EP4340885A1 - Bio-microbur therapeutic delivery platform - Google Patents
Bio-microbur therapeutic delivery platformInfo
- Publication number
- EP4340885A1 EP4340885A1 EP22805638.8A EP22805638A EP4340885A1 EP 4340885 A1 EP4340885 A1 EP 4340885A1 EP 22805638 A EP22805638 A EP 22805638A EP 4340885 A1 EP4340885 A1 EP 4340885A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- bio
- microbur
- delivery platform
- therapeutic
- recited
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012384 transportation and delivery Methods 0.000 title claims abstract description 116
- 230000001225 therapeutic effect Effects 0.000 title claims abstract description 84
- 239000003814 drug Substances 0.000 claims abstract description 68
- 229940124597 therapeutic agent Drugs 0.000 claims abstract description 47
- 229940124834 selective serotonin reuptake inhibitor Drugs 0.000 claims abstract description 42
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 33
- 239000012896 selective serotonin reuptake inhibitor Substances 0.000 claims abstract description 24
- RTHCYVBBDHJXIQ-MRXNPFEDSA-N (R)-fluoxetine Chemical compound O([C@H](CCNC)C=1C=CC=CC=1)C1=CC=C(C(F)(F)F)C=C1 RTHCYVBBDHJXIQ-MRXNPFEDSA-N 0.000 claims abstract description 11
- 229960002464 fluoxetine Drugs 0.000 claims abstract description 11
- 229940126578 oral vaccine Drugs 0.000 claims abstract description 3
- 239000000243 solution Substances 0.000 claims description 42
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 20
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- 229910044991 metal oxide Inorganic materials 0.000 claims description 15
- 150000004706 metal oxides Chemical class 0.000 claims description 15
- 229920001661 Chitosan Polymers 0.000 claims description 14
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims description 12
- 239000011572 manganese Substances 0.000 claims description 11
- 229920002873 Polyethylenimine Polymers 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 239000000377 silicon dioxide Substances 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 8
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 claims description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 7
- 229940072056 alginate Drugs 0.000 claims description 7
- 229920000615 alginic acid Polymers 0.000 claims description 7
- 235000010443 alginic acid Nutrition 0.000 claims description 7
- 239000000017 hydrogel Substances 0.000 claims description 7
- 239000002244 precipitate Substances 0.000 claims description 7
- 235000012239 silicon dioxide Nutrition 0.000 claims description 7
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 7
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 239000010931 gold Substances 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- 238000005406 washing Methods 0.000 claims description 6
- 239000011701 zinc Substances 0.000 claims description 6
- 229920002307 Dextran Polymers 0.000 claims description 4
- 229920001503 Glucan Polymers 0.000 claims description 4
- 239000002202 Polyethylene glycol Substances 0.000 claims description 4
- 229920001218 Pullulan Polymers 0.000 claims description 4
- 239000004373 Pullulan Substances 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 229920002674 hyaluronan Polymers 0.000 claims description 4
- 229920001223 polyethylene glycol Polymers 0.000 claims description 4
- 235000019423 pullulan Nutrition 0.000 claims description 4
- 229910052723 transition metal Inorganic materials 0.000 claims description 4
- 150000003624 transition metals Chemical class 0.000 claims description 4
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 claims description 3
- 229960003160 hyaluronic acid Drugs 0.000 claims description 3
- 239000002775 capsule Substances 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- CWAFVXWRGIEBPL-UHFFFAOYSA-N ethoxysilane Chemical compound CCO[SiH3] CWAFVXWRGIEBPL-UHFFFAOYSA-N 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 2
- 210000000170 cell membrane Anatomy 0.000 abstract description 18
- 239000000499 gel Substances 0.000 abstract description 16
- 238000012377 drug delivery Methods 0.000 abstract description 14
- 235000013399 edible fruits Nutrition 0.000 abstract description 8
- 229960000074 biopharmaceutical Drugs 0.000 abstract 1
- 239000002105 nanoparticle Substances 0.000 description 21
- 229940079593 drug Drugs 0.000 description 19
- 210000002540 macrophage Anatomy 0.000 description 16
- 210000001035 gastrointestinal tract Anatomy 0.000 description 15
- 210000004027 cell Anatomy 0.000 description 14
- 210000001519 tissue Anatomy 0.000 description 13
- 238000001000 micrograph Methods 0.000 description 12
- 238000011282 treatment Methods 0.000 description 12
- 210000000936 intestine Anatomy 0.000 description 11
- 230000014759 maintenance of location Effects 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 229910021641 deionized water Inorganic materials 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 108090000623 proteins and genes Proteins 0.000 description 9
- 210000000981 epithelium Anatomy 0.000 description 8
- 230000035484 reaction time Effects 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 239000008367 deionised water Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 6
- -1 but not limited to Chemical class 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 210000004347 intestinal mucosa Anatomy 0.000 description 6
- 210000004379 membrane Anatomy 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 210000003097 mucus Anatomy 0.000 description 6
- 108020004707 nucleic acids Proteins 0.000 description 6
- 102000039446 nucleic acids Human genes 0.000 description 6
- 150000007523 nucleic acids Chemical class 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 210000002784 stomach Anatomy 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- 238000009169 immunotherapy Methods 0.000 description 5
- 230000009885 systemic effect Effects 0.000 description 5
- 230000008685 targeting Effects 0.000 description 5
- 239000011787 zinc oxide Substances 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000007903 gelatin capsule Substances 0.000 description 4
- 238000001476 gene delivery Methods 0.000 description 4
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 239000011859 microparticle Substances 0.000 description 4
- 150000003384 small molecules Chemical class 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- WSEQXVZVJXJVFP-HXUWFJFHSA-N (R)-citalopram Chemical compound C1([C@@]2(C3=CC=C(C=C3CO2)C#N)CCCN(C)C)=CC=C(F)C=C1 WSEQXVZVJXJVFP-HXUWFJFHSA-N 0.000 description 3
- 210000001744 T-lymphocyte Anatomy 0.000 description 3
- 230000006399 behavior Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 229960001653 citalopram Drugs 0.000 description 3
- 210000001072 colon Anatomy 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 230000002496 gastric effect Effects 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000003642 reactive oxygen metabolite Substances 0.000 description 3
- 238000006479 redox reaction Methods 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 230000005945 translocation Effects 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 108010024636 Glutathione Proteins 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 238000011529 RT qPCR Methods 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 210000004082 barrier epithelial cell Anatomy 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- VYXSBFYARXAAKO-WTKGSRSZSA-N chembl402140 Chemical compound Cl.C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-WTKGSRSZSA-N 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 210000000172 cytosol Anatomy 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 229940124447 delivery agent Drugs 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 210000000105 enteric nervous system Anatomy 0.000 description 2
- 230000004890 epithelial barrier function Effects 0.000 description 2
- 210000004783 epithelial tight junction Anatomy 0.000 description 2
- 238000011010 flushing procedure Methods 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 229960003180 glutathione Drugs 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000000770 proinflammatory effect Effects 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 239000002516 radical scavenger Substances 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 102000000905 Cadherin Human genes 0.000 description 1
- 108050007957 Cadherin Proteins 0.000 description 1
- 206010008631 Cholera Diseases 0.000 description 1
- 102000002029 Claudin Human genes 0.000 description 1
- 108050009302 Claudin Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical class [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 102000003940 Occludin Human genes 0.000 description 1
- 108090000304 Occludin Proteins 0.000 description 1
- 102100040678 Programmed cell death protein 1 Human genes 0.000 description 1
- 101710089372 Programmed cell death protein 1 Proteins 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 102000000591 Tight Junction Proteins Human genes 0.000 description 1
- 108010002321 Tight Junction Proteins Proteins 0.000 description 1
- 101150058395 US22 gene Proteins 0.000 description 1
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 239000006177 biological buffer Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003592 biomimetic effect Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000002619 cancer immunotherapy Methods 0.000 description 1
- 238000010609 cell counting kit-8 assay Methods 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000599 controlled substance Substances 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000012637 gene transfection Methods 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229940124622 immune-modulator drug Drugs 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 210000005026 intestinal epithelial barrier Anatomy 0.000 description 1
- 210000002490 intestinal epithelial cell Anatomy 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000012977 invasive surgical procedure Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 229940126601 medicinal product Drugs 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000004980 monocyte derived macrophage Anatomy 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 235000015277 pork Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 238000012385 systemic delivery Methods 0.000 description 1
- 210000001578 tight junction Anatomy 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/135—Amines having aromatic rings, e.g. ketamine, nortriptyline
- A61K31/138—Aryloxyalkylamines, e.g. propranolol, tamoxifen, phenoxybenzamine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/501—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/5115—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5146—Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/24—Antidepressants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
- C01G9/02—Oxides; Hydroxides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/141—Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
- A61K9/143—Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/45—Aggregated particles or particles with an intergrown morphology
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
Definitions
- the disclosure of the present patent application relates to vehicles for targeted delivery of pharmaceuticals and other therapeutic agents, and particularly to a delivery platform with a bur-like configuration.
- Targeted drug delivery has been realized using nano/micro-materials as delivery vehicles, where drug biodistribution can be modulated by modulating surfaces, sizes, compositions, and shapes of the nano/micro-materials.
- nano/micro-materials for this purpose are typically unsatisfactory, particularly for the treatment of diseases undergoing dynamic and complex microenvironmental changes. As a result, the frequency of failure of such materials in clinical trials is remains large.
- nano/micro-materials with greater structural complexities may convey more sophisticated and dynamic regulation of drug biodistribution, such complex structures have received minimal investigation with regard to drug delivery and other biological applications, despite their promise. It would be particularly desirable to be able to overcome the inadequate retention of delivery vehicles to target tissues and organs after administration found in the presently available nano/micro-material delivery vehicles.
- a bio-microbur therapeutic delivery platform solving the aforementioned problems is desired.
- the bio-microbur therapeutic delivery platform is a three-dimensional (3D)-oriented nanoneedle platform having a shape simulative of a microscale version of a fruit bur (also spelled burr).
- the bio-microbur may be used for drug delivery and other biological applications. Similar to the ability of the fruit bur to adhere to many different types of surfaces (e.g., fur, ground and plants), the bio-microbur therapeutic delivery platform has superior retention to biological tissue (e.g., pig intestines), cell membranes (e.g., macrophage membranes), and biological gels (e.g., alginate hydrogels), when compared to conventional delivery vehicles such as nanoparticles and microparticles.
- biological tissue e.g., pig intestines
- cell membranes e.g., macrophage membranes
- biological gels e.g., alginate hydrogels
- the bio-microbur therapeutic delivery platform includes a core and a plurality of nanoneedles secured to a surface of the core and extending outwardly therefrom.
- the plurality of nanoneedles are adapted for carrying and delivering a therapeutic agent.
- the core and the plurality of nanoneedles may be, for example, coated with the therapeutic agent.
- the core may be hollow for carrying the therapeutic agent.
- the bio-microbur therapeutic delivery platform and the therapeutic agent may be delivered to the patient through injection or oral delivery, and may be formed from a biodegradable material to faciliate delivery and/or safe removal of the microburs.
- the core and the plurality of nanoneedles may also each be formed from a metal oxide, such as, but not limited to, manganese oxide (MnCh), zinc oxide (ZnO), gold (Au), silicon dioxide (S1O2) or titanium oxide (T1O2), or any combination of these compounds.
- the metal oxide may be doped with a functional agent, such as, but not limited to, silver, which has antimicrobial properties; iron, which may be used in imaging and the like; selenium; aluminum; or a transition metal.
- the metal oxide may be functionalized with a surface conjugate to assist in attaching the bio-microbur therapeutic delivery platform to a cell membrane, biological gel or the like.
- a surface conjugate is (3-aminopropyl)triethoxysilane (APTES).
- APTES (3-aminopropyl)triethoxysilane
- the metal oxide may be coated with a functional agent to increase adhesion between the bio-microbur therapeutic delivery platform and a cell membrane, biological gel or the like, such as, but not limited to, polyethylenimine (PEI), dextran, alginate, pullulan, hylauronic acid, polyethylene glycol, a b-glucan, or chitosan.
- PEI polyethylenimine
- the bio-microbur therapeutic delivery platform and the therapeutic agent may be delivered to the patient, for example, in a gelatin capsule, integrated into a hydrogel or the like.
- the coating or container, such as a gelatin capsule may be intended for example, to protect the microbur delivery agent from exposure to the high stomach pH, and to release the microburs once the formulation passes through the stomach to the intestines or other high pH environment.
- the bio-microbur therapeutic delivery platform may be delivered in a suitable liquid carrier prior to injection in order to facilitate delivery to the target tissue, for example a cell membrane, such as that of a macrophage or a T cell.
- the vehicle and mode of delivery to a particular intended target tissue or target cells will be readily designed to facilitate delivery of the microburs to that target, so as to avoid premature release of the microburs which could result in adherence to non-target tissue or cells.
- manganese-based bio-microburs may be prepared by adding Mn(CH3C00H)2*4H20 to (NH4)2S20x to form a first solution. Sulfuric acid is added to the first solution to form a second solution, and the second solution is heated to form a precipitate of bio-microburs, which are then extracted and washed. To dope the bio- microburs with silver, aluminum, iron, etc., the nitrate salts of the dopants may be added with the Mn(CH3C00H)2*4H20 in the initial step.
- the concentrations of the precursors, the heating temperature and the time of heating may all be varied.
- the time of heating may be a period of 0.5 hours, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 11 hours, 12 hours, or 24 hours.
- zinc-based bio-microburs may be prepared by adding an aqueous solution of Zn(CH3C00H)2*2H20 to an aqueous solution of NaOH to form a solution. The solution is heated to form a precipitate of bio-microburs, and the bio- microburs are then extracted, washed, and dried.
- a bio-microbur delivery platform comprising a core with a plurality of nanoneedles secured to the core surface and extending outward from the core, where the nanoneedles are adapted for carrying and delivering a therapeutic agent.
- the core and the nanoneedles may optionally comprise a biodegradable material.
- the core may optionally be spherical, and the nanoneedles optionally may have an average length of about 10 nm to about 10,000 nm.
- the therapeutic agent may optionally be an oral vaccine or another oral biologic agent.
- the therapeutic agents can be genetic materials such as mRNAs, DNAs, or siRNAs.
- the therapeutic agents can also be proteins, such as granulocyte colony stimulating factor, programmed cell death- 1, vascular endothelial growth factor and interleukins. Cell therapeutics can be delivered by microburs, such as bacteria and virus.
- the therapeutic agent may be any suitable agent, such as for example an SSRI, which may be, for example, fluoxetine or citalopram.
- the core and the nanoneedles each may optionally comprise a metal oxide, such as (without limitation) manganese oxide, zinc oxide, gold, silicon dioxide, or titanium oxide.
- the metal oxide may optionally be: doped with a functional agent, such as (without limitation) silver, iron, aluminum, or a transition metal, or with a surface conjugate, such as (without limitation) (3-aminopropyl) tri ethoxy silane (APTES); or coated with a functional agent, such as (without limitation) PEI, dextran, alginate, pullulan, hyaluronic acid, polyethylene glycol, a b-glucan, or chitosan.
- a functional agent such as (without limitation) silver, iron, aluminum, or a transition metal
- APTES (3-aminopropyl) tri ethoxy silane
- Another embodiment provides a method of delivering a therapeutic agent by administering to a patient the therapeutic agent with a bio-microbur therapeutic delivery platform using any of the bio-microburs as described above.
- the administration to the patient may optionally be oral administration.
- the bio-microbur therapeutic delivery platform and therapeutic agent may optionally be delivered orally to the patient in a capsule, and/or in a hydrogel format.
- the therapeutic agent is an SSRI, such as fluoxetine or citalopram.
- the SSRI is combined with the therapeutic delivery platform in a MB- MSN-SSRI configuration.
- the administration to the patient may be parenteral administration.
- the parenteral administration of the bio-microbur therapeutic delivery platform may include at least one type of cell to which the delivery platform adheres.
- Another embodiment provides a method of preparing a bio-microbur therapeutic delivery platform, comprising the steps of preparing the bio-microburs before combining them with the treating agent.
- the preparation of the bio-microburs may include adding Mn(CH 3 C00H)2*4H20 to (NFUbSiOx to form a first solution; adding sulfuric acid to the first solution to form a second solution; heating the second solution to form a precipitate of bio-microburs; and extracting and washing the bio-microburs.
- the preparation of the bio-microburs may include adding an aqueous solution of Zn(CH3C00H)2*2H20 to an aqueous solution of NaOH to form a solution; heating the solution to form a precipitate of bio-microburs; and washing and drying the bio-microburs.
- Fig. 1 shows a single example of a bio-microbur of the bio-microbur therapeutic delivery platform.
- Fig. 2 is an electron microscope image of the bio-microbur therapeutic delivery platform, with an enlargement of a single microbur.
- Fig. 3 A illustrates the adherence of bio-mi croburs to tissues, biological membranes, and biological gels.
- Fig. 3B illustrates the penetration of cell membranes by nanoneedles of the bio- microbur therapeutic delivery platform.
- Fig. 3C illustrates nanotopographical manipulation of cell behavior with the bio- microbur therapeutic delivery platform.
- Fig. 4A is an electron microscope image of nanoneedles of a bio-microbur.
- Fig. 4B is an electron microscope image of a bio-microbur therapeutic delivery platform formed from silver-doped manganese oxide.
- Fig. 4C is an electron microscope image of a nanoparticle-loaded bio-microbur.
- Fig. 4D is an electron microscope image of a bio-microbur with a hollow core.
- Fig. 5 is a graph comparing retention after water flushing of the bio-microbur therapeutic delivery platform to tissues, biological membranes and biological gels in comparison to a conventional nanoparticle carrier.
- Fig. 6 is a graph showing sustained release of a therapeutic agent over time using the bio-microbur therapeutic delivery platform.
- Fig. 7A and Fig. 7B are electron microscope images of the bio-microbur therapeutic delivery platform adhering to the cell membrane of a macrophage.
- Fig. 8 is a graph showing the controlled degradation of the bio-microbur therapeutic delivery platform.
- Fig. 9A, Fig. 9B and Fig. 9C are microscope images illustrating the biocompatibility of the bio-microbur therapeutic delivery platform.
- Fig. 10A, Fig. IOC, Fig. 10E, and Fig. 10G are electron microscope images, at 2 pm magnification, of the bio-microbur produced from a reaction duration of 0.5 hours, 2 hours, 6 hours, and 12 hours, respectively.
- Fig. 10B, Fig. 10D, Fig. 10F, and Fig. 10H are electron microscope images of the same microburs produced from the reaction duration of 0.5 hours, 2 hours, 6 hours, and 12 hours, respectively, shown at a different magnification.
- Fig. 11 A, Fig. 11B, and Fig. 11C compare the microburs produced after reaction duration of 0.5 hours (MB0.5), 2 hours (MB2), 6 hours (MB6), and 12 hours (MB12).
- Fig. 11A compares the microbur size, in pm;
- Fig. 11B compares the Zeta potential of the microburs MB0.5, MB2, MB6, and MB12 in mV.
- Fig. 11C compares the average number of nanospikes per microbur, for MB 0.5, MB2, MB6, and MB12.
- Fig. 12 depicts a microbur with interstitial nano-assembly of microbur with loaded drug, with examples of drugs that comprise hydrophilic or hydrophobic small molecules, cationic or anionic proteins, and polymeric, inorganic, or hybrid nanoparticles.
- Fig. 13 A depicts a magnified microbur-MSN-SSRI configuration, with SSRI loaded on the MSN-SSRIs which are then loaded on the microbur.
- Fig. 13B is an electron microscope image of a microbur-MSN-SSRI configuration.
- Fig. 13C is a chart comparing the release of SSRI (fluoxetine) through 52 hours after administration, where the microburs were produced by synthesis times of 2 hours (Microbur-1), 6 hours (Micobur-2), or 12 hours (Microbur-3).
- the bio-microbur therapeutic delivery platform is a three-dimensional (3D)-oriented nanoneedle platform having a shape simulative of a microscale version of a fruit bur - typically a seed or dry fruit with hooks or teeth.
- the bio-microbur may be used for drug delivery and other biological applications.
- the bio-microbur therapeutic delivery platform Similar to the ability of the fruit bur to adhere to many different types of surfaces (e.g., fur, ground and plants) with its hooks or teeth, the bio-microbur therapeutic delivery platform with a multitude of needs or spikes provides superior retention to biological tissue (e.g., pig intestines), cell membranes (e.g., macrophage membranes), and biological gels (e.g., alginate hydrogels), especially when compared to conventional delivery vehicles such as nanoparticles and microparticles.
- the bio-microbur therapeutic delivery platform includes a core and a plurality of nanoneedles secured to a surface of the core and extending outwardly therefrom. The plurality of nanoneedles may be adapted for carrying and/or delivering a therapeutic agent.
- the core and the plurality of nanoneedles may be, for example, coated with the therapeutic agent, or may be comprised in whole or part of the therapeutic agent. Alternatively, or used in combination with the previous example, the core may be hollow for additional capacity in carrying the therapeutic agent.
- the bio-microbur therapeutic delivery platform and the therapeutic agent may be delivered to the patient through injection or oral delivery, and may be formed from a biodegradable material.
- Figs. 1, 2, and 10A to 10H show the bio-microbur having a spherically symmetric shape with a substantially spherical core, it should be understood that the core may have any suitable shape, such as, for example, a rod, a sheet or the like.
- Fig. 2 shows the bio-microbur at the pm scale, it should be understood that the nanoneedles may have any suitable length, including but not limited to tip of 1-lOnm, height of 0.5-2um, microbur of l-3um, and coating of 2-20nm.
- the overall bio-microbur may have a size, for example, of approximately 100 nm to approximately 100 pm, such as, for example, 1 to 3 pm.
- the density of nanoneedles on the surface may be in the range of 10 million per cm 2 , to 100 per cm 2 .
- Fig. 4A illustrates the three-dimensional (3D) orientation of the nanoneedles.
- the bio-microbur therapeutic delivery platform may be used to carry any suitable therapeutic agent.
- suitable therapeutic agent include small molecules, proteins, nucleic acids, sugars, lipids, and the like, such as for example, an SSRI, such as fluoxetine.
- the nanoneedles allow the bio-microbur to adhere to biological gels and cell membranes in a manner similar to that of the macroscale fruit bur. It should be understood that the nanoneedles may merely adhere to the biological gels and cell membranes or may at least partially penetrate them.
- Fig. 3A illustrates the enhanced retention of the bio-microbur to tissues, biological membranes, and gels for regiospecific drug delivery
- Fig. 3B illustrates nanoneedle-mediated penetration of cell membranes.
- the nanoneedles also make possible other biological manipulations, such as, for example, regulating fluid and gel shearing topography.
- Fig. 3C illustrates such nanotopographical manipulation of cell behavior.
- the nanoneedles also greatly increase the overall surface area of the bio-microbur, thus providing additional surface area for drug loading and releasing.
- the core and the plurality of nanoneedles may also each be formed from a metal oxide, such as, but not limited to, manganese oxide (MnCk), zinc oxide (ZnO), gold, silicon dioxide (S1O2) or titanium oxide (T1O2). Additionally, the metal oxide may be doped with a functional agent, such as, but not limited to, silver, which has antimicrobial properties, iron, which may be used in imaging and the like, selenium, aluminum, or a transition metal.
- Fig. 4B shows a bio-microbur formed from silver-doped manganese oxide.
- Fig. 4C shows a nanoparticle-loaded bio-microbur
- Fig. 4D shows a bio-microbur with a hollow core for receiving the therapeutic agent.
- the metal oxide may be functionalized with a surface conjugate to assist in attaching the bio-microbur therapeutic delivery platform to a cell membrane, biological gel or the like.
- a surface conjugate is (3 -aminopropyljtri ethoxy silane (APTES).
- APTES (3 -aminopropyljtri ethoxy silane
- the metal oxide may be coated with a functional agent to increase adhesion between the bio-microbur therapeutic delivery platform and a cell membrane, biological gel, or the like, such as, but not limited to, polyethyleneimine (PEI), dextran, alginate, pullulan, hyaluronic acid, polyethylene glycol, a b-glucan or chitosan.
- PEI polyethyleneimine
- the bio-microbur therapeutic delivery platform and the therapeutic agent may be delivered to the patient, for example, contained in a gelatin capsule, or integrated into a hydrogel or the like.
- the coating or container, such as a gelatin capsule may be intended for example, to protect the microbur delivery agent from exposure to the high stomach pH, and to release the microburs once the formulation passes through the stomach to the intestines or other high pH environment - assuming that is the targeted area for delivery of the treating agent.
- the bio-microbur therapeutic delivery platform may be delivered in a suitable liquid carrier prior to injection, for delivery to a targeted tissue or targeted cell membrane, such as that of a macrophage.
- bio-microbur therapeutic delivery platform to targeted tissues and specific biological entities enables regiospecific drug delivery and has enormous potential as regiospecific treatment for any type of therapeutic treatment.
- the enhanced drug retention mediated bio-microbur may also directly enhance therapeutic efficacy.
- nanoparticle-based oral gene delivery has shown enormous potential to treat a variety of diseases, but so far has suffered from a poor delivery efficiency.
- One of the critical barriers is the rapid clearance of nanoparticles in the gastrointestinal (GI) tract.
- GI gastrointestinal
- the bio-microbur strongly adheres to the mucin gels on surfaces of the GI, thus offering a promising solution to enhance the outcome of oral gene delivery. See, for example, Fig. 5.
- the enhanced retention of the bio-microbur therapeutic delivery platform to the cell membrane has been experimentally validated and may lead to a variety of novel drug delivery applications.
- immunotherapy based on the transplantation of immune cells, such as T cells and macrophages, represents a major medical breakthrough of the past decade.
- a lack of control over the fate of immune cells transplanted in vivo remains a major challenge.
- the bio-microbur therapeutic delivery platform has exhibited a highly efficient (almost 100%) adherence to macrophages.
- bio-microbur-bound macrophages can be injected into tumor sites with more predictive immunotherapy outcomes.
- Fig. 5 illustrates the enhanced retention of the bio-microbur, demonstrating relative area remaining after water flushing for the bio-microbur as compared to a conventional nanoparticle carrier.
- the bio-microbur may be at least partially formed from a dissolvable or biodegradable material and/or a dissolving time- release material, helping to provide sustained, controlled drug delivery, as reflected in Fig. 6
- the distinctive biomimetic, 3D-spiky-shaped bio-microbur can also be used in a wide variety of different biological applications.
- One unique advantage of the bio-microbur originates from its 3D-oriented, sharp nanoneedles formed on the surface, which forms the basis for a new means for gene therapy.
- current approaches for gene delivery have been typically mediated by the endocytosis of cationic nanoparticle bearing nucleic acids, which often suffers from a limited efficiency to treat genetic diseases.
- the 3D-oriented nanoneedles of the bio-microbur once loaded with nucleic acids or plasmids, may facilitate the penetration of the cell membrane and enable direct, rapid and efficient delivery of genes into cytosols.
- cytosol delivery of genes has been suggested using nano/micro-needle patches, such patches are much, much larger in scale, and therefore cannot be injected, instead often requiring invasive surgical procedures for application to internal organs.
- bio-microbur delivery platform is its tunable surface nanotopography for direct manipulation of cellular behaviors, which can be synergized with drug delivery for immunotherapy as well as other therapeutic applications.
- polarization of macrophages critically determine their outcome in treating cancer and other diseases.
- Arrays of sharp nanoneedles have been previously used to transiently direct the polarization of macrophages to a pro-inflammatory state, which is desired for cancer immunotherapy.
- such arrays of nanoneedles once seeded with macrophages, again cannot be easily injected by syringe, thus limiting their clinical potential.
- bio-microburs that strongly adhere to the macrophage cell membrane, impose nanotopography-mediated stimulatory effects, and that can simultaneously release proinflammatory drugs provide an excellent enhancer for macrophage-based immunotherapy.
- Other advantages originate from its unique biomimicry shape, including, but not limited to, high surface area (and/or cavity) for drug loading and release, tunable biodegradability and high biocompatibility, the existence of metal species for scavenging cytotoxic and immunogenic cell-free nucleic acid and reactive oxygen species, and unconventional fluid shearing during blood circulation.
- bio-microbur therapeutic delivery platform presents enormous advantages for a broad range of biological applications, including drug delivery including oral delivery of biologies such as nucleic acids, proteins, lipids and polysaccharides, which may be used for vaccines, gene therapy, immunotherapy, and many others.
- drug delivery including oral delivery of biologies such as nucleic acids, proteins, lipids and polysaccharides, which may be used for vaccines, gene therapy, immunotherapy, and many others.
- the bio-microbur therapeutic platform may be tuned in its synthesis to precisely control the composition, structure, surface, and flexibility in order to incorporate different therapeutic molecules for the treatment of a variety of diseases.
- the bio-microbur therapeutic platform may be used to treat cells and cell organelles, destroy tissue debris, target specific types of cells, and may be used for either intracellular or extracellular ⁇ in vitro ) treatment, as well as being used as a reactive oxygen species (ROS) scavenger and a scavenger for cell-free DNA.
- ROS reactive oxygen species
- Additional non-limiting examples of types of treatments include intratumoral, intranasal, intravenous, blood vessel interaction, pulmonary (i.e., inhalation), microparticle depot, intracellular, and for live-cell therapies.
- the bio-microbur therapeutic platform may be used to deliver cell mechano-transduction machinery and for immunocyte-targeted delivery. As shown in Fig. 8, the bio-microbur may also be tuned for a desired controlled biodegradation. Depending on the type of treatment, the bio-microbur therapeutic delivery platform may be delivered to a wide variety of body systems or organs, such as, for example, the brain, the lungs, the skin, the liver, etc. As noted above, when administered to the patient, the bio-microbur therapeutic delivery platform may also be already attached to a cell, such as, for example, lymphocytes, T cells, B cells, NK cells, neutrophils and macrophages. Figs.
- the bio-microbur therapeutic delivery platform may be used to treat a wide variety of diseases and conditions, such as, but not limited to, breast cancer, brain cancer, skin cancer, prostate cancer, wound treatment, treatment of infectious diseases, such as cholera and the like, treatment of neurological disorders, dysfunctions in the liver, brain, skin, etc., treatment of oxidative stress-related diseases and the like.
- Figs. 9A, 9B and 9C show the excellent biocompatibility of the bio-microbur (shown here at high concentrations of 500 pg/mL).
- a scanning electron microscope (SEM), a transmission electron microscope (TEM), and an optical microscope were used to confirm the morphology, structure, composition, and adhesive properties.
- SEM scanning electron microscope
- TEM transmission electron microscope
- an optical microscope were used to confirm the morphology, structure, composition, and adhesive properties.
- HCT-116 colon cells, THP-1 monocyte-derived macrophages, Caco2 cells, and HT-29 large intestine cells were used to characterize the biocompatibility, gene transfection capacity, immune-stimulatory ability, and other biological properties of the bio-microburs.
- the biological properties were quantified by CCK-8 assay, live-dead assay, quantitative real-time polymerase chain reaction (qRT-PCR), and immunostaining.
- Pork intestine, chicken skin, alginate hydrogels, THP-l-derived macrophages, and HCT-116 colon cells were used for evaluating the adhesiveness of the bio-microburs on the biological membranes and surfaces by quantifying the remaining bio-microbur area after undergoing shearing stress from the fluid.
- Drug and gene delivery performance of each type of bio-microbur was tested using small molecules (e.g., rhodamine 6G, fluorescein), biologies (e.g., bovine serum albumin, nucleic acids, and lipids), and nanoparticles (e.g., plasmid-loaded chitosan-polyethyleneimine nanoparticles) by quantifying time-dependent release from bio-microburs.
- small molecules e.g., rhodamine 6G, fluorescein
- biologies e.g., bovine serum albumin, nucleic acids, and lipids
- nanoparticles e.g., plasm
- Certain treating agents may benefit from specifically targeting certain parts of the body for delivery, such as, for non-limiting example, the gut epithelium.
- SSRIs may prove effective while avoiding side effects when delivered to the gut epithelium (the intestinal mucosa) using an appropriate form of microburs that may be delivered orally.
- the microbur technology provides distinct advantages compared to other technologies developed for delivery of treating agents to the intestinal epithelium.
- microneedle-based drug delivery platforms that enhance GI adhesion typically but have larger microneedles that damage GI epithelium, which promotes translocation - and thus systemic absorption - of the treating agent. Such systemic absorption is avoided by the present microbur structures.
- Nanoneedle-based transdermic delivery patches cannot be adapted for oral delivery.
- the present biocompatible, 3D vertical nanoneedle-decorated microparticle- based delivery platform addresses these key issues, and thus more easily facilitates the safe, reliable, convenient, and targeted oral delivery of SSRIs to the gut epithelium.
- aqueous solutions of Mn(CH 3 C00H)2*4H20 were first prepared at a concentration of 3.65 g per 200 mL and ( H4)2S208 at a concentration of 3.90g per 200 mL, which was enough for 10 reactions (40 mL total volume for each reaction). 20 mL of the Mn(CH3C00H)2*4H20 aqueous solution was added to 20 mL of ( H4)2S208 drop by drop under vigorous stirring at 1200 rpm for 10-20 minutes until the solution became pale yellow.
- Example 2 In order to make ZnO bio-microburs, solutions of NaOH (0.64 g/4.0 mL-DIW), along with a Zn(CH3C00H)2*2H20 solution (0.36 g/4.0 mL-DIW) (enough for 10 reactions (40 mL solution each)) were first prepared. At room temperature, the Zn(CH3C00H)2*2H20 solution was added to the NaOH solution (0.64 g/4.0 mL-DIW) drop by drop under vigorous stirring for 10-60 minutes until the solution became clear. 8.0 mL of the clear, mixed solution was transferred to a 10 mL glass vial. The vial was then capped and sealed with parafilm.
- the vial containing the mixed solution was heated at 40°C for 1, 2, 4, 8, 12, 24, and 48 hours. After ⁇ 5 min, the solution became turbid. After 1 hour, the ZnO bio-microbur shape began to form. Longer times resulted in longer nanoneedles.
- the bio-microburs in each vial were washed three times using deionized water (DIW) under centrifuge (3000 rpm, 5 minutes), then the bio-microburs were dried in a 90°C overnight.
- DIW deionized water
- chitosan was prepared as a stock solution.
- a biopolymer e.g., a chitosan coating
- 100 mL 1% acetic acid DIW solution was prepared in a 500 mL beaker, and 5g of chitosan powder was added into the acetic acid DIW solution.
- a magnetic stirring bar was added, and the mixture was stirred vigorously. The mixture became very viscous and sticky, so the stirring speed was adjusted accordingly. Stirring occurred for 12-36 hours, and the solution became gel-like. The gel-like solution was transferred into 50 mL centrifuge tubes and stored properly.
- bio-microbur powder for example using the ZnO bio-microburs mentioned above, was placed in a 50 mL centrifuge tube, DIW (10-20 mL) was added, and this was followed by vigorously shaking/vortexing to break the powder into individual microparticles and form a bio- microbur suspension.
- the bio-microbur suspension for example a ZnO bio-microbur suspension, was slowly added (shaking the suspension each time before adding) into 5 mL of the 10 mg/mL chitosan solution with vigorous stirring. The reaction took approximately 12 hours, then 1-10 mL lx or lOx PBS was added slowly, and the reaction was continued for another 12 hours.
- Modifying the reaction time can change the size and configuration of the microbur, including their Zeta potential, and the number of spikes per microbur.
- manganese dioxide microburs were generated from a redox reaction between manganese (II) salt and ammonium persulfate.
- FIGs 10A through 10H are electron microscope images of the structures of the microburs after 0.5 hours (MB0.5), 2 hours (MB2), 6 hours (MB6), and 12 hours (MB 12), at 2 pm and at 500 nm magnification.
- Fig. 10A and Fig. 10B show the MB0.5 microburs
- Fig. IOC and Fig. 10D show the MB2 microburs
- Fig. 10E and Fig. 10F show the MB6 microburs;
- Fig. 10G and Fig. 10H show the MB12 microburs.
- Fig. 11 A is a graph of the difference in size of the resulting microburs with the 0.5- hour reaction time resulting in the smallest microburs (about 1.6 pm, MB0.5) while 2-, 6-, and 12- hour reaction times resulted in microbur sizes of about 2.5 to over 3 pm (MB2, MB6, and MB 12, respectively).
- Fig. 1 IB shows the differences in Zeta potential, measured in mV, for MB0.5, MB2, MB6, and MB 12, ranging from about 30 mV for MB2 to about 4 mV for MB6.
- Fig. 11C shows the difference in number of nanospikes per microbur, ranging from about 25 for MB12 to over 400 for MB0.5.
- the microburs may be used to deliver a wide variety of treating agents.
- Fig. 12 depicts an interstitial nano-assembly for drug loaded microburs and lists a number of general and specific examples of treating agents.
- the treating agent may be in the form of a small molecule, such as a hydrophilic agent (such as Rhodamine 6G) or a hydrophobic agent (such as Fluoxetine); a protein, which can be cationic (such as lysozyme) or anionic (such as bovine serum albumin); or a nanoparticle, such as a polymeric agent (such as chitosan-PEI), inorganic agent (such as Au NP/QD), or an organic/inorganic hybrid (such as chitosan polyethyleneimine coated mesoporous silica).
- a hydrophilic agent such as Rhodamine 6G
- a hydrophobic agent such as Fluoxetine
- a protein which can be cationic (such
- Targeting SSRIs to the gut epithelium provides a novel way to achieve effective treating using the SSRIs while eliminating side effects.
- the microbur formulation allows for oral delivery while targeting release of the treating agent to the intestinal mucosa.
- FIG. 13A depicts the structure of the MB-MSN-SSRI configuration
- Fig. 13B is an electron microscope image of the MB-MSN-SSRIs.
- the microburs were synthesized from a redox reaction between manganese (II) ions and ammonium persulfate under high temperature (in a range from 80 to 180 Celsius degrees) and pressure (in a range from 2 to 20 atmosphere pressure).
- MB- MSN-SSRIs microbur-based nanoparticle loading and dispersion system
- MSN- SSRIs hollow manganese (Mn) dioxide MB loaded with SSRI encapsulated mesoporous silica nanoparticles
- All components have known biocompatibility.
- the MB sizes range from 1-5 pm, and do not penetrate the mucosal layer yet robustly adhere to it. This significantly enhances their retention in the GI tract without causing translocation through the intestinal epithelium.
- the microburs are also highly stable in acidic conditions, allowing it to bypass the stomach.
- microbur structures efficiently (>50% of total weight) and rapidly ( ⁇ 5 minutes) adhere to the mucus of the intestine, where they degrade in the mucus rich glutathione ( ⁇ lmM) thereby initiating the release of the MSN-SSRIs into the mucosal layer of the intestine in a controllable manner (hours to days).
- the system thus provides targeted delivery and efficacy of the SSRI treating agent with minimal diffusion across the epithelial barrier, providing decreased systemic distribution of the treating agent.
- the release of Mn ions, associated with the MB degradation activates Ca2+-dependent adhesion molecules (cadherin), and/or directly upregulates expression of tight junction-related genes (e.g., claudin, occludin), thereby enhancing the integrity of epithelial tight junctions.
- the degradation product may further reduce SSRI diffusion across the intestine, and into the bloodstream, by enhancing the integrity of gut epithelial tight junctions.
- the tunable sizes and internal pore diameters of MSNs provide a secondary barrier to restrict drug diffusion.
- nanoparticles encapsulating SSRIs can be functionalized with epithelial -targeting ligands loaded to the microscale device. Further, drug release can be targeted to the different parts of the GI tract based on MB modifications.
- Example 7 We prepare a microbur-based nanoparticle loading and dispersion system for epithelial-restricted targeting of SSRIs.
- the microbur has sizes ranging from 1-5 pm that do not penetrate the mucosal layer yet robustly adhere to it, a feature that significantly enhances their retention in the GI tract while avoiding substantial systemic delivery of the treating agent.
- This microbur is also highly stable in acidic conditions, allowing it to bypass the stomach when delivered orally.
- the microburs rapidly degrade in the mucus-rich glutathione ( ⁇ lmM) of the intestine, thereby initiating release of the chitosan-PEI-PBA nanoparticles encapsulated with SSRIs within several hours - roughly one cycle of intestinal mucus turnover.
- the microscale devices release SSRIs into the mucosal layer of the intestine and stay within the epithelium, allowing targeted SSRI delivery to the mucosa without diffusion across the epithelial barrier.
- microscale delivery devices are small enough to be dispersed in common biological buffers (e.g., saline), gels (e.g., gelatin gels), or tablets, and are easily administrated orally.
- the microscale devices also efficiently (e.g., >10% of total weight) adhere to the mucus of the intestine, colon, or any other parts of the GI tract, and can be directed to a particular part of the GI tract based on pH levels.
- nanoparticles encapsulating SSRIs may be functionalized with epithelial -targeting ligands loaded to the microscale device.
- the release rate of treating agent may be tuned by modulating the microbur structure.
- the release rate of orally delivered SSRIs such as fluoxetine (FLX)
- FLX fluoxetine
- a MB- MSN-SSRI configuration could be tuned by modifying the reaction time used to produce the microburs with desired properties, to release the SSRI to intestinal epithelial cells by affixation to the mucosal lining.
- Locally deposited SSRI helps minimize systemic absorption into the blood, CNS (central nervous system), or ENS (enteric nervous system).
- Microburs are synthesized from a redox reaction between manganese (II) ions and ammonium persulfate under high temperature and pressure. Modifying the reaction time affects the microbur structure.
- Prolonged reaction time from 2 hours (Microbur-1) to 6 hours (Microbur-2) is typically associated with reduction of spikes, enlargement of hollow cores, and may thus increase surface area for drug binding and sustainable release.
- Prolonged reaction from 6 hours to 12 hours (Microbur-3) would result in disruption of the hollow core structures and leading to burst release.
- Microburs synthesized from 2 hours, 6 hours, to 12 hours reaction time are denoted in Fig. 13C as Microbur-1, Microbur-2, and Microbur-3, respectively, showing the release of FLX over 52 hours in pH 7.4 buffered solution.
- Microbur-2 shows the most-sustainable release of SSRIs. This comparison serves as an example of potential modulation of drug release through tuning the microbur structure by chemistry during construction of the microburs.
- bio-microbur therapeutic delivery platform is not limited to the specific embodiments described above but encompasses any and all embodiments within the scope of the generic language of the following claims enabled by the embodiments described herein, or otherwise shown in the drawings or described above in terms sufficient to enable one of ordinary skill in the art to make and use the claimed subject matter.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Inorganic Chemistry (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Optics & Photonics (AREA)
- Pain & Pain Management (AREA)
- Psychiatry (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163191586P | 2021-05-21 | 2021-05-21 | |
US202163191759P | 2021-05-21 | 2021-05-21 | |
PCT/US2022/030383 WO2022246285A1 (en) | 2021-05-21 | 2022-05-20 | Bio-microbur therapeutic delivery platform |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4340885A1 true EP4340885A1 (en) | 2024-03-27 |
Family
ID=84141864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22805638.8A Pending EP4340885A1 (en) | 2021-05-21 | 2022-05-20 | Bio-microbur therapeutic delivery platform |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP4340885A1 (en) |
WO (1) | WO2022246175A1 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013039956A2 (en) * | 2011-09-14 | 2013-03-21 | The Trustees Of Columbia University In The City Of New York | Compositions and methods for treating mood disorders |
CN104507458B (en) * | 2012-06-20 | 2018-05-22 | 滑铁卢大学 | Mucoadhesive nano particle delivery system |
EP3079730B1 (en) * | 2013-12-10 | 2023-02-01 | INSERM - Institut National de la Santé et de la Recherche Médicale | Methods for adhering tissue surfaces and materials and biomedical uses thereof |
US10391105B2 (en) * | 2016-09-09 | 2019-08-27 | Marinus Pharmaceuticals Inc. | Methods of treating certain depressive disorders and delirium tremens |
US11478433B2 (en) * | 2017-06-23 | 2022-10-25 | Yale University | Nanomaterials with enhanced drug delivery efficiency |
-
2022
- 2022-05-20 WO PCT/US2022/030224 patent/WO2022246175A1/en active Application Filing
- 2022-05-20 EP EP22805638.8A patent/EP4340885A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2022246175A1 (en) | 2022-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Santos et al. | Halloysite clay nanotubes for life sciences applications: From drug encapsulation to bioscaffold | |
Dang et al. | Nanoparticle-based drug delivery systems for cancer therapy | |
Ahmad et al. | Recent advancement and development of chitin and chitosan-based nanocomposite for drug delivery: Critical approach to clinical research | |
Elkomy et al. | Chitosan on the surface of nanoparticles for enhanced drug delivery: A comprehensive review | |
Yoon et al. | Polymeric supramolecular assemblies based on multivalent ionic interactions for biomedical applications | |
KR101386096B1 (en) | Chitosan nanofiber for delivering anionic protein, a process for the preparation thereof, and transmucosal administrative agent comprising the chitosan nanofiber | |
Gaydhane et al. | Electrospun nanofibres in drug delivery: advances in controlled release strategies | |
Aminabhavi et al. | The role of nanotechnology and chitosan-based biomaterials for tissue engineering and therapeutic delivery | |
Hawthorne et al. | Sustained and targeted delivery of hydrophilic drug compounds: A review of existing and novel technologies from bench to bedside | |
CN105979938A (en) | Core-shell capsules for encapsulation of particles, colloids, and cells | |
Noreen et al. | Natural polysaccharide-based biodegradable polymeric platforms for transdermal drug delivery system: A critical analysis | |
Mavuso et al. | A review of polymeric colloidal nanogels in transdermal drug delivery | |
Le et al. | Colloidal polyelectrolyte complexes from hyaluronic acid: Preparation and biomedical applications | |
Haider et al. | Advances in chitosan-based drug delivery systems: A comprehensive review for therapeutic applications | |
Ward et al. | Halloysite nanoclay for controlled release applications | |
Tariq et al. | Nanogel-Based transdermal drug delivery system: A therapeutic strategy with under discussed potential | |
Li et al. | Applications of capillary action in drug delivery | |
Nayak et al. | Chitosan-based nanoparticles in drug delivery | |
Ebhodaghe | A scoping review on the biomedical applications of polymeric particles | |
Abass et al. | Drug Delivery Systems Based on Polymeric Blend: A Review | |
Tramontano et al. | Diatomite-based nanoparticles: Fabrication strategies for medical applications | |
EP4340885A1 (en) | Bio-microbur therapeutic delivery platform | |
WO2022246285A1 (en) | Bio-microbur therapeutic delivery platform | |
Garg et al. | A complete and updated review on various types of drug delivery systems | |
Soni et al. | Herbal nanogels: Revolutionizing skin cancer therapy through nanotechnology and natural remedies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20231207 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Free format text: CASE NUMBER: APP_36105/2024 Effective date: 20240617 |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |