EP4356453A2 - Method for preparing a solvent-free electrode and electrode formulations obtainable by said method - Google Patents

Method for preparing a solvent-free electrode and electrode formulations obtainable by said method

Info

Publication number
EP4356453A2
EP4356453A2 EP22734280.5A EP22734280A EP4356453A2 EP 4356453 A2 EP4356453 A2 EP 4356453A2 EP 22734280 A EP22734280 A EP 22734280A EP 4356453 A2 EP4356453 A2 EP 4356453A2
Authority
EP
European Patent Office
Prior art keywords
electrode
formulation
fluoropolymer
tpu
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22734280.5A
Other languages
German (de)
French (fr)
Inventor
André DE ALMEIDA
Julien Breger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAFT Societe des Accumulateurs Fixes et de Traction SA
Automotive Cells Company SE
Original Assignee
SAFT Societe des Accumulateurs Fixes et de Traction SA
Automotive Cells Company SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAFT Societe des Accumulateurs Fixes et de Traction SA, Automotive Cells Company SE filed Critical SAFT Societe des Accumulateurs Fixes et de Traction SA
Publication of EP4356453A2 publication Critical patent/EP4356453A2/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0411Methods of deposition of the material by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of energy storage, and more specifically to accumulators, in particular of the lithium type.
  • lithium accumulators The operation of lithium accumulators is based on the reversible exchange of lithium ion between a positive electrode and a negative electrode, separated by a separator containing an electrolyte, the lithium inserting itself into the negative electrode during charging operation .
  • the electrodes consist of a metal strip on which is applied an electrode formulation consisting of active material and possibly binder and conductive element.
  • WO 2015/161289 describes an electrode composition based on polytetrafluoroethylene (PTFE) and co-binder(s), obtained by fibrillation of PTFE by a high shear process such as air jet grinding (jet -milling) in particular.
  • PTFE polytetrafluoroethylene
  • co-binder(s) obtained by fibrillation of PTFE by a high shear process such as air jet grinding (jet -milling) in particular.
  • PTFE has the particularity when sheared well to produce fibrils which form a network which contributes to the formation of porosities within the electrode.
  • the jet-milling step may require batch work, which is incompatible with continuous industrial operation. Furthermore, grinding by jet-milling can damage the fragile active material (such as graphite for example).
  • the present invention thus relates to a new solvent-free route for the improved preparation of electrode formulations, in particular intended for Li-ion technology.
  • the present invention relates to a method for preparing an electrode formulation comprising:
  • fluoropolymer refers to fluorinated polymers whose repeating unit is a fluorocarbon, comprising multiple carbon-fluorine bonds.
  • fluoropolymers mention may in particular be made of polytetrafluoroethylene (PTFE) and its derivatives, in particular its co-polymers such as chlorofluoroethylene, perfluoroalkoxy (PFA), polychlorotrifluoroethylene (PCTFE or PTFCE), fluorinated ethylene propylene (FEP), ethylene tetrafluoroethylene or poly(ethylene-co-tetrafluoroethylene) (ETFE), tetrafluoroethylene perfluoromethylvinylether (MFA), more particularly PTFE.
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxy
  • PCTFE or PTFCE polychlorotrifluoroethylene
  • FEP fluorinated ethylene propylene
  • ETFE ethylene tetrafluoroethylene
  • said fluoropolymers are of the fibrillable type.
  • fibrillable means the types of fluoropolymers which are capable of fibrillating, that is to say which can form a network of fibers in the mixture with the pre-mix, under the extrusion conditions.
  • the types of fluoropolymers can be of different shapes and/or grades.
  • Pre-mix means a preliminary composition prepared beforehand before adding one or more additional ingredients; in this case the pre-mix comprises the mixture of the fluoropolymer and the active material, and optionally a conductive element, before subsequent addition of the co-binder.
  • the pre-mix can also include one or more optional additives such as lubricants.
  • the pre-mix can also comprise particles of solid electrolyte.
  • the active electrode material can be chosen from electrochemically active materials. It depends on the type of electrode (positive or negative) and the type of battery considered. Thus in the case of lithium batteries, the negative electrode active material is in particular graphite, silicon, lithium, a lithium alloy or a lithiophilic material, alone or as a mixture, such as mixed active materials SiOx / graphite .
  • the expression “lithiophile” here defines a material having an affinity for lithium, (ie) its ability to form alloys with lithium, such as silicon, silver, zinc and magnesium.
  • TNO titanium and niobium oxide
  • active materials - a titanium and niobium oxide TNO having the formula: LixTia-yMyNbb-zM'zO((x+4a+5b)/2)-c-dXc where 0 ⁇ x ⁇ 5 ; 0 ⁇ y ⁇ 1; 0 ⁇ z ⁇ 2; 1 ⁇ a ⁇ 5; 1 ⁇ b ⁇ 25; 0.25 ⁇ a/b ⁇ 2; 0 ⁇ c ⁇ 2 and 0 ⁇ d ⁇ 2; ay >0; bz >0; M and M' each represent at least one element selected from the group consisting of Li, Na, K, Mg, Ca, B, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Y, Zr, Nb, Mo, Ru, Ag, Sn, Sb, Ta, W, Bi, La, Pr, Eu, Nd and Sm; X represents
  • the subscript d represents an oxygen vacancy.
  • the index d may be less than or equal to 0.5.
  • Said at least one titanium and niobium oxide can be chosen from TiNb2O7, Ti2Nb2O9 and Ti 2 Nb 10 O 29 . - a lithiated titanium oxide or a titanium oxide capable of being lithiated.
  • LTO is chosen from the following oxides: Li xa M a Ti yb M' b O 4-cd X c in which 0 ⁇ x ⁇ 3;1 ⁇ y ⁇ 2.5;0 ⁇ a ⁇ 1;0 ⁇ b ⁇ 1; 0 ⁇ c ⁇ 2 and - 2.5 ⁇ d ⁇ 2.5; M represents at least one element selected from the group consisting of Na, K, Mg, Ca, B, Mn, Fe, Co, Cr, Ni, Al, Cu, Ag, Pr, Y and La; M' represents at least one element selected from the group consisting of B, Mo, Mn, Ce, Sn, Zr, Si, W, V, Ta, Sb, Nb, Ru, Ag, Fe, Co, Ni, Zn, Al , Cr, La, Pr, Bi, Sc, Eu, Sm, Gd, Ti, Ce, Y and Eu; X represents at least one element selected from the group consisting of S, F, Cl and Br; The subscript d represents an oxygen deficiency.
  • the index d may be less than or equal to 0.5;
  • HxTiyO4 in which 0 ⁇ x ⁇ 1; 0 ⁇ y ⁇ 2, and a mixture of the compounds Lix-aMaTiy-bM'bO4-c-dXc and HxTiyO4.
  • lithium titanium oxides are spinel Li4Ti5O12, Li2TiO3, ramsdellite Li2Ti3O7, LiTi2O4, LixTi2O4, with 0 ⁇ x ⁇ 2 and Li2Na2Ti6O14.
  • a preferred LTO compound has the formula Li4-aMaTi5-bM'bO4, for example Li4Ti5O12 which is also written Li4/3Ti5/3O4.
  • the active material of the positive electrode is not particularly limited.
  • M' and M" being different from each other, and 1 ⁇ x ⁇ 1.4; 0 ⁇ y ⁇ 0.6; 0 ⁇ z ⁇ 0.2; - a compound (c) of formula Li x Fe 1-y M y PO 4 (LFMP) where M is chosen from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo; and 0.8 ⁇ x ⁇ 1.2; 0 ⁇ y ⁇ 0.6; - a compound (d) of formula Li x Mn 1-yz M' y M'' z PO 4 (LMP), where M' and M'' are different from each other and are chosen from the group consisting of in B, Mg, Al, Si, Ca, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo, with 0.8 ⁇ x ⁇ 1.2; 0 ⁇ y ⁇ 0.6; 0.0 ⁇ z ⁇ 0.2; - a compound (e) of formula xLi 2 M
  • M represents at least one element chosen from the group consisting of Na, K, Mg, Ca, B, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Y, Zr, Nb, Mo, Ru, Ag, Sn, Sb, Ta, W, Bi, La, Pr, Eu, Nd and Sm and where 0 ⁇ x ⁇ 0.5 and 0 ⁇ y ⁇ 1;
  • a conductive element can also be added for positive electrode preparation. It can be chosen from electronically conductive materials, such as graphite, carbon black, acetylene black, soot, graphene, carbon fibers, carbon nanotubes or a mixture thereof.
  • the preparation of the pre-mix can be carried out by simple mixing of the constituents, typically in the form of powders, with stirring.
  • the mixing step can advantageously be carried out at a temperature between 25°C and the degradation temperature of the fluoropolymer
  • co-binder means a material which makes it possible to give the electrode the cohesion of the various components and its mechanical strength on the current collector, and/or to give a certain flexibility to the electrode. electrode for its implementation in the cell. More particularly, the co-binder according to the invention ensures the cohesion between the fluoropolymer and the active material.
  • the co-binder is chosen from thermoplastic polyurethane (TPU), poly(styrene-butadiene-styrene) (SBS), poly(styrene-ethylene-butadiene-styrene) (SEBS), elastomers thermoplastics (TPE), vulcanized thermoplastics (TPV), thermoplastic copolyesters (TPC), polystyrene-b-poly(ethylene-butylene)-b-polystyrene (SEBS), butadiene-acrylonitrile copolymers also called “nitrile rubbers” (NBR ), hydrogenated butadiene-acrylonitrile copolymers, also called “hydrogenated nitrile rubbers” (HNBR), elastomers, thermoplastics or ethylene-acrylate terpolymers.
  • TPU thermoplastic polyurethane
  • SBS poly(styrene-butadiene-styrene)
  • SEBS poly(s
  • the co-binder is TPU.
  • extrusion is meant a thermomechanical process according to which the formulation is forced to pass through a die, under the action of pressure and heat.
  • the extrusion step can be adapted according to several parameters, such as the mixing temperature, the type of screw profile of the extruder, the type of die of the extruder, the rotation speed and/or the screw length.
  • the extrusion can be carried out with a mono- or twin-screw type extruder, co-rotating or not.
  • the screw profile used in the extruder is of the shearing type in order to cause the fluoropolymer to fibrillate in the extruder.
  • the screw profile can contain one or more mixing zones. The number of mixing zones typically depends on the number of introduction zones. The position of the mixing zones in the extruder generally depends on the number of material introduction zones. After each material introduction zone, a mixing zone can be added.
  • the type of screw element used to shear the material can be adapted to the type of active material contained in the pre-mix. If the active ingredient is sensitive to shearing, it is preferable to favor low or medium shearing elements. If the active material is not very sensitive to shearing, it is possible to use low, medium or high shearing elements.
  • the rotational speed of the screw is generally the same throughout the screw. It is generally recommended to run it between 100rpm and 1000rpm, especially between 100 and 750 rpm.
  • the speed of rotation of the screw is generally adapted according to the flow of material desired at the exit of the extruder. The lower the rotational speed of the screw, the lower the output flow rates. Note that low rotation speeds lead to longer residence times in the extruder. In such a case, if the material input flow is high, there may be a risk of clogging the extruder. In the case of a high screw rotation speed, the output flow rates can be fluctuating if the incoming material flow rates are too low.
  • the extrusion step can advantageously be carried out at a temperature between 25° C. and the degradation temperature of the fluoropolymer, more particularly between the melting temperature of the co-binder and the melting temperature of the fluoropolymer under the extrusion conditions.
  • the degradation and/or melting temperatures of the fluoropolymer under the extrusion conditions may be reduced due to the mechanical stresses exerted.
  • the degradation temperature is approximately 350°C and the melting temperature is approximately 327°C, it being understood that due to the stresses exerted, the extrusion temperature is preferably lower or equal to 260°C.
  • the present invention also relates to the electrode formulation capable of being obtained by the process according to the invention.
  • the present invention also relates to an electrode formulation comprising:
  • thermoplastic polyurethane TPU
  • the fluoropolymer is as defined above.
  • the aforementioned electrode formulations according to the invention may also comprise a conductive element. This is notably the case for the positive electrodes, as discussed above.
  • the electrode formulations according to the invention may also comprise one or more additives chosen from lubricants such as oils or waxes or graphite.
  • formulations according to the invention can also comprise a carbon additive.
  • This additive is distributed in the electrode so as to form an electronic percolating network between the active material and the current collector.
  • the carbonaceous additive can be comprised up to about 10% (by weight), in particular from 1 to 6% (weight) of the total content of the formulation.
  • formulations according to the invention comprise (by weight):
  • the electrode formulation according to the invention is suitable for positive or negative electrodes.
  • negative electrode designates when the accumulator is discharging, the electrode functioning as an anode and when the accumulator is charging, the electrode functioning as a cathode, the anode being defined as the electrode where a electrochemical oxidation reaction (emission of electrons), while the cathode is the seat of reduction.
  • negative electrode also designates the electrode from which the electrons leave, and from which the cations (Li+) are released in discharge.
  • positive electrode designates the electrode where the electrons enter, and where the cations (Li+) arrive in discharge.
  • the electrode formulation is porous, the porosity being imparted by the fluoropolymer fibrils generated by the extrusion.
  • This porosity makes it possible in particular on the one hand to accommodate the lithium metal in the porosity of the negative electrode during charging, and on the other hand to maintain the mechanical strength of the electrode.
  • the term "porous" means a pore size of less than 300 nm.
  • the pore size corresponds to the structure of the material having an organized network of channels of variable very small pore size: typically a pore size of less than 1 ⁇ m, preferably less than 300 nm. This pore size gives the electrode a particularly large active surface per unit electrode surface.
  • the electrode has a porosity of between 10 and 60%, preferably between 15 and 35%, the porosity representing the percentage of voids in the total volume of the formulation considered. Porosity can be measured by Hg porosimetry or by Helium porosimetry in general.
  • the present invention also relates to an electrode comprising the electrode formulation according to the invention shaped.
  • said electrode may consist of a conductive support used as a current collector which is coated with the formulation according to the shaped invention.
  • current collector is meant an element such as a pad, plate, sheet or other, made of conductive material, connected to the positive or negative electrode, and ensuring the conduction of the flow of electrons between the electrode and the terminals of the battery.
  • the current collector is preferably a two-dimensional conductive support such as a solid or perforated strip, based on metal, for example copper, nickel, steel, stainless steel or aluminum.
  • Said electrode can in particular be a Li-ion type electrode.
  • the latter advantageously consists of the formulation comprising PTFE, TPU and graphite shaped on a current collector such as a copper strip .
  • the latter advantageously consists of the formulation comprising PTFE, TPU, an active positive electrode material, an electronically conductive element and a carbonaceous additive, shaped on a current collector such as aluminum foil.
  • the electrodes according to the invention can be prepared by applying or adapting conventional methodologies for manufacturing electrodes.
  • the formulation obtained at the end of the extrusion step is shaped, for example by pressing, to obtain a self-supporting formulation which will then be rolled by calendering, for example on the current collector.
  • the present invention also relates to an electrochemical element comprising at least one electrode according to the invention.
  • Electrochemical element means an elementary electrochemical cell made up of the positive electrode/electrolyte/negative electrode assembly, allowing the electrical energy supplied by a chemical reaction to be stored and returned in the form of current.
  • the chemical elements according to the invention can be adapted to the different battery technologies and types of electrolytes.
  • the electrochemical element can be of the lithium-ion type.
  • Li-ion cells are based on the reversible exchange of lithium ion between a positive electrode and a negative electrode, separated by an electrolyte, the lithium being deposited at the negative electrode during charging operation.
  • the positive electrode formulation comprises a lithiated transition metal oxide as active material and the negative electrode formulation comprises graphite as active material.
  • the electrochemical element can also be of the “solid” or even “primary Li” type.
  • solid designates elements with a solid electrolyte, such as oxides, halides, sulphides or a polymer.
  • Li-primary refers to a non-rechargeable lithium cell.
  • the present invention also relates to an electrochemical module comprising the stacking of at least two elements according to the invention, each element being electrically connected with one or more other element(s).
  • module therefore designates here the assembly of several electrochemical elements, said assemblies possibly being in series and/or parallel.
  • Another object of the invention is also a battery comprising one or more modules according to the invention.
  • battery or accumulator is meant the assembly of several modules according to the invention.
  • the batteries according to the invention are accumulators whose capacity is greater than 100 mAh, typically 1 to 100 Ah.
  • Figure 1 represents the observation by SEM of the structure of an anode of 94% Graphite / 2% PTFE / 4% TPU formulation prepared according to the examples.
  • Figure 2 represents the comparison of the pore size distribution for a reference anode (represented by circles) and for anodes according to the invention (varying in terms of their PTFE or TPU content) ( samples 1 , 2 and 3 represented by squares, diamonds and triangles, respectively)
  • Figure 3 represents the comparison of the amount of porosity for a reference anode (round) and for anodes according to the invention (varying by their PTFE or TPU content) (samples 1, 2 and 3 : squares, diamonds and triangles, respectively).
  • Electrode formulations according to the invention are prepared by producing a premix of the active material (graphite) and the fibrillable PTFE. Then the pre-mix is mixed with the binder (TPU) using a twin-screw extruder, at a temperature between 70 and 260° C. and at a speed of rotation between 100 and 750 rpm.
  • the mixture recovered at the exit of the extruder is then transferred to a mixer with external rollers to manufacture a self-supporting electrode (or pressed under a press) and to shape the electrode. Adhesion on strip is then obtained by co-lamination (by calendering) on a current collector.
  • the SEM image in Figure 1 shows that the PTFE fibrils are well distributed in the electrode. They form a network which contributes to the formation of porosities within the electrode.
  • the porosity was measured by porosimetry Fig.
  • the reference electrode was produced by the solvent route.
  • the active material (the graphite), the binder (the SBR) and the co-binder (the CMC) all in the form of powder, are first mixed in a dry process using a planetary-type mixer.
  • a solvent NMP
  • NMP solvent
  • the formulation of the reference electrode is composed of 97% active material, 1.5% binder and 1.5% co-binder.
  • the pre-mix/solvent mass ratio when adding the solvent is 40/60.
  • the reference electrode is represented by circles, and the invention formulations 1, 2 and 3 above are represented by squares, diamonds and triangles, respectively.
  • Figure 2 illustrates the size distribution of the pores contained in the reference electrode and in the electrodes made via the present invention. Two populations of pores are observed. It appears that the size distribution of the pores contained in the electrodes made by the process described in this invention is in the range of the size of the pores of the reference electrode prepared in the standard way (solvent way). In addition, Figure 2 shows that by changing the amount of PTFE and co-binder (here TPU) in the specific formulation, it is possible to control and modulate the amount of porosity produced but also the average pore size of the electrode.
  • Figure 3 shows the amount of porosity contained in the reference electrode prepared by the solvent route and in electrodes prepared according to the method presented in the present invention.
  • the amount of porosity of the electrodes prepared according to the method presented depends on the formulation. Moreover, it is shown that it is possible to modulate the amount of porosity of the electrode by adjusting the formulation, namely the content of active material, binder and co-binder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The present application relates to fluoropolymer-based, solvent-free electrode formulations obtained by extrusion and/or comprising one or more co-binders, including TPU. The application further relates to the electrodes containing said formulations and to the corresponding electrochemical elements and storage cells.

Description

DESCRIPTION DESCRIPTION
TITRE : PROCEDE DE PREPARATION D’ELECTRODE SANS SOLVANT ET LES FORMULATIONS D’ELECTRODES SUSCEPTIBLES D’ETRE OBTENUES PAR LEDITTITLE: SOLVENT-FREE ELECTRODE PREPARATION PROCESS AND THE ELECTRODE FORMULATIONS LIKELY TO BE OBTAINED BY SAID
PROCEDE PROCESS
La présente invention concerne le domaine du stockage de l’énergie, et plus précisément les accumulateurs, notamment de type lithium. The present invention relates to the field of energy storage, and more specifically to accumulators, in particular of the lithium type.
Le fonctionnement des accumulateurs au lithium est basé sur l’échange réversible de l’ion lithium entre une électrode positive et une électrode négative, séparées par un séparateur contenant un électrolyte, le lithium s’insérant dans l’électrode négative pendant le fonctionnement en charge. The operation of lithium accumulators is based on the reversible exchange of lithium ion between a positive electrode and a negative electrode, separated by a separator containing an electrolyte, the lithium inserting itself into the negative electrode during charging operation .
Typiquement, les électrodes sont constituées d’un feuillard métallique sur lequel est appliquée une formulation d’électrode constituée de matière active et éventuellement liant et élément conducteur. Typically, the electrodes consist of a metal strip on which is applied an electrode formulation consisting of active material and possibly binder and conductive element.
En raison de l’augmentation constante des besoins en énergie et batteries, il est nécessaire d’améliorer leur fabrication, pour en faciliter l’industrialisation, en diminuer les coûts et améliorer leur impact environnemental. Due to the constant increase in energy and battery needs, it is necessary to improve their manufacture, to facilitate their industrialization, reduce their costs and improve their environmental impact.
Actuellement, une part très importante du coût de fabrication d’une électrode est lié à son procédé de fabrication, notamment pour la technologie Li-ion. En effet, le solvant qui sert à préparer l’encre (à base de matière active, charges conductrices et de liant) qui sera enduite sur le feuillard pour concevoir l’électrode, doit être évaporé. Cette étape implique donc l’utilisation de fours énergivores. Currently, a very significant part of the manufacturing cost of an electrode is linked to its manufacturing process, particularly for Li-ion technology. Indeed, the solvent used to prepare the ink (based on active material, conductive fillers and binder) which will be coated on the strip to design the electrode, must be evaporated. This step therefore involves the use of energy-intensive ovens.
Il est par ailleurs désirable de limiter l’utilisation de solvants dans une démarche environnementale. It is also desirable to limit the use of solvents in an environmental approach.
Dans un souci d’élimination de ces solvants et de réduction des coûts de fabrication des électrodes, de nouveaux procédés dits sans solvant sont actuellement en développement. Ainsi, WO 2015/161289 décrit une composition d’électrode à base de polytétrafluoroéthylène (PTFE) et de co-liant(s), obtenue par fibrillation du PTFE par un procédé à cisaillement élevé tel que le broyage par jet d’air (jet-milling) notamment. With a view to eliminating these solvents and reducing the manufacturing costs of the electrodes, new so-called solvent-free processes are currently under development. Thus, WO 2015/161289 describes an electrode composition based on polytetrafluoroethylene (PTFE) and co-binder(s), obtained by fibrillation of PTFE by a high shear process such as air jet grinding (jet -milling) in particular.
Le PTFE a la particularité lorsqu’il est bien cisaillé de fabriquer des fibrilles qui forment un réseau qui contribue à la formation de porosités au sein de l’électrode. PTFE has the particularity when sheared well to produce fibrils which form a network which contributes to the formation of porosities within the electrode.
Néanmoins, l’étape de jet-milling peut nécessiter un travail en batch, incompatible avec une exploitation industrielle en continu. Par ailleurs, le broyage par jet-milling peut endommager la matière active fragile (telle que le graphite par exemple). However, the jet-milling step may require batch work, which is incompatible with continuous industrial operation. Furthermore, grinding by jet-milling can damage the fragile active material (such as graphite for example).
Il est donc nécessaire de mettre à disposition un procédé plus adapté et/ou aisément industrialisable. It is therefore necessary to provide a more suitable and/or easily industrializable process.
La présente invention concerne ainsi une nouvelle voie sans solvant pour la préparation améliorée de formulations d’électrodes, notamment destinées à la technologie Li-ion. The present invention thus relates to a new solvent-free route for the improved preparation of electrode formulations, in particular intended for Li-ion technology.
Selon un premier objet, la présente invention concerne un procédé de préparation d’une formulation d’électrode comprenant : According to a first object, the present invention relates to a method for preparing an electrode formulation comprising:
- La préparation d’un pré-mix comprenant une matière active d’électrode et un fluoropolymère; - The preparation of a pre-mix comprising an active electrode material and a fluoropolymer;
- Le mélange du pré-mix avec un co-liant ; - Mixing the pre-mix with a co-binder;
- La fibrillation du mélange obtenu par extrusion. - The fibrillation of the mixture obtained by extrusion.
Le terme « fluoropolymère » tel qu’utilisé ici fait référence aux polymères fluorés dont le motif de répétition est un fluorocarbure, comprenant de multiples liaisons carbone-fluor. Parmi ces fluoropolymères, on peut notamment citer le polytétrafluoroéthylène (PTFE) et ses dérivés, notamment ses co-polymères tels que le chlorofluoroéthylène, le perfluoroalkoxy (PFA), le polychlorotrifluoroéthylène (PCTFE ou PTFCE), éthylène propylène fluoré (FEP), éthylène tétrafluoroéthylène ou poly(éthylène-co- tétrafluoroéthylène) (ETFE), tétrafluoroéthylène perfluoromethylvinyléther (MFA), plus particulièrement le PTFE. De préférence, lesdits fluoropolymères sont de type fibrillable. On entend par « fibrillable » les types de fluoropolymères qui sont susceptibles de fibriller, c’est-à-dire qui peuvent former un réseau de fibres dans le mélange avec le pré-mix, dans les conditions d’extrusion. Les types de fluoropolymères peuvent être de différentes formes et/ou grades. On entend par « pré-mix » une composition préliminaire préalablement préparée avant ajout d’un ou plusieurs ingrédients additionnels ; en l’espèce le pré-mix comprend le mélange du fluoropolymère et de la matière active, et éventuellement un élément conducteur, avant ajout ultérieur du co-liant. Le pré-mix peut également comprendre un ou plusieurs additifs éventuels tels que les lubrifiants. Dans le cadre des batteries à électrolyte solide, le pré-mix peut également comprendre des particules d’électrolyte solide. La matière active d’électrode peut être choisie parmi les matériaux électrochimiquement actifs. Elle dépend du type d’électrode (positive ou négative) et du type de batterie considérée. Ainsi dans le cas des batteries au lithium, la matière active d’électrode négative est notamment le graphite, le silicium, le lithium, un alliage du lithium ou un matériau lithiophile, seuls ou en mélange, tel que les matières actives mixtes SiOx/graphite. L’expression « lithiophile » définissant ici un matériau présentant une affinité pour le lithium, (ie) sa capacité à former des alliages avec le lithium, tel que le silicium, l’argent, le zinc et le magnésium. On peut également citer les matières actives suivantes : - un oxyde de titane et de niobium TNO ayant pour formule : LixTia-yMyNbb-zM’zO((x+4a+5b)/2)-c-dXc où 0 ≤ x ≤ 5 ; 0 ≤ y ≤ 1 ; 0 ≤ z ≤ 2 ; 1 ≤ a ≤ 5 ; 1 ≤ b ≤ 25 ; 0,25 ≤ a/b ≤ 2 ; 0 ≤ c ≤ 2 et 0 ≤ d ≤ 2 ; a-y > 0 ; b-z > 0 ; M et M’ représentent chacun au moins un élément choisi dans le groupe constitué de Li, Na, K, Mg, Ca, B, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Y, Zr, Nb, Mo, Ru, Ag, Sn, Sb, Ta, W, Bi, La, Pr, Eu, Nd et Sm ; X représente au moins un élément choisi dans le groupe constitué de S, F, Cl et Br. L’indice d représente une lacune en oxygène. L’indice d peut être inférieur ou égal à 0,5. Ledit au moins un oxyde de titane et de niobium peut être choisi parmi TiNb2O7, Ti2Nb2O9 et Ti2Nb10O29. - un oxyde de titane lithié ou un oxyde de titane capable d’être lithié. LTO est choisi parmi les oxydes suivants : Lix-aMaTiy-bM’bO4-c-dXc dans lequel 0<x≤3 ; 1≤y≤2,5 ; 0≤a≤1 ; 0≤b≤1 ; 0≤c≤2 et - 2,5≤d≤2,5 ; M représente au moins un élément choisi dans le groupe constitué de Na, K, Mg, Ca, B, Mn, Fe, Co, Cr, Ni, Al, Cu, Ag, Pr, Y et La ; M’ représente au moins un élément choisi dans le groupe constitué de B, Mo, Mn, Ce, Sn, Zr, Si, W, V, Ta, Sb, Nb, Ru, Ag, Fe, Co, Ni, Zn, Al, Cr, La, Pr, Bi, Sc, Eu, Sm, Gd, Ti, Ce, Y et Eu ; X représente au moins un élément choisi dans le groupe constitué de S, F, Cl et Br ; L’indice d représente une lacune en oxygène. L’indice d peut être inférieur ou égal à 0,5 ; Tels que Li4Ti5O12, Li2TiO3, la ramsdellite Li2Ti3O7, LiTi2O4, LixTi2O4, avec 0<x≤2 et Li2Na2Ti6O14, plus particulièrement Li4-aMaTi5-bM’bO4, par exemple Li4Ti5O12 (ou Li4/3Ti5/3O4). HxTiyO4 dans lequel 0≤x≤1 ; 0≤y≤2, et un mélange des composés Lix-aMaTiy-bM’bO4-c-dXc et HxTiyO4. Des exemples d’oxydes lithiés de titane sont la spinelle Li4Ti5O12, Li2TiO3, la ramsdellite Li2Ti3O7, LiTi2O4, LixTi2O4, avec 0<x≤2 et Li2Na2Ti6O14. Un composé LTO préféré a pour formule Li4-aMaTi5-bM’bO4, par exemple Li4Ti5O12 qui s’écrit encore Li4/3Ti5/3O4. Le matériau actif de l’électrode positive n’est pas particulièrement limité. Il peut être choisi dans les groupes suivants ou leurs mélanges : - un composé (a) de formule LixM1-y-z-wM’yM’’zM’’’wO2 (LMO2) où M, M’, M’’ et M’’’ sont choisis dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, W et Mo à la condition qu'au moins M ou M’ ou M’’ ou M’’’ soit choisi parmi Mn, Co, Ni, ou Fe ; M, M’, M’’ et M’’’ étant différents les uns des autres; et 0,8≤x≤1,4 ; 0≤y≤0,5 ; 0≤z≤0,5 ; 0≤w≤0,2 et x+y+z+w<2,1 ; - un composé (b) de formule LixMn2-y-zM'yM''zO4 (LMO), où M' et M" sont choisis dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo ;. M' et M" étant différents l’un de l’autre, et 1≤x≤1,4 ; 0≤y≤0,6 ; 0≤z≤0,2 ; - un composé (c) de formule LixFe1-yMyPO4 (LFMP) où M est choisi dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo; et 0,8≤x≤1,2 ; 0≤y≤0,6 ; - un composé (d) de formule LixMn1-y-zM’yM’’zPO4 (LMP), où M’ et M’’ sont différents l’un de l’autre et sont choisis dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, avec 0,8≤x≤1,2 ; 0≤y≤0,6 ; 0,0≤z≤0,2 ; - un composé (e) de formule xLi2MnO3; (1-x)LiMO2 où M est au moins un élément choisi parmi Ni, Co et Mn et x≤1. - un composé (f) de formule Lii+xM02-yFy de structure cubique où M représente au moins un élément choisi dans le groupe constitué de Na, K, Mg, Ca, B, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Y, Zr, Nb, Mo, Ru, Ag, Sn, Sb, Ta, W, Bi, La, Pr, Eu, Nd et Sm et où 0 < x < 0,5 et 0 < y < 1 ; The term "fluoropolymer" as used herein refers to fluorinated polymers whose repeating unit is a fluorocarbon, comprising multiple carbon-fluorine bonds. Among these fluoropolymers, mention may in particular be made of polytetrafluoroethylene (PTFE) and its derivatives, in particular its co-polymers such as chlorofluoroethylene, perfluoroalkoxy (PFA), polychlorotrifluoroethylene (PCTFE or PTFCE), fluorinated ethylene propylene (FEP), ethylene tetrafluoroethylene or poly(ethylene-co-tetrafluoroethylene) (ETFE), tetrafluoroethylene perfluoromethylvinylether (MFA), more particularly PTFE. Preferably, said fluoropolymers are of the fibrillable type. The term "fibrillable" means the types of fluoropolymers which are capable of fibrillating, that is to say which can form a network of fibers in the mixture with the pre-mix, under the extrusion conditions. The types of fluoropolymers can be of different shapes and/or grades. “Pre-mix” means a preliminary composition prepared beforehand before adding one or more additional ingredients; in this case the pre-mix comprises the mixture of the fluoropolymer and the active material, and optionally a conductive element, before subsequent addition of the co-binder. The pre-mix can also include one or more optional additives such as lubricants. In the context of solid electrolyte batteries, the pre-mix can also comprise particles of solid electrolyte. The active electrode material can be chosen from electrochemically active materials. It depends on the type of electrode (positive or negative) and the type of battery considered. Thus in the case of lithium batteries, the negative electrode active material is in particular graphite, silicon, lithium, a lithium alloy or a lithiophilic material, alone or as a mixture, such as mixed active materials SiOx / graphite . The expression “lithiophile” here defines a material having an affinity for lithium, (ie) its ability to form alloys with lithium, such as silicon, silver, zinc and magnesium. Mention may also be made of the following active materials: - a titanium and niobium oxide TNO having the formula: LixTia-yMyNbb-zM'zO((x+4a+5b)/2)-c-dXc where 0 ≤ x ≤ 5 ; 0 ≤ y ≤ 1; 0 ≤ z ≤ 2; 1 ≤ a ≤ 5; 1 ≤ b ≤ 25; 0.25≤a/b≤2; 0 ≤ c ≤ 2 and 0 ≤ d ≤ 2; ay >0; bz >0; M and M' each represent at least one element selected from the group consisting of Li, Na, K, Mg, Ca, B, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Y, Zr, Nb, Mo, Ru, Ag, Sn, Sb, Ta, W, Bi, La, Pr, Eu, Nd and Sm; X represents at least one element selected from the group consisting of S, F, Cl and Br. The subscript d represents an oxygen vacancy. The index d may be less than or equal to 0.5. Said at least one titanium and niobium oxide can be chosen from TiNb2O7, Ti2Nb2O9 and Ti 2 Nb 10 O 29 . - a lithiated titanium oxide or a titanium oxide capable of being lithiated. LTO is chosen from the following oxides: Li xa M a Ti yb M' b O 4-cd X c in which 0<x≤3;1≤y≤2.5;0≤a≤1;0≤b≤1; 0≤c≤2 and - 2.5≤d≤2.5; M represents at least one element selected from the group consisting of Na, K, Mg, Ca, B, Mn, Fe, Co, Cr, Ni, Al, Cu, Ag, Pr, Y and La; M' represents at least one element selected from the group consisting of B, Mo, Mn, Ce, Sn, Zr, Si, W, V, Ta, Sb, Nb, Ru, Ag, Fe, Co, Ni, Zn, Al , Cr, La, Pr, Bi, Sc, Eu, Sm, Gd, Ti, Ce, Y and Eu; X represents at least one element selected from the group consisting of S, F, Cl and Br; The subscript d represents an oxygen deficiency. The index d may be less than or equal to 0.5; Such as Li4Ti5O12, Li2TiO3, ramsdellite Li2Ti3O7, LiTi2O4, LixTi2O4, with 0<x≤2 and Li2Na2Ti6O14, more particularly Li4-aMaTi5-bM'bO4, for example Li4Ti5O12 (or Li4/3Ti5/3O4). HxTiyO4 in which 0≤x≤1; 0≤y≤2, and a mixture of the compounds Lix-aMaTiy-bM'bO4-c-dXc and HxTiyO4. Examples of lithium titanium oxides are spinel Li4Ti5O12, Li2TiO3, ramsdellite Li2Ti3O7, LiTi2O4, LixTi2O4, with 0<x≤2 and Li2Na2Ti6O14. A preferred LTO compound has the formula Li4-aMaTi5-bM'bO4, for example Li4Ti5O12 which is also written Li4/3Ti5/3O4. The active material of the positive electrode is not particularly limited. It may be chosen from the following groups or mixtures thereof: - a compound (a) of formula LixM1-yz-wM'yM''zM'''wO2 (LMO2) where M, M', M'' and M''' are selected from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, W and Mo with the proviso that at least M or M' or M'' or M''' is chosen from Mn, Co, Ni or Fe; M, M', M'' and M''' being different from each other; and 0.8≤x≤1.4; 0≤y≤0.5; 0≤z≤0.5; 0≤w≤0.2 and x+y+z+w<2.1; - a compound (b) of formula Li x Mn 2-yz M' y M'' z O 4 (LMO), where M' and M" are chosen from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo;. M' and M" being different from each other, and 1≤x≤1.4; 0≤y≤0.6; 0≤z≤0.2; - a compound (c) of formula Li x Fe 1-y M y PO 4 (LFMP) where M is chosen from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo; and 0.8≤x≤1.2; 0≤y≤0.6; - a compound (d) of formula Li x Mn 1-yz M' y M'' z PO 4 (LMP), where M' and M'' are different from each other and are chosen from the group consisting of in B, Mg, Al, Si, Ca, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo, with 0.8≤x≤1.2; 0≤y≤0.6; 0.0≤z≤0.2; - a compound (e) of formula xLi 2 MnO 3 ; (1-x)LiMO 2 where M is at least one element chosen from Ni, Co and Mn and x≤1. - a compound (f) of formula Lii +x M0 2 -yF y of cubic structure where M represents at least one element chosen from the group consisting of Na, K, Mg, Ca, B, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Y, Zr, Nb, Mo, Ru, Ag, Sn, Sb, Ta, W, Bi, La, Pr, Eu, Nd and Sm and where 0 < x < 0.5 and 0 < y <1;
Un élément conducteur peut également être ajouté pour la préparation d’électrode positive. Il peut être choisi parmi les matériaux conducteurs électroniquement, tels que le graphite, le noir de carbone, le noir d'acétylène, la suie, le graphène, les fibres de carbone, les nanotubes de carbone ou un mélange de ceux-ci. A conductive element can also be added for positive electrode preparation. It can be chosen from electronically conductive materials, such as graphite, carbon black, acetylene black, soot, graphene, carbon fibers, carbon nanotubes or a mixture thereof.
La préparation du pré-mix peut être réalisée par simple mélange des constituants, typiquement sous forme de poudres, sous agitation. The preparation of the pre-mix can be carried out by simple mixing of the constituents, typically in the form of powders, with stirring.
L’étape de mélange peut être avantageusement réalisée à température comprise entre 25°C et la température de dégradation du fluoropolymère, The mixing step can advantageously be carried out at a temperature between 25°C and the degradation temperature of the fluoropolymer,
On entend par «co-liant » (aussi appelé « cobinder »), un matériau permettant de conférer à l'électrode la cohésion des différents composants et sa tenue mécanique sur le collecteur de courant, et/ou de conférer une certaine flexibilité à l'électrode pour sa mise en œuvre en cellule. Plus particulièrement, le co-liant selon l’invention assure la cohésion entre le fluoropolymère et la matière active. The term "co-binder" (also called "cobinder") means a material which makes it possible to give the electrode the cohesion of the various components and its mechanical strength on the current collector, and/or to give a certain flexibility to the electrode. electrode for its implementation in the cell. More particularly, the co-binder according to the invention ensures the cohesion between the fluoropolymer and the active material.
Selon un mode de réalisation, le co-liant est choisi parmi le polyuréthane thermoplastique (TPU), le poly(styrène-butadiène-styrène) (SBS), le poly(styrène-éthylène- butadiène-styrène) (SEBS), les élastomères thermoplastiques (TPE), thermoplastiques vulcanisés (TPV), les copolyesters thermoplastiques (TPC), polystyrène-b-poly(éthylène- butylène)-b-polystyrène (SEBS), les copolymères de butadiène-acrylonitrile aussi appelés « caoutchoucs nitrile » (NBR), les copolymères de butadiène-acrylonitrile hydrogénés, aussi appelés « caoutchoucs nitrile hydrogénés » (HNBR), les élastomères, les thermoplastiques ou les terpolymères éthylène-acrylate. According to one embodiment, the co-binder is chosen from thermoplastic polyurethane (TPU), poly(styrene-butadiene-styrene) (SBS), poly(styrene-ethylene-butadiene-styrene) (SEBS), elastomers thermoplastics (TPE), vulcanized thermoplastics (TPV), thermoplastic copolyesters (TPC), polystyrene-b-poly(ethylene-butylene)-b-polystyrene (SEBS), butadiene-acrylonitrile copolymers also called “nitrile rubbers” (NBR ), hydrogenated butadiene-acrylonitrile copolymers, also called “hydrogenated nitrile rubbers” (HNBR), elastomers, thermoplastics or ethylene-acrylate terpolymers.
Plus particulièrement, le co-liant est le TPU. More particularly, the co-binder is TPU.
On entend par « extrusion » un procédé thermomécanique selon lequel la formulation est contrainte de traverser une filière, sous l’action de la pression et de la chaleur. L’étape d’extrusion peut être adaptée en fonction de plusieurs paramètres, tels que la température de mélange, le type de profil de vis de l’extrudeuse, le type de filière de l’extrudeuse, la vitesse de rotation et/ou la longueur des vis. By “extrusion” is meant a thermomechanical process according to which the formulation is forced to pass through a die, under the action of pressure and heat. The extrusion step can be adapted according to several parameters, such as the mixing temperature, the type of screw profile of the extruder, the type of die of the extruder, the rotation speed and/or the screw length.
Selon un mode de réalisation, l’extrusion peut être réalisée avec une extrudeuse de type mono- ou bi-vis, corotative ou non. According to one embodiment, the extrusion can be carried out with a mono- or twin-screw type extruder, co-rotating or not.
Selon un mode de réalisation, le profil de vis utilisé dans l’extrudeuse est de type cisaillant afin de faire fibriller le fluoropolymère dans l’extrudeuse. Le profil de vis peut contenir une ou plusieurs zones de mélange. Le nombre de zones de mélange dépend typiquement du nombre de zones d’introduction. La position des zones de mélange dans l’extrudeuse dépend généralement du nombre de zones d’introduction de matière. Après chaque zone d’introduction de matière, une zone de mélange peut être ajoutée. According to one embodiment, the screw profile used in the extruder is of the shearing type in order to cause the fluoropolymer to fibrillate in the extruder. The screw profile can contain one or more mixing zones. The number of mixing zones typically depends on the number of introduction zones. The position of the mixing zones in the extruder generally depends on the number of material introduction zones. After each material introduction zone, a mixing zone can be added.
Typiquement, le type d’élément de vis permettant de cisailler la matière peut être adapté au type de matière active contenue dans le pré-mix. Si la matière active est sensible au cisaillement, il est préférable de privilégier des éléments peu ou moyennement cisaillants. Si la matière active est peu sensible au cisaillement, il est possible d’utiliser des éléments peu, moyennement ou fortement cisaillants. Typically, the type of screw element used to shear the material can be adapted to the type of active material contained in the pre-mix. If the active ingredient is sensitive to shearing, it is preferable to favor low or medium shearing elements. If the active material is not very sensitive to shearing, it is possible to use low, medium or high shearing elements.
La vitesse de rotation de la vis est généralement la même sur toute la vis. Il est généralement recommandé de la faire tourner entre 100rpm et 1000rpm, notamment entre 100 et 750 rpm. La vitesse de rotation de la vis est généralement adaptée en fonction du débit de matière désiré en sortie d’extrudeuse. Plus la vitesse de rotation de la vis est faible, plus les débits de sortie seront faibles. A noter que les vitesses de rotation faibles entraînent des temps de résidence dans l’extrudeuse plus longs. Dans tel cas, si le débit d’entrée de matière est important un risque de boucher l’extrudeuse peut apparaître. Dans le cas d’une vitesse de rotation de vis importante, les débits de sortie peuvent être fluctuants si les débits de matière entrant sont trop faibles. The rotational speed of the screw is generally the same throughout the screw. It is generally recommended to run it between 100rpm and 1000rpm, especially between 100 and 750 rpm. The speed of rotation of the screw is generally adapted according to the flow of material desired at the exit of the extruder. The lower the rotational speed of the screw, the lower the output flow rates. Note that low rotation speeds lead to longer residence times in the extruder. In such a case, if the material input flow is high, there may be a risk of clogging the extruder. In the case of a high screw rotation speed, the output flow rates can be fluctuating if the incoming material flow rates are too low.
L’étape d’extrusion peut être avantageusement réalisée à température comprise entre 25°C et la température de dégradation du fluoropolymère, plus particulièrement entre la température de fusion du co-liant et la température de fusion du fluoropolymère dans les conditions de l’extrusion, étant entendu que les températures de dégradation et/ou fusion du fluoropolymère dans les conditions de l’extrusion peuvent être diminuées en raison des contraintes mécaniques exercées. A titre illustratif, pour le PTFE, la température de dégradation est d’environ 350°C et la température de fusion est de environ 327°C, étant entendu que du fait des contraintes exercées, la température d’extrusion est de préférence inférieure ou égale à 260°C. Selon un autre objet, la présente invention concerne également la formulation d’électrode susceptible d’être obtenue par le procédé selon l’invention. The extrusion step can advantageously be carried out at a temperature between 25° C. and the degradation temperature of the fluoropolymer, more particularly between the melting temperature of the co-binder and the melting temperature of the fluoropolymer under the extrusion conditions. , it being understood that the degradation and/or melting temperatures of the fluoropolymer under the extrusion conditions may be reduced due to the mechanical stresses exerted. By way of illustration, for PTFE, the degradation temperature is approximately 350°C and the melting temperature is approximately 327°C, it being understood that due to the stresses exerted, the extrusion temperature is preferably lower or equal to 260°C. According to another object, the present invention also relates to the electrode formulation capable of being obtained by the process according to the invention.
Selon un autre objet, la présente invention vise également une formulation d’électrode comprenant : According to another object, the present invention also relates to an electrode formulation comprising:
- une matière active d’électrode ; - an active electrode material;
- un fluoropolymère; - a fluoropolymer;
- le polyuréthane thermoplastique (TPU) à titre de co-liant. - thermoplastic polyurethane (TPU) as a co-binder.
Le fluoropolymère est tel que défini ci-avant. The fluoropolymer is as defined above.
Selon un mode de réalisation, les formulations d’électrode précitées selon l’invention peuvent en outre comprendre un élément conducteur. Ceci est notamment le cas pour les électrodes positives, tel que discuté ci-avant. According to one embodiment, the aforementioned electrode formulations according to the invention may also comprise a conductive element. This is notably the case for the positive electrodes, as discussed above.
Selon un mode de réalisation, les formulations d’électrode selon l’invention peuvent en outre comprendre un ou plusieurs additifs choisis parmi les lubrifiants tel que les huiles ou les cires ou le graphite. According to one embodiment, the electrode formulations according to the invention may also comprise one or more additives chosen from lubricants such as oils or waxes or graphite.
De plus, les formulations selon l’invention peuvent également comprendre un additif carboné. Cet additif est réparti dans l’électrode de manière à former un réseau percolant électronique entre le matériau actif et le collecteur de courant. In addition, the formulations according to the invention can also comprise a carbon additive. This additive is distributed in the electrode so as to form an electronic percolating network between the active material and the current collector.
Lorsqu’il est présent, l’additif carboné peut être compris jusqu’à environ 10% (en poids), notamment de 1 à 6% (poids) de la teneur totale de la formulation. When it is present, the carbonaceous additive can be comprised up to about 10% (by weight), in particular from 1 to 6% (weight) of the total content of the formulation.
Ainsi, selon un mode de réalisation, les formulations selon l’invention comprennent (en poids) : Thus, according to one embodiment, the formulations according to the invention comprise (by weight):
De 80 à 98,5 % de matière active ; From 80 to 98.5% active ingredient;
- De 0.1 à 5 % de PTFE ; - From 0.1 to 5% PTFE;
- De 0.1 à 5 % de TPU ; - From 0.1 to 5% TPU;
De 0 à 5% de lubrifiant ; et From 0 to 5% lubricant; and
De 0 à 10% de carbone percolant. From 0 to 10% percolating carbon.
La formulation d’électrode selon l’invention convient aux électrodes positives ou négatives. Le terme « électrode négative » désigne lorsque l'accumulateur est en décharge, l'électrode fonctionnant en anode et lorsque l'accumulateur est en charge, l'électrode fonctionnant en cathode, l’anode étant définie comme l’électrode où a lieu une réaction électrochimique d'oxydation (émission d'électrons), tandis que la cathode est le siège de la réduction. Le terme électrode négative désigne également l’électrode d’où partent les électrons, et d’où sont libérés les cations (Li+) en décharge. The electrode formulation according to the invention is suitable for positive or negative electrodes. The term "negative electrode" designates when the accumulator is discharging, the electrode functioning as an anode and when the accumulator is charging, the electrode functioning as a cathode, the anode being defined as the electrode where a electrochemical oxidation reaction (emission of electrons), while the cathode is the seat of reduction. The term negative electrode also designates the electrode from which the electrons leave, and from which the cations (Li+) are released in discharge.
Le terme « électrode positive » désigne l’électrode où entrent les électrons, et où arrivent les cations (Li+) en décharge. The term "positive electrode" designates the electrode where the electrons enter, and where the cations (Li+) arrive in discharge.
Selon l’invention, la formulation d’électrode est poreuse, la porosité étant conférée par les fibrilles de fluoropolymère générées par l’extrusion. Cette porosité permet notamment d’une part d’accueillir le lithium métal dans la porosité de l’électrode négative lors de la charge, et d’autre part de maintenir une tenue mécanique de l’électrode. According to the invention, the electrode formulation is porous, the porosity being imparted by the fluoropolymer fibrils generated by the extrusion. This porosity makes it possible in particular on the one hand to accommodate the lithium metal in the porosity of the negative electrode during charging, and on the other hand to maintain the mechanical strength of the electrode.
On entend ici par « poreux » selon l’invention une taille de pores inférieure à 300 nm. La taille de pores correspond à la structure du matériau présentant un réseau organisé de canaux de taille de pore très petite variable : typiquement une taille de pores inférieure à 1 pm, préférentiellement inférieure à 300 nm. Cette taille de pores confère à l’électrode une surface active par unité de surface d’électrode particulièrement grande. Here, the term "porous" according to the invention means a pore size of less than 300 nm. The pore size corresponds to the structure of the material having an organized network of channels of variable very small pore size: typically a pore size of less than 1 μm, preferably less than 300 nm. This pore size gives the electrode a particularly large active surface per unit electrode surface.
Selon un mode de réalisation, l’électrode présente une porosité comprise entre 10 et 60%, préférentiellement, entre 15 et 35%, la porosité représentant le pourcentage des vides dans le volume total de la formulation considérée. La porosité peut être mesurée par porosimétrie Hg ou par porosimétrie Hélium en général. According to one embodiment, the electrode has a porosity of between 10 and 60%, preferably between 15 and 35%, the porosity representing the percentage of voids in the total volume of the formulation considered. Porosity can be measured by Hg porosimetry or by Helium porosimetry in general.
Selon un autre objet, la présente invention vise encore une électrode comprenant la formulation d’électrode selon l’invention mise en forme. According to another object, the present invention also relates to an electrode comprising the electrode formulation according to the invention shaped.
Selon un mode de réalisation, ladite électrode peut être constituée d’un support conducteur utilisé comme collecteur de courant qui est revêtu de la formulation selon l’invention mise en forme. According to one embodiment, said electrode may consist of a conductive support used as a current collector which is coated with the formulation according to the shaped invention.
On entend par collecteur de courant un élément tel que plot, plaque, feuille ou autre, en matériau conducteur, relié à l’électrode positive ou négative, et assurant la conduction du flux d’électrons entre l’électrode et les bornes de la batterie. Le collecteur de courant est de préférence un support conducteur bidimensionnel tel qu'un feuillard plein ou perforé, à base de métal, par exemple en cuivre, en nickel, en acier, en acier inoxydable ou en aluminium. By current collector is meant an element such as a pad, plate, sheet or other, made of conductive material, connected to the positive or negative electrode, and ensuring the conduction of the flow of electrons between the electrode and the terminals of the battery. . The current collector is preferably a two-dimensional conductive support such as a solid or perforated strip, based on metal, for example copper, nickel, steel, stainless steel or aluminum.
Ladite électrode peut notamment être une électrode de type Li-ion. Said electrode can in particular be a Li-ion type electrode.
Lorsqu’il s’agit d’une électrode négative de type Li-ion, celle-ci est constituée avantageusement de la formulation comprenant du PTFE, du TPU et du graphite mise en forme sur un collecteur de courant tel qu’un feuillard de cuivre. When it is a negative electrode of the Li-ion type, the latter advantageously consists of the formulation comprising PTFE, TPU and graphite shaped on a current collector such as a copper strip .
Lorsqu’il s’agit d’une électrode positive, celle-ci est constituée avantageusement de la formulation comprenant du PTFE, du TPU, un matériau actif d’électrode positive, un élément conducteur électroniquement et un additif carboné, mise en forme sur un collecteur de courant tel qu’un feuillard d’aluminium. When it is a positive electrode, the latter advantageously consists of the formulation comprising PTFE, TPU, an active positive electrode material, an electronically conductive element and a carbonaceous additive, shaped on a current collector such as aluminum foil.
Les électrodes selon l’invention peuvent être préparées par application ou adaptation des méthodologies classiques de fabrication d’électrodes. The electrodes according to the invention can be prepared by applying or adapting conventional methodologies for manufacturing electrodes.
Ainsi typiquement, la formulation obtenue à l’issue de l’étape d’extrusion est mise en forme par exemple par pressage, pour obtenir une formulation autosupportée qui sera ensuite laminée par calandrage par exemple sur le collecteur de courant. Thus typically, the formulation obtained at the end of the extrusion step is shaped, for example by pressing, to obtain a self-supporting formulation which will then be rolled by calendering, for example on the current collector.
Selon un autre objet, la présente invention concerne également un élément électrochimique comprenant au moins une électrode selon l’invention. According to another object, the present invention also relates to an electrochemical element comprising at least one electrode according to the invention.
On entend par « élément électrochimique » une cellule électrochimique élémentaire constituée de l’assemblage électrode positive/électrolyte/électrode négative, permettant d’emmagasiner l’énergie électrique fournie par une réaction chimique et de la restituer sous forme de courant. “Electrochemical element” means an elementary electrochemical cell made up of the positive electrode/electrolyte/negative electrode assembly, allowing the electrical energy supplied by a chemical reaction to be stored and returned in the form of current.
Les éléments chimiques selon l’invention peuvent être adaptés aux différentes technologies de batterie et types d’électrolytes. The chemical elements according to the invention can be adapted to the different battery technologies and types of electrolytes.
Ainsi selon un mode de réalisation, l’élément électrochimique peut être de type Lithium-ion. Thus according to one embodiment, the electrochemical element can be of the lithium-ion type.
Les éléments Li-ion sont basés sur l’échange réversible de l’ion lithium entre une électrode positive et une électrode négative, séparées par un électrolyte, le lithium se déposant à l’électrode négative pendant le fonctionnement en charge. Typiquement, pour ces accumulateurs, la formulation d’électrode positive comprend un oxyde de métal de transition lithié à titre de matière active et la formulation d’électrode négative comprend du graphite à titre de matière active. Selon un mode de réalisation, l’élément électrochimique peut également être de type «solide » ou encore « Li primaire ». Li-ion cells are based on the reversible exchange of lithium ion between a positive electrode and a negative electrode, separated by an electrolyte, the lithium being deposited at the negative electrode during charging operation. Typically, for these accumulators, the positive electrode formulation comprises a lithiated transition metal oxide as active material and the negative electrode formulation comprises graphite as active material. According to one embodiment, the electrochemical element can also be of the “solid” or even “primary Li” type.
Le terme « solide » désigne les éléments à électrolyte solide, tel que les oxydes, halogénures, sulfures ou un polymère. The term “solid” designates elements with a solid electrolyte, such as oxides, halides, sulphides or a polymer.
Le terme « Li-primaire » désigne un élément au lithium non rechargeable. The term "Li-primary" refers to a non-rechargeable lithium cell.
Selon un autre objet, la présente invention concerne également un module électrochimique comprenant l’empilement d’au moins deux éléments selon l’invention, chaque élément étant connecté électriquement avec un ou plusieurs autre(s) élément(s). Le terme « module » désigne donc ici l’assemblage de plusieurs éléments électrochimiques, lesdits assemblages pouvant être en série et/ou parallèle. According to another object, the present invention also relates to an electrochemical module comprising the stacking of at least two elements according to the invention, each element being electrically connected with one or more other element(s). The term “module” therefore designates here the assembly of several electrochemical elements, said assemblies possibly being in series and/or parallel.
Un autre objet de l’invention est encore une batterie comprenant un ou plusieurs modules selon l’invention. Another object of the invention is also a battery comprising one or more modules according to the invention.
On entend par « batterie » ou accumulateur, l’assemblage de plusieurs modules selon l’invention. By “battery” or accumulator is meant the assembly of several modules according to the invention.
Selon un mode de réalisation, les batteries selon l’invention sont des accumulateurs dont la capacité est supérieure à 100 mAh, typiquement 1 à 100Ah. According to one embodiment, the batteries according to the invention are accumulators whose capacity is greater than 100 mAh, typically 1 to 100 Ah.
Figures tricks
[Fig 1] La Figure 1 représente l’observation par MEB de la structure d’une anode de formulation 94%Graphite / 2%PTFE / 4%TPU préparée selon les exemples. [Fig 1] Figure 1 represents the observation by SEM of the structure of an anode of 94% Graphite / 2% PTFE / 4% TPU formulation prepared according to the examples.
[Fig 2] La Figure 2 représente la comparaison de la distribution de la taille des pores pour une anode de référence (représentée par des ronds) et pour des anodes selon l’invention (variant de par leur teneur en PTFE ou en TPU) (échantillons 1 , 2 et 3 représentés par des carrés, losanges et triangles, respectivement) [Fig 2] Figure 2 represents the comparison of the pore size distribution for a reference anode (represented by circles) and for anodes according to the invention (varying in terms of their PTFE or TPU content) ( samples 1 , 2 and 3 represented by squares, diamonds and triangles, respectively)
[Fig 3] La Figure 3 représente la comparaison de la quantité de porosité pour une anode de référence (ronds) et pour des anodes selon l’invention (variant de par leur teneur en PTFE ou en TPU) (échantillons 1 , 2 et 3 : carrés, losanges et triangles, respectivement). [Fig 3] Figure 3 represents the comparison of the amount of porosity for a reference anode (round) and for anodes according to the invention (varying by their PTFE or TPU content) (samples 1, 2 and 3 : squares, diamonds and triangles, respectively).
Exemples Examples
1 . Préparation des électrodes Des formulations d’électrode selon l’invention sont préparées en réalisant un pré-mélange de la matière active (graphite) et du PTFE fibrillable. Puis le pré-mix est mélangé au coliant (TPU) à l’aide d’une extrudeuse bi-vis, à température comprise entre 70 et 260°C et à une vitesse de rotation comprise entre 100 et 750 rpm. 1 . Preparation of the electrodes Electrode formulations according to the invention are prepared by producing a premix of the active material (graphite) and the fibrillable PTFE. Then the pre-mix is mixed with the binder (TPU) using a twin-screw extruder, at a temperature between 70 and 260° C. and at a speed of rotation between 100 and 750 rpm.
Les formulations suivantes ont été préparées : The following formulations were prepared:
[Table 1] [Table 1]
Le mélange récupéré en sortie de l’extrudeuse est ensuite transféré dans un mélangeur à rouleaux externes pour fabriquer une électrode autosupportée (ou pressé sous une presse) et pour mise en forme de l’électrode. L’adhésion sur feuillard est ensuite obtenue par colamination (par calandrage) sur un collecteur de courant. The mixture recovered at the exit of the extruder is then transferred to a mixer with external rollers to manufacture a self-supporting electrode (or pressed under a press) and to shape the electrode. Adhesion on strip is then obtained by co-lamination (by calendering) on a current collector.
L’image MEB de la Figure 1 montre que les fibrilles de PTFE sont bien réparties dans l’électrode. Elles forment un réseau qui contribue à la formation de porosités au sein de l’électrode. The SEM image in Figure 1 shows that the PTFE fibrils are well distributed in the electrode. They form a network which contributes to the formation of porosities within the electrode.
2. Caractérisation des électrodes 2.1 La porosité des électrodes obtenues selon l’exemple 1 a été analysée pour les différentes compositions, et comparée à celle d’une électrode de référence. 2. Characterization of the electrodes 2.1 The porosity of the electrodes obtained according to example 1 was analyzed for the different compositions, and compared with that of a reference electrode.
La porosité a été mesurée par porosimétrie Fig. The porosity was measured by porosimetry Fig.
L’électrode de référence a été réalisée par voie solvant. La matière active (le graphite), le liant (le SBR) et le co-liant (la CMC) tous sous forme de poudre, sont d’abord mélangés en voie sèche à l’aide d’un mélangeur de type planétaire. Un solvant (la NMP) est ajouté ensuite pour produire une encre. Cette encre est ensuite enduite sur un collecteur de courant de type cuivre. Le solvant est ensuite évaporé à l’aide d’un système permettant d’aspirer et de recycler le solvant. La formulation de l’électrode de référence est composée de 97% de matière active, de 1.5 % de liant et de 1 .5% de co-liant. Le ratio massique pré- mix/solvant lors de l’ajout du solvant est de 40/60. Sur les graphiques de la Figure 2, l’électrode de référence est représentée par des ronds, et les formulations de l’invention 1, 2 et 3 ci-dessus sont représentées par des carrés, losanges et triangles, respectivement. The reference electrode was produced by the solvent route. The active material (the graphite), the binder (the SBR) and the co-binder (the CMC) all in the form of powder, are first mixed in a dry process using a planetary-type mixer. A solvent (NMP) is then added to produce an ink. This ink is then coated on a copper type current collector. The solvent is then evaporated using a system for sucking up and recycling the solvent. The formulation of the reference electrode is composed of 97% active material, 1.5% binder and 1.5% co-binder. The pre-mix/solvent mass ratio when adding the solvent is 40/60. In the graphs of Figure 2, the reference electrode is represented by circles, and the invention formulations 1, 2 and 3 above are represented by squares, diamonds and triangles, respectively.
La Figure 2 illustre la distribution de taille des pores contenus dans l’électrode de référence et dans les électrodes réalisées via la présente invention. Deux populations de pores sont observées. Il apparait que la distribution de taille des pores contenus dans les électrodes faites par le procédé décrit dans cette invention est dans la gamme de la taille des pores de l’électrode de référence préparée en voie standard (voie solvant). De plus, la Figure 2 montre qu’en changeant la quantité de PTFE et de co-liant (ici le TPU) dans la formulation spécifique, il est possible de contrôler et moduler la quantité de porosité fabriquée mais également la taille moyenne des pores de l’électrode. La Figure 3 présente la quantité de porosité contenue dans l'électrode de référence préparée par voie solvant et dans des électrodes préparées selon le procédé présenté dans la présente invention. Il apparait que la quantité de porosité des électrodes préparées selon le procédé présenté dépend de la formulation. Par ailleurs, il est montré qu’il est possible de moduler la quantité de porosité de l’électrode en jouant sur la formulation à savoir la teneur en matière active, en liant et en co-liant. Figure 2 illustrates the size distribution of the pores contained in the reference electrode and in the electrodes made via the present invention. Two populations of pores are observed. It appears that the size distribution of the pores contained in the electrodes made by the process described in this invention is in the range of the size of the pores of the reference electrode prepared in the standard way (solvent way). In addition, Figure 2 shows that by changing the amount of PTFE and co-binder (here TPU) in the specific formulation, it is possible to control and modulate the amount of porosity produced but also the average pore size of the electrode. Figure 3 shows the amount of porosity contained in the reference electrode prepared by the solvent route and in electrodes prepared according to the method presented in the present invention. It appears that the amount of porosity of the electrodes prepared according to the method presented depends on the formulation. Moreover, it is shown that it is possible to modulate the amount of porosity of the electrode by adjusting the formulation, namely the content of active material, binder and co-binder.
2.2 Durée de vie 2.2 Lifespan
Les expérimentations effectuées ont montré une durée de vie supérieure à 30 cycles, à 60°C et en régime C/5. The experiments carried out have shown a lifetime greater than 30 cycles, at 60° C. and in C/5 conditions.

Claims

REVENDICATIONS
1. Procédé de préparation d’une formulation d’électrode comprenant :1. Process for preparing an electrode formulation comprising:
- La préparation d’un pré-mix comprenant une matière active d’électrode et un fluoropolymère; - The preparation of a pre-mix comprising an active electrode material and a fluoropolymer;
- Le mélange du pré-mix avec un co-liant ; - Mixing the pre-mix with a co-binder;
- La fibrillation du mélange obtenu par extrusion. - The fibrillation of the mixture obtained by extrusion.
2. Procédé selon la revendication 1 tel que l’extrusion est réalisée avec une extrudeuse de type mono- ou bi-vis. 2. Method according to claim 1 such that the extrusion is carried out with a mono- or twin-screw type extruder.
3. Procédé selon la revendication 1 ou 2 tel que le fluoropolymère est choisi parmi le polytétrafluoroéthylène (PTFE) et ses co-polymères, tels que le chlorofluoroéthylène, le perfluoroalkoxy (PFA), le polychlorotrifluoroéthylène (PCTFE ou PTFCE), éthylène propylène fluoré (FEP), éthylène tétrafluoroéthylène ou poly(éthylène-co-tétrafluoroéthylène) (ETFE), tétrafluoroéthylène perfluoromethylvinyléther (MFA). 3. Method according to claim 1 or 2 such that the fluoropolymer is chosen from polytetrafluoroethylene (PTFE) and its co-polymers, such as chlorofluoroethylene, perfluoroalkoxy (PFA), polychlorotrifluoroethylene (PCTFE or PTFCE), fluorinated ethylene propylene ( FEP), ethylene tetrafluoroethylene or poly(ethylene-co-tetrafluoroethylene) (ETFE), tetrafluoroethylene perfluoromethylvinylether (MFA).
4. Procédé selon l’une quelconque des revendications précédentes tel que le fluoropolymère est le PTFE. 4. Method according to any one of the preceding claims, such that the fluoropolymer is PTFE.
5. Procédé selon l’une quelconque des revendications précédentes tel que le co-liant est choisi parmi le polyuréthane thermoplastique (TPU), le poly(styrène- butadiène-styrène) (SBS), le poly(styrène-éthylène-butadiène-styrène) (SEBS), les élastomères thermoplastiques (TPE), thermoplastiques vulcanisés (TPV), les copolyesters thermoplastiques (TPC), polystyrène-b-poly(éthylène-butylène)-b- polystyrène (SEBS), les copolymères de butadiène-acrylonitrile aussi appelés « caoutchoucs nitrile » (NBR), les copolymères de butadiène-acrylonitrile hydrogénés, aussi appelés « caoutchoucs nitrile hydrogénés » (HNBR), les élastomères, les thermoplastiques ou les terpolymères éthylène-acrylate. 5. Method according to any one of the preceding claims, such that the co-binder is chosen from thermoplastic polyurethane (TPU), poly (styrene-butadiene-styrene) (SBS), poly (styrene-ethylene-butadiene-styrene ) (SEBS), thermoplastic elastomers (TPE), vulcanized thermoplastics (TPV), thermoplastic copolyesters (TPC), polystyrene-b-poly(ethylene-butylene)-b-polystyrene (SEBS), butadiene-acrylonitrile copolymers also called “nitrile rubbers” (NBR), hydrogenated butadiene-acrylonitrile copolymers, also called “hydrogenated nitrile rubbers” (HNBR), elastomers, thermoplastics or ethylene-acrylate terpolymers.
6. Procédé selon l’une quelconque des revendications précédentes tel que le co-liant est le TPU. 6. Method according to any one of the preceding claims, such that the co-binder is TPU.
7. Procédé selon l’une quelconque des revendications précédentes tel que l’étape de mélange sous contrainte mécanique est réalisée à température comprise entre 25°C et la température de dégradation du fluoropolymère. 7. Process according to any one of the preceding claims, such that the step of mixing under mechanical stress is carried out at a temperature between 25° C. and the degradation temperature of the fluoropolymer.
8. Formulation d’électrode susceptible d’être obtenue par le procédé selon l’une quelconque des revendications précédentes. 8. Electrode formulation obtainable by the process according to any one of the preceding claims.
9. Formulation d’électrode de type Li-ion comprenant : 9. Li-ion type electrode formulation comprising:
- une matière active d’électrode ; - an active electrode material;
- un fluoropolymère; - a fluoropolymer;
- le polyuréthane thermoplastique (TPU) à titre de co-liant. - thermoplastic polyurethane (TPU) as a co-binder.
10. Formulation selon la revendication 9 telle qu’elle comprend en outre un élément conducteur. 10. Formulation according to claim 9 such that it further comprises a conductive element.
11. Formulation selon la revendication 9 ou 10 telle qu’elle comprend (en poids) : 11. Formulation according to claim 9 or 10 as it comprises (by weight):
De 80 à 98,5 % de matière active ; From 80 to 98.5% active ingredient;
- De 0,1 à 5 % de PTFE ; - From 0.1 to 5% PTFE;
- De 0,1 à 5 % de TPU ; - From 0.1 to 5% TPU;
De 0 à 5 % de lubrifiant ; et De 0 à 10 % de carbone percolant. From 0 to 5% lubricant; and From 0 to 10% percolating carbon.
12. Formulation selon l’une quelconque des revendications 8 à 11 présentant une porosité comprise entre 15 et 35%. 12. Formulation according to any one of claims 8 to 11 having a porosity of between 15 and 35%.
13. Electrode de type Li-ion comprenant la formulation d’électrode selon l’une quelconque des revendications 8 à 12 mise en forme sur un collecteur de courant. 13. Li-ion type electrode comprising the electrode formulation according to any one of claims 8 to 12 shaped on a current collector.
14. Electrode selon la revendication 13, telle qu’il s’agit d’une électrode négative, et telle que la formulation comprend du PTFE, du TPU, du graphite.14. Electrode according to claim 13, such that it is a negative electrode, and such that the formulation comprises PTFE, TPU, graphite.
15. Elément électrochimique de type Li-ion comprenant une électrode selon la revendication 13 ou 14. 15. Li-ion type electrochemical element comprising an electrode according to claim 13 or 14.
EP22734280.5A 2021-06-16 2022-06-15 Method for preparing a solvent-free electrode and electrode formulations obtainable by said method Pending EP4356453A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2106383A FR3124327A1 (en) 2021-06-16 2021-06-16 SOLVENT-FREE ELECTRODE PREPARATION PROCESS AND ELECTRODE FORMULATIONS LIKELY TO BE OBTAINED BY SUCH PROCESS
PCT/EP2022/066388 WO2022263555A2 (en) 2021-06-16 2022-06-15 Method for preparing a solvent-free electrode and electrode formulations obtainable by said method

Publications (1)

Publication Number Publication Date
EP4356453A2 true EP4356453A2 (en) 2024-04-24

Family

ID=78536265

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22734280.5A Pending EP4356453A2 (en) 2021-06-16 2022-06-15 Method for preparing a solvent-free electrode and electrode formulations obtainable by said method

Country Status (5)

Country Link
US (1) US20240290981A1 (en)
EP (1) EP4356453A2 (en)
CA (1) CA3222861A1 (en)
FR (1) FR3124327A1 (en)
WO (1) WO2022263555A2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110204284A1 (en) * 2010-02-25 2011-08-25 Renee Kelly Duncan Carbon electrode batch materials and methods of using the same
TW201432748A (en) * 2013-01-25 2014-08-16 Corning Inc Method for manufacturing carbon electrode material
US10741843B2 (en) 2014-04-18 2020-08-11 Maxwell Technologies, Inc. Dry energy storage device electrode and methods of making the same

Also Published As

Publication number Publication date
US20240290981A1 (en) 2024-08-29
WO2022263555A3 (en) 2023-03-09
FR3124327A1 (en) 2022-12-23
WO2022263555A2 (en) 2022-12-22
CA3222861A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
US20240105913A1 (en) Dry process formation of solid state lithium ion cell
EP3132481B1 (en) Dry energy storage device electrode and methods of making the same
EP2619832B1 (en) Electrode for lithium batteries and its method of manufacture
CN110600687B (en) Method for producing composite materials
WO2001084659A1 (en) All-solid-state polymer electrolyte electrochemical generator comprising fluorinated polymers
US20210155766A1 (en) Compositions and methods for electrode fabrication
WO2004008560A2 (en) Particles comprising a non-conducting or semi-conducting core, which are coated with a hybrid conducting layer, production methods thereof and uses of same in electrical devices
EP3298644B1 (en) Positive electrode for a lithium electrochemical generator
US20230076834A1 (en) Compositions and methods for electro-chemical cell component fabrication
EP1846331B1 (en) Method for modification of a lithiated oxide comprising at least one transition metal using phosphate ions
FR3118533A1 (en) METHOD FOR PREPARING A HIGH MASS CHARGE ELECTRODE FILLED WITH ELECTROLYTE FOR A HIGH ENERGY DENSITY BATTERY
EP4356453A2 (en) Method for preparing a solvent-free electrode and electrode formulations obtainable by said method
WO2021260175A1 (en) Graphite/lithium hybrid negative electrode
EP3483953A2 (en) Specific composition for the manufacture of electrodes for a lithium battery
WO2024126826A1 (en) New solvent-free preparation method for catholytes and solid electrolyte layers
EP1763097B1 (en) Positive electrode for alkaline battery
FR3124328A1 (en) METHOD FOR PREPARING A POROUS ELECTRODE WITHOUT SOLVENT AND THE ELECTROCHEMICAL ELEMENTS COMPRISING SUCH ELECTRODES
EP3930045A1 (en) Porous negative electrode
WO2024126799A1 (en) Negative electrodes based on silicon and fluorinated additive
EP4305686A1 (en) Electrode for all-solid-state lithium-sulfur electrochemical element comprising ionically and electronically conductive sulfide electrolyte
WO2021130268A1 (en) Composite electrode comprising a metal and a polymer membrane, manufacturing method and battery containing same
WO2020223799A1 (en) Multilayer electrode-electrolyte components and their production methods
FR3137217A1 (en) MEMBRANE FOR ELECTROCHEMICAL CELL COMPRISING A LITHIOPHILE LAYER
FR3109023A1 (en) Anodic active material for lithium-ion electrochemical cell

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231215

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR