EP4359365A1 - Method for treating a silicon carbide fibre - Google Patents

Method for treating a silicon carbide fibre

Info

Publication number
EP4359365A1
EP4359365A1 EP22740948.9A EP22740948A EP4359365A1 EP 4359365 A1 EP4359365 A1 EP 4359365A1 EP 22740948 A EP22740948 A EP 22740948A EP 4359365 A1 EP4359365 A1 EP 4359365A1
Authority
EP
European Patent Office
Prior art keywords
treatment
fiber
ammonia
surface layer
enclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22740948.9A
Other languages
German (de)
French (fr)
Inventor
Adrien Delcamp
Marie LEFEBVRE
Cyril Aymonier
Nicolas BISCAY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Bordeaux
Institut Polytechnique de Bordeaux
Safran Ceramics SA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Bordeaux
Institut Polytechnique de Bordeaux
Safran Ceramics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Bordeaux, Institut Polytechnique de Bordeaux, Safran Ceramics SA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP4359365A1 publication Critical patent/EP4359365A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • C04B35/62863Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • C04B41/5338Etching
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide

Definitions

  • the present invention relates to a process for treating at least one silicon carbide fiber having a surface layer to be removed before forming a coating on the surface of the fiber.
  • Ceramic matrix composite materials (“CMC materials”) have good mechanical properties making them suitable for forming structural elements and advantageously retain these properties at high temperatures. They constitute an interesting alternative compared to the metal parts commonly used, because they allow a lightening of the structure.
  • a CMC material can be produced by producing a fibrous preform whose shape is similar to that of the final part which is then densified by a ceramic matrix.
  • the functioning of a CMC material requires specific management of the interfacial bonds between fibers and matrix, in order to access the damageable nature of the final composite. This modulation of the interfaces is obtained, conventionally by interposition of an interphase between the fiber and the matrix.
  • the use of boron nitride for the interphase can be favored over pyrocarbon (PyC) for its more interesting oxidation behavior.
  • the present invention relates to a process for treating at least one silicon carbide fiber comprising a surface layer comprising carbon and/or a silicon oxycarbide, the treatment comprising at least the elimination of the surface layer of the fiber by in contact with an ammonia phase at a temperature greater than or equal to 100°C and at a pressure greater than or equal to 1 bar.
  • ammonia phase can be in the gaseous, liquid or supercritical state.
  • the use of a supercritical ammonia phase has advantages.
  • the kinetics of elimination of the carbonaceous species present on the surface of the fibers is distinctly higher in supercritical conditions due to the combination of the application of a high temperature and a high concentration of ammonia, this combination favoring the reaction.
  • a gaseous phase or a liquid phase only one of these two effects is used: high temperature but with a low concentration of ammonia in the case of gaseous treatment, or high concentration but with a low temperature during the treatment.
  • use of a liquid phase which results in lower processing speeds.
  • the use of supercritical ammonia will remove surface carbon and other oxide contaminants if present which will no longer adhere and will be evacuated.
  • the use of supercritical ammonia has the advantage of being recycled, returning to its starting state after treatment and thus allowing the recovery of ammonia which can then be reused, while high temperature ammonia gas cracks into by-products that are not reusable.
  • These by-products like HCN also need to be neutralized in the effluents, a treatment that can be dispensed with when supercritical ammonia is used.
  • the supercritical phase treatment allows a more efficient and simpler treatment of the silicon carbide fiber.
  • the removal of the surface layer is carried out in a treatment chamber, and the treatment further comprises, after this removal, the formation of a coating on said at least one fiber, in the treatment, from a treatment medium comprising at least ammonia.
  • This characteristic advantageously makes it possible to carry out the steps of removal of heterogeneities and of coating in the same enclosure, which makes it possible to dispense with putting the fiber back into the ambient air and to reduce handling. This also makes it possible to avoid any risk of functionalization of the extreme surface of the fibers and to obtain even better adhesion of the coating to the fibers.
  • ammonia is used in both cases, which makes it possible to eliminate any problem of chemical compatibility between the two stages.
  • the temperature of the ammonia phase may be greater than or equal to 600°C, for example between 600°C and 1600°C.
  • the temperature of the ammonia phase can be between 800° C. and 1200° C.
  • the pressure of the ammonia phase can be between 100 bar and 150 bar.
  • the pressure of the ammonia phase can be higher than the critical pressure.
  • said at least one fiber is heated by microwaves during the treatment.
  • the microwave field makes it possible to bring the surface of the treated fiber to a sufficient temperature to locally achieve the desired conditions.
  • the microwave field makes it possible to heat the fiber as a whole in order to ensure a homogeneous treatment.
  • the energy required to treat the fiber is reduced, because the fiber is heated directly and no longer the entire treatment enclosure.
  • another means of heating such as heating by radiation of a susceptor.
  • said at least one fiber circulates through a treatment enclosure during the treatment.
  • the circulation of the fiber in the treatment enclosure can take place in the same direction or in counter-current to a circulation of the ammonia phase or of the treatment medium.
  • ammonia phase as described above, which makes it possible to accelerate the kinetics, is particularly advantageous for carrying out the treatment continuously on a fiber traveling through the treatment enclosure, and thus greatly improving the treatment rates.
  • said at least one fiber is made of silicon carbide having an oxygen content less than or equal to 1% in atomic percentage.
  • the invention also relates to a process for manufacturing a part made of composite material, comprising at least the formation of a matrix in the porosity of a fibrous reinforcement, the fibers of the fibrous reinforcement having been treated by implementing a process as described above.
  • the fibrous reinforcement can be obtained after treating a plurality of fibers in the manner described above.
  • the fibrous reinforcement can first be formed from a plurality of fibers, then this reinforcement is treated in the manner described above.
  • the composite material part can for example be a turbomachine part, for example a turbomachine blade or a turbine ring sector.
  • FIG. 1 schematically represents the treatment of a fiber in a treatment enclosure within the framework of an example of a method according to the invention.
  • Figure 2 is a sectional view showing, schematically, the structure of a silicon carbide fiber initially having a surface layer.
  • Figure 3 is a sectional view showing, schematically, the structure of the silicon carbide fiber of Figure 2 after removal of the surface layer and before deposition of the coating.
  • Figure 4 is a cross-sectional view showing, schematically, the structure of the coated treated fiber.
  • FIG. 5 schematically represents an example of a processing installation that can be used for implementing the method according to the invention.
  • FIG. 1 There is shown in FIG. 1 the treatment of a fiber 16 making it possible to treat its surface in order to eliminate heterogeneities with a view to then coating it in the same enclosure with a coating, for example with an interphase of boron nitride.
  • the treated fiber is made of silicon carbide optionally having an oxygen content less than or equal to 1% in atomic percentage.
  • silicon carbide optionally having an oxygen content less than or equal to 1% in atomic percentage.
  • Si-C-O fibers which have a higher oxygen content can be treated.
  • FIG. 2 very schematically illustrates the section of a fiber 16 of silicon carbide, before the pre-treatment.
  • the fiber 16 has a surface layer 12 comprising a silicon oxycarbide (compound based on silicon, carbon and oxygen) and/or carbon which it is preferable to remove before depositing the coating.
  • the surface layer 12 can be enriched in carbon with respect to the stoichiometry of silicon carbide.
  • the surface layer 12 may be mainly formed of carbon, with an atomic proportion of carbon in the surface layer 12 greater than 50%, for example greater than or equal to 60%.
  • the thickness el2 of the surface layer 12 may generally be between 1 nm and 1 mm, for example between 1 nm and 1 ⁇ m.
  • Silicon carbide fiber 16 consists of a silicon carbide core 11 and a surface layer 12 located close to the surface of fiber 16.
  • Surface layer 12 has a heterogeneous surface state. The surface layer 12 may be responsible for a reduction in the quality of the adhesion of the fiber to a coating covering it.
  • the fiber 16 circulates through a treatment enclosure 10 in the direction shown by the arrow D in FIG. 1 during the treatment.
  • the processing of the fiber can be carried out continuously without interrupting the movement of the fiber.
  • the fiber can be treated segment by segment, the segment to be treated being immobilized in the treatment chamber 10 and the surface layer of the fiber being eliminated, then an adjacent fiber segment 16 being introduced into the chamber 10 so as to to eliminate the surface layer of this adjacent segment.
  • the treated fiber 16 is unwound from a reel (not shown), passes through the treatment enclosure 10 and is then wound up in the form of a reel after treatment.
  • the running speed of the fiber 16 in the treatment enclosure 10 can be between 0.1 cm/s and 50 cm/s.
  • the treatment enclosure 10 is filled with a fluid medium 20 comprising ammonia, for example consisting essentially of ammonia.
  • the fluid medium 20 can be in liquid form.
  • the fluid medium 20 can be pressurized, for example at a pressure greater than or equal to the critical pressure of ammonia.
  • the fiber 16 is immersed in the fluid medium 20 during its treatment in the enclosure treatment 10.
  • the fiber 16 is heated directly, for example by applying a microwave field. The heating makes it possible to increase the temperature at least in the vicinity of the fiber 16, in order to obtain the ammonia phase 22 useful for the treatment.
  • the ammonia phase 22 carrying out the treatment has a temperature greater than or equal to 100° C. and a pressure greater than or equal to 1 bar.
  • the surface layer 12 can be removed by bringing the fiber 16 into contact with the ammonia phase at a temperature between 600° C. and 1600° C. and a pressure between 1 bar and 300 bar.
  • the temperature of the ammonia phase can be greater than or equal to 800°C.
  • the pressure of the ammonia phase can be greater than or equal to 100 bar, for example between 100 bar and 150 bar.
  • the fiber 16 can first be brought into contact with ammonia under pressure, at a pressure between 1 bar and 300 bar, then the heating of the fiber can be carried out so as to bring the ammonia to the desired temperature. and thus proceed to the elimination of the surface layer 12.
  • the ammonia may or may not be injected continuously into the enclosure 10 during the treatment.
  • a ratio [fluid medium flow introduced into the enclosure] / [volume of the enclosure] greater than or equal to 0, 00016 s 1 , for example between 0.0016 s 1 and 0.016 s 1 or between 0.0016 s 1 and 0.16 s 1 .
  • the surface carbon of the fiber 16 can react with the ammonia so as to form hydrogen cyanide (HCN) which is evacuated. Oxycarbon compounds are also eliminated by the ammonia medium.
  • the fiber 11 is thus obtained with an improved surface condition, for example free of heterogeneities, which is illustrated in FIG. 3, which is intended to be subsequently coated.
  • the duration of the treatment for eliminating the surface layer 12 can be greater than or equal to 10 seconds, for example between 5 minutes and 30 minutes.
  • a coating can be formed on the fiber, in the enclosure treatment 10, from a treatment medium comprising at least a precursor of the coating to be formed dissolved in ammonia.
  • the treatment medium can be in the gaseous, liquid or supercritical state.
  • Ammonia can be the solvent for the precursor of the coating to be formed. It is thus possible, for example, to deposit a boron nitride interphase, from a fluid medium comprising borazane (or “ammonia borane” in the Anglo-Saxon literature, of chemical formula BH 3 NH 3 ) dissolved in ammonia.
  • a temperature of the treatment medium may be greater than or equal to 600° C., for example between 600° C. and 1600° C., and a pressure of the treatment medium may be greater than or equal to 10 bar, for example between 10 bar and 300 bar.
  • the temperature of the treatment medium may in particular be greater than or equal to 800° C. or greater than or equal to 900° C., for example between 800° C. and 1600° C. or between 900° C. and 1600° C., and the pressure of the treatment medium may be greater than or equal to 100 bar, for example between 100 bar and 150 bar.
  • the fluid medium comprising the precursor of the coating can flow continuously through the treatment enclosure 10, or alternatively the treatment enclosure 10 can be initially filled with the fluid medium and the treatment can then be carried out without the fluid medium is introduced into the enclosure or evacuated.
  • a ratio [flow rate of fluid medium introduced into the enclosure] / [volume of the enclosure] greater than or equal at 0.00016 s 1 , for example between 0.0016 s 1 and 0.016 s 1 or between 0.0016 s 1 and 0.16 s 1 .
  • the fluid medium can be introduced into the enclosure 10 during all or part of the treatment with a flow rate comprised between 0.1 mL/minute and 10 mL/minute, for example comprised between 0.1 mL/minute and 3 mL/minute.
  • the molar concentration of coating precursor in the fluid medium 20 may be greater than or equal to 0.001 mol/L, for example between 0.001 mol/L and 10 mol/L.
  • the interphase 24 may have a thickness e24 greater than or equal to 1 nm, for example greater than or equal to 10 nm (see FIG. 4). This thickness e24 can be between 10 nm and 1 mm, for example between 10 nm and 10 ⁇ m.
  • the interphase 24 obtained has a controlled and homogeneous thickness over the entire circumference of the treated fiber with a boron:nitrogen stoichiometric ratio close to unity.
  • the boron nitride obtained may be crystalline.
  • the use of a crystalline material is advantageous in order to increase the deflection properties of the cracks.
  • a hexagonal boron nitride interphase can be obtained.
  • the duration of the fiber coating treatment can be greater than or equal to 10 seconds, for example between 5 minutes and 30 minutes or between 1 minute and 10 minutes.
  • a boron nitride interphase in the treatment enclosure 10 from a medium comprising ammonia has just been described.
  • Other types of coatings can be envisaged, such as the deposition of a coating of tantalum nitride (TaN) from a treatment medium comprising, for example, Tris(diethylamino)(tert-butylimino)tantalum TBTDET dissolved in the ammonia.
  • the temperature of the treatment medium can be greater than or equal to 200° C., for example between 200° C. and 1600° C.
  • the pressure of the treatment medium can be greater than or equal to 10 bar, for example between 10 bar and 300 bar.
  • the advantage of this treatment is to carry out the steps of removal of the heterogeneities and of coating in the same enclosure 10 which makes it possible to dispense with putting the fiber back into the ambient air and to reduce handling.
  • ammonia is also used to form the coating, which makes it possible to eliminate any problem of chemical compatibility between the two stages.
  • the treatment chamber 10 can be cleaned by injecting pressurized liquid ammonia at a flow rate of between 0.5 mL/minute and 10 mL/minute in order to remove the excess precursor having no not reacted.
  • FIG. 5 which will be described below illustrates, more completely, an example of an installation which can be implemented for carrying out a method according to the invention.
  • the installation 1 illustrated in FIG. 5 comprises a syringe pump 4, making it possible to work at a constant flow rate or pressure. It further comprises a device for generating microwaves making it possible to heat the fiber 11 by means of this radiation as well as a tube 9 made of a material transparent to the microwaves containing the fiber 11 to be heated.
  • the installation 1 comprises a pressure regulator 15 which makes it possible to fix the pressure in the whole of the device when the syringe pump operates at a constant flow rate.
  • the reservoir 6 is initially filled with the borazane and then connected to the rest of the device.
  • the syringe pump 4 is filled with the solvent and cooled by means of a cryostat.
  • the syringe pump 4 is then opened, the valves 7, 8, 13 and 14 being closed.
  • the syringe pump operates at constant pressure and thus fills reservoir 6 with ammonia at working pressure.
  • the tank valve 5 is then closed and the valve 7 opened, which puts the entire device under pressure.
  • valve 13 is opened and the syringe pump is used in constant flow mode. The pressure is thus fixed by means of the pressure regulator 15.
  • valve 7 is closed and the tank valve 5 and the valve 8 are opened to inject the solution composed of borazane and solvent into the treatment enclosure 10.
  • the microwave heating device is used to bring the fiber 11 contained in the enclosure 10 to the working temperature for a given time.
  • pressurized solvent is injected (by means of the syringe pump) to evacuate any traces of precursor that may remain.
  • a mode of similar operation is used for ammonia phase treatment, to remove the surface layer without the use of borazane.
  • each fiber may be in the form of a roving comprising a plurality of filaments. It does not depart from the scope of the invention either if one treats either one fiber or several fibers not bonded together but an already formed texture comprising a plurality of fibers, mobile or immobile in the treatment enclosure.
  • the fibers can be treated in any form whatsoever, for example yarns, rovings, strands, cables, fabrics, felts, mats and even two- or three-dimensional textures.
  • the fibers treated according to the method of the invention can advantageously be used for the production of fiber preforms of composite material parts. The conditions which have been described above for the treatment remain applicable whatever the form in which the fiber or fibers are treated.
  • Fibers obtained after the treatment described above can then be used to form a fibrous preform of the part to be obtained.
  • the formation of the fibrous preform makes use of textile operations which are known per se, for example weaving, possibly three-dimensional weaving.
  • the preform can for example have an "interlock" weave, that is to say a weave weave in which each layer of weft yarns binds several layers of warp with all the threads of the same weft column having the same movement in the plane of the weave.
  • Other types of three-dimensional weaving could of course be used to manufacture the preform.
  • the preform is first formed from fibers, then the fibers of the preform thus obtained are treated as described above.
  • the method can continue with the formation of at least one matrix phase in the pores of the fibrous preform, the fibers of which have been treated as described above.
  • the matrix obtained may be at least partially made of ceramic, for example mainly in ceramic mass, for example entirely made of ceramic.
  • the formation of the matrix implements techniques which are known per se, being for example carried out by liquid densification technique (impregnation with a precursor resin of the matrix and transformation by crosslinking and pyrolysis, the process being able to be repeated) or by a gaseous route (chemical infiltration in the vapor phase of the matrix), or even by a technique of infiltration in the molten state (“Melt-Infiltration”; “MI”).
  • the invention applies in particular to the production of parts in composite material with a ceramic matrix formed by a fibrous reinforcement in silicon carbide fibers densified by a ceramic matrix, in particular carbide, nitride or refractory oxide.
  • CMC materials are SiC-SiC materials (silicon carbide fiber reinforcement and silicon carbide matrix).
  • the part obtained can be a turbomachine, aeronautical or industrial part.
  • This part can be a turbomachine blade or a turbine ring sector, for example.
  • a fiber was passed through a processing chamber 10 shown schematically in FIG. 1 which had a volume of 1 cm 3 .
  • the treated fiber was a silicon carbide fiber with an oxygen content less than or equal to 1% in atomic percentages, corresponding to a fiber marketed under the reference “Hi-Nicalon S”.
  • the fiber had on the surface before treatment a superficial layer 12 having a thickness of approximately 100 nm.
  • a fiber pre-treatment step was first carried out by subjecting it in the enclosure 10 to a supercritical ammonia phase.
  • the fiber was heated by a microwave field bringing it to a temperature of 1000°C and the supercritical ammonia phase was brought to a pressure of 120 bar.
  • Ammonia was injected into the treatment enclosure continuously during the pre-treatment with a flow rate of 6 mL/min and the fiber moved at a speed of 30 cm/minute. There was thus obtained a pickled surface of silicon carbide fiber as shown in Figure 3.
  • the boron nitride interphase was then deposited on the fiber thus pickled in the same treatment enclosure.
  • the fiber moved through the treatment chamber at a speed of 30 cm/minute.
  • a mixture of ammonia and borazane present in a molar concentration of 1 moL/L in the mixture was introduced continuously into the treatment enclosure with a flow rate of 1 mL/min.
  • the surface of the fiber was brought to a temperature of 1100°C by the microwave field and the fluid medium was at a pressure of 120 bar.
  • the treatment was carried out for a period of 15 minutes and a BN interphase of 1000 nm was thus obtained on the surface of the silicon carbide fiber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Inorganic Fibers (AREA)

Abstract

The invention relates to a method for treating at least one silicon carbide fibre (16) comprising a surface layer containing carbon and/or a silicon oxycarbide, wherein the treatment comprises at least removing the surface layer from the fibre by contacting with an ammonia phase (22) in the supercritical state.

Description

Description Description
Titre de l'invention : Procédé de traitement d'une fibre de carbure de silicium Title of the invention: Process for the treatment of a silicon carbide fiber
Domaine Technique Technical area
La présente invention concerne un procédé de traitement d'au moins une fibre en carbure de silicium ayant une couche superficielle à éliminer avant formation d'un revêtement sur la surface de la fibre. The present invention relates to a process for treating at least one silicon carbide fiber having a surface layer to be removed before forming a coating on the surface of the fiber.
Technique antérieure Prior technique
Les matériaux composites à matrice céramique (« matériaux CMC ») présentent de bonnes propriétés mécaniques les rendant aptes à constituer des éléments de structures et conservent avantageusement ces propriétés à températures élevées. Ils constituent une alternative intéressante par rapport aux pièces métalliques couramment utilisées, car ils permettent un allégement de la structure. Ceramic matrix composite materials (“CMC materials”) have good mechanical properties making them suitable for forming structural elements and advantageously retain these properties at high temperatures. They constitute an interesting alternative compared to the metal parts commonly used, because they allow a lightening of the structure.
Un matériau CMC peut être réalisé par élaboration d'une préforme fibreuse dont la forme est similaire à celle de la pièce finale qui est ensuite densifiée par une matrice céramique. Le fonctionnement d'un matériau CMC nécessite une gestion spécifique des liaisons interfaciales entre fibres et matrice, afin d'accéder au caractère endommageable du composite final. Cette modulation des interfaces est obtenue, classiquement par interposition d'une interphase entre la fibre et la matrice. Dans le cadre d'applications thermostructurales, l'emploi de nitrure de bore pour l'interphase peut être privilégié par rapport au pyrocarbone (PyC) pour son comportement à l'oxydation plus intéressant. A CMC material can be produced by producing a fibrous preform whose shape is similar to that of the final part which is then densified by a ceramic matrix. The functioning of a CMC material requires specific management of the interfacial bonds between fibers and matrix, in order to access the damageable nature of the final composite. This modulation of the interfaces is obtained, conventionally by interposition of an interphase between the fiber and the matrix. In the context of thermostructural applications, the use of boron nitride for the interphase can be favored over pyrocarbon (PyC) for its more interesting oxidation behavior.
Il est connu qu'avant l'étape de dépôt d'interphase, un traitement de la surface des fibres visant à retirer les hétérogénéités présentes en surface permet d'améliorer significativement les propriétés du matériau composite final. On connaît en particulier US 2018194686A1. Ce document divulgue une méthode de décapage de la surface de fibres SiC de type « Hi-Nicalon S » préalable à la formation d’une interphase. Dans cette méthode, il y a tout d’abord oxydation de la surface des fibres afin de former une couche de silice de surface, puis traitement par un milieu liquide acide comprenant au moins de l’acide fluorhydrique (HF) afin d’éliminer la couche de silice formée. On obtient, après ce traitement, des fibres décapées ayant une surface homogène de carbure de silicium conférant une liaison améliorée de la fibre traitée à l'interphase déposée. Cette solution fournit des résultats satisfaisants. Toutefois, la compatibilité environnementale de cette méthode, mettant en œuvre de l'acide HF, pourrait être améliorée. En outre, cette méthode nécessitant la réalisation de différentes étapes de manipulation des fibres : rinçages et séchages des fibres traitées ou déplacements des fibres d'une enceinte à une autre, il serait souhaitable de disposer d'un traitement plus simple et rapide à réaliser. It is known that before the interphase deposition step, a treatment of the surface of the fibers aimed at removing the heterogeneities present on the surface makes it possible to significantly improve the properties of the final composite material. In particular, US 2018194686A1 is known. This document discloses a method for pickling the surface of SiC fibers of the “Hi-Nicalon S” type prior to the formation of an interphase. In this method, there is first oxidation of the surface of the fibers in order to form a layer of surface silica, then treatment with an acidic liquid medium comprising at least hydrofluoric acid (HF) in order to eliminate the silica layer formed. After this treatment, pickled fibers are obtained having a homogeneous surface of silicon carbide conferring improved bonding of the treated fiber to the deposited interphase. This solution provides satisfactory results. However, the environmental compatibility of this method, using HF acid, could be improved. In addition, this method requiring the performance of different fiber handling steps: rinsing and drying of the treated fibers or movement of the fibers from one enclosure to another, it would be desirable to have a treatment that is simpler and quicker to perform.
Exposé de l'invention Disclosure of Invention
La présente invention vise un procédé de traitement d'au moins une fibre de carbure de silicium comprenant une couche superficielle comprenant du carbone et/ou un oxycarbure de silicium, le traitement comprenant au moins l'élimination de la couche superficielle de la fibre par mise en contact avec une phase d'ammoniac à une température supérieure ou égale à 100°C et à une pression supérieure ou égale à 1 bar. The present invention relates to a process for treating at least one silicon carbide fiber comprising a surface layer comprising carbon and/or a silicon oxycarbide, the treatment comprising at least the elimination of the surface layer of the fiber by in contact with an ammonia phase at a temperature greater than or equal to 100°C and at a pressure greater than or equal to 1 bar.
A la connaissance des inventeurs, l'emploi d'une telle phase d'ammoniac pour éliminer la couche superficielle comprenant les hétérogénéités de surface n'est pas connu ou suggéré dans la littérature. Cette solution fournit de bons résultats pour éliminer la couche superficielle de la fibre, qui est responsable d'une baisse d'adhésion d'un revêtement formé sur celle-ci, en s'affranchissant de l'emploi de composés toxiques. La phase d'ammoniac peut être à l'état gazeux, liquide ou supercritique. To the knowledge of the inventors, the use of such an ammonia phase to eliminate the surface layer comprising the surface heterogeneities is not known or suggested in the literature. This solution provides good results for eliminating the surface layer of the fiber, which is responsible for a drop in adhesion of a coating formed thereon, by dispensing with the use of toxic compounds. The ammonia phase can be in the gaseous, liquid or supercritical state.
L'emploi d'une phase d'ammoniac supercritique présente des avantages. La cinétique d'élimination des espèces carbonées présentes en surface des fibres est nettement supérieure en condition supercritique du fait de la combinaison de l'application d'une haute température et d'une haute concentration d'ammoniac, cette combinaison favorisant la réaction. Dans les techniques utilisant une phase gazeuse ou une phase liquide, un seul de ces deux effets est employé : la haute température mais avec une faible concentration en ammoniac dans le cas du traitement gazeux, ou la haute concentration mais avec une faible température lors de l'emploi d'une phase liquide, ce qui donne des vitesses de traitement inférieures. En outre, l'emploi d'ammoniac supercritique va éliminer le carbone de surface et d'autres pollutions oxydes si elles sont présentes qui ne seront plus adhérentes et seront évacuées. Par rapport à l'emploi d'ammoniac gazeux, l'emploi d'ammoniac supercritique présente l'avantage de se recycler, en revenant à son état de départ après le traitement et permettant ainsi la récupération d'ammoniac qui peut alors être réutilisé, alors que l'ammoniac gazeux à haute température se craque en des sous-produits qui ne sont pas réutilisables. Ces sous-produits (comme le HCN) nécessitent d'ailleurs d'être neutralisés dans les effluents, traitement dont on peut s'affranchir lorsque de l'ammoniac supercritique est utilisé. Ainsi, le traitement en phase supercritique permet un traitement plus performant et plus simple de la fibre de carbure de silicium. The use of a supercritical ammonia phase has advantages. The kinetics of elimination of the carbonaceous species present on the surface of the fibers is distinctly higher in supercritical conditions due to the combination of the application of a high temperature and a high concentration of ammonia, this combination favoring the reaction. In the techniques using a gaseous phase or a liquid phase, only one of these two effects is used: high temperature but with a low concentration of ammonia in the case of gaseous treatment, or high concentration but with a low temperature during the treatment. use of a liquid phase, which results in lower processing speeds. Additionally, the use of supercritical ammonia will remove surface carbon and other oxide contaminants if present which will no longer adhere and will be evacuated. Compared to the use of gaseous ammonia, the use of supercritical ammonia has the advantage of being recycled, returning to its starting state after treatment and thus allowing the recovery of ammonia which can then be reused, while high temperature ammonia gas cracks into by-products that are not reusable. These by-products (like HCN) also need to be neutralized in the effluents, a treatment that can be dispensed with when supercritical ammonia is used. Thus, the supercritical phase treatment allows a more efficient and simpler treatment of the silicon carbide fiber.
Dans un exemple de réalisation, l'élimination de la couche superficielle est réalisée dans une enceinte de traitement, et le traitement comprend en outre, après cette élimination, la formation d'un revêtement sur ladite au moins une fibre, dans l'enceinte de traitement, à partir d'un milieu de traitement comprenant au moins de l'ammoniac. In an exemplary embodiment, the removal of the surface layer is carried out in a treatment chamber, and the treatment further comprises, after this removal, the formation of a coating on said at least one fiber, in the treatment, from a treatment medium comprising at least ammonia.
Cette caractéristique permet avantageusement de réaliser les étapes de retrait des hétérogénéités et de revêtement dans la même enceinte, ce qui permet de s'affranchir d'une remise à l'air ambiant de la fibre et de réduire les manipulations. Cela permet aussi d'éviter tout risque de fonctionnalisation de l'extrême surface des fibres et d'obtenir une meilleure accroche encore du revêtement sur les fibres. En outre, on utilise de l'ammoniac dans les deux cas ce qui permet de supprimer toute problématique de compatibilité chimique entre les deux étapes. This characteristic advantageously makes it possible to carry out the steps of removal of heterogeneities and of coating in the same enclosure, which makes it possible to dispense with putting the fiber back into the ambient air and to reduce handling. This also makes it possible to avoid any risk of functionalization of the extreme surface of the fibers and to obtain even better adhesion of the coating to the fibers. In addition, ammonia is used in both cases, which makes it possible to eliminate any problem of chemical compatibility between the two stages.
Dans un exemple de réalisation, la température de la phase d'ammoniac peut être supérieure ou égale à 600°C, par exemple comprise entre 600°C et 1600°C. In an exemplary embodiment, the temperature of the ammonia phase may be greater than or equal to 600°C, for example between 600°C and 1600°C.
La mise en œuvre d'une telle température est avantageuse car elle permet d'activer davantage la réaction entre le carbone et l'ammoniac et donc d'augmenter la cinétique du traitement. The implementation of such a temperature is advantageous because it makes it possible to further activate the reaction between the carbon and the ammonia and therefore to increase the kinetics of the treatment.
En particulier, la température de la phase d'ammoniac peut être comprise entre 800°C et 1200°C, et la pression de la phase d'ammoniac peut être comprise entre 100 bar et 150 bar. D'une manière générale, la pression de la phase d'ammoniac peut être supérieure à la pression critique. In particular, the temperature of the ammonia phase can be between 800° C. and 1200° C., and the pressure of the ammonia phase can be between 100 bar and 150 bar. In general, the pressure of the ammonia phase can be higher than the critical pressure.
Une telle caractéristique permet de rendre le traitement compatible d'une réalisation à l'échelle industrielle. Such a characteristic makes it possible to make the processing compatible with production on an industrial scale.
Dans un exemple de réalisation, ladite au moins une fibre est chauffée par micro¬ ondes durant le traitement. In an exemplary embodiment, said at least one fiber is heated by microwaves during the treatment.
Le champ micro-ondes permet de porter la surface de la fibre traitée à une température suffisante permettant d'atteindre localement les conditions souhaitées. Le champ micro-ondes permet de chauffer la fibre dans son ensemble afin d'assurer un traitement homogène. En outre, l'énergie nécessaire pour traiter la fibre est réduite, car on chauffe directement la fibre et non plus l'enceinte de traitement en entier. On ne sort néanmoins pas du cadre de l'invention si un autre moyen de chauffage est utilisé, comme un chauffage par rayonnement d'un suscepteur. The microwave field makes it possible to bring the surface of the treated fiber to a sufficient temperature to locally achieve the desired conditions. The microwave field makes it possible to heat the fiber as a whole in order to ensure a homogeneous treatment. In addition, the energy required to treat the fiber is reduced, because the fiber is heated directly and no longer the entire treatment enclosure. However, it does not depart from the scope of the invention if another means of heating is used, such as heating by radiation of a susceptor.
Dans un exemple de réalisation, ladite au moins une fibre circule au travers d'une enceinte de traitement durant le traitement. La circulation de la fibre dans l'enceinte de traitement peut se faire dans le même sens ou à contre-courant d'une circulation de la phase d'ammoniac ou du milieu de traitement. In an exemplary embodiment, said at least one fiber circulates through a treatment enclosure during the treatment. The circulation of the fiber in the treatment enclosure can take place in the same direction or in counter-current to a circulation of the ammonia phase or of the treatment medium.
L'emploi d'une phase d'ammoniac telle que décrite plus haut qui permet d'accélérer la cinétique est particulièrement avantageux pour réaliser le traitement en continu sur une fibre défilant dans l'enceinte de traitement, et ainsi améliorer fortement les cadences de traitement. The use of an ammonia phase as described above, which makes it possible to accelerate the kinetics, is particularly advantageous for carrying out the treatment continuously on a fiber traveling through the treatment enclosure, and thus greatly improving the treatment rates. .
Dans un exemple de réalisation, ladite au moins une fibre est en carbure de silicium présentant une teneur en oxygène inférieure ou égale à 1% en pourcentage atomique. In an exemplary embodiment, said at least one fiber is made of silicon carbide having an oxygen content less than or equal to 1% in atomic percentage.
L'invention vise également un procédé de fabrication d'une pièce en matériau composite, comprenant au moins la formation d'une matrice dans la porosité d'un renfort fibreux, les fibres du renfort fibreux ayant été traitées par mise en œuvre d'un procédé tel que décrit plus haut. The invention also relates to a process for manufacturing a part made of composite material, comprising at least the formation of a matrix in the porosity of a fibrous reinforcement, the fibers of the fibrous reinforcement having been treated by implementing a process as described above.
On notera que le renfort fibreux peut être obtenu après traitement d'une pluralité de fibres de la manière décrite plus haut. En variante, le renfort fibreux peut d'abord être formé à partir d'une pluralité de fibres, puis ce renfort est traité de la manière décrite plus haut. It will be noted that the fibrous reinforcement can be obtained after treating a plurality of fibers in the manner described above. Alternatively, the fibrous reinforcement can first be formed from a plurality of fibers, then this reinforcement is treated in the manner described above.
La pièce en matériau composite peut par exemple être une pièce de turbomachine, par exemple une aube de turbomachine ou un secteur d'anneau de turbine. The composite material part can for example be a turbomachine part, for example a turbomachine blade or a turbine ring sector.
Brève description des dessins Brief description of the drawings
[Fig. 1] La figure 1 représente, de manière schématique, le traitement d'une fibre dans une enceinte de traitement dans le cadre d'un exemple de procédé selon l'invention. [Fig. 1] FIG. 1 schematically represents the treatment of a fiber in a treatment enclosure within the framework of an example of a method according to the invention.
[Fig. 2] La figure 2 est une vue en coupe représentant, de manière schématique, la structure d'une fibre de carbure de silicium ayant initialement une couche superficielle. [Fig. 2] Figure 2 is a sectional view showing, schematically, the structure of a silicon carbide fiber initially having a surface layer.
[Fig. 3] La figure 3 est une vue en coupe représentant, de manière schématique, la structure de la fibre de carbure de silicium de la figure 2 après élimination de la couche superficielle et avant dépôt du revêtement. [Fig. 3] Figure 3 is a sectional view showing, schematically, the structure of the silicon carbide fiber of Figure 2 after removal of the surface layer and before deposition of the coating.
[Fig. 4] La figure 4 est une vue en coupe représentant, de manière schématique, la structure de la fibre traitée revêtue. [Fig. 4] Figure 4 is a cross-sectional view showing, schematically, the structure of the coated treated fiber.
[Fig. 5] La figure 5 représente, de manière schématique, un exemple d'installation de traitement utilisable pour la mise en œuvre du procédé selon l'invention. [Fig. 5] FIG. 5 schematically represents an example of a processing installation that can be used for implementing the method according to the invention.
Description des modes de réalisation Description of embodiments
On a représenté à la figure 1 le traitement d'une fibre 16 permettant de traiter sa surface afin d'éliminer les hétérogénéités en vue de la revêtir ensuite dans la même enceinte par un revêtement, par exemple par une interphase de nitrure de bore.There is shown in FIG. 1 the treatment of a fiber 16 making it possible to treat its surface in order to eliminate heterogeneities with a view to then coating it in the same enclosure with a coating, for example with an interphase of boron nitride.
La fibre traitée est en carbure de silicium présentant éventuellement une teneur en oxygène inférieure ou égale à 1% en pourcentage atomique. A titre d'exemple de telles fibres, on peut citer les fibres commercialisées sous la référence « Hi-Nicalon S » ou « Hi-Nicalon ». On peut en variante traiter des fibres Si-C-0 qui présentent une teneur en oxygène supérieure. A titre d'exemple de telles fibres, on peut citer les fibres commercialisées sous la référence « Nicalon ». La figure 2 illustre très schématiquement la section d'une fibre 16 de carbure de silicium, avant le pré-traitement. La fibre 16 présente une couche superficielle 12 comprenant un oxycarbure de silicium (composé à base de silicium, de carbone et d'oxygène) et/ou du carbone qu'il est préférable d'éliminer avant dépôt de du revêtement. La couche superficielle 12 peut être enrichie en carbone par rapport à la stoechiométrie du carbure de silicium. La couche superficielle 12 peut être majoritairement formée de carbone, avec une proportion atomique en carbone dans la couche superficielle 12 supérieure à 50%, par exemple supérieure ou égale à 60%. L'épaisseur el2 de la couche superficielle 12 peut être généralement comprise entre 1 nm et 1 mm, par exemple entre 1 nm et 1 pm. La fibre de carbure de silicium 16 est constituée d'un cœur 11 en carbure de silicium et d'une couche superficielle 12 située au voisinage de la surface de la fibre 16. La couche superficielle 12 présente un état de surface hétérogène. La couche superficielle 12 peut être responsable d'une diminution de la qualité de l'adhésion de la fibre à un revêtement la recouvrant. The treated fiber is made of silicon carbide optionally having an oxygen content less than or equal to 1% in atomic percentage. By way of example of such fibers, mention may be made of the fibers marketed under the reference “Hi-Nicalon S” or “Hi-Nicalon”. As an alternative, Si-C-O fibers which have a higher oxygen content can be treated. By way of example of such fibers, mention may be made of the fibers marketed under the reference “Nicalon”. FIG. 2 very schematically illustrates the section of a fiber 16 of silicon carbide, before the pre-treatment. The fiber 16 has a surface layer 12 comprising a silicon oxycarbide (compound based on silicon, carbon and oxygen) and/or carbon which it is preferable to remove before depositing the coating. The surface layer 12 can be enriched in carbon with respect to the stoichiometry of silicon carbide. The surface layer 12 may be mainly formed of carbon, with an atomic proportion of carbon in the surface layer 12 greater than 50%, for example greater than or equal to 60%. The thickness el2 of the surface layer 12 may generally be between 1 nm and 1 mm, for example between 1 nm and 1 μm. Silicon carbide fiber 16 consists of a silicon carbide core 11 and a surface layer 12 located close to the surface of fiber 16. Surface layer 12 has a heterogeneous surface state. The surface layer 12 may be responsible for a reduction in the quality of the adhesion of the fiber to a coating covering it.
Dans l'exemple considéré, la fibre 16 circule au travers d'une enceinte de traitement 10 dans le sens matérialisé par la flèche D à la figure 1 durant le traitement. Le traitement de la fibre peut être réalisé en continu sans interruption du mouvement de la fibre. On peut en variante traiter la fibre segment par segment, le segment à traiter étant immobilisé dans l'enceinte de traitement 10 et la couche superficielle de la fibre étant éliminée, puis un segment de fibre 16 adjacent étant introduit dans l'enceinte 10 de sorte à éliminer la couche superficielle de ce segment adjacent.In the example considered, the fiber 16 circulates through a treatment enclosure 10 in the direction shown by the arrow D in FIG. 1 during the treatment. The processing of the fiber can be carried out continuously without interrupting the movement of the fiber. As a variant, the fiber can be treated segment by segment, the segment to be treated being immobilized in the treatment chamber 10 and the surface layer of the fiber being eliminated, then an adjacent fiber segment 16 being introduced into the chamber 10 so as to to eliminate the surface layer of this adjacent segment.
La fibre 16 traitée est déroulée depuis une bobine (non représentée), passe dans l'enceinte de traitement 10 puis est enroulée sous forme de bobine après traitement. La vitesse de défilement de la fibre 16 dans l'enceinte de traitement 10 peut être comprise entre 0,1 cm/s et 50 cm/s. The treated fiber 16 is unwound from a reel (not shown), passes through the treatment enclosure 10 and is then wound up in the form of a reel after treatment. The running speed of the fiber 16 in the treatment enclosure 10 can be between 0.1 cm/s and 50 cm/s.
L'enceinte de traitement 10 est remplie par un milieu fluide 20 comprenant de l'ammoniac, par exemple constitué essentiellement par de l'ammoniac. Le milieu fluide 20 peut être sous forme liquide. Le milieu fluide 20 peut être pressurisé, par exemple à une pression supérieure ou égale à la pression critique de l'ammoniac. La fibre 16 est immergée dans le milieu fluide 20 lors de son traitement dans l'enceinte de traitement 10. Dans l'exemple illustré, la fibre 16 est chauffée directement, par exemple par application d'un champ micro-ondes. Le chauffage permet d'augmenter la température au moins au voisinage de la fibre 16, afin d'obtenir la phase d'ammoniac 22 utile pour le traitement. The treatment enclosure 10 is filled with a fluid medium 20 comprising ammonia, for example consisting essentially of ammonia. The fluid medium 20 can be in liquid form. The fluid medium 20 can be pressurized, for example at a pressure greater than or equal to the critical pressure of ammonia. The fiber 16 is immersed in the fluid medium 20 during its treatment in the enclosure treatment 10. In the example shown, the fiber 16 is heated directly, for example by applying a microwave field. The heating makes it possible to increase the temperature at least in the vicinity of the fiber 16, in order to obtain the ammonia phase 22 useful for the treatment.
La phase d'ammoniac 22 réalisant le traitement a une température supérieure ou égale à 100°C et une pression supérieure ou égale à 1 bar. La couche superficielle 12 peut être éliminée par mise en contact de la fibre 16 avec la phase d'ammoniac à une température comprise entre 600°C et 1600°C et une pression comprise entre 1 bar et 300 bar. La température de la phase d'ammoniac peut être supérieure ou égale à 800°C. La pression de la phase d'ammoniac peut être supérieure ou égale à 100 bar, par exemple comprise entre 100 bar et 150 bar. La fibre 16 peut d'abord être mise en contact avec de l'ammoniac sous pression, à une pression comprise entre 1 bar et 300 bar, puis le chauffage de la fibre peut être réalisé de sorte à porter l'ammoniac à la température souhaitée et procéder ainsi à l'élimination de la couche superficielle 12. L'ammoniac peut ou non être injecté en continu dans l'enceinte 10 durant le traitement. Dans le cas où il y a circulation en continu du milieu fluide, on peut imposer durant tout ou partie du traitement un rapport [débit de milieu fluide introduit dans l'enceinte] / [volume de l'enceinte] supérieur ou égal à 0,00016 s 1, par exemple compris entre 0,0016 s 1 et 0,016 s 1 ou entre 0,0016 s 1 et 0,16 s 1. Le carbone superficiel de la fibre 16 peut réagir avec l'ammoniac de sorte à former du cyanure d'hydrogène (HCN) qui est évacué. Les composés oxycarbures sont également éliminés par le milieu ammoniacal. On obtient ainsi la fibre 11 avec un état de surface amélioré, par exemple exempt d'hétérogénéités, qui est illustrée à la figure 3, laquelle est destinée à être ensuite revêtue. La durée du traitement d'élimination de la couche superficielle 12 peut être supérieure ou égale à 10 secondes, par exemple comprise entre 5 minutes et 30 minutes. The ammonia phase 22 carrying out the treatment has a temperature greater than or equal to 100° C. and a pressure greater than or equal to 1 bar. The surface layer 12 can be removed by bringing the fiber 16 into contact with the ammonia phase at a temperature between 600° C. and 1600° C. and a pressure between 1 bar and 300 bar. The temperature of the ammonia phase can be greater than or equal to 800°C. The pressure of the ammonia phase can be greater than or equal to 100 bar, for example between 100 bar and 150 bar. The fiber 16 can first be brought into contact with ammonia under pressure, at a pressure between 1 bar and 300 bar, then the heating of the fiber can be carried out so as to bring the ammonia to the desired temperature. and thus proceed to the elimination of the surface layer 12. The ammonia may or may not be injected continuously into the enclosure 10 during the treatment. In the case where there is continuous circulation of the fluid medium, it is possible to impose during all or part of the treatment a ratio [fluid medium flow introduced into the enclosure] / [volume of the enclosure] greater than or equal to 0, 00016 s 1 , for example between 0.0016 s 1 and 0.016 s 1 or between 0.0016 s 1 and 0.16 s 1 . The surface carbon of the fiber 16 can react with the ammonia so as to form hydrogen cyanide (HCN) which is evacuated. Oxycarbon compounds are also eliminated by the ammonia medium. The fiber 11 is thus obtained with an improved surface condition, for example free of heterogeneities, which is illustrated in FIG. 3, which is intended to be subsequently coated. The duration of the treatment for eliminating the surface layer 12 can be greater than or equal to 10 seconds, for example between 5 minutes and 30 minutes.
Comme indiqué plus haut, le procédé peut se poursuivre de sorte à revêtir la fibre 11 obtenue après élimination de la couche superficielle 12 dans la même enceinte 10. D'une manière générale, on peut former un revêtement sur la fibre, dans l'enceinte de traitement 10, à partir d'un milieu de traitement comprenant au moins un précurseur du revêtement à former dissous dans l'ammoniac. Le milieu de traitement peut être à l'état gazeux, liquide ou supercritique. L'ammoniac peut être le solvant du précurseur du revêtement à former. On peut ainsi par exemple déposer une interphase de nitrure de bore, à partir d'un milieu fluide comprenant du borazane (ou « ammonia borane » dans la littérature anglosaxonne, de formule chimique BH3NH3) dissous dans l'ammoniac. Le chauffage direct de la fibre par micro-ondes permet d'induire la décomposition du borazane au contact de la fibre ainsi chauffée et de former l'interphase de nitrure de bore. L'interphase est formée par décomposition du borazane sous l'effet de la température. Cette décomposition peut permettre d'obtenir du nitrure de bore hexagonal et libère du dihydrogène. En particulier, dans le cas où l'on utilise du borazane dissous dans l'ammoniac, une température du milieu de traitement peut être supérieure ou égale à 600°C, par exemple comprise entre 600°C et 1600°C, et une pression du milieu de traitement peut être supérieure ou égale à 10 bar, par exemple comprise entre 10 bar et 300 bar. La température du milieu de traitement peut en particulier être supérieure ou égale à 800°C ou supérieure ou égale à 900°C, par exemple comprise entre 800 °C et 1600 °C ou entre 900°C et 1600°C, et la pression du milieu de traitement peut être supérieure ou égale à 100 bar, par exemple comprise entre 100 bar et 150 bar. Ces conditions constituent un compromis permettant de mettre à profit la forte solubilité du borazane tout en profitant d'un transfert de matière amélioré et donc de cinétiques de dépôt plus élevées. Par ailleurs, ces pressions sont envisageables pour un développement industriel du procédé. As indicated above, the method can be continued so as to coat the fiber 11 obtained after removal of the surface layer 12 in the same enclosure 10. In general, a coating can be formed on the fiber, in the enclosure treatment 10, from a treatment medium comprising at least a precursor of the coating to be formed dissolved in ammonia. The treatment medium can be in the gaseous, liquid or supercritical state. Ammonia can be the solvent for the precursor of the coating to be formed. It is thus possible, for example, to deposit a boron nitride interphase, from a fluid medium comprising borazane (or “ammonia borane” in the Anglo-Saxon literature, of chemical formula BH 3 NH 3 ) dissolved in ammonia. The direct heating of the fiber by microwaves makes it possible to induce the decomposition of the borazane in contact with the fiber thus heated and to form the boron nitride interphase. The interphase is formed by decomposition of borazane under the effect of temperature. This decomposition can make it possible to obtain hexagonal boron nitride and releases dihydrogen. In particular, in the case where borazane dissolved in ammonia is used, a temperature of the treatment medium may be greater than or equal to 600° C., for example between 600° C. and 1600° C., and a pressure of the treatment medium may be greater than or equal to 10 bar, for example between 10 bar and 300 bar. The temperature of the treatment medium may in particular be greater than or equal to 800° C. or greater than or equal to 900° C., for example between 800° C. and 1600° C. or between 900° C. and 1600° C., and the pressure of the treatment medium may be greater than or equal to 100 bar, for example between 100 bar and 150 bar. These conditions constitute a compromise making it possible to take advantage of the high solubility of borazane while benefiting from improved mass transfer and therefore higher deposition kinetics. Moreover, these pressures can be envisaged for an industrial development of the process.
Le milieu fluide comprenant le précurseur du revêtement peut circuler en continu au travers de l'enceinte de traitement 10, ou en variante l'enceinte de traitement 10 peut être initialement remplie du milieu fluide et le traitement peut alors être effectué sans que du milieu fluide ne soit introduit dans l'enceinte ou évacué. Dans le cas où il y a circulation en continu du milieu fluide comprenant le précurseur, on peut imposer durant tout ou partie du traitement un rapport [débit de milieu fluide introduit dans l'enceinte] / [volume de l'enceinte] supérieur ou égal à 0,00016 s 1, par exemple compris entre 0,0016 s 1 et 0,016 s 1 ou entre 0,0016 s 1 et 0,16 s 1. Par exemple pour une enceinte de traitement 10 ayant un volume compris entre 0,1 mL et 100 mL, le milieu fluide peut être introduit dans l'enceinte 10 durant tout ou partie du traitement avec un débit compris entre 0,1 mL/minute et 10 mL/minute, par exemple compris entre 0,1 mL/minute et 3 mL/minute. D'une manière générale, la concentration molaire en précurseur de revêtement dans le milieu fluide 20 peut être supérieure ou égale à 0,001 mol/L, par exemple comprise entre 0,001 mol/L et 10 mol/L. The fluid medium comprising the precursor of the coating can flow continuously through the treatment enclosure 10, or alternatively the treatment enclosure 10 can be initially filled with the fluid medium and the treatment can then be carried out without the fluid medium is introduced into the enclosure or evacuated. In the case where there is continuous circulation of the fluid medium comprising the precursor, it is possible to impose during all or part of the treatment a ratio [flow rate of fluid medium introduced into the enclosure] / [volume of the enclosure] greater than or equal at 0.00016 s 1 , for example between 0.0016 s 1 and 0.016 s 1 or between 0.0016 s 1 and 0.16 s 1 . For example for a treatment chamber 10 having a volume of between 0.1 mL and 100 mL, the fluid medium can be introduced into the enclosure 10 during all or part of the treatment with a flow rate comprised between 0.1 mL/minute and 10 mL/minute, for example comprised between 0.1 mL/minute and 3 mL/minute. In general, the molar concentration of coating precursor in the fluid medium 20 may be greater than or equal to 0.001 mol/L, for example between 0.001 mol/L and 10 mol/L.
L'interphase 24 peut avoir une épaisseur e24 supérieure ou égale à 1 nm, par exemple supérieure ou égale à 10 nm (voir figure 4). Cette épaisseur e24 peut être comprise entre 10 nm et 1 mm, par exemple entre 10 nm et 10 pm. L'interphase 24 obtenue présente une épaisseur contrôlée et homogène sur toute la circonférence de la fibre traitée avec un rapport stoechiométrique bore : azote proche de l'unité.The interphase 24 may have a thickness e24 greater than or equal to 1 nm, for example greater than or equal to 10 nm (see FIG. 4). This thickness e24 can be between 10 nm and 1 mm, for example between 10 nm and 10 μm. The interphase 24 obtained has a controlled and homogeneous thickness over the entire circumference of the treated fiber with a boron:nitrogen stoichiometric ratio close to unity.
Le nitrure de bore obtenu peut être cristallin. L'emploi d'un matériau cristallin est avantageux afin d'augmenter les propriétés de déflection des fissures. On peut obtenir une interphase en nitrure de bore hexagonal. La durée du traitement de revêtement de la fibre peut être supérieure ou égale à 10 secondes, par exemple comprise entre 5 minutes et 30 minutes ou entre 1 minute et 10 minutes. The boron nitride obtained may be crystalline. The use of a crystalline material is advantageous in order to increase the deflection properties of the cracks. A hexagonal boron nitride interphase can be obtained. The duration of the fiber coating treatment can be greater than or equal to 10 seconds, for example between 5 minutes and 30 minutes or between 1 minute and 10 minutes.
On vient de décrire la formation d'une interphase de nitrure de bore dans l'enceinte de traitement 10 à partir d'un milieu comprenant de l'ammoniac. D'autres types de revêtements sont envisageables, comme le dépôt d'un revêtement de nitrure de tantale (TaN) à partir d'un milieu de traitement comprenant par exemple du Tris(diethylamino)(tert-butylimino)tantale TBTDET dissous dans l'ammoniac. Selon cette variante, la température du milieu de traitement peut être supérieure ou égale à 200°C, par exemple comprise entre 200°C et 1600 °C, et la pression du milieu de traitement peut être supérieure ou égale à 10 bar, par exemple comprise entre 10 bar et 300 bar. The formation of a boron nitride interphase in the treatment enclosure 10 from a medium comprising ammonia has just been described. Other types of coatings can be envisaged, such as the deposition of a coating of tantalum nitride (TaN) from a treatment medium comprising, for example, Tris(diethylamino)(tert-butylimino)tantalum TBTDET dissolved in the ammonia. According to this variant, the temperature of the treatment medium can be greater than or equal to 200° C., for example between 200° C. and 1600° C., and the pressure of the treatment medium can be greater than or equal to 10 bar, for example between 10 bar and 300 bar.
L'avantage de ce traitement est de réaliser les étapes de retrait des hétérogénéités et de revêtement dans la même enceinte 10 ce qui permet de s'affranchir d'une remise à l'air ambiant de la fibre et de réduire les manipulations. En outre de l'ammoniac est aussi utilisé pour former le revêtement ce permet de supprimer toute problématique de compatibilité chimique entre les deux étapes. Une fois le revêtement déposé, l'enceinte de traitement 10 peut être nettoyée par injection d'ammoniac liquide sous pression à un débit compris entre 0,5 mL/minute et 10 mL/minute afin de retirer l'excès de précurseur n'ayant pas réagi. The advantage of this treatment is to carry out the steps of removal of the heterogeneities and of coating in the same enclosure 10 which makes it possible to dispense with putting the fiber back into the ambient air and to reduce handling. In addition, ammonia is also used to form the coating, which makes it possible to eliminate any problem of chemical compatibility between the two stages. Once the coating has been deposited, the treatment chamber 10 can be cleaned by injecting pressurized liquid ammonia at a flow rate of between 0.5 mL/minute and 10 mL/minute in order to remove the excess precursor having no not reacted.
La figure 5 qui va être décrite dans la suite illustre, de manière plus complète, un exemple d'installation qui peut être mise en œuvre pour la réalisation d'un procédé selon l'invention. FIG. 5 which will be described below illustrates, more completely, an example of an installation which can be implemented for carrying out a method according to the invention.
L'installation 1 illustrée à la figure 5 comprend une pompe seringue 4, permettant de travailler à débit ou pression constant. Elle comprend en outre un dispositif de génération de micro-ondes permettant de chauffer la fibre 11 au moyen de ce rayonnement ainsi qu'un tube 9 en matériau transparent aux micro-ondes contenant la fibre 11 à chauffer. L'installation 1 comprend un régulateur de pression 15 qui permet de fixer la pression dans l'ensemble du dispositif lorsque la pompe seringue fonctionne en débit constant. The installation 1 illustrated in FIG. 5 comprises a syringe pump 4, making it possible to work at a constant flow rate or pressure. It further comprises a device for generating microwaves making it possible to heat the fiber 11 by means of this radiation as well as a tube 9 made of a material transparent to the microwaves containing the fiber 11 to be heated. The installation 1 comprises a pressure regulator 15 which makes it possible to fix the pressure in the whole of the device when the syringe pump operates at a constant flow rate.
Dans le cas où l'on réalise le traitement de la fibre 11 de sorte à la recouvrir de l'interphase de nitrure de bore, le réservoir 6 est initialement rempli avec le borazane puis connecté au reste du dispositif. La pompe seringue 4 est remplie avec le solvant et refroidi au moyen d'un cryostat. La pompe seringue 4 est ensuite ouverte, les vannes 7, 8, 13 et 14 étant fermées. La pompe seringue fonctionne à pression constante et remplit ainsi le réservoir 6 avec de l'ammoniac à pression de travail. La vanne du réservoir 5 est ensuite fermée et la vanne 7 ouverte, ce qui met l'ensemble du dispositif sous pression. Ensuite, la vanne 13 est ouverte et la pompe seringue est utilisée en mode débit constant. La pression est ainsi fixée au moyen du régulateur de pression 15. Une fois la pression dans le système stabilisée, la vanne 7 est fermée et la vanne du réservoir 5 et la vanne 8 sont ouvertes pour injecter la solution composée de borazane et de solvant dans l'enceinte de traitement 10. Lorsque le fonctionnement en débit constant est stabilisé, le dispositif de chauffage micro-ondes est utilisé pour porter la fibre 11 contenue dans l'enceinte 10 à température de travail durant un temps donné. Lorsque la totalité du précurseur a été injectée, du solvant sous pression est injecté (au moyen de la pompe seringue) pour évacuer toutes traces de précurseur pouvant subsister. Un mode de fonctionnement similaire est utilisé pour le traitement par la phase d'ammoniac, pour éliminer la couche superficielle sans utilisation de borazane. In the case where the treatment of the fiber 11 is carried out so as to cover it with the boron nitride interphase, the reservoir 6 is initially filled with the borazane and then connected to the rest of the device. The syringe pump 4 is filled with the solvent and cooled by means of a cryostat. The syringe pump 4 is then opened, the valves 7, 8, 13 and 14 being closed. The syringe pump operates at constant pressure and thus fills reservoir 6 with ammonia at working pressure. The tank valve 5 is then closed and the valve 7 opened, which puts the entire device under pressure. Then, valve 13 is opened and the syringe pump is used in constant flow mode. The pressure is thus fixed by means of the pressure regulator 15. Once the pressure in the system has stabilized, the valve 7 is closed and the tank valve 5 and the valve 8 are opened to inject the solution composed of borazane and solvent into the treatment enclosure 10. When operation at constant flow is stabilized, the microwave heating device is used to bring the fiber 11 contained in the enclosure 10 to the working temperature for a given time. When all of the precursor has been injected, pressurized solvent is injected (by means of the syringe pump) to evacuate any traces of precursor that may remain. A mode of similar operation is used for ammonia phase treatment, to remove the surface layer without the use of borazane.
On vient de décrire un exemple d'un procédé selon l'invention dans lequel une fibre est traitée mais on ne sort bien entendu pas du cadre de l'invention si plusieurs fibres sont traitées simultanément de sorte à éliminer leur couche superficielle et éventuellement ensuite former un revêtement sur chacune d'entre elles. On notera que chaque fibre peut être sous la forme d'une mèche comprenant une pluralité de filaments. On ne sort pas non plus du cadre de l'invention si l'on traite non plus une fibre ou plusieurs fibres non liées entre elles mais une texture déjà formée comprenant une pluralité de fibres, mobile ou immobile dans l'enceinte de traitement. Ainsi, les fibres peuvent être traitées sous quelque forme que ce soit, par exemple fils, mèches, torons, câbles, tissus, feutres, mats et même textures bi- ou tridimensionnelles. Les fibres traitées selon le procédé de l’invention peuvent avantageusement être utilisées pour la réalisation de préformes fibreuses de pièce en matériau composite. Les conditions qui ont été décrites plus haut pour le traitement demeurent applicables quelle que soit la forme sous laquelle la ou les fibres sont traitées. We have just described an example of a method according to the invention in which a fiber is treated but it is of course not departing from the scope of the invention if several fibers are treated simultaneously so as to eliminate their surface layer and possibly then form a coating on each of them. It will be noted that each fiber may be in the form of a roving comprising a plurality of filaments. It does not depart from the scope of the invention either if one treats either one fiber or several fibers not bonded together but an already formed texture comprising a plurality of fibers, mobile or immobile in the treatment enclosure. Thus, the fibers can be treated in any form whatsoever, for example yarns, rovings, strands, cables, fabrics, felts, mats and even two- or three-dimensional textures. The fibers treated according to the method of the invention can advantageously be used for the production of fiber preforms of composite material parts. The conditions which have been described above for the treatment remain applicable whatever the form in which the fiber or fibers are treated.
On vient de décrire le traitement de fibres de carbure de silicium de sorte à éliminer leur couche superficielle par une phase d'ammoniac et ensuite former un revêtement sur la surface de la fibre ainsi nettoyée. La suite s'attache à décrire la suite du procédé permettant d'obtenir une pièce en matériau composite à partir des fibres ainsi traitées. We have just described the treatment of silicon carbide fibers so as to eliminate their surface layer with an ammonia phase and then form a coating on the surface of the fiber thus cleaned. The following describes the continuation of the process making it possible to obtain a part made of composite material from the fibers thus treated.
Des fibres obtenues après traitement décrit plus haut peuvent ensuite être utilisées pour former une préforme fibreuse de la pièce à obtenir. La formation de la préforme fibreuse fait appel à des opérations textiles qui sont connues en soi, par exemple de tissage, éventuellement de tissage tridimensionnel. Ainsi, la préforme peut par exemple présenter une armure « interlock », c'est-à-dire une armure de tissage dans laquelle chaque couche de fils de trame lie plusieurs couches de fils de chaîne avec tous les fils d'une même colonne de trame ayant le même mouvement dans le plan de l'armure. D'autres types de tissage tridimensionnel pourront bien entendu être utilisés pour fabriquer la préforme. Comme indiqué plus haut, on ne sort pas du cadre de l'invention si la préforme est d'abord formée à partir de fibres, puis que les fibres de la préforme ainsi obtenue sont traitées comme décrit plus haut. Fibers obtained after the treatment described above can then be used to form a fibrous preform of the part to be obtained. The formation of the fibrous preform makes use of textile operations which are known per se, for example weaving, possibly three-dimensional weaving. Thus, the preform can for example have an "interlock" weave, that is to say a weave weave in which each layer of weft yarns binds several layers of warp with all the threads of the same weft column having the same movement in the plane of the weave. Other types of three-dimensional weaving could of course be used to manufacture the preform. As indicated above, it is not beyond the scope of the invention if the preform is first formed from fibers, then the fibers of the preform thus obtained are treated as described above.
Le procédé peut se poursuivre par la formation d'au moins une phase de matrice dans la porosité de la préforme fibreuse dont les fibres ont été traitées comme décrit plus haut. The method can continue with the formation of at least one matrix phase in the pores of the fibrous preform, the fibers of which have been treated as described above.
La matrice obtenue peut être au moins partiellement en céramique, par exemple majoritairement en masse en céramique, par exemple intégralement en céramique. La formation de la matrice met en œuvre des techniques qui sont connues en soi, étant par exemple réalisée par technique de densification par voie liquide (imprégnation par une résine précurseur de la matrice et transformation par réticulation et pyrolyse, le processus pouvant être répété) ou par voie gazeuse (infiltration chimique en phase vapeur de la matrice), ou encore par technique d'infiltration à l'état fondu (« Melt-Infiltration » ; « MI »). The matrix obtained may be at least partially made of ceramic, for example mainly in ceramic mass, for example entirely made of ceramic. The formation of the matrix implements techniques which are known per se, being for example carried out by liquid densification technique (impregnation with a precursor resin of the matrix and transformation by crosslinking and pyrolysis, the process being able to be repeated) or by a gaseous route (chemical infiltration in the vapor phase of the matrix), or even by a technique of infiltration in the molten state (“Melt-Infiltration”; “MI”).
L’invention s'applique notamment à la réalisation de pièces en matériau composite à matrice céramique formées par un renfort fibreux en fibres de carbure de silicium densifié par une matrice céramique, notamment carbure, nitrure ou oxyde réfractaire. Des exemples typiques de tels matériaux CMC sont les matériaux SiC-SiC (renfort en fibres de carbure de silicium et matrice en carbure de silicium). The invention applies in particular to the production of parts in composite material with a ceramic matrix formed by a fibrous reinforcement in silicon carbide fibers densified by a ceramic matrix, in particular carbide, nitride or refractory oxide. Typical examples of such CMC materials are SiC-SiC materials (silicon carbide fiber reinforcement and silicon carbide matrix).
La pièce obtenue peut être une pièce de turbomachine, aéronautique ou industrielle. Cette pièce peut être une aube de turbomachine ou un secteur d'anneau de turbine, par exemple. The part obtained can be a turbomachine, aeronautical or industrial part. This part can be a turbomachine blade or a turbine ring sector, for example.
Exemple Example
Une fibre a été mise en défilement au travers d'une enceinte de traitement 10 schématisée à la figure 1 qui avait un volume de 1 cm3. La fibre traitée était une fibre de carbure de silicium présentant une teneur en oxygène inférieure ou égale à 1% en pourcentages atomiques, correspondant à une fibre commercialisée sous la référence « Hi-Nicalon S ». La fibre présentait en surface avant traitement une couche superficielle 12 ayant une épaisseur de 100 nm environ. A fiber was passed through a processing chamber 10 shown schematically in FIG. 1 which had a volume of 1 cm 3 . The treated fiber was a silicon carbide fiber with an oxygen content less than or equal to 1% in atomic percentages, corresponding to a fiber marketed under the reference “Hi-Nicalon S”. The fiber had on the surface before treatment a superficial layer 12 having a thickness of approximately 100 nm.
Une étape de pré-traitement de la fibre a tout d'abord été réalisée en la soumettant dans l'enceinte 10 à une phase d'ammoniac supercritique. Durant le pré-traitement, la fibre était chauffée par un champ micro-ondes permettant de la porter à une température de 1000 °C et la phase d'ammoniac supercritique était portée à une pression de 120 bar. L'ammoniac était injecté dans l'enceinte de traitement en continu durant le pré-traitement avec un débit de 6 mL/min et la fibre défilait à une vitesse de 30 cm/minute. On a ainsi obtenu une surface décapée de fibre de carbure de silicium comme représenté à la figure 3. A fiber pre-treatment step was first carried out by subjecting it in the enclosure 10 to a supercritical ammonia phase. During the pre-treatment, the fiber was heated by a microwave field bringing it to a temperature of 1000°C and the supercritical ammonia phase was brought to a pressure of 120 bar. Ammonia was injected into the treatment enclosure continuously during the pre-treatment with a flow rate of 6 mL/min and the fiber moved at a speed of 30 cm/minute. There was thus obtained a pickled surface of silicon carbide fiber as shown in Figure 3.
On a alors procédé au dépôt de l'interphase de nitrure de bore sur la fibre ainsi décapée dans la même enceinte de traitement. Durant ce dépôt, la fibre défilait dans l'enceinte de traitement à une vitesse de 30 cm/minute. Un mélange d'ammoniac et de borazane présent en une concentration molaire de 1 moL/L dans le mélange était introduit en continu dans l'enceinte de traitement avec un débit de 1 mL/min. Durant le traitement, la surface de la fibre a été portée à une température 1100 °C par le champ micro-ondes et le milieu fluide était à une pression de 120 bar. Le traitement a été réalisé pendant une durée de 15 minutes et une interphase de BN de 1000 nm a ainsi été obtenue sur la surface de la fibre de carbure de silicium. The boron nitride interphase was then deposited on the fiber thus pickled in the same treatment enclosure. During this deposition, the fiber moved through the treatment chamber at a speed of 30 cm/minute. A mixture of ammonia and borazane present in a molar concentration of 1 moL/L in the mixture was introduced continuously into the treatment enclosure with a flow rate of 1 mL/min. During the treatment, the surface of the fiber was brought to a temperature of 1100°C by the microwave field and the fluid medium was at a pressure of 120 bar. The treatment was carried out for a period of 15 minutes and a BN interphase of 1000 nm was thus obtained on the surface of the silicon carbide fiber.
L'expression « compris(e) entre ... et ... » doit se comprendre comme incluant les bornes. The expression "between ... and ..." must be understood as including the limits.

Claims

Revendications Claims
[Revendication 1] Procédé de traitement d'au moins une fibre (16) de carbure de silicium comprenant une couche superficielle (12) comprenant du carbone et/ou un oxycarbure de silicium, le traitement comprenant au moins l'élimination de la couche superficielle de la fibre par mise en contact avec une phase d'ammoniac (22) à l'état supercritique. [Claim 1] A method of treating at least one silicon carbide fiber (16) comprising a surface layer (12) comprising carbon and/or silicon oxycarbide, the treatment comprising at least removing the surface layer of the fiber by bringing it into contact with an ammonia phase (22) in the supercritical state.
[Revendication 2] Procédé selon la revendication 1, dans lequel l'élimination de la couche superficielle (12) est réalisée dans une enceinte de traitement (10), et dans lequel le traitement comprend en outre, après cette élimination, la formation d'un revêtement (24) sur ladite au moins une fibre (11), dans l'enceinte de traitement, à partir d'un milieu de traitement comprenant au moins de l'ammoniac. [Claim 2] Process according to claim 1, in which the removal of the surface layer (12) is carried out in a treatment chamber (10), and in which the treatment further comprises, after this removal, the formation of a coating (24) on said at least one fiber (11), in the treatment enclosure, from a treatment medium comprising at least ammonia.
[Revendication 3] Procédé selon la revendication 1 ou 2, dans lequel la température de la phase d'ammoniac (22) est supérieure ou égale à 600°C. [Claim 3] A method according to claim 1 or 2, wherein the temperature of the ammonia phase (22) is greater than or equal to 600°C.
[Revendication 4] Procédé selon la revendication 3, dans lequel la température de la phase d'ammoniac (22) est comprise entre 800 °C et 1200 °C, et la pression de la phase d'ammoniac est comprise entre 100 bar et 150 bar. [Claim 4] Process according to claim 3, in which the temperature of the ammonia phase (22) is between 800°C and 1200°C, and the pressure of the ammonia phase is between 100 bar and 150 bar.
[Revendication 5] Procédé selon l'une quelconque des revendications 1 à 4, dans lequel ladite au moins une fibre (16 ; 11) est chauffée par micro-ondes durant le traitement. [Claim 5] A method according to any of claims 1 to 4, wherein said at least one fiber (16; 11) is heated by microwaves during the treatment.
[Revendication 6] Procédé selon l'une quelconque des revendications 1 à 5, ladite au moins une fibre (16 ; 11) circule au travers d'une enceinte de traitement (10) durant le traitement. [Claim 6] A method according to any one of claims 1 to 5, said at least one fiber (16; 11) flows through a treatment enclosure (10) during treatment.
[Revendication 7] Procédé selon l'une quelconque des revendications 1 à 6, dans lequel ladite au moins une fibre (16 ; 11) est en carbure de silicium présentant une teneur en oxygène inférieure ou égale à 1% en pourcentage atomique. [Revendication 8] Procédé de fabrication d'une pièce en matériau composite, comprenant au moins la formation d'une matrice dans la porosité d'un renfort fibreux, les fibres (11) du renfort fibreux ayant été traitées par mise en œuvre d'un procédé selon l'une quelconque des revendications 1 à 7. [Claim 7] A method according to any one of claims 1 to 6, wherein said at least one fiber (16; 11) is made of silicon carbide having an oxygen content of less than or equal to 1 atomic percent. [Claim 8] Method of manufacturing a part made of composite material, comprising at least the formation of a matrix in the porosity of a fibrous reinforcement, the fibers (11) of the fibrous reinforcement having been treated by implementing a method according to any one of claims 1 to 7.
EP22740948.9A 2021-06-23 2022-06-20 Method for treating a silicon carbide fibre Pending EP4359365A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2106670A FR3124508A1 (en) 2021-06-23 2021-06-23 Process for processing a silicon carbide fiber
PCT/FR2022/051187 WO2022269178A1 (en) 2021-06-23 2022-06-20 Method for treating a silicon carbide fibre

Publications (1)

Publication Number Publication Date
EP4359365A1 true EP4359365A1 (en) 2024-05-01

Family

ID=78212169

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22740948.9A Pending EP4359365A1 (en) 2021-06-23 2022-06-20 Method for treating a silicon carbide fibre

Country Status (4)

Country Link
EP (1) EP4359365A1 (en)
CN (1) CN117881644A (en)
FR (1) FR3124508A1 (en)
WO (1) WO2022269178A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277213A (en) * 2003-03-14 2004-10-07 Ube Ind Ltd Method of removing impurity on surface of ceramic
US7867554B2 (en) * 2005-01-06 2011-01-11 United Technologies Corporation Boron nitride coated fibers and composite articles containing same
FR3037973B1 (en) 2015-06-24 2019-09-06 Safran Ceramics PROCESS FOR TREATING SILICON CARBIDE FIBERS

Also Published As

Publication number Publication date
FR3124508A1 (en) 2022-12-30
WO2022269178A1 (en) 2022-12-29
CN117881644A (en) 2024-04-12

Similar Documents

Publication Publication Date Title
EP2900623B1 (en) Method for manufacturing a cmc workpiece
FR2869609A1 (en) PROCESS FOR MANUFACTURING A THERMOSTRUCTURAL COMPOSITE MATERIAL PART
WO2018104640A1 (en) Shaping equipment and facility for gas-phase chemical infiltration of fibrous preforms
FR2852003A1 (en) Production of a multi-perforated component in a composite material with a ceramic base involves the insertion and elimination of pins in a consolidated fibrous preformer, notably for the combustion chamber of a jet engine
EP3313651B1 (en) Silicon carbide fiber treatment method
EP2373596A1 (en) Method for processing ceramic fibres
FR3057864A1 (en) METHOD OF INFILTRATION OR CHEMICAL VAPOR DEPOSITION USING THE PRECURSOR CI2BNH2 TO FORM BORON NITRIDE
EP0441700A1 (en) Process of manufacturing a carbon fibre-reinforced ceramic matrix composite material
WO2021156549A1 (en) Method for manufacturing ceramic matrix composites comprising a specific interphase
EP3478870B1 (en) Method for chemical vapour deposition or infiltration
WO2013153336A1 (en) Method for the treatment of silicon carbide fibres
WO2022269178A1 (en) Method for treating a silicon carbide fibre
EP4359364A1 (en) Method for coating at least one fiber with a boron nitride interphase
EP4200265A1 (en) Method for depositing a coating on a wire in a microwave field
EP0634378B1 (en) Process for improving the oxydation resistance of a fibre-reinforced composite having a glass, ceramic or glass-ceramic matrix
FR3115784A1 (en) Formation of boron nitride on fibers by the molten salt method
FR3101629A1 (en) Manufacturing process of a part in CMC
WO2020120857A1 (en) Chemical vapour infiltration or deposition process
CA3044431A1 (en) Part made of composite material comprising an interphase layer of aluminium-doped boron nitride
EP2522759A1 (en) Treatment facility with molten metal bath and submerged rollers
WO2002100797A1 (en) Method for densification and anticorrosive treatment of a thermostructural composite material
FR3136463A1 (en) Process for treating at least one ceramic or carbon fiber
WO2020201202A1 (en) Method for manufacturing a part made from cmc
WO2019077284A1 (en) Method for producing a pyrolytic carbon with predetermined microstructure
FR3072606A1 (en) PROCESS FOR PRODUCING PREDETERMINED MICROSTRUCTURE PYROCARBON

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR