EP4334496A1 - Water electrolysis stack for generating hydrogen and oxygen from water - Google Patents

Water electrolysis stack for generating hydrogen and oxygen from water

Info

Publication number
EP4334496A1
EP4334496A1 EP21726334.2A EP21726334A EP4334496A1 EP 4334496 A1 EP4334496 A1 EP 4334496A1 EP 21726334 A EP21726334 A EP 21726334A EP 4334496 A1 EP4334496 A1 EP 4334496A1
Authority
EP
European Patent Office
Prior art keywords
channel
channels
water electrolysis
forming element
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21726334.2A
Other languages
German (de)
French (fr)
Inventor
Stefan Höller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoeller Electrolyzer GmbH
Original Assignee
Hoeller Electrolyzer GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoeller Electrolyzer GmbH filed Critical Hoeller Electrolyzer GmbH
Publication of EP4334496A1 publication Critical patent/EP4334496A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • C25B11/032Gas diffusion electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/083Separating products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/75Assemblies comprising two or more cells of the filter-press type having bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to a water electrolysis sfack for generating hydrogen and oxygen from water, which consists of a large number of PEM-type electrolysis cells arranged in a cell stack.
  • Such electrolysis facks are state-of-the-art and are increasingly being used to generate “green hydrogen” from regenerative electricity.
  • Such stacks are usually mechanically clamped as cell stacks between two end plates and have channels penetrating them near the sides of the stack, which supply the PEM electrolysis cells with the reactant water and cooling water and for the removal of the product gas oxygen and the cooling water on the one hand, as well as the product gas hydrogen on the other hand serve. While the removal of hydrogen within the cell stack is relatively unproblematic, the water supply, with which water as a reactant is to be supplied to the electrolytic cell in sufficient quantities on the one hand and is to be supplied and removed as cooling water on the other hand, is technically more demanding.
  • porous transport layers in the electrolytic cells which consist of titanium expanded metals, titanium felt or sintered titanium powder.
  • transport channels are required, which are to be provided on the back of the transport layers in order to ensure that the cells are adequately supplied with high power density.
  • these channels are formed by inserting expanded metal between the transport layer ⁇ and a planar bipolar plate. Both variants have disadvantages.
  • channels are imprinted in the bipolar plate, then these are open to the transport layer and must be bridged by it. In the case of electrolysers that are operated with low operating pressures, this is usually not a problem. With increasing operating pressure, however, a supporting component, eg a perforated plate, must be inserted so that the porous transport layer does not press into the channels ⁇ . Such sinking components increase the construction volume and the costs.
  • the variant in which expanded metals are inserted between the transport layer and the planar bipolar plate is more favorable. Due to the construction of the expanded metal, however, there are metal sections that lie transversely within the direction of flow and form an additional barrier to the flow. This is particularly problematic when the expanded metals are heavily compressed within the stack. Multi-layer construction is then often necessary, which increases the thickness of the individual electrolytic cell and thus of the cell stack ⁇ and also leads to increased manufacturing costs ⁇ .
  • the invention is based on the object of simplifying and improving a water electrolysis stack of the aforementioned type with regard to its construction, in particular in order to avoid the aforementioned problems.
  • the water electrolysis cell according to the invention for generating hydrogen and oxygen from water has a number of electrolysis cells of polymer-electrolytic membrane construction arranged in a cell stack. There is at least a first passage through the cell stack for the water supply to the electrolytic cells and at least a second passage through the cell stack for removing the excess water/cooling water and removing the oxygen. In addition, at least a third channel passing through the cell stack is provided for removing the hydrogen.
  • the electrolytic cells have bipolar plates which are formed from at least one silicon component. This sinter component is built up with a flat metallic piaffe on which is arranged a first metallic frame which has in its central recess a channel-forming element which is incorporated into this metallic frame.
  • a second metallic frame is arranged on the first metallic frame and has a porous transport layer incorporated in its central recess.
  • the channel-forming element is arranged in such a way that it conductively connects the first and second channels of the channels penetrating the cell stack ⁇ .
  • the basic structure of the water electrolysis stack typically has a first channel for the water supply, which passes through the cell stack, and a second channel, usually arranged opposite, which also passes through the cell stack and is intended for removing excess water/cooling water, and above which the oxygen formed during the electrochemical reaction is removed.
  • the third channel passing through the cell stack can also be formed in pairs by two opposite channels arranged near the remaining sides of the water electrolysis stack, but also through a single channel or adjacent channels. This channel is used ⁇ to remove the hydrogen formed during the electrochemical reaction.
  • the bipolar plates of the water electrolysis stack according to the invention are formed from at least one sintered component; the bipolar plates are advantageously formed from only one sintered component, which preferably consists of titanium or a titanium alloy.
  • the structure of the bipolar plates is extremely material-saving and effective, and the overall height is comparatively low.
  • the channel-forming element arranged in a metal frame between a flat metal plate and another frame with an integrated porous transport layer ⁇ is intended for the supply and disposal of the oxygen side of the electrolytic cell.
  • the channel-forming element which has a large number of channels ⁇ connecting the first and second channels in the stack, ensures highly effective reactant/cooling water supply to the membrane and cooling water removal and oxygen removal from the membrane ⁇ . Due to the fact that the channel-forming elements of the bipolar plates are integrated into frames ⁇ , these only have to absorb comparatively small compressive forces, even when the water electrolysis stack is operated at a high operating pressure of, for example, 80 bar.
  • the sintering structure of the present invention is constructed with a flat metallic piaffe, a first metallic frame disposed thereon having a channel-forming member incorporated therein, and a second metallic frame disposed on the first metallic frame having a porous transport layer incorporated therein.
  • This structure is not to be understood as exhaustive, but rather represents the components that are at least present for this sintered component according to the invention.
  • the individual components are typically all made of titanium, they are either solid or, for example, produced in MIM injection molding as green parts or brown parts ⁇ and assembled and then sintered between ceramic plates, for example, to form a one-piece sintered component and thus a bipolar plate.
  • the provided on the oxygen side of the bipolar plate channel-forming element can be formed according to the invention either by a shaped sheet, typically a corrugated sheet or by a porous transport layer, which is traversed by channels. Since the shaped sheet essentially has a flow-guiding function, large flow cross-sections can be realized in the channels.
  • the cross section does not have to be sinusoidal, but rather square waves or rounded square waves can be formed, which are advantageous with regard to the flowability.
  • the corrugated metal sheet of this channel-forming element is advantageously designed on the oxygen side in such a way that the corrugation spacing is less than 2 mm, preferably less than 1.5 mm and, in a particularly preferred embodiment, less than 1.0 mm.
  • the channel-forming element is in the form of a porous transport layer, this can either be designed in such a way that the channels are completely integrated into the transport layer or in such a way that the channels are open at least on one side. In the latter case, it is advantageous to form them in such a way that they are closed off by the flat metal plate. In this way, a large channel cross-section can be achieved with a comparatively thin transport layer.
  • the channels can be formed by inserting appropriate rods during injection molding of the green part, which are dissolved ⁇ thermally or chemically, or by embossing them into the surface of the transport layer ⁇ .
  • channels of the channel-forming element are straight as possible and parallel to one another in order to achieve the lowest possible flow resistance.
  • the ducts can be advantageous to arrange the ducts in a wavy line shape and advantageously staggered parallel to one another in such a way that a barrier-free passage is maintained, but that the structural support function of the component is increased.
  • the channels are then designed in such a way that they have a preferably rectilinear free passage, but are designed in a wavy manner in the side wall in order to achieve this supporting effect.
  • barrier-free means that there are no flow-swirling baffles in the channels, as is typically the case with obstacles that are arranged at an angle transversely or obliquely to the direction of flow.
  • a wavy canal can therefore be barrier-free if it runs through the body in a sinusoidal or wavy manner, for example.
  • the channel-forming element can be arranged and designed in the first metallic frame in such a way that it mi ⁇ its ends to the first or the second channel that penetrates the cell stack for the water supply or for the water discharge and the oxygen discharge ⁇ .
  • it can be advantageous not to form this channel-forming element continuously between the vertical channels to support this, but to provide corresponding channels on both sides in the metallic frame, for example by embossing, which are preferably in curse ⁇ to the Channels of the channel-forming element are located and the se mi ⁇ the first or the second channel penetrating the stack conductively connect.
  • embossing which are preferably in curse ⁇ to the Channels of the channel-forming element are located and the se mi ⁇ the first or the second channel penetrating the stack conductively connect.
  • Such a design has greater stability and allows the channel-forming element to be designed for a lower supporting load.
  • the flat metallic plate with recesses or openings which open into channels in the first metallic Frames are formed, e.g. by embossing ⁇ and which flow into the third cell stack through the channel for hydrogen removal.
  • These channels can be open on one side and, after sintering, are covered and closed by the second metallic frame arranged on top ⁇ .
  • the recesses in the flat metallic plate are advantageously designed as rows of adjacent openings which ensure that the hydrogen product gas can pass through sufficiently.
  • This further channel-forming element which is arranged on the hydrogen side of the electrolytic cell, can advantageously be designed as a gas diffusion layer made up of ordered or unordered carbon fibers. Carbon fibers are preferably arranged here, which are connected to form a felt-like knitted fabric. [20] Alternatively, this channel-forming element by a
  • Corrugated sheet metal or expanded metal can be formed.
  • no barrier-free ducting is usually required, since the hydrogen is pressure-driven and seeks its specified path in the stack.
  • a gas diffusion layer can also be used as a channel-forming element on the hydrogen side, which is optionally supported by one or more support plates having recesses.
  • This support plate can be designed in one piece with the frame, into which the material of the frame, which is made of sheet metal, is embossed in the area of the central recess, so that the necessary space for the gas diffusion layer is formed.
  • Such a microporous layer is advantageous as a single component, e.g. as a foil or as a green part or brown part of a foil production ⁇ , placed on the other components, in particular the second frame and the component integrated into the recess, and sintered with the others Components connected to the sintered component.
  • the microporous layer can also be applied to the component using screen printing or stencil printing and is then subsequently sintered with these.
  • the bipolar plate lies ⁇ with its ⁇ through the second frame and the porous transport layer ⁇ integrated into it and the microporous layer applied to it, on the oxygen side of the proton exchange membrane.
  • Each electrolytic cell consists of a bipolar plate, a
  • PEM proton exchange membrane
  • the thickness of the first metallic frame which encloses the above-described channel-forming element in its central recess, is less than 1 mm, preferably less than 0.8 mm or particularly advantageously even smaller than 0.6 mm. This reduces the height of the stack and the maferial costs for production.
  • the porous transport layer can, according to a further development of the invention be produced with the aid of a feedstock which is fibre-reinforced, preferably with plastic fibres, particularly preferably with polyethylene fibres. These fibers are removed in the process from the green part to the brown part, at the latest during sintering ⁇ .
  • the channels provided in the channel-forming element of the sintered component can either extend to the corresponding channels penetrating the cell stack or, which is advantageous in terms of pressure resistance ⁇ , be connected by channels in the area between the central recess and the channels penetrating the cell stack. which are formed by corresponding channel-shaped recesses from the first frame. Such recesses can be produced inexpensively by simply punching ⁇ , but a certain overlap must be ensured so that a line connection to the channels penetrating the cell stack is achieved ⁇ .
  • FIG. 1 shows a water electrolysis stack according to the invention in a greatly simplified perspective view
  • FIG. 2 shows the structure of an individual electrolysis cell of the stack according to FIG.
  • FIG. 3 shows an exploded view of a first embodiment of the structure of a bipolar plate formed by a sintered component
  • FIG. 4 shows a perspective partial section through the components according to FIG. 2 in assembled form
  • FIG. 5 shows a partial section view corresponding to the components according to FIG. 4
  • FIG. 6 shows an alternative design in the representation according to FIG.
  • FIG. 6.1 the sliced skin according to FIG. 6 with an oblique cutting line
  • FIG. 7 shows a further embodiment variant in the representation according to FIG. 5, and
  • FIG. 8 shows another embodiment variant in the representation according to FIG.
  • the electrolysis stack 0, as shown in FIG. 1, consists of a number of electrolysis cells 2 arranged in a stack 1 above one another, which are clamped between two end plates 3 and electrically connected in series.
  • the electrical connections 4 and 5 are brought out of the stack 0 at the side.
  • the cells 2 are supplied via the cell stack 1 through channels 6, 7, 8, namely a first channel 6 for supplying the reactant water and as cooling water and a second channel 7 for Removal of the cooling water and the product gas oxygen.
  • These first and second channels 6 , 7 are arranged opposite one another parallel to the longitudinal sides of the cell stack 1 .
  • three third channels 8 penetrating the stack 1 are provided on a transverse side of the cell stack 1 and are used to remove the hydrogen product gas.
  • the cell stack 1 is clamped under the incorporation of insulating plates 3 between a lower end plate 9 and an upper end plate 10, which is clamped by means of ten bolts 11, each under the incorporation of plate spring assemblies 12.
  • the ducts 6, 7, 8 lead out to duct connections in the upper end plate 10; in the figure, the duct connections 13 and 14 are provided for connecting the first and second ducts 6 and 7, whereas the duct connection 15 is connected to the third duct 8 is connected and is used to remove the product gas hydrogen.
  • An electrolytic cell 2 has a catalytically coated proton exchange membrane 16 (PEM) - also referred to as a membrane electrode assembly (MEA) - on whose hydrogen side there is a sealing frame 17 ⁇ , which seals the active part of the cell 2, i.e. the memb ran 16 against the laterally arranged channels 6, 7, 8 and the channels 6, 7, 8 themselves to the outside to seal ⁇ .
  • This sealing frame 17, which rests against the PEM 16 on the hydrogen side, i.e. on the side on which the product gas hydrogen is separated, is also provided with seals 18 on the side facing away from the PEM 16 and is located there on a bipolar plate 19 which is designed as a sintered component made of titanium and whose structure will be described below.
  • the other side of a next bipolar plate 19 is located, as is the case with such Stacks is common.
  • the current is supplied via the electrical connections 4, 5 between the end plates 4, 9, 10.
  • this has a flat metallic plate 20 made of titanium, which is rectangular in shape and has recesses 21 in the corners for guide rods for mounting the stack 0 provided and on the long sides with recesses, which form the first and second channels 6 and 7 in the cell stack 1, and on the short side with three recesses, which form the third channel 8 in the cell stack 1, which is formed here from three sub-channels .
  • a recess 22 is provided opposite, which is provided for the supply of nitrogen, with which the stack 0 is flushed before it is taken out of service.
  • the bipolar plate 19 is designed as a sintered component and is constructed from the titanium components shown in FIG.
  • One side of this bipolar plate 19 is formed by a flat metal plate 20, the other side of which comes to rest on a first metal frame component 23, which has a central recess 24, and the rest of the channels 6, 7, 8 forming recesses aligned those in the first plate 20 as well as the recesses for the guide rods and the recess for the nitrogen channel.
  • the central recess 24 is provided for the incorporation of a corrugated metal sheet 25 which is arranged in the recess 24 of the first metallic frame member 23 such that channels are formed which run between the first and second channels 6,7.
  • the channels do not open directly into the first and the second channel 6, 7, but into intermediate channels 26, 27 which pass through the stack through indentations in the first metallic frame component 23 between the central recess 24 and the recesses for the first and the second Channels 6, 7 are formed.
  • this first frame member 23 has channel-forming indentations 28 in the transverse direction, which differ substantially from the The narrow side of the central recess 24 extend into the recesses delimiting the third channel 8 .
  • the hydrogen conducted through recesses 29 in the flat plate 20 is conducted via these recesses into the drift channel 8 for the removal of the hydrogen.
  • the intermediate channels 26 and 27 as well as the channels formed by the channel-forming indentations 28 can be formed either by indentations in the first metallic frame components 23 or by recesses that are arranged in a comb shape and must be arranged such that on the one hand they form the necessary line connections, on the other hand, remain materially connected, which can be achieved ⁇ by appropriate overlaps in channels 6, 7.
  • This first frame component 23 is adjoined by a second metallic frame component 30, which also has aligned channel recesses and recesses for the guide rods, as well as a central recess 31 in which a porous transport layer 32 ( PTL) ) formed from titanium fibers is incorporated ⁇ .
  • This layer 32 is formed from a fiber reinforced feedstock.
  • This permeable transport layer 32 and the edge of the recess 31 are overlaid by a microporous transport layer 33 (Micro Porous Layer (MPL)), which is also made of titanium.
  • MPL Micro Porous Layer
  • This sealing frame 17 has where the active part of the cell is, i.e.
  • a support plate 36 which is formed by the material of the frame itself and which is closed or can be perforated initially flagf to lead the hydrogen from the membrane 16 ERS.
  • This support plate 36 does not lie directly against the PEM 16, but with the interposition of a gas diffusion layer 38 (Gas Diffusion Layer (GDL)), which is made of carbon fibers.
  • GDL Gas Diffusion Layer
  • this support plate has a longitudinal slot 37 which is aligned with the recesses 29 in the flat plate 20 of the bipolar plate component and via which the hydrogen is removed.
  • the corrugated sheet 25 has an approximately sinusoidal cross section and has a pronounced corrugation length compared to the corrugation height.
  • this can also be designed completely differently ⁇ , where the wave length is only slightly larger than the wave height. This sinusoidal shape can deviate from a square wave and then result in particularly smooth cross-sections through which flow can take place.
  • a corrugated sheet metal 44 (Figure 6, Fi gur 6.1) similar to the corrugated sheet metal 25 or an expanded metal 43 ( Figure 4, Figure 5) can also be integrated into the sealing frame 17. to distribute the forces within the active part of the electrolytic cell 2 evenly.
  • This PTL 39 has channels 40 which are open towards the flat metallic plate 20 and which extend from one end of the PTL 39 to the other and are arranged parallel next to one another. These channels, which are only open at the ends in the sintering component 19 after sintering, are then closed off on this one side by the flat metallic plate 20 or the sintered material formed thereby.
  • Figure 8 shows an embodiment variant in which channels 41 pass through the PTL 42 in a similar way as is the case with the PTL 39 in Figure 7, but in which the channels 41 lie completely within the PTL 42 and only at the ends are open.
  • the central recess 24 in the first frame component 23 is provided continuously between the recesses for the first and two channels 6, 7 penetrating the stack.
  • No corrugated sheet metal 25 is provided here as the channel-forming element, which is integrated into the recess 24 and is used for channel transport between the first and second channels 6, 7, but rather a channel-forming element in the form of a porous sheet with channels 40, 41 running through it Transportschich ⁇ 39 and 42.
  • the channels are one-sided, namely open to the flat plate 20 and are closed by it.
  • Comparatively large channel cross-sections can be formed by means of pliers, and these channels 40, 41, since they are in the porous transport layer 39, 42 are always permeable towards the transport layer, i.e. the channels 40, 41 have a certain guiding characteristic, but no fluid-tight channel wall, as is the case with the channel-forming corrugated sheet 25 of the first embodiment variant.
  • Porous Transport Layer PTL, also referred to as Porous Transport Layer ⁇
  • Microporous Transport Layer ⁇ MPL, also known as Micro Porous Layer ⁇

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

The water electrolysis stack (0) is used to generate hydrogen and oxygen from water and has a number of PEM-type electrolysis cells (2) arranged to form a cell stack (1). A first channel for supplying water, a second channel for removing water and the product gas oxygen and a third channel for removing the product gas hydrogen pass through the cell stack (1). The electrolysis cells (2) have a catalytically coated proton exchange membrane which adjoins a bipolar plate via a sealing frame on the hydrogen side, the rear face of which bipolar plate in turn rests on the membrane of the adjacent cell on the oxygen side. The bipolar plate is designed as a sintered component and has a planar metal plate on which a metal frame is situated that accommodates a channel-forming element in a central recess, and thereabove a second metal frame having a central recess and a porous transport layer incorporated therein. The channels of the channel-forming element connect the first and the second channel of the cell stack.

Description

Titel: Wasserelektrolysestack zum Erzeugen von Wasserstoff und Sauerstoff aus Wasser Title: Water electrolysis stack for generating hydrogen and oxygen from water
Beschreibung description
[01 ] Die Erfindung betriff† ein Wasserelekfrolysesfack zum Erzeugen von Wasserstoff und Sauerstoff aus Wasser, welcher aus einer Vielzahl von zu einem Zellsfapel angeordnefen Elekfrolysezellen der PEM- Bauart besteh†. [02] Derartige Elekfrolysesfacks zählen zum Stand der Technik und werden vermehr† zur Erzeugung von „grünen Wasserstoff“ aus regene rativem Strom eingesetzt. Derartige Stacks sind meist als Zellstapel zwi schen zwei Endplatten mechanisch eingespannt und weisen nahe den Stackseiten diesen durchsetzende Kanäle auf, welche die PEM- Elektrolysezellen mit dem Reaktanten Wasser sowie Kühlwasser versor gen und zur Abfuhr des Produktgases Sauerstoff und des Kühlwassers einerseits, sowie des Produktgases Wasserstoff andererseits dienen. Während die Wasserstoffabfuhr innerhalb des Zellstapels relativ unprob lematisch ist, ist die Wasserzufuhr, mit der Wasser als Reaktant einerseits der Elektrolysezelle in ausreichender Maße zuzuführen ist und anderer seits als Kühlwasserzu- und abzuführen ist, technisch anspruchsvoller. [01 ] The invention relates to a water electrolysis sfack for generating hydrogen and oxygen from water, which consists of a large number of PEM-type electrolysis cells arranged in a cell stack. [02] Such electrolysis facks are state-of-the-art and are increasingly being used to generate “green hydrogen” from regenerative electricity. Such stacks are usually mechanically clamped as cell stacks between two end plates and have channels penetrating them near the sides of the stack, which supply the PEM electrolysis cells with the reactant water and cooling water and for the removal of the product gas oxygen and the cooling water on the one hand, as well as the product gas hydrogen on the other hand serve. While the removal of hydrogen within the cell stack is relatively unproblematic, the water supply, with which water as a reactant is to be supplied to the electrolytic cell in sufficient quantities on the one hand and is to be supplied and removed as cooling water on the other hand, is technically more demanding.
[03] Es zählt zum Stand der Technik, poröse Transportschichten in den Elektrolysezellen vorzusehen, welche aus Titanstreckmetallen, Titanfilz oder gesintertem Titanpulver bestehen. Um an diese Transportschichten Prozessmedien zu- oder abführen zu können, sind Transportkanäle er forderlich, welche rückseitig der Transportschichten vorzusehen sind, um bei hoher Leistungsdichte eine ausreichende Versorgung der Zellen zu gewährleisten. Hierzu zählt es zum Stand der Technik, Bipolarplatten mit eingeprägten Kanälen einzusetzen, durch welche das in den Stapel durchsetzenden seitlichen Kanälen geführte Wasser in ausreichender Menge an die PEM heranführbar und von dieser wieder abführbar ist. Alternativ werden diese Kanäle durch Einlegen von Streckmetallen zwi- sehen der Transportschich† und einer ebenen Bipolarplatte gebildet. Beide Varianten weisen Nachteile auf. Wenn in die Bipolarplaffe Kanäle eingeprägf sind, dann sind diese zur Transportschich† hin offen und müs sen von dieser überbrück† werden. Bei Elektrolyseuren, die mi† niedrigen Betriebsdrücken betrieben werden, ist dies meist unproblematisch, mi† zunehmenden Betriebsdruck hingegen muss ein abstützendes Bauteil, z.B. ein Lochblech eingefüg† werden, damit sich die poröse Transport schich† nicht in die Kanäle hineindrück†. Solche absfüfzenden Bauteile erhöhen das Bauvolumen und die Kosten. [03] It is part of the prior art to provide porous transport layers in the electrolytic cells, which consist of titanium expanded metals, titanium felt or sintered titanium powder. In order to be able to feed process media to or from these transport layers, transport channels are required, which are to be provided on the back of the transport layers in order to ensure that the cells are adequately supplied with high power density. This includes the prior art, bipolar plates with to use embossed channels, through which the water penetrating through the side channels in the stack can be brought up to the PEM in sufficient quantity and can be removed from it again. Alternatively, these channels are formed by inserting expanded metal between the transport layer† and a planar bipolar plate. Both variants have disadvantages. If channels are imprinted in the bipolar plate, then these are open to the transport layer and must be bridged by it. In the case of electrolysers that are operated with low operating pressures, this is usually not a problem. With increasing operating pressure, however, a supporting component, eg a perforated plate, must be inserted so that the porous transport layer does not press into the channels†. Such sinking components increase the construction volume and the costs.
[04] Insoweit günstiger ist die Variante, bei der Streckmetalle zwi- sehen der Transportschich† und der ebenen Bipolarplaffe eingefüg† sind. Aufgrund der Konstruktion der Streckmetalle ergeben sich jedoch Me†allabschni††e, die quer innerhalb der Durchströmungsrichtung lie gen und eine zusätzliche Barriere bei der Durchströmung bilden. Dies ist insbesondere problematisch, wenn die Streckmetalle innerhalb des Stapels stark gepresst werden. Dann ist häufig ein mehrlagiger Verbau notwendig, was die Dicke der einzelnen Elektrolysezelle und somit des Zellstapels erhöh† und darüber hinaus zu erhöhten Herstellungskosten führ†. [04] In this respect, the variant in which expanded metals are inserted between the transport layer and the planar bipolar plate is more favorable. Due to the construction of the expanded metal, however, there are metal sections that lie transversely within the direction of flow and form an additional barrier to the flow. This is particularly problematic when the expanded metals are heavily compressed within the stack. Multi-layer construction is then often necessary, which increases the thickness of the individual electrolytic cell and thus of the cell stack† and also leads to increased manufacturing costs†.
[05] Vor diesem Hintergrund lieg† der Erfindung die Aufgabe zugrun- de, ein Wasserelektrolysestack der vorgenannten Ar† hinsichtlich seines Aufbaus zur vereinfachen und zu verbessern, insbesondere zur Vermei dung der vorgenannten Probleme. [05] Against this background, the invention is based on the object of simplifying and improving a water electrolysis stack of the aforementioned type with regard to its construction, in particular in order to avoid the aforementioned problems.
[06] Diese Aufgabe wird durch ein Wasserelektrolysestack mi† den in Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestal- tungen der Erfindung sind in den Unferansprüchen, der nachfolgenden Beschreibung und der Zeichnung angegeben. [06] This object is achieved by a water electrolysis stack mi† the features specified in claim 1. Advantageous design Features of the invention are given in the subclaims, the following description and the drawing.
[07] Der erfindungsgemäße Wasserelekfrolysesfack zum Erzeugen von Wasserstoff und Sauerstoff aus Wasser weis† eine Anzahl von zu einen Zellsfapel angeordnefen Elektro lysezellen der PolymerElekfrolyfMemb- ran-Bauarf auf. Es ist mindestens ein erster den Zellsfapel durchsetzen der Kanal für die Wasserzufuhr der Elektro lysezellen und mindestens ein zweiter den Zellsfapel durchsetzender Kanal für die Abfuhr des über schüssigen Wassers/des Kühlwassers und zur Abfuhr des Sauerstoffs vor gesehen. Darüber hinaus ist mindestens ein dritter den Zellsfapel durch setzender Kanal für die Abfuhr des Wasserstoffes vorgesehen. Die Elekf- rolysezellen weisen Bipolarplaffen auf, die aus mindestens einem Sinfer- baufeil gebildet sind. Dieses Sinferbaufeil ist aufgebauf mit einer ebe nen metallischen Piaffe, auf der ein erster metallischer Rahmen ange- ordnef ist, der in seiner zentralen Ausnehmung ein kanalbildendes Ele ment aufweis†, welches in diesen metallischen Rahmen eingegliederf ist. Auf dem ersten metallischen Rahmen ist ein zweiter metallischer Rahmen angeordnef, der in seiner zentralen Ausnehmung eine poröse Transportschicht eingegliederf hat. Das kanalbildende Element ist dabei so angeordnet, dass es den ersten mit dem zweiten Kanal, der den Zell stapel durchsetzenden Kanäle leitungsverbinde†. [07] The water electrolysis cell according to the invention for generating hydrogen and oxygen from water has a number of electrolysis cells of polymer-electrolytic membrane construction arranged in a cell stack. There is at least a first passage through the cell stack for the water supply to the electrolytic cells and at least a second passage through the cell stack for removing the excess water/cooling water and removing the oxygen. In addition, at least a third channel passing through the cell stack is provided for removing the hydrogen. The electrolytic cells have bipolar plates which are formed from at least one silicon component. This sinter component is built up with a flat metallic piaffe on which is arranged a first metallic frame which has in its central recess a channel-forming element which is incorporated into this metallic frame. A second metallic frame is arranged on the first metallic frame and has a porous transport layer incorporated in its central recess. The channel-forming element is arranged in such a way that it conductively connects the first and second channels of the channels penetrating the cell stack†.
[08] Der grundsätzliche Aufbau des Wasserelektrolysestacks weist ty pischerweise einen ersten den Zellstapel durchsetzenden Kanal für die Wasserzufuhr sowie einen zweiten, meist gegenüber angeordneten Ka nal, welcher ebenfalls den Zellstapel durchsetzt, und der zur Abfuhr des überschüssigen Wassers/Kühlwassers vorgesehen ist, und über den der bei der elektrochemischen Reaktion entstehende Sauerstoff abgeführt wird, auf. Der dritte den Zellstapel durchsetzende Kanal kann ebenfalls paarig durch zwei gegenüberliegende nahe den verbleibenden Seiten des Wasserelektrolysestacks angeordnete Kanäle gebildet sein, aber auch durch einen einzigen Kanal oder nebeneinanderliegende Kanäle. Dieser Kanal dien† zur Abfuhr des bei der elektrochemischen Reaktion entstehenden Wasserstoffs. [08] The basic structure of the water electrolysis stack typically has a first channel for the water supply, which passes through the cell stack, and a second channel, usually arranged opposite, which also passes through the cell stack and is intended for removing excess water/cooling water, and above which the oxygen formed during the electrochemical reaction is removed. The third channel passing through the cell stack can also be formed in pairs by two opposite channels arranged near the remaining sides of the water electrolysis stack, but also through a single channel or adjacent channels. This channel is used† to remove the hydrogen formed during the electrochemical reaction.
[09] Die Bipolarplatten des erfindungsgemäßen Wasserelektrolyse stacks sind aus mindestens einem Sinterbauteil gebildet, vorteilhaft sind die Bipolarplatten aus nur einem Sinterbauteil gebildet, das vorzugswei se aus Titan oder einer Titanlegierung besteh†. Dabei ist der Aufbau der Bipolarplatten äußerst materialsparend und effektiv, auch die Bauhöhe ist vergleichsweise gering. [09] The bipolar plates of the water electrolysis stack according to the invention are formed from at least one sintered component; the bipolar plates are advantageously formed from only one sintered component, which preferably consists of titanium or a titanium alloy. The structure of the bipolar plates is extremely material-saving and effective, and the overall height is comparatively low.
[10] Das in einem metallischen Rahmen zwischen einer ebenen me tallischen Platte und einem weiteren Rahmen mi† eingegliederter porö ser Transportschich† angeordnete kanalbildende Element ist für die Ver sorgung und Entsorgung der Sauerstoffseite der Elektrolysezelle vorge sehen. Durch das kanalbildende Element, welches eine Vielzahl von Kanälen aufweis†, die im Stack den ersten und den zweiten Kanal mit einander verbinden, wird eine hocheffektive Reaktanten- /Kühlwasserzufuhr zur Membran sowie Kühlwasserabfuhr und Sauer stoffabfuhr von der Membran gewährleiste†. Dadurch, dass die kanal bildenden Elemente der Bipolarplatten in Rahmen eingeglieder† sind, müssen diese selbst bei Betrieb des Wasserelektrolysestack mi† einem hohen Betriebsdruck von beispielsweise 80 bar, nur vergleichsweise ge ringe Druckkräfte aufnehmen. Sie unterliegen insbesondere nicht der Druckgeräterichtlinie als drucktragende Bauteile, wie dies z.B. bei einer wellenförmigen Prägung der Bipolarplatte als Ganzes der Fall ist. Aus diesem Grunde können geringe Materialdicken für die kanalbildenden Elemente verwende† werden. Es ergeben sich große freie Durchströ mungsquerschnitte, die insbesondere für die Durchströmung des Stacks mi† Wasser von Vorteil sind. Zwar ist auch auf der Wasserstoffseite für eine angemessene Wasserstoffabfuhr zu sorgen, doch gestalte† sich diese wesentlich einfacher, wegen des sich dort bildenden Drucks so- wie des gasförmigen Wasserstoffs, der nur geringe Sfrömungsquerschnif- fe verlang†. [10] The channel-forming element arranged in a metal frame between a flat metal plate and another frame with an integrated porous transport layer† is intended for the supply and disposal of the oxygen side of the electrolytic cell. The channel-forming element, which has a large number of channels† connecting the first and second channels in the stack, ensures highly effective reactant/cooling water supply to the membrane and cooling water removal and oxygen removal from the membrane†. Due to the fact that the channel-forming elements of the bipolar plates are integrated into frames†, these only have to absorb comparatively small compressive forces, even when the water electrolysis stack is operated at a high operating pressure of, for example, 80 bar. In particular, they are not subject to the Pressure Equipment Directive as pressure-bearing components, as is the case, for example, with a corrugated embossing of the bipolar plate as a whole. For this reason, small thicknesses of material can be used for the channel-forming elements†. This results in large free flow cross sections, which are particularly advantageous for the flow of water through the stack. Adequate hydrogen removal must also be ensured on the hydrogen side, but this is much simpler† because of the pressure that builds up there. such as gaseous hydrogen, which requires only small flow cross-sections†.
[1 1 ] Das erfindungsgemäße Sinferbaufeil ist mit einer ebenen metalli schen Piaffe, einem darauf angeordnefen ersten metallischen Rahmen mit darin eingegliederfem kanalbildendem Element und mit einem auf dem ersten metallischen Rahmen angeordnefen zweiten metallischen Rahmen mit einer darin eingegliederfen porösen Transporfschichf auf gebaut. Dieser Aufbau ist nicht abschließend zu verstehen, sondern stellt die gemäß der Erfindung mindestens vorhandenen Komponenten für dieses Sinterbauteil dar. Die einzelnen Komponenten sind typischer weise sämtlich aus Titan gebildet, sie werden entweder massiv oder beispielsweise im MIM-Spritzguss als Grünteile oder Braunteile hergesteil† und zusammengefügt und z.B. zwischen Keramikplatten dann gesintert, um ein einstückiges Sinterbauteil und damit eine Bipolarplatte zu bilden. [12] Das auf der Sauerstoffseite der Bipolarplatte vorgesehene kanal bildende Element kann gemäß der Erfindung entweder durch ein Formblech, typischerweise ein Wellblech gebildet sein oder aber durch eine poröse Transportschicht, die von Kanälen durchgezogen ist. Da das Formblech im Wesentlichen strömungsleitende Funktion hat, kön- nen große Strömungsquerschnitte in den Kanälen realisiert werden. Der Querschnitt muss nicht sinusförmig verlaufen, sondern es können bevor zugt Rechteckwellen oder abgerundete Rechteckwellen gebildet sein, die hinsichtlich der Durchströmbarkeit vorteilhaft sind. Vorteilhaft ist das Wellblech dieses kanalbildenden Elements auf der Sauerstoffseite so ausgebildet, dass der Wellenabstand kleiner 2mm, vorzugsweise kleiner 1,5mm und in besonders bevorzugter Ausführung kleiner als 1,0mm ist. Es können also vergleichsweise schmale hohe Kanäle realisiert werden, was vorteilhaft ist. [13] Wenn das kanalbildende Element als poröse Transportschicht ausgebildet ist, so kann dies entweder so ausgestalte† sein, dass die Kanäle vollständig in die Transportschich† eingeglieder† sind oder aber so, dass die Kanäle zumindest zu einer Seite offen ausgebildet sind. Im letzteren Fall ist es vorteilhaft, diese so auszubilden, dass sie durch die ebene metallische Platte abgeschlossen werden. Auf diese Weise kann bei einer vergleichsweisen dünnen Transportschich† ein großer Kanal- querschni†† erziel† werden. Die Kanäle können durch Einlegen entspre chender Stäbe beim Spritzgießen des Grünteils gebildet sein, die †her- misch oder chemisch aufgelöst werden, oder durch Einprägen in die Oberfläche der Transportschich†. [11] The sintering structure of the present invention is constructed with a flat metallic piaffe, a first metallic frame disposed thereon having a channel-forming member incorporated therein, and a second metallic frame disposed on the first metallic frame having a porous transport layer incorporated therein. This structure is not to be understood as exhaustive, but rather represents the components that are at least present for this sintered component according to the invention. The individual components are typically all made of titanium, they are either solid or, for example, produced in MIM injection molding as green parts or brown parts† and assembled and then sintered between ceramic plates, for example, to form a one-piece sintered component and thus a bipolar plate. [12] The provided on the oxygen side of the bipolar plate channel-forming element can be formed according to the invention either by a shaped sheet, typically a corrugated sheet or by a porous transport layer, which is traversed by channels. Since the shaped sheet essentially has a flow-guiding function, large flow cross-sections can be realized in the channels. The cross section does not have to be sinusoidal, but rather square waves or rounded square waves can be formed, which are advantageous with regard to the flowability. The corrugated metal sheet of this channel-forming element is advantageously designed on the oxygen side in such a way that the corrugation spacing is less than 2 mm, preferably less than 1.5 mm and, in a particularly preferred embodiment, less than 1.0 mm. Comparatively narrow, tall channels can therefore be implemented, which is advantageous. [13] If the channel-forming element is in the form of a porous transport layer, this can either be designed in such a way that the channels are completely integrated into the transport layer or in such a way that the channels are open at least on one side. In the latter case, it is advantageous to form them in such a way that they are closed off by the flat metal plate. In this way, a large channel cross-section can be achieved with a comparatively thin transport layer. The channels can be formed by inserting appropriate rods during injection molding of the green part, which are dissolved †thermally or chemically, or by embossing them into the surface of the transport layer†.
[14] Dabei ist es gemäß der Erfindung vorteilhaft, die Kanäle des ka nalbildenden Elements möglichst geradlinig und parallel zueinander anzuordnen, um einen möglichst geringen Durchströmungswiderstand zu erzielen. Allerdings kann es vorteilhaft sein, die Kanäle wellenlinien förmig und vorteilhaft versetz† parallel zueinander anzuordnen, derart, dass zwar ein barrierefreier Durchgang erhalten bleib†, dass jedoch die statische Stützfunktion des Bauteils erhöh† wird. Die Kanäle sind dann so gestalte†, dass sie einen vorzugsweise geradlinigen freien Durchgang aufweisen, jedoch in der Seitenwandung wellenförmig ausgestalte† sind, um diese Stützwirkung zu erzielen. [14] It is advantageous according to the invention to arrange the channels of the channel-forming element as straight as possible and parallel to one another in order to achieve the lowest possible flow resistance. However, it can be advantageous to arrange the ducts in a wavy line shape and advantageously staggered parallel to one another in such a way that a barrier-free passage is maintained, but that the structural support function of the component is increased. The channels are then designed in such a way that they have a preferably rectilinear free passage, but are designed in a wavy manner in the side wall in order to achieve this supporting effect.
[15] Unter barrierefrei im Sinne der Erfindung ist zu verstehen, dass in den Kanälen keine die Strömung verwirbelnde Prallkörper vorhanden sind, wie dies typischerweise bei Hindernissen der Fall ist, die in einen Winkel quer oder schräg zur Strömungsrichtung angeordne† sind. Ein wellenförmig verlaufender Kanal kann somit barrierefrei sein, wenn er z.B. sinusförmig oder wellenförmig im Raum durch den Körper verläuft. [15] For the purposes of the invention, barrier-free means that there are no flow-swirling baffles in the channels, as is typically the case with obstacles that are arranged at an angle transversely or obliquely to the direction of flow. A wavy canal can therefore be barrier-free if it runs through the body in a sinusoidal or wavy manner, for example.
[16] Grundsätzlich kann das kanalbildende Element in dem ersten metallischen Rahmen so angeordne† und ausgebildet sein, dass es mi† seinen Enden an den ersten bzw. den zweiten den Zellstapel durchset zenden Kanal für die Wasserzufuhr bzw. für die Wasserabfuhr und die Sauersfoffabfuhr münde†. Beim Betrieb des Stacks bei hohen Drücken kann es jedoch vorteilhaft sein, zur Abstützung dieses kanalbildende Element nicht zwischen den senkrechten Kanälen durchgehend auszu bilden, sondern zu beiden Seiten entsprechende Kanäle in dem metalli schen Rahmen z.B. durch Einprägung vorzusehen, welche vorzugsweise in Fluch† zu den Kanälen des kanalbildenden Elementes liegen und die se mi† den ersten bzw. dem zweiten den Stapel durchsetzenden Kanal leitungsverbinden. Eine solche Ausführung ha† eine höhere Stabilität bzw. erlaub† es, das kanalbildende Element für eine geringere Stützlas† auszu legen. [16] In principle, the channel-forming element can be arranged and designed in the first metallic frame in such a way that it mi† its ends to the first or the second channel that penetrates the cell stack for the water supply or for the water discharge and the oxygen discharge†. When operating the stack at high pressures, however, it can be advantageous not to form this channel-forming element continuously between the vertical channels to support this, but to provide corresponding channels on both sides in the metallic frame, for example by embossing, which are preferably in curse† to the Channels of the channel-forming element are located and the se mi† the first or the second channel penetrating the stack conductively connect. Such a design has greater stability and allows the channel-forming element to be designed for a lower supporting load.
[17] Um die Wasserstoffabfuhr von der wasserstoffführenden Seite der Elektrolysezelle durch die Bipolarplatte zu ermöglichen ist es gemäß ei ner Weiterbildung der Erfindung vorteilhaft, die ebene metallische Plat te mi† Ausnehmungen bzw. Durchbrechungen zu versehen, welche in Kanäle münden, die im ersten metallischen Rahmen z.B. durch Einprä gen ausgebilde† sind und die in den dritten den Zellstapel durchsetzen den Kanal zur Wasserstoffabfuhr münden. Diese Kanäle können einsei tig offen sein und sind nach dem Sintern durch den darauf angeordne ten zweiten metallischen Rahmen abgedeck† und durch diesem ge schlossen. Die Ausnehmungen in der ebenen metallischen Platte sind vorteilhaft als Reihen von nebeneinanderliegenden Durchbrechungen ausgestalte†, die einen ausreichenden Durchtri†† des Produktgases Was serstoff gewährleisten. [17] In order to enable hydrogen removal from the hydrogen-carrying side of the electrolytic cell through the bipolar plate, it is advantageous according to a further development of the invention to provide the flat metallic plate with recesses or openings which open into channels in the first metallic Frames are formed, e.g. by embossing† and which flow into the third cell stack through the channel for hydrogen removal. These channels can be open on one side and, after sintering, are covered and closed by the second metallic frame arranged on top†. The recesses in the flat metallic plate are advantageously designed as rows of adjacent openings which ensure that the hydrogen product gas can pass through sufficiently.
[18] Um auf der Wasserstoffseite der Elektrolysezelle eine geeignete Abfuhr zu den Ausnehmungen in der ebenen metallischen Platte des Sinterbauteils zu gewährleisten ist es vorteilhaft, an der durch die ebene metallische Platte gebildeten Seite der Bipolarplatte einen Rahmen vor zusehen, welcher dichtend an dieser Seite anlieg† und der eine zentrale Ausnehmung aufweis†, in der ein weiteres kanalbildendes Element an geordnet ist, dessen Kanäle mit den Ausnehmungen in der ebenen me tallischen Platte leitungsverbunden sind. Dieser Rahmen bildet vorteil haft gleichzeitig das Dichtungseiemen† zwischen Bipolarplatte und PEM, er weist umlaufende Dichtungen auf, einerseits zu der Bipolarplatte hin und andererseits zu der PEM. Die Dichtungen sind um die Ausnehmun gen, welche die den Stapel durchsetzenden Kanäle bilden, umlaufend angeordnet sowie umlaufend um die zentrale Ausnehmung, welche den aktiven Teil der Elektrolysezelle bildet. [19] Dieses weitere kanalbildende Element, welches auf der Wasser stoffseite der Elektrolysezelle angeordnet ist, kann vorteilhaft als Gasdif fusionslage ausgebildet sein, welche aus geordneten oder ungeordne ten Kohlefasern aufgebaut ist. Vorzugsweise werden hier Kohlefasern angeordnet, die zu einem filzartigen Gewirke verbunden sind. [20] Alternativ kann auch dieses kanalbildende Element durch ein[18] In order to ensure a suitable discharge to the recesses in the flat metallic plate of the sintered component on the hydrogen side of the electrolytic cell, it is advantageous to provide a frame on the side of the bipolar plate formed by the flat metallic plate, which fits tightly against this side † and the one central Recess having† in which another channel-forming element is arranged, the channels of which are conductively connected to the recesses in the flat metal plate. At the same time, this frame advantageously forms the sealing element† between the bipolar plate and the PEM; The seals are arranged circumferentially around the recesses which form the channels passing through the stack and circumferentially around the central recess which forms the active part of the electrolytic cell. [19] This further channel-forming element, which is arranged on the hydrogen side of the electrolytic cell, can advantageously be designed as a gas diffusion layer made up of ordered or unordered carbon fibers. Carbon fibers are preferably arranged here, which are connected to form a felt-like knitted fabric. [20] Alternatively, this channel-forming element by a
Wellblech oder ein Streckmetall gebildet sein. An der Wasserstoffseite ist in der Regel keine barrierefreie Kanalführung erforderlich, da sich der Wasserstoff druckgetrieben seinen vorgegebenen Weg im Stack sucht. Corrugated sheet metal or expanded metal can be formed. On the hydrogen side, no barrier-free ducting is usually required, since the hydrogen is pressure-driven and seeks its specified path in the stack.
[21 ] Als kanalbildendes Element auf der Wasserstoffseite kann auch eine Gasdiffusionslage verwendet werden, die gegebenenfalls durch eine oder mehrere Ausnehmungen aufweisende Stützplatte abgestützt ist. Diese Stützplatte kann einstückig mit dem Rahmen ausgebildet sein, in den im Bereich der zentralen Ausnehmung das Material des aus Blech bestehenden Rahmens eingeprägt ist, sodass der notwendige Raum für die Gasdiffusionslage gebildet ist. [21] A gas diffusion layer can also be used as a channel-forming element on the hydrogen side, which is optionally supported by one or more support plates having recesses. This support plate can be designed in one piece with the frame, into which the material of the frame, which is made of sheet metal, is embossed in the area of the central recess, so that the necessary space for the gas diffusion layer is formed.
[22] Um auf der Sauerstoffseite eine quasi homogene Zufuhr von Wasser über die gesamte Oberfläche der Protonenaustauschmembran (PEM) zu gewährleisten, ist es vorteilhaft, eine mikroporöse Schicht vor- Zusehen, welche das Sinterbauteil an einer Seite überdeckt, und zwar so weit, dass die mikroporöse Schicht bis auf den zweiten Rahmen reich†. Die mikroporöse Schicht bis zu diesem Bereich zu erstrecken ist besonders vorteilhaft, da hierdurch etwaige Spalte zwischen einem ka- nalbildenden Element oder einer Gasdiffusionslage innerhalb des Rah mens überdeck† werden und somit eine völlig gleichmäßige Zufuhr des Reaktanten über die Fläche der Membran erfolg†. [22] In order to ensure a quasi-homogeneous supply of water over the entire surface of the proton exchange membrane (PEM) on the oxygen side, it is advantageous to pre- See which covers the sintered part on one side, enough for the microporous layer to extend to the second frame†. Extending the microporous layer to this area is particularly advantageous as it will mask† any gaps between a channel forming element or gas diffusion layer within the frame and thus provide a fully uniform delivery of reactant across the face of the membrane†.
[23] Eine solche mikroporöse Schicht ist vorteilhaft als einzelnes Bau teil, z.B. als Folie oder als Grünteil oder Braunteil einer Foliehergestell†, auf die übrigen Komponenten, insbesondere den zweiten Rahmen und das in die Ausnehmung eingegliederte Bauteil aufgelegt und durch Sintern mi† den übrigen Bauteilen zu dem Sinterbauteil verbunden. Die mikroporöse Schicht kann alternativ auch im Siebdruck oder Schablo nendruck auf das Bauteil aufgebracht werden und wird dann nachfol- gend mi† diesen gesintert. [23] Such a microporous layer is advantageous as a single component, e.g. as a foil or as a green part or brown part of a foil production†, placed on the other components, in particular the second frame and the component integrated into the recess, and sintered with the others Components connected to the sintered component. Alternatively, the microporous layer can also be applied to the component using screen printing or stencil printing and is then subsequently sintered with these.
[24] Die Bipolarplatte lieg† mi† ihrer durch den zweiten Rahmen und die darin eingegliederte poröse Transportschich† und der darauf auf gebrachten mikroporösen Schicht an der Sauerstoffseite der Protonen austauschmembran an. [25] Jede Elektrolysezelle besteh† aus einer Bipolarplatte, einem[24] The bipolar plate lies† with its† through the second frame and the porous transport layer† integrated into it and the microporous layer applied to it, on the oxygen side of the proton exchange membrane. [25] Each electrolytic cell consists of a bipolar plate, a
Dichtrahmen und einer Protonenaustauschmembran (PEM), welche katalytisch beschichte† ist. Die Zellen sind aufeinander gestapelt, sodass eine Bipolarplatte Teil zweier benachbarter Elektrolysezellen ist. Einge spann† ist dieser Stapel von Elektrolysezellen zwischen zwei Endplatten, die mechanisch miteinander verspann† sind. sealing frame and a proton exchange membrane (PEM), which is catalytically coated†. The cells are stacked on top of each other so that one bipolar plate is part of two adjacent electrolytic cells. Clamped is this stack of electrolytic cells between two end plates that are mechanically clamped together.
[26] Vorteilhaft ist die Dicke des ersten metallischen Rahmens, wel cher in seiner zentralen Ausnehmung das vorbeschriebene kanalbil dende Element umfass†, kleiner als 1 mm, bevorzug† kleiner als 0,8mm oder besonders vorteilhaft sogar kleiner als 0,6mm. Dies verringert die Bauhöhe des Stacks und die Maferialkosfen zur Herstellung. [26] Advantageously, the thickness of the first metallic frame, which encloses the above-described channel-forming element in its central recess, is less than 1 mm, preferably less than 0.8 mm or particularly advantageously even smaller than 0.6 mm. This reduces the height of the stack and the maferial costs for production.
[27] Da insbesondere bei sehr dünnen Schichfdicken die Eigensfabili- fä† der porösen Transporfschich† vor dem Sintern nicht immer sicherge- stell† ist, was jedoch bei der Handhabung der Bauteile zweckmäßig ist, kann die poröse Transporfschich† gemäß einer Weiterbildung der Erfin dung mi† Hilfe eines Feedstocks hergesteil† sein, der faserverstärkt ist, vorzugsweise mi† Kunststofffasern, insbesondere bevorzug† mi† Polyethy lenfasern. Diese Fasern werden im Prozess vom Grünteil zum Braunteil, spätestens beim Sintern entfern†. [27] Since the properties of the porous transport layer before sintering are not always guaranteed, particularly in the case of very thin layers, which is expedient when handling the components, the porous transport layer can, according to a further development of the invention be produced with the aid of a feedstock which is fibre-reinforced, preferably with plastic fibres, particularly preferably with polyethylene fibres. These fibers are removed in the process from the green part to the brown part, at the latest during sintering†.
[28] Die im kanalbildenden Element des Sinterbauteils vorgesehenen Kanäle können entweder bis zu den entsprechenden den Zellstapel durchsetzenden Kanälen reichen oder aber, was hinsichtlich der Druckbelastbarkei† vorteilhaft ist, im Bereich zwischen der zentralen Ausnehmung und den den Zellstapel durchsetzenden Kanälen durch Kanäle verbunden sein, die durch entsprechende kanalförmige Aus nehmungen im ersten Rahmen gebildet sind. Solche Ausnehmungen können durch einfaches Stanzen kostengünstig hergesteil† sein, dabei ist für eine gewisse Überlappung zu sorgen, sodass auf einer Leitungs- Verbindung zu den dem Zellstapel durchsetzenden Kanälen erfolg†. [28] The channels provided in the channel-forming element of the sintered component can either extend to the corresponding channels penetrating the cell stack or, which is advantageous in terms of pressure resistance†, be connected by channels in the area between the central recess and the channels penetrating the cell stack. which are formed by corresponding channel-shaped recesses from the first frame. Such recesses can be produced inexpensively by simply punching†, but a certain overlap must be ensured so that a line connection to the channels penetrating the cell stack is achieved†.
[29] Die Erfindung ist nachfolgend anhand eines in den Zeichnungen dargestellten Ausführungsbeispiel erläutert. Es zeigen: [29] The invention is explained below with reference to an embodiment shown in the drawings. Show it:
Figur 1 in stark vereinfachter perspektivischer Darstellung ein Was serelektrolysestack gemäß der Erfindung, Figur 2 in stark vereinfachter Explosionsdarstellung den Aufbau einer einzelnen Elektrolysezelle des Stacks gemäß Figur 1, Figur 3 in Explosionsdarstellung eine erste Ausführung des Aufbaus einer durch einen Sinterbauteil gebildeten Bipolarplatte, 1 shows a water electrolysis stack according to the invention in a greatly simplified perspective view, FIG. 2 shows the structure of an individual electrolysis cell of the stack according to FIG. FIG. 3 shows an exploded view of a first embodiment of the structure of a bipolar plate formed by a sintered component,
Figur 4 eine perspektivische Teilschni††dars†ellung durch die Bau teile gemäß Figur 2 in zusammengestellter Form, Figur 5 eine Teilschnittansich† entsprechend der Bauteile gemäßFIG. 4 shows a perspective partial section through the components according to FIG. 2 in assembled form, FIG. 5 shows a partial section view corresponding to the components according to FIG
Figur 4, figure 4,
Figur 6 eine alternative Bauausführung in Darstellung gemäß FigurFIG. 6 shows an alternative design in the representation according to FIG
5, 5,
Figur 6.1 die Schniffdarsfellung gemäß Figur 6 mit schräg verlau fender Schnittlinie, FIG. 6.1 the sliced skin according to FIG. 6 with an oblique cutting line,
Figur 7 eine weitere Ausführungsvariante in Darstellung gemäß Figur 5, und FIG. 7 shows a further embodiment variant in the representation according to FIG. 5, and
Figur 8 eine andere Ausführungsvariante in Darstellung nach FigurFIG. 8 shows another embodiment variant in the representation according to FIG
5. [30] Der grundsätzliche Aufbau eines Elekfrolysesfacks zähl† zum5. [30] The basic structure of an electrolysis sfack is part of the
Stand der Technik und ist in WO 2019/228616 im Einzelnen beschrieben, worauf verwiesen wird. Der Elektrolysestack 0, wie er anhand von Figur 1 dargestell† ist, besteh† also aus einer Anzahl zu einem Stapel 1 über an einander angeordneten Elektrolysezellen 2, die zwischen zwei Endpla†- ten 3 eingespann† sind und elektrisch in Reihe geschalte† sind. Die elektrischen Anschlüsse 4 und 5 sind seitlich aus dem Stack 0 herausge- führt. Die Versorgung der Zellen 2 erfolg† über den Zellstapel 1 durchset zende Kanäle 6, 7, 8, nämlich einen ersten Kanal 6 zum Zuführen des Reaktanten Wassers sowie als Kühlwasser und einen zweiten Kanal 7 zur Abfuhr des Kühlwassers und des Produkfgases Sauerstoff. Diese ersten und zweiten Kanäle 6, 7 sind parallel zu den Längsseiten des Zellstapels 1 gegenüberliegend angeordnet. Weiterhin sind an einer Querseite des Zellstapels 1 drei den Stapel 1 durchsetzende dritte Kanäle 8 vorgese hen, welche zur Abfuhr des Produktgases Wasserstoff dienen. In der dargestellten Ausführung des Stacks 0 ist der Zellstapel 1 unter Eingliede rung von Isolierplatten 3 zwischen einer unteren Endplatte 9 und einer oberen Endplatte 10, die über zehn Bolzen 1 1 jeweils unter Eingliede rung von Tellerfederpaketen 12 verspannt, eingespannt. Dabei sind in der oberen Endplatte 10 die Kanäle 6, 7, 8 zu Kanalanschlüssen heraus- geführt, in Figur sind die Kanalanschlüsse 13 und 14 zum Anschluss der ersten und zweiten Kanäle 6 und 7 vorgesehen, wohingegen der Ka nalanschluss 15 mit dem dritten Kanal 8 verbunden ist und zur Abfuhr des Produktgases Wasserstoff dient. State of the art and is described in detail in WO 2019/228616, to which reference is made. The electrolysis stack 0, as shown in FIG. 1, consists of a number of electrolysis cells 2 arranged in a stack 1 above one another, which are clamped between two end plates 3 and electrically connected in series. The electrical connections 4 and 5 are brought out of the stack 0 at the side. The cells 2 are supplied via the cell stack 1 through channels 6, 7, 8, namely a first channel 6 for supplying the reactant water and as cooling water and a second channel 7 for Removal of the cooling water and the product gas oxygen. These first and second channels 6 , 7 are arranged opposite one another parallel to the longitudinal sides of the cell stack 1 . Furthermore, three third channels 8 penetrating the stack 1 are provided on a transverse side of the cell stack 1 and are used to remove the hydrogen product gas. In the illustrated embodiment of the stack 0, the cell stack 1 is clamped under the incorporation of insulating plates 3 between a lower end plate 9 and an upper end plate 10, which is clamped by means of ten bolts 11, each under the incorporation of plate spring assemblies 12. The ducts 6, 7, 8 lead out to duct connections in the upper end plate 10; in the figure, the duct connections 13 and 14 are provided for connecting the first and second ducts 6 and 7, whereas the duct connection 15 is connected to the third duct 8 is connected and is used to remove the product gas hydrogen.
[31 ] Eine elektrolytische Zelle 2 weist eine katalytisch beschichtete Protonenaustauschmembran 16 (PEM) - auch als Membrane Electrode Assembly (MEA) bezeichnet - auf, an deren Wasserstoffseite ein Dicht rahmen 17 anlieg†, welcher den aktiven Teil der Zelle 2, also die Memb ran 16 gegenüber den seitlich dazu angeordneten Kanälen 6, 7, 8 und die Kanäle 6, 7, 8 selbst nach außen hin abdichte†. Diesem Dichtrah men 17, der auf der Wasserstoffseite an der PEM 16 anlieg†, also an der Seite, an welcher das Produktgas Wasserstoff abgeschieden wird, ist auf der von der PEM 16 abgewandten Seite ebenfalls mit Dichtungen 18 versehen und liegt dort an einer Bipolarplatte 19 an, die als Sinter bauteil aus Titan ausgebildet ist und deren Aufbau im Folgenden noch beschrieben wird. An der anderen Seite der PEM 16, also an der Seite, auf welcher Sauerstoff als Produktgas abgeschieden wird und an der Wasser als Reaktant herangeführt wird sowie Wasser zum Kühlen vorbei ström†, liegt die andere Seite einer nächsten Bipolarplatte 19 an, wie das bei derartigen Stacks üblich ist. Die Bestromung erfolgt über die elektrischen Anschlüsse 4, 5, zwischen den Endplatten 4, 9, 10. [32] Bei dem anhand der Figuren 2 und 3 dargestellten Aufbau der Bipolarplaffe 19 weis† diese eine ebene metallische Platte 20 aus Titan auf, welche eine rechteckige Form ha†, in den Ecken mi† Ausnehmun gen 21 für Führungsstangen zur Montage des Stacks 0 versehen sowie an den Längsseiten mi† Ausnehmungen, welche im Zellstapel 1 den ers ten und den zweiten Kanal 6 und 7 bilden sowie an der kurzen Seite mi† drei Ausnehmungen, welche im Zellsfapel 1 den driften Kanal 8 bilden, welcher hier aus drei Teilkanälen gebildet. Parallel zu den Ausnehmun gen für den dritten Kanal 8 ist gegenüberliegend eine Ausnehmung 22 vorgesehen, die für die Zufuhr vom Stickstoff vorgesehen ist, mi† welcher der Stack 0 gespült wird, bevor er außer Betrieb genommen wird. [31 ] An electrolytic cell 2 has a catalytically coated proton exchange membrane 16 (PEM) - also referred to as a membrane electrode assembly (MEA) - on whose hydrogen side there is a sealing frame 17†, which seals the active part of the cell 2, i.e. the memb ran 16 against the laterally arranged channels 6, 7, 8 and the channels 6, 7, 8 themselves to the outside to seal†. This sealing frame 17, which rests against the PEM 16 on the hydrogen side, i.e. on the side on which the product gas hydrogen is separated, is also provided with seals 18 on the side facing away from the PEM 16 and is located there on a bipolar plate 19 which is designed as a sintered component made of titanium and whose structure will be described below. On the other side of the PEM 16, i.e. on the side on which oxygen is separated off as product gas and on which water is supplied as reactant and water flows past for cooling†, the other side of a next bipolar plate 19 is located, as is the case with such Stacks is common. The current is supplied via the electrical connections 4, 5 between the end plates 4, 9, 10. [32] In the structure of the bipolar plate 19 shown in Figures 2 and 3, this has a flat metallic plate 20 made of titanium, which is rectangular in shape and has recesses 21 in the corners for guide rods for mounting the stack 0 provided and on the long sides with recesses, which form the first and second channels 6 and 7 in the cell stack 1, and on the short side with three recesses, which form the third channel 8 in the cell stack 1, which is formed here from three sub-channels . Parallel to the recesses for the third channel 8, a recess 22 is provided opposite, which is provided for the supply of nitrogen, with which the stack 0 is flushed before it is taken out of service.
[33] Die Bipolarplate 19 ist als Sinterbauteil ausgebilde† und aus dem anhand von Figur 3 dargestellten jeweils aus Titan bestehenden Bautei len aufgebau†. Eine Seite dieser Bipolarplatte 19 ist durch eine ebene metallische Platte 20 gebildet, deren andere Seite zur Anlage an ein erstes metallisches Rahmenbauteil 23 komm†, welches eine zentrale Ausnehmung 24 aufweis†, sowie im Übrigen die Kanäle 6, 7, 8 bildenden Ausnehmungen fluchtend zu denen in der ersten Platte 20 sowie die Ausnehmungen für die Führungsstangen und die Ausnehmung für den Stickstoffkanal. Die zentrale Ausnehmung 24 ist zur Eingliederung eines Wellblechs 25 vorgesehen, welches so in der Ausnehmung 24 des ersten metallischen Rahmenbauteils 23 angeordne† ist, dass Kanäle gebildet sind, welche zwischen dem ersten und dem zweiten Kanal 6, 7 verlau fen. Die Kanäle münden allerdings nicht direkt in den ersten und den zweiten Kanal 6, 7, sondern in Zwischenkanäle 26, 27 die durch Einprä gungen in dem ersten metallischen Rahmenbauteil 23 zwischen der zentralen Ausnehmung 24 und den Ausnehmungen für dem ersten und dem zweiten den Stack durchsetzenden Kanälen 6, 7 gebildet sind. [33] The bipolar plate 19 is designed as a sintered component and is constructed from the titanium components shown in FIG. One side of this bipolar plate 19 is formed by a flat metal plate 20, the other side of which comes to rest on a first metal frame component 23, which has a central recess 24, and the rest of the channels 6, 7, 8 forming recesses aligned those in the first plate 20 as well as the recesses for the guide rods and the recess for the nitrogen channel. The central recess 24 is provided for the incorporation of a corrugated metal sheet 25 which is arranged in the recess 24 of the first metallic frame member 23 such that channels are formed which run between the first and second channels 6,7. However, the channels do not open directly into the first and the second channel 6, 7, but into intermediate channels 26, 27 which pass through the stack through indentations in the first metallic frame component 23 between the central recess 24 and the recesses for the first and the second Channels 6, 7 are formed.
[34] Weiterhin weis† dieses erste Rahmenbauteil 23 kanalbildende Einprägungen 28 in Querrichtung auf, die sich im Wesentlichen von der Schmalseite der zentralen Ausnehmung 24 bis in die den dritten Kanal 8 begrenzenden Ausnehmungen erstrecken. Über diese Ausnehmungen wird der durch Ausnehmungen 29 in der ebenen Platte 20 durchgelei tete Wasserstoff in den driften Kanal 8 zur Abfuhr des Wasserstoffs gelei te†. Die Zwischenkanäle 26 und 27 sowie die durch die kanalbildenden Einprägungen 28 gebildeten Kanäle können entweder durch Einprä gungen in den ersten metallischen Rahmenbaueiemen† 23 oder durch Ausnehmungen, die kammförmig angeordne† sind und so angeordne† sein müssen, dass sie einerseits die erforderlichen Leitungsverbindungen bilden, anderseits materiell verbunden bleiben, was durch entspre chende Überlappungen in die Kanäle 6, 7 erreich† werden kann. [34] Furthermore, this first frame member 23 has channel-forming indentations 28 in the transverse direction, which differ substantially from the The narrow side of the central recess 24 extend into the recesses delimiting the third channel 8 . The hydrogen conducted through recesses 29 in the flat plate 20 is conducted via these recesses into the drift channel 8 for the removal of the hydrogen. The intermediate channels 26 and 27 as well as the channels formed by the channel-forming indentations 28 can be formed either by indentations in the first metallic frame components 23 or by recesses that are arranged in a comb shape and must be arranged such that on the one hand they form the necessary line connections, on the other hand, remain materially connected, which can be achieved† by appropriate overlaps in channels 6, 7.
[35] An dieses erste Rahmenbauteil 23 schlie߆ sich ein zweites metal lisches Rahmenbauteil 30 an, das ebenfalls fluchtende Kanalausneh mungen und Ausnehmungen für die Führungsstangen aufweis† sowie darüber hinaus eine zentrale Ausnehmung 31 in welcher eine poröse Transportschich† 32 (Porous Transport Layer (PTL) ), die aus Titanfasern gebildet ist, eingeglieder† ist. Diese Schicht 32 ist aus einem faserver stärkten Feedstock gebildet. Überdeck† wird diese durchlässige Trans portschich† 32 und der Rand der Ausnehmung 31 durch eine mikropo röse Transportschich† 33 (Micro Porous Layer (MPL)), die ebenfalls aus Titan gebildet ist. Diese Bauteile 20, 23, 25, 30, 32, 33, welche die späte re Bipolarplatte 19 bilden, werden aufeinanderliegend gesintert, sodass ein einstückiges aus Titan bestehendes Bauteil 19 entsteh†, welches mi† einer Seite, nämlich an der Sauerstoffseite an der PEM 16 anlieg† und dessen andere Seite über den Dichtrahmen 17 an der nachfolgenden PEM 16 anlieg†. Zum Schutz der PEM 16 lieg† die Bipolarplatte 19 nicht unmittelbar an der PEM 16 an, sondern ist durch eine Schutzfolie 34 ge trennt, die ebenfalls eine zentrale Ausnehmung 35 aufweis† sowie ent sprechende kanalbildende Ausnehmungen sowie Ausnehmungen für die Führungsstangen und somit nur außerhalb des aktiven Bereiches der Elektrolysezelle wirksam ist. [36] Dieser Dichtrahmen 17, weist dort, wo der aktive Teil der Zelle ist, also fluchtend zu der im metallischen Rahmenbaufeil 23 vorgesehenen zentralen Ausnehmung 24, eine Stüfzplaffe 36, auf die durch das Mate rial des Rahmens selbst gebildet ist und die geschlossen oder gelocht ausgebildef sein kann, um den Wasserstoff von der Membran 16 abzu führen. Diese Stüfzplaffe 36 lieg† nicht unmittelbar an der PEM 16 an, sondern unter Zwischenschaltung einer Gasdiffusionsschich† 38 (Gas Diffusion Layer (GDL)), welche aus Kohlefasern gebildet ist. Nahe den Ausnehmungen für den dritten Kanal 8 weis† diese Stützplatte einen Längsschlitz 37 auf, der fluchtend zu den Ausnehmungen 29 in der ebe nen Platte 20 des Bipolarpla††enbau†eils lieg† und über welchen die Wasserstoffabfuhr erfolg†. [35] This first frame component 23 is adjoined by a second metallic frame component 30, which also has aligned channel recesses and recesses for the guide rods, as well as a central recess 31 in which a porous transport layer 32 ( PTL) ) formed from titanium fibers is incorporated†. This layer 32 is formed from a fiber reinforced feedstock. This permeable transport layer 32 and the edge of the recess 31 are overlaid by a microporous transport layer 33 (Micro Porous Layer (MPL)), which is also made of titanium. These components 20, 23, 25, 30, 32, 33, which later form the bipolar plate 19, are sintered one on top of the other, so that a one-piece component 19 made of titanium is created, which mi† one side, namely on the oxygen side on the PEM 16† and the other side of which is in contact with the subsequent PEM 16 via the sealing frame 17†. To protect the PEM 16, the bipolar plate 19 does not lie directly against the PEM 16, but is separated by a protective film 34, which also has a central recess 35 and corresponding channel-forming recesses and recesses for the guide rods and thus only outside of the active area of the electrolytic cell is effective. [36] This sealing frame 17 has where the active part of the cell is, i.e. aligned with the central recess 24 provided in the metal frame component 23, a support plate 36, which is formed by the material of the frame itself and which is closed or can be perforated ausgebildef to lead the hydrogen from the membrane 16 ERS. This support plate 36 does not lie directly against the PEM 16, but with the interposition of a gas diffusion layer 38 (Gas Diffusion Layer (GDL)), which is made of carbon fibers. Near the recesses for the third channel 8, this support plate has a longitudinal slot 37 which is aligned with the recesses 29 in the flat plate 20 of the bipolar plate component and via which the hydrogen is removed.
[37] Bei der anhand der Figuren 4 und 5 dargestellten Ausführung ist das Wellblech 25 im Querschnitt etwa sinusförmig ausgebilde† und weis† im Querschnitt eine ausgeprägte Wellenläge gegenüber der Wellen höhe auf. Dies kann jedoch, wie die Schnittdarstellung gemäß Figur 6 verdeutlich†, auch völlig anders ausgestalte† sein, dort ist die Wellen länge nur unwesentlich größer als die Wellenhöhe. Diese Sinusform kann zur Rechteckwelle hin abweichen und ergib† dann besonders gu† durchströmbare Querschnitte. [37] In the embodiment shown in FIGS. 4 and 5, the corrugated sheet 25 has an approximately sinusoidal cross section and has a pronounced corrugation length compared to the corrugation height. However, as the sectional representation according to FIG. 6 makes clear†, this can also be designed completely differently†, where the wave length is only slightly larger than the wave height. This sinusoidal shape can deviate from a square wave and then result in particularly smooth cross-sections through which flow can take place.
[38] Auch in dem Dichtrahmen 17 kann ein Wellblech 44 (Figur 6, Fi gur 6.1 ) ähnlich dem Wellblech 25 oder ein Streckmetall 43 (Figur 4, Figur 5) eingeglieder† sein, welches neben der Kanalbildung insbeson dere auch Federwirkung haben sollte, um die Kräfte innerhalb des akti- ven Teils der Elektrolysezelle 2 gleichmäßig zu verteilen. [38] A corrugated sheet metal 44 (Figure 6, Fi gur 6.1) similar to the corrugated sheet metal 25 or an expanded metal 43 (Figure 4, Figure 5) can also be integrated into the sealing frame 17. to distribute the forces within the active part of the electrolytic cell 2 evenly.
[39] Auf der Wasserstoffseite sind die Korrosionsanforderungen niedri ger als auf der Sauerstoffseite, weshalb das Dichtungsblech 17 und ggf. auch das auf dieser Seite liegende Streckmetall 43 oder Wellblech 44 nicht unbedingt aus Titan, sondern alternativ auch aus Edelstahl mit einem Korrosionsschutzüberzug gefertigt sein können. [39] The corrosion requirements on the hydrogen side are lower than on the oxygen side, which is why the sealing sheet metal 17 and possibly also the expanded metal 43 or corrugated sheet metal 44 lying on this side not necessarily made of titanium, but alternatively made of stainless steel with an anti-corrosion coating.
[40] Soweit es das kanalbildende Element in dem Sinterbauteil 19, welches die Bipolarplatte bilde†, angeh†, kann dieses statt eines Well- blechs auch durch Einprägung entsprechender Kanäle in eine poröse Transportschich† 39 gebildet sein, welche die PTL 32 in dem zweiten Rahmenbauteil 30 und das Wellblech 25 in dem ersten Rahmenbauteil 23 ersetz†. Diese PTL 39 weis† zur ebenen metallischen Platte 20 hin offe ne Kanäle 40 auf, welche sich vom einem zum anderen Ende der PTL 39 erstrecken und parallel nebeneinander angeordnef sind. Diese im Sin- ferbaufeil 19 nach dem Sintern nur noch endseifig offenen Kanäle sind an dieser einen Seite dann durch die ebene metallische Platte 20 bzw. das dadurch gebildete Sintermaterial abgeschlossen. [40] As far as the channel-forming element in the sintered component 19, which forms the bipolar plate, is concerned, this can also be formed by embossing corresponding channels in a porous transport layer 39 instead of a corrugated sheet, which the PTL 32 in the second Frame member 30 and the corrugated sheet metal 25 in the first frame member 23 replace†. This PTL 39 has channels 40 which are open towards the flat metallic plate 20 and which extend from one end of the PTL 39 to the other and are arranged parallel next to one another. These channels, which are only open at the ends in the sintering component 19 after sintering, are then closed off on this one side by the flat metallic plate 20 or the sintered material formed thereby.
[41 ] Figur 8 zeig† eine Ausführungsvariante, bei welcher Kanäle 41 in ähnlicher Weise die PTL 42 durchsetzen, wie dies bei der PTL 39 in Figur 7 der Fall ist, bei der jedoch die Kanäle 41 vollständig innerhalb der PTL 42 liegen und nur endseitig offen sind. [41] Figure 8 shows an embodiment variant in which channels 41 pass through the PTL 42 in a similar way as is the case with the PTL 39 in Figure 7, but in which the channels 41 lie completely within the PTL 42 and only at the ends are open.
[42] Bei der anhand der Figuren 7 und 8 dargestellten Ausführungsva riante ist die zentrale Ausnehmung 24 in dem ersten Rahmenbauteil 23 durchgehend zwischen den Ausnehmungen für dem ersten und zwei ten den Stack durchsetzenden Kanälen 6, 7 vorgesehen. Als kanalbil dendes Element, welches in die Ausnehmung 24 eingeglieder† ist und zum Kanaltranspor† zwischen dem ersten und zweiten Kanälen 6, 7 dien†, ist hier kein Wellblech 25 vorgesehen, sondern ein kanalbildendes Element in Form einer von Kanälen 40, 41 durchzogenen porösen Trans portschich† 39 bzw. 42. Die Kanäle sind einseitig, nämlich zu der ebenen Platte 20 hin offen und werden durch diese abgeschlossen. Plierdurch können vergleichsweise große Kanalquerschnitte gebildet werden, darüber hinaus sind diese Kanäle 40, 41, da sie in der porösen Transport- schich† 39, 42 eingegliedert sind, zur Transportschicht hin stets durchläs sig, das heißt die Kanäle 40, 41 haben zwar eine gewisse Führungsei genschaf†, jedoch keine fluiddichte Kanalwandung, wie dies bei dem kanalbildenden Wellblech 25 der ersten Ausführungsvariante der Fall ist. In the variant embodiment illustrated in FIGS. 7 and 8, the central recess 24 in the first frame component 23 is provided continuously between the recesses for the first and two channels 6, 7 penetrating the stack. No corrugated sheet metal 25 is provided here as the channel-forming element, which is integrated into the recess 24 and is used for channel transport between the first and second channels 6, 7, but rather a channel-forming element in the form of a porous sheet with channels 40, 41 running through it Transportschich† 39 and 42. The channels are one-sided, namely open to the flat plate 20 and are closed by it. Comparatively large channel cross-sections can be formed by means of pliers, and these channels 40, 41, since they are in the porous transport layer 39, 42 are always permeable towards the transport layer, i.e. the channels 40, 41 have a certain guiding characteristic, but no fluid-tight channel wall, as is the case with the channel-forming corrugated sheet 25 of the first embodiment variant.
Bezugszeichenliste Reference List
0 Elek†rolyses†ack 0 electrolysis bag
1 Zellstapel 1 cell stack
2 Elektrolysezellen 3 Isolierplatten 2 electrolytic cells 3 insulating panels
4 elektrischer Anschluss 4 electrical connection
5 elektrischer Anschluss 5 electrical connection
6 erster Kanal für die Zufuhr von Wasser 6 first channel for the supply of water
7 zweiter Kanal für die Abfuhr von Wasser- und Sauerstoff 8 dritter Kanal für die Abfuhr von Wasserstoff 7 second channel for the removal of hydrogen and oxygen 8 third channel for the removal of hydrogen
9 untere Endplaffe 9 lower end plate
10 obere Endplaffe 10 top end plate
1 1 Bolzen 1 1 bolt
12 T ellerfederpa kefe 13 Kanalanschluss zur Wasserzufuhr 12 Disc spring packs 13 Duct connection for water supply
14 Kanalanschluss zur Wasserabfuhr und Sauerstoffabfuhr 14 Duct connection for water drainage and oxygen drainage
15 Kanalanschluss zur Wasserstoffabfuhr 15 duct connection for hydrogen removal
16 Protonenaustauschmembran, PEM, auch als Membrane Electro- de Assembly (MEA) bezeichnet 17 Dichtrahmen 16 Proton exchange membrane, PEM, also referred to as Membrane Electrode Assembly (MEA) 17 Sealing frame
18 aufgespritzte Dichtungen 18 sprayed seals
19 Bipolarplaffe, Sinferbaufeil 19 Bipolar plate, Sinfer construction file
20 ebene metallische Piaffe 20 level metallic piaffe
21 Ausnehmungen für Passsfiffe 22 Ausnehmung für Sfickstoffspülung 23 erstes metallisches Rahmenbauteil 21 Recesses for fitting fifes 22 Recess for nitrogen flushing 23 first metallic frame component
24 zentrale Ausnehmung in 23 24 central recess in 23
25 Wellblech 25 corrugated iron
26 Zwischenkanäle für Wasser 27 Zwischenkanäle für Wasser und Sauerstoff 26 intermediate channels for water 27 intermediate channels for water and oxygen
28 kanalbildende Einprägungen 28 channel-forming impressions
29 Ausnehmungen in 20 für Wasserstoff 29 recesses in 20 for hydrogen
30 zweites metallisches Rahmenbaufeil 30 second metal frame assembly
31 zentrale Ausnehmung in 30 32 poröse Transportschichf, PTL, auch als Porous Transport Layer be zeichne† 31 central recess in 30 32 Porous Transport Layer, PTL, also referred to as Porous Transport Layer†
33 mikroporöse Transportschich†, MPL, auch als Mikro Porous Layer bezeichne† 33 Microporous Transport Layer†, MPL, also known as Micro Porous Layer†
34 Schutzfolie 35 zentrale Ausnehmung in der Schutzfolie 34 protective film 35 central recess in the protective film
36 Stützplatte im Dichtrahmen 36 support plate in the sealing frame
37 Schlitz 37 slot
38 Gasdiffusionsschich† (GDL) 38 Gas Diffusion Layer† (GDL)
39 PTL in Figur 7 40 Kanäle in Figur 7 39 PTL in Figure 7 40 channels in Figure 7
41 Kanäle in Figur 8 41 channels in Figure 8
42 PTL in Figur 8 42 PTL in Figure 8
43 Streckmetall auf der Wasserstoffseite 43 expanded metal on the hydrogen side
44 Wellblech auf der Wasserstoffseite 44 corrugated iron on the hydrogen side

Claims

Ansprüche Expectations
1. Wasserelek†rolyses†ack (0) zum Erzeugen von Wasserstoff und Sau erstoff aus Wasser, mit einer Anzahl von zu einem Zellstapel (1 ) an geordneten Elektrolysezellen (2)der PEM-Bauarf, mit mindestens einem ersten den Zellsfapel (1 ) durchsetzenden Kanal (6) zur Was serzufuhr, mit mindestens einem zweiten den Zellsfapel (1 ) durch setzenden Kanal (7) zur Sauerstoff- und Wasserabfuhr und mit min destens einem driften den Zellsfapel (1 ) durchsetzenden Kanal (8) zur Wassersfoffabfuhr, bei dem die Elektro lysezellen (2) Bipolarplaf- ten (19) aufweisen, die aus mindestens einem Sinferbaufeil (19) gebildet sind, welches aufgebauf ist mit einer ebenen metalli schen Piaffe (20), mit einem darauf angeordnefen ersten metalli schen Rahmen (23) mit einem darin eingegliederfen kanalbilden den Element (25, 39, 42) und mit einem auf dem ersten mefalli- sehen Rahmen (23) angeordnefen zweiten metallischen Rahmen1. Water electrolysis bag (0) for generating hydrogen and oxygen from water, with a number of electrolysis cells (2) of the PEM design arranged to form a cell stack (1), with at least a first cell stack (1) penetrating channel (6) for water supply, with at least one second channel (7) penetrating the cell stack (1) for oxygen and water removal and with at least one channel (8) penetrating the cell stack (1) for hydrogen removal, in which the electrolytic cells (2) have bipolar plates (19) which are formed from at least one sinter component (19) which is built up with a flat metal piaffe (20) with a first metal frame (23) arranged thereon a channel-forming element (25, 39, 42) incorporated therein and having a second metallic frame arranged on the first metallic frame (23).
(30) mit einer darin eingegliederfen porösen Transportschichf (32, 39, 42) wobei die Kanäle des kanalbildenden Elements (25, 39, 42) den ersten mit dem zweiten Kanal (6, 7) der den Zellsfapel (1 ) durchsetzenden Kanäle (6, 7, 8) leifungsverbindef. 2. Wasserelekfrolysesfack nach Anspruch 1, dadurch gekennzeich net, dass das kanalbildende Element durch ein Wellblech (25) ge bildet ist. (30) with a porous transport layer (32, 39, 42) incorporated therein, wherein the channels of the channel-forming element (25, 39, 42) connect the first and second channels (6, 7) of the channels (6 , 7, 8) cable connection f. 2. Wasserelekfrolysesfack according to claim 1, characterized in that the channel-forming element is formed by a corrugated sheet (25) GE.
3. Wasserelekfrolysesfack nach Anspruch 2, dadurch gekennzeich net, dass der Wellenabsfand des Wellblechs (25) kleiner 2 mm, vorzugsweise kleiner 1,5 mm und besonders bevorzug† kleiner 1,0 mm ist. 4. Wasserelek†rolyses†ack nach Anspruch 1, dadurch gekennzeich net, dass das kanalbildende Element eine von Kanälen (40, 41 ) durchzogene poröse Transportschicht (39, 42) ist. 3. Water electrolysis bag according to claim 2, characterized in that the shaft distance of the corrugated sheet (25) is less than 2 mm, preferably less than 1.5 mm and particularly preferably less than 1.0 mm. 4. Water electrolysis bag according to claim 1, characterized in that the channel-forming element is a porous transport layer (39, 42) through which channels (40, 41) pass.
5. Wasserelektrolysestack nach einem der vorhergehenden Ansprü- che, dadurch gekennzeichnet, dass die Kanäle des kanalbilden den Elements (25, 40) einseitig offen ausgebildef und durch die ebene metallische Piaffe (20) geschlossen sind. 5. Water electrolysis stack according to one of the preceding claims, characterized in that the channels of the channel-forming element (25, 40) are designed to be open on one side and are closed by the flat metallic piaffe (20).
6. Wasserelekfrolysesfack nach Anspruch 4, dadurch gekennzeich net, dass die Kanäle (41 ) des kanalbildenden Elements (42) als ge- schlossene Kanäle innerhalb der porösen Transporfschichf (42) ausgebildef sind. 6. Water electrolysis bag according to claim 4, characterized in that the channels (41) of the channel-forming element (42) are designed as closed channels within the porous transport layer (42).
7. Wasserelekfrolysesfack nach einem der vorhergehenden Ansprü che, dadurch gekennzeichnet, dass die Kanäle des kanalbilden den Elementes (25, 39, 42) geradlinig und/oder wellenlinienförmig, vorzugsweise parallel zueinander verlaufen, 7. Water electrolysis smoker according to one of the preceding claims, characterized in that the channels of the channel-forming element (25, 39, 42) run in a straight line and/or in a wavy line, preferably parallel to one another,
8. Wasserelekfrolysesfack nach einem der vorhergehenden Ansprü che, dadurch gekennzeichnet, dass die Kanäle des kanalbilden den Elementes (25, 39, 42) barrierefrei ausgebildef sind. 8. Water electrolysis filter according to one of the preceding claims, characterized in that the channels of the channel-forming element (25, 39, 42) are designed to be barrier-free.
9. Wasserelekfrolysesfack nach einem der vorhergehenden Ansprü- che, dadurch gekennzeichnet, dass die ebene metallische Piaffe9. Wasserelekfrolysesfack according to any one of the preceding claims che, characterized in that the flat metallic piaffe
(20) Ausnehmungen (29) aufweis†, welche in Kanäle (28) münden, die im ersten metallischen Rahmen (23) ausgebildef sind und die in den dritten den Zellstapel (1 ) durchsetzenden Kanal (8) zur Was serstoffabfuhr münden. 10. Wasserelektrolysestack nach einem der vorhergehenden Ansprü che, dadurch gekennzeichnet, dass an der durch die ebene me- tallische Platte (20) gebildeten Seite der Bipolarplatte (19) ein Rahmen (17) anlieg†, der eine zentrale Ausnehmung aufweis†, in der ein weiteres kanalbildendes Element angeordne† ist, dessen Kanäle mit den Ausnehmungen (29) in der ebenen metallischen Platte (20) leitungsverbunden sind. (20) has recesses (29) which open into channels (28) which are formed in the first metallic frame (23) and which open into the third channel (8) penetrating the cell stack (1) for hydrogen removal. 10. Water electrolysis stack according to one of the preceding claims, characterized in that at the me- metallic plate (20) formed side of the bipolar plate (19) abuts a frame (17) which has a central recess in which another channel-forming element is arranged, the channels of which are connected to the recesses (29) in the flat metallic plate (20) are line-connected.
1 1. Wasserelektrolysestack nach Anspruch 10, dadurch gekennzeich net, dass das weitere kanalbildende Element durch eine Gasdiffu sionslage (38) gebildet ist, die vorzugsweise aus filzartig angeord neten Kohlefasern besteh†. 12. Wasserelektrolysestack nach Anspruch 10, dadurch gekennzeich net, dass das weitere kanalbildende Element durch ein Wellblech (44)oder Streckmetall (43) gebildet ist. 1 1. Water electrolysis stack according to claim 10, characterized in that the further channel-forming element is formed by a gas diffusion layer (38) which preferably consists of carbon fibers arranged like a felt. 12. Water electrolysis stack according to claim 10, characterized in that the further channel-forming element is formed by a corrugated sheet (44) or expanded metal (43).
13. Wasserelektrolysestack nach einem der vorhergehenden Ansprü che, dadurch gekennzeichnet, dass das weitere kanalbildende Element vorzugsweise unter Zwischenschaltung einer Ausnehmun gen aufweisenden Stützplatte (36) und einer Gasdiffusionslage (38) an der Wasserstoffseite einer katalytisch beschichteten Proto nenaustauschmembran (16) anlieg†. 13. Water electrolysis stack according to one of the preceding claims, characterized in that the further channel-forming element preferably lies against the hydrogen side of a catalytically coated proton exchange membrane (16) with the interposition of a support plate (36) having recesses and a gas diffusion layer (38).
14. Wasserelektrolysestack nach einem der vorhergehenden Ansprü- che, dadurch gekennzeichnet, dass das Sinterbauteil (19) an einer14. Water electrolysis stack according to one of the preceding claims che, characterized in that the sintered component (19) at a
Seite von einer mikroporösen Schicht (33) überdeck† ist, die bis auf den zweiten Rahmen (30) reich†. side is covered† by a microporous layer (33) which extends† to the second frame (30).
15. Wasserelektrolysestack nach einem der vorhergehenden Ansprü che, dadurch gekennzeichnet, dass die mikroporöse Schicht (33) als einzelnes Bauteil hergestell†, aufgelegt und durch Sintern mi† den übrigen Bauteilen (20, 23, 25, 30, 32) zu dem Sinterbauteil (19) verbunden wird. 15. Water electrolysis stack according to one of the preceding claims, characterized in that the microporous layer (33) is produced as a single component, placed and sintered with the other components (20, 23, 25, 30, 32) to form the sintered component ( 19) is connected.
16. Wasserelek†rolyses†ack nach einem der vorhergehenden Ansprü che, dadurch gekennzeichnet, dass die mikroporöse Schicht (33) durch Siebdruck oder Schablonendruck aufgebracht und nach folgend gesintert ist. 17. Wasserelekfrolysesfack nach einem der vorhergehenden Ansprü che, dadurch gekennzeichnet, dass die Bipolarplaffe (19) mit ihrer durch den zweiten Rahmen (30) und die darin eingegliederfe po röse Transporfschichf (32) und der darauf aufgebrachten mikropo rösen Schicht (33) an der Sauersfoffseife einer Profonenaus- fauschmembran (16) anlieg†. 16. Water electrolysis bag according to one of the preceding claims, characterized in that the microporous layer (33) is applied by screen printing or stencil printing and is subsequently sintered. 17. Wasserelekfrolysesfack surface according to one of the preceding Ansprü, characterized in that the bipolar plate (19) with its through the second frame (30) and the po rous Transportschichf incorporated therein (32) and the applied thereto mikropo rous layer (33) on the Oxygen soap against a Profonenaususch membrane (16)†.
18. Wasserelektrolysestack nach einem der vorhergehenden Ansprü che, dadurch gekennzeichnet, dass die Dicke des ersten metalli schen Rahmens (23) kleiner 1 mm, vorzugsweise kleiner 0,8 mm und besonders bevorzug† kleiner 0,6 mm ist. 19. Wasserelektrolysestack nach einem der vorhergehenden Ansprü che, dadurch gekennzeichnet, dass die poröse Transportschich† (32,39,42) mi† Hilfe eines Feedstock hergetsell† ist, der faserverstärkt ist, vorzugsweise mi† Kunststofffasern, besonders bevorzug† mi† Po lyethylenfasern. 20. Wasserelektrolysestack nach einem der vorhergehenden Ansprü che, dadurch gekennzeichnet, dass in dem ersten metallischen Rahmen (23) durch Ausnehmungen/Einprägungen (26, 27, 28) Ka näle gebildet sind, welche eine Leitungsverbindung zu einem dem Zellstapel (1 ) durchsetzenden Kanal (6, 7, 8) bilden. 18. Water electrolysis stack according to one of the preceding claims, characterized in that the thickness of the first metallic frame (23) is less than 1 mm, preferably less than 0.8 mm and particularly preferably less than 0.6 mm. 19. Water electrolysis stack according to one of the preceding claims, characterized in that the porous transport layer (32,39,42) is produced with the aid of a feedstock which is fiber-reinforced, preferably with plastic fibers, particularly preferably with polyethylene fibers . 20. Water electrolysis stack according to one of the preceding claims, characterized in that channels are formed in the first metallic frame (23) by recesses/indentations (26, 27, 28) which provide a line connection to a channel passing through the cell stack (1). (6, 7, 8) form.
EP21726334.2A 2021-05-03 2021-05-03 Water electrolysis stack for generating hydrogen and oxygen from water Pending EP4334496A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2021/061583 WO2022233386A1 (en) 2021-05-03 2021-05-03 Water electrolysis stack for generating hydrogen and oxygen from water

Publications (1)

Publication Number Publication Date
EP4334496A1 true EP4334496A1 (en) 2024-03-13

Family

ID=75977719

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21726334.2A Pending EP4334496A1 (en) 2021-05-03 2021-05-03 Water electrolysis stack for generating hydrogen and oxygen from water

Country Status (7)

Country Link
EP (1) EP4334496A1 (en)
JP (1) JP2024516306A (en)
KR (1) KR20240004580A (en)
CN (1) CN117242208A (en)
AU (1) AU2021444032A1 (en)
CA (1) CA3215991A1 (en)
WO (1) WO2022233386A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240247385A1 (en) * 2023-01-23 2024-07-25 Sungreenh2 Pte. Ltd. Electrolyser system and method of electrode manufacture
DE102023201529A1 (en) * 2023-02-21 2024-08-22 Robert Bosch Gesellschaft mit beschränkter Haftung Electrochemical cell with a coated membrane
CN118028844A (en) * 2023-06-29 2024-05-14 广东卡沃罗氢科技有限公司 PEM electrolytic cell and intermediate water channel plate thereof
CN117448858B (en) * 2023-10-18 2024-04-19 三一氢能有限公司 Flow field structure and electrolytic tank

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007042985A1 (en) * 2007-09-10 2009-03-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Bipolar plate for a PEM electrolyzer
EP2065958A1 (en) * 2007-11-28 2009-06-03 H-TEC Wasserstoff-Energie-Systeme GmbH Bipolar plates for a fuel cell stack
DE102013216587B4 (en) * 2013-08-21 2023-12-28 Robert Bosch Gmbh Geometry of a highly efficient media distributor for an electrolysis cell and an electrolysis stack
WO2019228616A1 (en) 2018-05-29 2019-12-05 Hoeller Electrolyzer Gmbh Pem cell stack
EP3830316A1 (en) * 2018-07-27 2021-06-09 Hoeller Electrolyzer GmbH Method for producing a porous transport layer for an electrochemical cell

Also Published As

Publication number Publication date
JP2024516306A (en) 2024-04-12
AU2021444032A1 (en) 2023-11-02
CA3215991A1 (en) 2022-11-10
WO2022233386A1 (en) 2022-11-10
CN117242208A (en) 2023-12-15
KR20240004580A (en) 2024-01-11

Similar Documents

Publication Publication Date Title
EP4334496A1 (en) Water electrolysis stack for generating hydrogen and oxygen from water
DE102005056341B4 (en) fuel cell
DE202016107302U1 (en) Separator plate for an electrochemical system
DE20308332U1 (en) Electrochemical compressor system
EP3631884A1 (en) Separator plate for an electro-chemical system
DE112007001118T5 (en) fuel cell
WO2009012829A1 (en) Fuel cell and method for the production thereof
EP2065958A1 (en) Bipolar plates for a fuel cell stack
WO2017085077A1 (en) Separator plate for an electrochemical system and electrochemical system
EP4399350A2 (en) Frame for pem electrolysis cells and pem electrolysis cell stack for generating high-pressure hydrogen by means of differential pressure electrolysis
WO2010115495A2 (en) Bipolar plate for fuel or electrolyte cells
WO2020109436A1 (en) Distributor structure for a fuel cell or electrolyser
DE102020007731A1 (en) Bipolar plate for a fuel cell
DE102016122590A1 (en) Polar plate for a fuel cell and fuel cell stack
DE102012111229B4 (en) Bipolar plate for a PEM stack reactor and PEM stack reactor
DE102013004799A1 (en) Humidifying device for humidifying process gases and fuel cell assembly comprising such
WO2020064975A1 (en) Separator plate and electrochemical system
WO2019185350A1 (en) Gas distributor structure for a fuel cell
WO2021198137A1 (en) Method for producing a gas- and/or electron-conducting structure and fuel/electrolysis cell
DE102023207174A1 (en) Separator plate for an electrochemical system
EP3948995A1 (en) Separator plate for a fuel cell
DE102004057447B4 (en) Supply plate and their use
EP1278258A2 (en) Fuel cell unit and fuel cell stack assembly
WO2023208279A2 (en) Electrochemical cell and method for producing a component of an electrochemical cell
DE102021205800A1 (en) Separator plate for a fuel cell stack

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230927

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)