (zh) | 变频电源及烹饪设备 | |
JP6227610B2 (ja) | 放熱フィンの目詰まりを検知する機能を有する冷却装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |