EP4334158A1 - Bodenkontakteinheit - Google Patents

Bodenkontakteinheit

Info

Publication number
EP4334158A1
EP4334158A1 EP22727290.3A EP22727290A EP4334158A1 EP 4334158 A1 EP4334158 A1 EP 4334158A1 EP 22727290 A EP22727290 A EP 22727290A EP 4334158 A1 EP4334158 A1 EP 4334158A1
Authority
EP
European Patent Office
Prior art keywords
ground contact
contact unit
unit
current
protective assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22727290.3A
Other languages
English (en)
French (fr)
Inventor
Maximilian Hofer
Martin ZAVERSKY
Andreas SULZENBACHER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ease Link GmbH
Original Assignee
Ease Link GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ease Link GmbH filed Critical Ease Link GmbH
Publication of EP4334158A1 publication Critical patent/EP4334158A1/de
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to a ground contact unit for a vehicle battery charging system for automatic, conductive connection of a vehicle contact unit.
  • the vehicle batteries In the case of electrically powered vehicles, for example plug-in hybrid vehicles and purely electric vehicles, the vehicle batteries must be charged regularly, preferably after each trip.
  • the vehicle is connected to a corresponding power source, with a plug usually being used, for example a so-called type 2 plug, which has to be manually plugged into a corresponding socket on the vehicle by a person.
  • Ground contact units for vehicle battery charging systems that are provided on the ground are also known from the prior art, for example WO 2019/052962 A1.
  • the ground contact units can automatically establish a conductive connection with a corresponding vehicle contact unit provided on the vehicle to be charged in order to charge the vehicle.
  • the vehicle contact unit can be provided on the underbody of the vehicle, in which case it moves downwards in order to make electrical contact with the floor contact unit.
  • the ground contact unit is designed as a so-called matrix charging pad, as shown in WO 2019/052962 A1.
  • the ground contact unit comprises a multiplicity of contact areas which are arranged in a matrix, wherein the contact areas can be contacted by means of the vehicle contact unit in order to establish an electrical connection between the ground contact unit and the vehicle contact unit.
  • the correspondingly occupied contact areas of the ground contact unit are switched on in order to establish the electrical connection via these contact areas.
  • the occupied contact areas are typically switched on by means of separate relays which are assigned to each contact area of the ground contact unit.
  • a ground contact unit for a vehicle battery charging system for automatic, conductive connection to a vehicle contact unit has a plate-shaped base body, at least one potential level and several contact areas, which are arranged on an exposed loading area of the base body on which the vehicle contact unit can come into contact and are assigned to at least one potential level.
  • at least one protective module is assigned to the contact areas of the at least one potential level, with the at least one protective module having a current measuring unit provided in the current path for current measurement and a switch arranged in the current path, which is controlled, among other things, depending on the result of the current measuring unit.
  • the ground contact unit has at least one protective assembly, which is arranged in the current path.
  • the protective assembly includes the current measuring unit and the switch, both of which are arranged in the current path so that the current in the current path can be measured and the switch can be switched depending on the measured current in order to interrupt the circuit if necessary.
  • a potential level means the potential of an external conductor, ie a phase, or the potential of a neutral conductor. Accordingly, the at least one protective assembly can be assigned to at least one phase or the neutral conductor.
  • a "grounding" can also be provided, i.e. a protective conductor.
  • the ground contact unit can therefore also be designed for electrical charging using direct current.
  • each phase i.e. each outer conductor, and the neutral conductor can each have their own protective assembly, i.e. a corresponding switch provided in the respective current path, as well as a current measuring unit provided in the respective current path, which interact with one another to possibly interrupt the current path.
  • the contact areas can therefore be assigned to three potential levels serving as phases, with three or four protective assemblies also being provided, namely for the respective external conductors, ie the phases, and (optionally) for the neutral conductor.
  • ground contact unit can also be used for other power systems, for example power systems with two phases or four phases or direct current systems.
  • Appropriate relays are typically provided for the contact areas that are assigned to the external conductors, ie the phases, and the neutral conductor, in order to ensure galvanic isolation if this is necessary. These relays can be protected against high currents via the separately designed protection assembly, since the associated currents are interrupted in good time.
  • the protective assembly includes the current measuring unit provided for current measurement and the switch. As soon as the current measuring unit detects a current during the current measurement that indicates an error, the circuit is interrupted accordingly via the switch. In other words, there is then a triggering case for the protective assembly, in which case the protective assembly is triggered.
  • the contact areas and any relays are protected Contact areas are assigned so that they do not have to carry a short-circuit current or an overcurrent, for example.
  • the ground contact unit can have 168 contact areas, for example, which are arranged in a matrix, so that each of the contact areas represents a matrix contact.
  • 156 switchable contact areas and 122 non-switchable contact areas, ie PE contact areas are provided.
  • the number is flexible, so that there can also be 120 or 80 contact areas, for example.
  • the relays typically assigned to the contact areas ensure that an inactive contact area can be touched, as this is galvanically isolated from the associated potential level.
  • the multiple contact areas are assigned to exactly one potential level, with the contact areas assigned to exactly one potential level being assigned to only one protective assembly.
  • several contact areas of the ground contact unit can be assigned to an external conductor, ie a phase, or to the neutral conductor.
  • the respective contact areas, which belong to the same phase or the neutral conductor, are simultaneously assigned to exactly one protection module if several protection modules are provided. This ensures that only one protective module is required for each potential level.
  • the costs for the ground contact unit can be reduced accordingly, since all contact areas of a potential level are only additionally protected by a protective assembly.
  • the protection assembly is set up to detect a short circuit, an impending overcurrent and / or an overcurrent, wherein the protection assembly is set up to control the switch in its open position when a short circuit, an impending overcurrent and / or an overcurrent has been detected.
  • a control unit can be assigned to the protection assembly, which is, for example, a higher-level control unit.
  • the higher-level control unit can control several protection assemblies at the same time.
  • the control unit is part of a control and evaluation unit.
  • the current measuring unit of the respective protection module can forward the measured current in the current path to the control and evaluation unit, which carries out the evaluation and then, depending on the evaluation result, activates the switch accordingly if a trip event has been detected.
  • the protection assembly can be set up to detect a current curve and to determine characteristics of the detected current curve.
  • the characteristics of the current curve can be the shape of the current curve, i.e. the course of the measured current intensity over time.
  • the history can be used to infer a specific behavior that is related to an error.
  • a maximum value in particular a global maximum or a local maximum, or a moving average over a defined period of time can be determined as characteristics and used for the evaluation.
  • the temporal behavior of the measured current intensity can be used in order to determine when the protective assembly has tripped, in which case the switch arranged in the current path trips in order to interrupt the current.
  • the protective assembly is set up to evaluate the flanks and/or the level of the detected current curve and/or to detect an arc that occurs.
  • the arc can occur when the connector of the vehicle contact unit moves relative to the ground contact unit or a gap develops between the respective contacts.
  • An arc can also be caused by dirt on the contacts, insufficient contact pressure on the vehicle contact unit or vibrations.
  • the arc leads to a characteristic change in the current curve, which can be detected accordingly by the protection assembly, in particular the current measuring unit. Due to the arc, high-frequency current components arise that can be detected by the protective assembly, in particular the current measuring unit or the control and/or evaluation unit.
  • the switch can be switched in order, for example, to prevent an arc from occurring, in particular before it occurs, or to reduce the harmful influence of an arc.
  • arc detection can also be integrated in the vehicle contact unit.
  • edge detection it can be recognized whether there is an edge in the current curve and what kind of edge it is, so that depending on this it can be determined whether a tripping situation is present.
  • the level detection can also be designed in such a way that the mean value over a defined period of time or the mean value of two consecutive measurements or another statistical measure for the current intensity is used in order to be able to rule out any measurement errors, i.e. short-term peaks or outliers in the measurement.
  • the measured current value can be compared with a threshold value, which is used as a reference value, so that a possible trip event only occurs if the threshold value has been exceeded.
  • a threshold value which is used as a reference value
  • the edge behavior of the measured current curve can also be taken into account, so that edge detection is provided in addition to level detection.
  • Edge detection and/or level detection can be implemented in the control and/or evaluation unit.
  • the edge and/or level detection can also be implemented in the current measuring unit itself, so that the current measuring unit controls the switch directly.
  • two criteria can be combined that must be met in order for the protective assembly to trip. This ensures that a measurement error does not lead to the protection module being triggered, since there is a redundant evaluation, namely on the basis of the two different criteria that must be met.
  • the two criteria can be based on different characteristics of the current curve, in particular on characteristics that are independent of one another.
  • the protective assembly can include an operational amplifier circuit and/or a comparator as well as a shunt resistor and/or a Hall sensor. In this way, the current value in the current path can be measured in a simple and cost-effective manner. In principle, the flank or Realize level detection using the shunt resistor and the comparator. Also, an operational amplifier circuit may be provided instead of the comparator. Instead of the shunt resistor, a Hall sensor can also be provided, which is directly integrated in the current path.
  • the switch can be a power semiconductor, in particular a MOSFET, a triac or an IGBT.
  • high switching speeds can be achieved with the power semiconductors, in particular below one microsecond.
  • the circuit in the event of a trigger, for example in the event of a short circuit, the circuit can be interrupted within a few microseconds, so that the corresponding contact areas are de-energized.
  • the energy input into the contact areas can be kept very low, as a result of which appropriate protection is provided, in particular protection against wear. Any relays of the ground contact unit do not have to carry the short-circuit current (long), since the circuit has been interrupted correspondingly quickly.
  • the at least one protection module can be set up to determine a differential current.
  • the residual current can be measured between two potentials, for example between two outer conductors, i.e. two phases, or between a phase and the neutral conductor or between the protective conductor and a phase or the neutral conductor.
  • the differential current is also generally referred to as a fault current, which represents a body current.
  • the ground contact unit has at least one additional switching unit, in particular a relay.
  • the at least one additional switching unit is coupled to at least one of the contact areas in such a way that the additional switching unit can electrically connect and interrupt the corresponding at least one contact area with the at least one potential level assigned to the contact area, so that there is galvanic isolation in the interrupted state.
  • the additional switching unit can be switched to be load-free after the switch has previously been actuated to interrupt the circuit.
  • the at least one additional switching unit is provided, for example, in the direction of current flow after the protective assembly, in particular the at least one additional switching unit being provided between the protective assembly and the contact areas.
  • the current flows via the protective assembly to the respective contact areas, so that the additional switching unit is provided between the protective assembly and the contact areas, in particular after the switch of the protective assembly. If the protective assembly is triggered, ie the switch interrupts the circuit, it is ensured that the additional switching unit was only briefly exposed to the high current.
  • the position of the relay can be freely selected.
  • One embodiment provides that only one additional switching unit is provided per potential level.
  • the corresponding additional switching unit can be provided directly behind the switch, that is to say downstream of the switch, so that all of the contact areas assigned to the potential level are assigned to the one additional switching unit. So if the one additional switching unit opens, all contact areas are galvanically isolated from the assigned potential level at the same time.
  • the at least one protection assembly is assigned to a plurality of additional switching units, with each contact area being assigned its own additional switching unit. As a result, the individual contact areas can be electrically isolated individually, since each contact area of a common potential level is assigned its own additional switching unit, which can be controlled accordingly.
  • a trigger circuit can be provided which is set up to control the at least one additional switching unit.
  • the trigger circuit can be coupled to the higher-level control unit, in particular the higher-level control and/or evaluation unit, so that if a triggering situation is detected in the protection module, the trigger circuit already outputs a corresponding triggering signal to the at least one additional switching unit in order to ensure that the additional Switching unit triggers as promptly as possible, i.e. creates the galvanic isolation.
  • the switch of which switches correspondingly faster than the additional switching unit it is ensured that the additional switching unit can switch without a load. Since the switch and the additional switching unit are nevertheless controlled simultaneously, it is also ensured that the galvanic isolation is provided as early as possible, since the additional switching unit is also controlled via the trigger circuit in the event of a trip.
  • the switching units can be designed in such a way that, in the switched-off state, basic protection is ensured by isolation from a supply potential, with the contact surfaces assigned to the switching units being grounded in advance
  • the protective assembly includes more than one switch, so that a switching module including multiple switches is provided.
  • the plurality of switches can be arranged in parallel or in back-to-back series.
  • a surge arrester (“Surge Protection Device”—SPD) is provided, which is arranged in front of the protective assembly.
  • SPD Service Protection Device
  • the surge arrester ensures that the downstream components, such as the protection assembly, are effectively protected against overvoltage.
  • the switch of the protective assembly can be in the form of a semiconductor switch, for example a MOSFET, an IGBT or a triac.
  • an additional switching unit in particular a main contactor, can be arranged between the surge arrester and the protective assembly.
  • the main contactor is therefore located in the area protected by the surge arrester. This results in the components that are arranged downstream of the main contactor being protected in multiple ways, namely by the surge arrester and the main contactor. These components include the protection assembly and the other components that are located downstream of the protection assembly.
  • overvoltage category III (“Over Voltage Category III” - OVC III) due to the surge arrester, in which the main contactor is located
  • overvoltage category II (“Over Voltage Category II“ - OVC II)
  • Overvoltage category III is assigned, for example, to a rated impulse voltage of 4 kV
  • overvoltage category II is assigned to a rated impulse voltage of 2.5 kV.
  • the components that are arranged in the area that is assigned to overvoltage category II can be relatively simpler in design, since these components only have to be designed for a rated surge voltage of 2.5 kV.
  • the surge arrester could also protect the components of the protective assembly and other components downstream down to the voltage range of 2 kV or even lower.
  • the surge arrester has a diagnostic contact via which the surge arrester is connected to a control and/or evaluation unit in a signal-transmitting manner. Diagnostic data that provide information about the status of the surge arrester can be transmitted to the control and/or evaluation unit by means of the diagnostic contact. The control and/or evaluation unit can then issue a message to a user of the ground contact unit and/or take safety measures, for example controlling the main contactor in order to interrupt a power supply via the main contactor.
  • a diagnostic function of the surge arrester can be implemented by means of the diagnostic contact, since this wears out to different extents depending on the location and/or use and can therefore fail at different times.
  • the diagnostic contact can also be used to implement predictive maintenance of the surge arrester.
  • the surge arrester can have two galvanically isolated diagnostic contacts which are connected to the control and/or evaluation unit in a signal-transmitting manner.
  • the surge arrester can in particular be a pluggable module which is connected to a main terminal of the ground contact unit.
  • the surge arrester can have a number of connections, in particular a number of connections for different potential levels, for example the phases L1, L2, L3 and a neutral position N.
  • a connection for a protective conductor potential can also be provided.
  • the current measuring unit measures a charging current in the current path.
  • charging current monitoring is implemented using the current measuring unit. Consequently, an event during a charging process can be determined via the current measuring unit, for example a short circuit occurring during charging, an overcurrent occurring during charging and/or an impending overcurrent during charging. The corresponding event which is detected by the current measuring unit would trigger the relay.
  • FIG. 1 shows a schematic plan view of a ground contact unit according to the invention
  • FIG. 2 shows a circuit diagram of the ground contact unit according to the invention according to a first embodiment
  • FIG. 3 shows a schematic representation of the circuit diagram of the ground contact unit according to the invention according to a second embodiment
  • FIG. 4 shows a diagram showing the course of the measured current over time
  • FIG. 5 shows a schematic representation of the circuit diagram of the ground contact unit according to the invention according to a third embodiment.
  • FIG. 1 shows a ground contact unit 10 for a vehicle battery charging system, which is used for automatic, conductive connection to a vehicle contact unit, not shown here.
  • the ground contact unit 10 has a plate-shaped base body 12 which has an exposed loading area 14 on which a plurality of contact areas 16 are arranged.
  • the plurality of contact areas 16 are arranged in a matrix-like manner, with the vehicle contact unit being able to come into contact with the respective contact areas 16 via its connector in order to establish the electrical connection with the ground contact unit 10 .
  • the multiple contact areas 16 are assigned to at least one potential level 18, which in the embodiment shown is a three-phase network system, so that three potential levels corresponding to the phases L1, L2 and L3, and one potential level are provided which correspond to the neutral conductor is equivalent to.
  • a protective conductor can also be provided, which is used to ground the ground contact unit 10 .
  • the multiple contact areas 16 are assigned to the multiple potential levels 18, so that different connection situations can result for the vehicle contact unit, in particular depending on the respective orientation of the connector on the ground contact unit 10.
  • the plurality of contact areas 16, in particular the potential levels 18 assigned to the contact areas 16, are electrically secured, with a protective assembly 20 being provided for this purpose, which is assigned to the contact areas 16 of the at least one potential level 18.
  • the protective assembly 20 is shown in more detail in FIG. 2 according to a first embodiment for one of the potential levels, to which reference is made below.
  • the protective assembly 20 includes a current measuring unit 22 and a switch 24, both of which are arranged in a current path 26 of the respective potential level 18.
  • the ground contact unit 10 includes a protective assembly 20 for each potential level 18.
  • the protective assembly 20 is generally set up to detect a short circuit, an impending overcurrent, an overcurrent and/or a fault current, in particular during a charging process that is being carried out, ie when a charging current is flowing via the current path 26 .
  • the protective assembly 20 is set up to control the corresponding switch 24 in its open position if a short circuit, an (imminent) overcurrent and/or a fault current has been detected.
  • the at least one protection module 20 can be set up to determine a differential current.
  • the differential current can be measured between two potential layers 18, for example between two outer conductors, ie two phases, or between a phase and the neutral conductor or between the protective conductor and a phase or the neutral conductor.
  • a control and/or evaluation unit 28 which is arranged between the current measuring unit 22 and the corresponding switch 24 , is provided for driving the switch 24 of the protective assembly 20 .
  • the control and/or evaluation unit 28 can be a higher-level control and/or evaluation unit that interacts with all protective assemblies 20 of the ground contact unit 10, i.e. those of the other potential levels 18.
  • the one control and/or evaluation unit 28 receive the measured currents of all current measuring units 22, whereupon the one control and/or evaluation unit 28 can control all switches 24, which are assigned to the respective potential levels 18, if this is necessary.
  • the current measuring unit 22 directly controls the associated switch 24, which then moves to its open position in order to interrupt the circuit.
  • the protective assembly 20 also includes a switch module 30 which has two switches 24 which are arranged back-to-back.
  • the switches 24 are power switches, that is to say semiconductor components, for example MOSFETs, IGBTs or triacs.
  • the current measuring unit 22 comprises a shunt resistor 32, which is arranged in the current path 26, and a comparator 34.
  • the protection assembly 20 can also comprise an operational amplifier circuit and a Hall sensor instead of the shunt resistor.
  • the protection assembly 20 is set up to detect a current curve using the current measuring unit 22, with characteristics of the detected current curve being determined. For this purpose, the flanks and/or the level of the detected current curve can be evaluated in order to detect a corresponding tripping event of the protective assembly 20 .
  • the protective assembly 20 can be set up to detect an arc that occurs when the contact between the vehicle contact unit and the ground contact unit 10 changes, so that a corresponding arc occurs between the respective contacts.
  • the protection assembly 20 can then activate the corresponding switch 24 so that the circuit is interrupted.
  • the respective contact areas 16, which are assigned to the corresponding potential level 18, which is assigned to the protective assembly 20 are protected accordingly, since the current flow is quickly interrupted.
  • the ground contact unit 10 has at least one additional switching unit 36, in particular a relay.
  • the additional switching unit 36 is provided after the protective assembly 20 in the direction of current flow, ie between the protective assembly 20 and the contact areas 16 .
  • the at least one additional switching unit 36 is coupled to at least one of the contact areas 16, so that the additional switching unit 36 can accordingly electrically connect and interrupt at least one contact area 16 to the at least one potential level 18 assigned to the contact area 16, so that in the interrupted state a galvanic separation exists.
  • the protective assembly 20 is assigned to a plurality of additional switching units 36, with each contact area 16 having its own additional switching unit 36 assigned. As a result, the individual contact areas 16 can be electrically separated individually by the correspondingly assigned additional switching unit 36 being controlled accordingly.
  • a trigger circuit 38 can be provided for controlling the at least one additional switching unit 36, which is connected in particular to the control and/or evaluation unit 28 or is part of it, as is shown in the embodiments. Otherwise, the control and/or evaluation unit 28 controls the trigger circuit 38 accordingly.
  • the additional switching unit 36 via the trigger circuit 38
  • the at least one switch 24 of the protection assembly 20 be controlled simultaneously.
  • the tripping event can be determined via the protective assembly 20, in particular the current measuring unit 22 and the control and/or evaluation unit 28 coupled thereto, in that characteristics of the current curve are recorded and evaluated, for example an evaluation of the edges and/or the level of the recorded current curve.
  • a case of triggering can be recognized by the detected current value rising above a threshold value and a corresponding edge being present at the same time.
  • the corresponding characteristics ie the criteria used for the triggering case, are recognized by the protective assembly 20 or the control and/or evaluation unit 28 at the time tF here .
  • the switch 24 and the additional switching unit 36 are then (simultaneously) actuated.
  • the additional switching unit 36 would only react at time t Reiais , at which point the current intensity would have already risen significantly, as illustrated by the dashed course of the current curve.
  • the switch 24 accordingly reacts much faster than the additional switching unit 36, so that the additional switching unit 36 is initially protected against the high current load in the event of a trip. In other words, the additional switching unit 36 can switch with almost no load.
  • the simultaneous activation of the additional switching unit 36 ensures that the additional switching unit 36 also switches as promptly as possible in order to establish the electrical isolation, so that protection against accidental contact is guaranteed.
  • FIGS. 2 and 3 can also be provided, so that a central additional switching unit 36 is provided, as shown in FIG.
  • FIG. 5 shows a further embodiment which is based on that of FIG.
  • a surge arrester 40 is also provided in Figure 5, which is arranged downstream of a main terminal of the ground contact unit 10, which makes the at least one potential level 18 available, in particular the phases L1, L2, L3, N.
  • the overvoltage arrester 40 is therefore arranged in front of the protective assembly 20, so that the overvoltage arrester 40 protects it from overvoltages that can occur during the operation of the ground contact unit 10, in particular during a charging process. Because of
  • Surge arrester 40 accordingly protects an area downstream from the overvoltage arrester 40 in such a way that it corresponds to overvoltage category III ("Over Voltage Category III" - OVC III).
  • an additional switching unit 42 is arranged, which is designed as a main contactor.
  • the main contactor in turn ensures that a area downstream of the main contactor is further protected so that it conforms to Over Voltage Category II (OVC II).
  • OVC II Over Voltage Category II
  • the surge arrester 40 has at least one diagnostic contact 44, with which the surge arrester 40 is connected to the control and/or evaluation unit 28 in a signal-transmitting manner, so that diagnostic data of the surge arrester 40 can be transmitted to the control and/or evaluation unit 28 for evaluation.
  • control and/or evaluation unit 28 determines when evaluating the diagnostic data that the surge arrester 40 is worn or is showing signs of aging, the control and/or evaluation unit 28 can issue a message to inform the user and/or operator of the ground contact unit 10 to inform.
  • control and/or evaluation unit 28 can control the additional switching unit 42, ie the main contactor, so that it interrupts the current path 26 in order to ensure that charging can no longer take place.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

Die Erfindung betrifft eine Bodenkontakteinheit (10) für ein Fahrzeugbatterieladesystem zur automatischen, konduktiven Verbindung mit einer Fahrzeugkontakteinheit. Die Bodenkontakteinheit (10) weist einen plattenförmigen Grundkörper (12), wenigstens eine Potenziallage (18) sowie mehrere Kontaktbereiche (16) auf, die auf einer freiliegenden Ladefläche (14) des Grundkörpers (12), an der die Fahrzeugkontakteinheit zur Anlage kommen kann, angeordnet und der wenigstens einen Potenziallage (18) zugeordnet sind. Zumindest eine Schutzbaugruppe ist den Kontaktbereichen (16) der wenigstens einen Potenziallage (18) zugeordnet. Die zumindest eine Schutzbaugruppe weist eine im Strompfad vorgesehene Strommesseinheit zur Strommessung und einen im Strompfad angeordneten Schalter auf, der unter anderem in Abhängigkeit des Ergebnisses der Strommesseinheit gesteuert ist.

Description

Bodenkontakteinheit
Die Erfindung betrifft eine Bodenkontakteinheit für ein Fahrzeugbatterie ladesystem zur automatischen, konduktiven Verbindung einer Fahrzeugkontakt einheit.
Bei elektrisch angetriebenen Fahrzeugen, beispielsweise Plug-in-Hybrid- Fahrzeugen und reinen Elektrofahrzeugen, müssen die Batterien der Fahrzeuge regelmäßig aufgeladen werden, bevorzugt nach jeder Fahrt. Flierzu wird das Fahrzeug mit einer entsprechenden Stromquelle verbunden, wobei üblicherweise ein Stecker verwendet wird, beispielsweise ein sogenannter Typ-2-Stecker, der von einer Person manuell in eine entsprechende Buchse am Fahrzeug eingesteckt werden muss.
Aus dem Stand der Technik, beispielsweise der WO 2019/052962 A1 , sind zudem Bodenkontakteinheiten für Fahrzeugbatterieladesysteme bekannt, die am Boden vorgesehen sind. Die Bodenkontakteinheiten können mit einer entsprechenden Fahrzeugkontakteinheit, die am zu ladenden Fahrzeug vorgesehen ist, automatisch eine konduktive Verbindung hersteilen, um das Fahrzeug zu laden. Die Fahrzeugkontakteinheit kann dabei am Unterboden des Fahrzeugs vorgesehen sein, wobei sie sich nach unten bewegt, um die elektrische Kontaktierung mit der Bodenkontakteinheit herzustellen.
Beispielsweise ist die Bodenkontakteinheit als ein sogenanntes Matrix- Charging-Pad ausgebildet, wie dies in der WO 2019/052962 A1 gezeigt ist. Die Bodenkontakteinheit umfasst hierzu eine Vielzahl von Kontaktbereichen, die matrixartig angeordnet sind, wobei die Kontaktbereiche mittels der Fahrzeug kontakteinheit kontaktiert werden können, um eine elektrische Verbindung zwischen der Bodenkontakteinheit und der Fahrzeugkontakteinheit herzustellen. Je nach Aufsetzpunkt des Konnektors der Fahrzeugkontakteinheit werden die entsprechend belegten Kontaktbereiche der Bodenkontakteinheit zugeschaltet, um die elektrische Verbindung über diese Kontaktbereiche herzustellen. Typischerweise erfolgt das Zuschalten der belegten Kontaktbereiche mittels separater Relais, die jedem Kontaktbereich der Bodenkontakteinheit zugeordnet sind. Hierdurch ergibt sich ein sogenanntes Matrixrelais, welches die sicherheits relevanten Anforderungen bezüglich der Isolationsstrecke unter anderem sicherstellt. Die entsprechend hohe Anzahl an Relais sowie deren Verschaltung führen jedoch zu entsprechend hohen Kosten, insbesondere unter der Voraussetzung, dass die verwendeten Relais zusätzlich im Falle eines auftretenden Kurzschlusses zuverlässig schalten sollen, um den Stromkreis zu unterbrechen.
Es besteht daher ein Bedarf nach einer Bodenkontakteinheit, die möglichst kostengünstig die geforderten Voraussetzungen hinsichtlich der Betriebssicherheit erfüllt.
Die Aufgabe wird erfindungsgemäß gelöst durch eine Bodenkontakteinheit für ein Fahrzeugbatterieladesystem zur automatischen, konduktiven Verbindung mit einer Fahrzeugkontakteinheit. Die Bodenkontakteinheit weist einen platten förmigen Grundkörper, wenigstens eine Potenziallage sowie mehrere Kontakt bereiche auf, die auf einer freiliegenden Ladefläche des Grundkörpers, an der die Fahrzeugkontakteinheit zur Anlage kommen kann, angeordnet und der wenigstens einen Potenziallage zugeordnet sind. Zudem ist zumindest eine Schutzbaugruppe den Kontaktbereichen der wenigstens einen Potenziallage zugeordnet, wobei die zumindest eine Schutzbaugruppe eine im Strompfad vorgesehene Strom messeinheit zur Strommessung und einen im Strompfad angeordneten Schalter aufweist, der unter anderem in Abhängigkeit des Ergebnisses der Strommess einheit gesteuert ist.
Der Grundgedanke der Erfindung ist es, dass die Bodenkontakteinheit zumindest eine Schutzbaugruppe aufweist, die im Strompfad angeordnet ist. Die Schutzbaugruppe umfasst die Strommesseinheit sowie den Schalter, die beide im Strompfad angeordnet sind, sodass der Strom im Strompfad gemessen und in Abhängigkeit des gemessenen Stroms der Schalter geschaltet werden kann, um den Stromkreis gegebenenfalls zu unterbrechen.
Unter einer Potenziallage ist erfindungsgemäß das Potenzial eines Außenleiters, also einer Phase, bzw. das Potenzial eines Neutralleiters gemeint. Demnach kann die zumindest eine Schutzbaugruppe zumindest einer Phase oder dem Neutralleiter zugeordnet sein.
Neben dem Neutralleiter und dem Außenleiter, also der jeweiligen Phase, kann zudem eine „Erdung“ vorgesehen sein, also ein Schutzleiter.
Insbesondere kann die Bodenkontakteinheit also auch für ein elektrisches Laden mittels Gleichstrom ausgebildet sein.
Grundsätzlich kann jede Phase, also jeder Außenleiter, sowie der Neutralleiter jeweils eine eigene Schutzbaugruppe aufweisen, also einen entsprechenden in dem jeweiligen Strompfad vorgesehenen Schalter, sowie eine im jeweiligen Strompfad vorgesehene Strommesseinheit, die miteinander Zusammenwirken, um eventuell den Strompfad zu unterbrechen.
In einem Dreiphasen-Wechselstromsystem können also die Kontaktbereiche drei als Phasen dienenden Potenziallagen zugeordnet sein, wobei zudem drei oder vier Schutzbaugruppen vorgesehen sind, nämlich für die jeweiligen Außenleiter, also die Phasen, sowie (optional) für den Neutralleiter.
Grundsätzlich kann die Bodenkontakteinheit aber auch für andere Strom systeme eingesetzt werden, beispielsweise Stromsysteme mit zwei Phasen oder vier Phasen oder eben Gleichstromsystemen.
Typischerweise sind für die Kontaktbereiche, die den Außenleitern, also den Phasen, sowie dem Neutralleiter zugeordnet sind, entsprechende Relais vorgesehen, um eine galvanische Trennung zu gewährleisten, wenn dies nötig ist. Diese Relais können über die separat ausgebildete Schutzbaugruppe entsprechend vor hohen Stromstärken geschützt werden, da die zugehörigen Ströme rechtzeitig unterbrochen werden.
Die Schutzbaugruppe umfasst die zur Strommessung vorgesehene Strommesseinheit sowie den Schalter. Sobald die Strommesseinheit bei der Strommessung einen Strom detektiert, der auf einen Fehler hindeutet, wird der Stromkreis über den Schalter entsprechend unterbrochen. Mit anderen Worten liegt dann ein Auslösefall der Schutzbaugruppe vor, bei dem die Schutzbaugruppe auslöst. Somit sind die Kontaktbereiche und etwaige Relais geschützt, die den Kontaktbereichen zugeordnet sind, sodass diese beispielsweise einen Kurzschlussstrom bzw. einen Überstrom nicht führen müssen.
Grundsätzlich kann die Bodenkontakteinheit beispielsweise 168 Kontaktbereiche aufweisen, die in einer Matrix angeordnet sind, sodass jeder der Kontaktbereiche einen Matrixkontakt darstellt. In einer Ausführungsform sind 156 schaltbare Kontaktbereiche sowie 122 nicht schaltbare Kontaktbereiche, also PE- Kontaktbereiche, vorgesehen. Grundsätzlich ist die Anzahl flexibel, sodass es beispielsweise auch 120 oder 80 Kontaktbereiche sein können. Die den Kontaktbereichen typischerweise zugeordneten Relais stellen sicher, dass ein inaktiver Kontaktbereich berührt werden kann, da dieser galvanisch von der zugehörigen Potenziallage getrennt ist.
Ein Aspekt sieht vor, dass die mehreren Kontaktbereiche genau einer Potenziallage zugeordnet sind, wobei die der genau einen Potenziallage zugeordneten Kontaktbereiche nur einer Schutzbaugruppe zugeordnet sind. Insofern können mehrere Kontaktbereiche der Bodenkontakteinheit einem Außenleiter, also einer Phase, oder dem Neutralleiter zugeordnet sein. Die jeweiligen Kontaktbereiche, die zu der gleichen Phase oder dem Neutralleiter gehören, sind gleichzeitig genau einer Schutzbaugruppe zugeordnet, sofern mehrere Schutzbaugruppen vorgesehen sind. Hierdurch ist sichergestellt, dass pro Potenziallage nur eine Schutzbaugruppe notwendig ist. Die Kosten für die Bodenkontakteinheit können dementsprechend reduziert werden, da sämtliche Kontaktbereiche einer Potenziallage nur durch eine Schutzbaugruppe zusätzlich abgesichert sind.
Ein weiterer Aspekt sieht vor, dass die Schutzbaugruppe eingerichtet ist, einen Kurzschluss, einen bevorstehenden Überstrom und/oder einen Überstrom zu erkennen, wobei die Schutzbaugruppe eingerichtet ist, den Schalter in seine Offenstellung zu steuern, wenn ein Kurzschluss, ein bevorstehender Überstrom und/oder ein Überstrom detektiert worden ist. Der Schutzbaugruppe kann eine Steuereinheit zugeordnet sein, die beispielsweise eine übergeordnete Steuereinheit ist. Die übergeordnete Steuereinheit kann gleichzeitig mehrere Schutzbaugruppen ansteuern. Insbesondere handelt es sich bei der Steuereinheit um einen Teil einer Steuer- und Auswerteeinheit. Insofern kann die Strommesseinheit der jeweiligen Schutz baugruppe den gemessenen Strom im Strompfad an die Steuer- und Auswerteeinheit weiterleiten, die die Auswertung vornimmt, um dann in Abhängigkeit des Auswertungsergebnisses den Schalter entsprechend anzusteuern, sofern ein Auslösefall detektiert worden ist.
Die Schutzbaugruppe kann eingerichtet sein, eine Stromkurve zu erfassen und Charakteristika der erfassten Stromkurve zu ermitteln. Bei den Charakteristika der Stromkurve kann es sich um die Form der Stromkurve handeln, also der zeitliche Verlauf der gemessenen Stromstärke. Anhand des Verlaufs kann auf ein bestimmtes Verhalten geschlossen werden, das mit einem Fehlerfall zusammenhängt. Alternativ oder ergänzend kann ein Maximalwert, insbesondere ein globales Maximum oder ein lokales Maximum, oder ein gleitender Durchschnitt über einen definierten Zeitraum als Charakteristika ermittelt und für die Auswertung herangezogen werden. Grundsätzlich kann das zeitliche Verhalten der gemessenen Stromstärke herangezogen werden, um einen Auslösefall der Schutzbaugruppe festzustellen, bei dem der im Strompfad angeordnete Schalter auslöst, um den Strom zu unterbrechen.
Beispielsweise ist die Schutzbaugruppe eingerichtet, eine Auswertung der Flanken und/oder des Pegels der erfassten Stromkurve durchzuführen und/oder einen auftretenden Lichtbogen zu erkennen. Der Lichtbogen kann dann entstehen, wenn der Konnektor der Fahrzeugkontakteinheit sich relativ zur Bodenkontakt einheit verschiebt oder ein Spalt zwischen den jeweiligen Kontakten entsteht. Auch kann ein Lichtbogen durch eine Verschmutzung der Kontakte, eine zu geringe Anpresskraft der Fahrzeugkontakteinheit oder durch Vibrationen entstehen. Der Lichtbogen führt zu einer charakteristischen Veränderung der Stromkurve, was entsprechend von der Schutzbaugruppe erfasst werden kann, insbesondere der Strommesseinheit. Es entstehen aufgrund des Lichtbogens hochfrequente Stromanteile, die von der Schutzbaugruppe detektiert werden können, insbesondere der Strommesseinheit bzw. der Steuer- und/oder Auswerteeinheit. Infolgedessen kann der Schalter geschaltet werden, um beispielsweise einen auftretenden Lichtbogen zu verhindern, insbesondere bevor dieser entsteht, bzw. den schädlichen Einfluss eines Lichtbogens zu reduzieren. Grundsätzlich kann die Lichtbogenerkennung auch in der Fahrzeugkontakt einheit integriert sein.
Bei der Flankenerkennung kann erkannt werden, ob eine Flanke in der Strom kurve vorliegt und welche Art von Flanke, sodass in Abhängigkeit hiervon festgestellt werden kann, ob ein Auslösefall vorliegt. Ebenso kann die Pegelerkennung so ausgebildet sein, dass der Mittelwert über einen definierten Zeitraum oder der Mittelwert zwei aufeinanderfolgender Messungen oder ein anderes statistisches Maß für die Stromstärke herangezogen wird, um eventuelle Messfehler ausschließen zu können, also kurzfristige Peaks bzw. Ausreißer der Messung.
Bei der Pegelerkennung kann der gemessene Stromwert mit einem Schwellenwert abgeglichen werden, der als Bezugsgröße verwendet wird, sodass ein möglicherweise Auslösefall nur dann vorliegt, wenn der Schwellenwert überschritten worden ist. Um einen Fehlalarm wirkungsvoll auszuschließen, kann zusätzlich auf das Flankenverhalten der gemessenen Stromkurve abgestellt werden, sodass zusätzlich zur Pegelerkennung noch eine Flankenerkennung vorgesehen ist.
Die Flankenerkennung und/oder die Pegelerkennung kann in der Steuer- und/oder Auswerteeinheit implementiert sein. Alternativ kann die Flanken- und/oder Pegelerkennung auch in der Strommesseinheit selbst implementiert sein, sodass die Strommesseinheit direkt den Schalter ansteuert.
Allgemein lassen sich zwei Kriterien miteinander kombinieren, die erfüllt sein müssen, damit die Schutzbaugruppe auslöst. Hierdurch ist sichergestellt, dass ein Messfehler nicht zum Auslösen der Schutzbaugruppe führt, da eine redundante Auswertung vorliegt, nämlich aufgrund der zwei unterschiedlichen Kriterien, die erfüllt sein müssen. Die beiden Kriterien können auf unterschiedliche Charakteristika der Stromkurve abstellen, insbesondere auf voneinander unabhängige Charakteristika.
Die Schutzbaugruppe kann eine Operationsverstärkerschaltung und/oder einen Komparator sowie einen Shunt-Widerstand und/oder einen Hall-Sensor umfassen. Hierbei lässt sich in einfacher und kostengünstiger Weise der Stromwert im Strompfad messen. Grundsätzlich kann die Flanken- bzw. Pegelerkennung mittels des Shunt-Widerstands und dem Komparator realisieren. Auch kann anstelle des Komparators eine Operationsverstärkerschaltung vorgesehen sein. Anstelle des Shunt-Widerstands kann auch ein Hall-Sensor vorgesehen sein, der im Strompfad direkt eingebunden ist.
Ferner kann der Schalter ein Leistungshalbleiter sein, insbesondere ein MOSFET, ein Triac oder ein IGBT. Mit den Leistungshalbleitern lassen sich entsprechend hohe Schaltgeschwindigkeiten realisieren, insbesondere unter einer Mikrosekunde. Insofern kann im Auslösefall, beispielsweise im Falle eines Kurzschlusses, der Stromkreis innerhalb einiger Mikrosekunden unterbrochen werden, sodass die entsprechenden Kontaktbereiche stromlos geschaltet sind. Insofern kann der Energieeintrag in die Kontaktbereiche sehr gering gehalten werden, wodurch ein entsprechender Schutz gegeben ist, insbesondere ein Verschleißschutz. Etwaige Relais der Bodenkontakteinheit müssen den Kurzschlussstrom nicht (lang) führen, da der Stromkreis entsprechend schnell unterbrochen worden ist.
Die zumindest eine Schutzbaugruppe kann eingerichtet sein, einen Differenzstrom zu ermitteln. Der Differenzstrom kann zwischen zwei Potenzial lagen, beispielsweise zwischen zwei Außenleitern, also zwei Phasen, oder zwischen einer Phase und dem Neutralleiter oder zwischen dem Schutzleiter und einer Phase bzw. dem Neutralleiter gemessen werden. Der Differenzstrom wird grundsätzlich auch als Fehlerstrom bezeichnet, der einen Körperstrom darstellt.
Grundsätzlich wird beim Auftreten eines Fehlers, beispielsweise eines Fehlerstroms, dieser Fehler von der Strommesseinheit registriert und der Schalter derart angesteuert, dass er den Stromkreis innerhalb weniger Nanosekunden unterbricht, insbesondere innerhalb weniger 100 Nanosekunden. Das Schalten des Relais würde in dem Fall deutlich länger dauern, sodass die Gefahr bestünde, dass der Relais abbrennt bzw. in seiner geschlossenen Stellung „kleben“ bleibt, was so vermieden werden kann. Ebenso wird der hohe Energieeintrag in die Kontaktbereiche und/oder das Relais verhindert. Das Relais kann nach dem Auslösen der Schutzbaugruppe, also dem Öffnen des Schalters, nahezu lastfrei schalten, wodurch eine galvanische Trennung, also eine galvanische Isolierung, normgerecht hergestellt worden ist. Gemäß einer weiteren Ausführungsform weist die Bodenkontakteinheit zumindest eine zusätzliche Schalteinheit auf, insbesondere ein Relais. Die zumindest eine zusätzliche Schalteinheit ist derart mit wenigstens einem der Kontaktbereiche gekoppelt, dass die zusätzliche Schalteinheit den entsprechenden wenigstens einen Kontaktbereich mit der dem Kontaktbereich zugeordneten wenigstens einen Potenziallage elektrisch verbinden und unterbrechen kann, sodass im unterbrochenen Zustand eine galvanische Trennung vorliegt. Hierdurch erfolgt die normgerechte galvanische Isolierung des entsprechenden Kontaktbereichs von der zugeordneten Potenziallage, sodass im Fehlerfall sichergestellt ist, dass kein Strom fließt. Der Berührungsschutz ist entsprechend sichergestellt, was über den als Leistungshalbleiter ausgebildeten Schalter nicht möglich ist.
Wie zuvor erläutert, kann die zusätzliche Schalteinheit lastfrei geschaltet werden, nachdem zuvor der Schalter angesteuert worden ist, den Stromkreis zu unterbrechen.
Die zumindest eine zusätzliche Schalteinheit ist beispielsweise in Stromflussrichtung nach der Schutzbaugruppe vorgesehen, insbesondere wobei die zumindest eine zusätzliche Schalteinheit zwischen der Schutzbaugruppe und den Kontaktbereichen vorgesehen ist. Der Strom fließt über die Schutzbaugruppe zu den jeweiligen Kontaktbereichen, sodass die zusätzliche Schalteinheit zwischen der Schutzbaugruppe und den Kontaktbereichen vorgesehen ist, insbesondere nach dem Schalter der Schutzbaugruppe. Sofern die Schutzbaugruppe auslöst, also der Schalter den Stromkreis unterbricht, ist sichergestellt, dass die zusätzliche Schalteinheit nur kurz der hohen Stromstärke ausgesetzt war.
Grundsätzlich ist die Position des Relais frei wählbar.
Eine Ausführungsform sieht vor, dass nur eine zusätzliche Schalteinheit pro Potenziallage vorgesehen ist. Die entsprechende zusätzliche Schalteinheit kann direkt hinter dem Schalter, also stromabwärts des Schalters, vorgesehen sein, sodass alle der Potenziallage zugeordneten Kontaktbereiche der einen zusätzlichen Schalteinheit zugeordnet sind. Sofern also die eine zusätzliche Schalteinheit öffnet, sind gleichzeitig alle Kontaktbereiche von der zugeordneten Potenziallage galvanisch getrennt. Gemäß einer anderen Ausführungsform ist die zumindest eine Schutz baugruppe mehreren zusätzlichen Schalteinheiten zugeordnet, wobei jedem Kontaktbereich eine eigene zusätzliche Schalteinheit zugeordnet ist. Hierdurch lassen sich die einzelnen Kontaktbereiche individuell galvanisch trennen, da jedem Kontaktbereich einer gemeinsamen Potenziallage eine eigene zusätzliche Schalt einheit zugeordnet ist, die entsprechend angesteuert werden kann.
Zur Ansteuerung der wenigstens einen zusätzlichen Schalteinheit kann eine Triggerschaltung vorgesehen sein, die eingerichtet ist, die zumindest eine zusätzliche Schalteinheit anzusteuern. Die Triggerschaltung kann mit der übergeordneten Steuereinheit gekoppelt sein, insbesondere der übergeordneten Steuer- und/oder Auswerteeinheit, sodass im Falle einer erfassten Auslöse- situation der Schutzbaugruppe bereits die Triggerschaltung ein entsprechendes Auslösesignal an die zumindest eine zusätzliche Schalteinheit ausgibt, um sicherzustellen, dass die zusätzliche Schalteinheit möglichst zeitnah auslöst, also die galvanische Trennung herstellt.
Aufgrund der Schutzbaugruppe, deren Schalter entsprechend schneller schaltet als die zusätzliche Schalteinheit, ist sichergestellt, dass die zusätzliche Schalteinheit lastfrei schalten kann. Da der Schalter und die zusätzliche Schalteinheit dennoch gleichzeitig angesteuert werden, ist zudem gewährleistet, dass die galvanische T rennung so früh wie möglich gegeben ist, da die zusätzliche Schalteinheit im Auslösefall ebenfalls über die Triggerschaltung angesteuert wird.
Es ist somit sichergestellt, dass die den Kontaktbereichen zugeordneten Schalteinheiten im abgeschalteten Zustand Basisschutz und Fehlerschutz mit einer verstärkten Isolierung gegenüber dem Versorgungspotenzial gewährleisten, also der entsprechenden Potenziallage.
Zudem können die Schalteinheiten derart ausgebildet sein, dass im abgeschalteten Zustand ein Basisschutz durch Isolation gegenüber einem Versorgungspotenzial gewährleistet ist, wobei die den Schalteinheiten zugeordneten Kontaktflächen vorzusätzlich geerdet sind
Insbesondere umfasst die Schutzbaugruppe mehr als einen Schalter, sodass ein mehrere Schalter umfassendes Schaltmodul vorgesehen ist. Die mehreren Schalter können parallel oder antiseriell angeordnet sein. Gemäß einer Ausführungsform ist ein Überspannungsableiter („Surge Protection Device“ - SPD) vorgesehen, der vor der Schutzbaugruppe angeordnet ist. Der Überspannungsableiter stellt sicher, dass die stromabwärtsliegenden Komponenten wie die Schutzbaugruppe vor einer Überspannung wirkungsvoll geschützt sind. Hierdurch kann sichergestellt werden, dass der Schalter der Schutzbaugruppe als ein Halbleiter-Schalter ausgebildet sein kann, beispielsweise ein MOSFET, ein IGBT oder ein Triac.
Zudem kann eine zusätzliche Schalteinheit, insbesondere ein Hauptschütz, zwischen den Überspannungsableiter und der Schutzbaugruppe angeordnet sein. Das Hauptschütz ist demnach in dem durch den Überspannungsableiter geschützten Bereich angeordnet. Hierdurch ergibt sich, dass die Komponenten, die stromabwärts des Hauptschützes angeordnet sind, mehrfach geschützt sind, nämlich durch den Überspannungsableiter und das Hauptschütz. Bei diesen Komponenten handelt es sich unter anderem um die Schutzbaugruppe sowie die weiteren Komponenten, die stromabwärts der Schutzbaugruppe angeordnet sind.
Grundsätzlich lassen sich so Bereiche unterschiedlicher Überspannungs kategorie realisieren, nämlich aufgrund des Überspannungsableiters einen Bereich gemäß Überspannungskategorie III („Over Voltage Category III“ - OVC III), in dem das Hauptschütz angeordnet ist, sowie aufgrund des Hauptschützes einen Bereich gemäß Überspannungskategorie II („Over Voltage Category II“ - OVC II), in dem unter anderem die Schutzbaugruppe vorgesehen ist. Die Überspannungskategorie III ist beispielsweise einer Bemessungsstoßspannung von 4 kV zugeordnet, wohingegen die Überspannungskategorie II einer Bemessungsstoßspannung von 2,5 kV zugeordnet ist.
Insofern können die Komponenten verhältnismäßig einfacher ausgebildet sein, die in dem Bereich angeordnet sind, der der Überspannungskategorie II zugeordnet ist, da diese Komponenten lediglich auf eine Bemessungs stoßspannung von 2,5 kV ausgelegt sein müssen.
Je nach Auslegung könnte der Überspannungsableiter die Komponenten der Schutzbaugruppe und andere Komponenten stromabwärts auch bis in den Spannungsbereich 2 kV oder noch niedriger schützen. Ein weiterer Aspekt sieht vor, dass der Überspannungsableiter einen Diagnosekontakt aufweist, über den der Überspannungsableiter mit einer Steuer- und/oder Auswerteeinheit signalübertragend verbunden ist. Mittels des Diagnosekontakts können Diagnosedaten, die Informationen über den Status des Überspannungsableiters bereitstellen, an die Steuer- und/oder Auswerteeinheit übermittelt werden. Die Steuer- und/oder Auswerteeinheit kann daraufhin eine Meldung an einen Nutzer der Bodenkontakteinheit ausgeben und/oder Sicherheitsmaßnahmen ergreifen, beispielsweise das Hauptschütz ansteuern, um eine Stromversorgung über das Hauptschütz zu unterbrechen. Grundsätzlich kann mittels des Diagnosekontakts eine Diagnosefunktion des Überspannungsableiters realisiert werden, da sich dieser je nach Standort und/oder Verwendung unterschiedlich stark abnutzt und daher zu unterschiedlichen Zeitpunkten ausfallen kann. Insofern kann über den Diagnosekontakt auch eine vorausschauende Instandhaltung („predictive maintenace“) des Überspannungsableiters realisiert sein.
Der Überspannungsableiter kann zwei galvanisch isolierte Diagnosekontakte aufweisen, die mit der Steuer- und/oder Auswerteeinheit signalübertragend verbunden sind.
Bei dem Überspannungsableiter kann es sich insbesondere um ein steckbares Modul handeln, welches mit einem Hauptterminal der Bodenkontakteinheit verbunden ist.
Insofern kann der Überspannungsableiter mehrere Anschlüsse aufweisen, insbesondere mehrere Anschlüsse für verschiedene Potenziallagen, beispielsweise die Phasen L1 , L2, L3 sowie eine Neutrallage N. Zudem kann ein Anschluss für ein Schutzleiter-Potenzial vorgesehen sein.
Es ist grundsätzlich vorgesehen, dass die Strommesseinheit einen Ladestrom im Strompfad misst. Insofern ist eine Ladestromüberwachung mittels der Strommesseinheit implementiert. Folglich kann über die Strommesseinheit ein Ereignis während eines Ladevorgangs festgestellt werden, beispielsweise ein beim Laden auftretender Kurzschluss, ein beim Laden auftretender Überstrom und/oder ein beim Laden bevorstehender Überstrom. Das entsprechende Ereignis, das mittels der Strommesseinheit festgestellt wird, hätte ein Auslösen des Relais zur Folge.
Aufgrund der Ansteuerung des Schalters der Schutzbaugruppe wird jedoch sichergestellt, dass der Ladestrom schnell unterbrochen wird, insbesondere schneller als die Reaktionszeit eines Relais.
Weitere Vorteile und Eigenschaften der Erfindung ergeben sich aus der nachfolgenden Beschreibung und den Zeichnungen, auf die nachfolgend Bezug genommen wird. In den Zeichnungen zeigen:
Figur 1 eine schematische Draufsicht auf eine erfindungsgemäße Boden kontakteinheit,
Figur 2 ein Schaltdiagramm der erfindungsgemäßen Bodenkontakteinheit gemäß einer ersten Ausführungsform,
Figur 3 eine schematische Darstellung des Schaltbilds der erfindungs gemäßen Bodenkontakteinheit gemäß einer zweiten Ausführungsform,
Figur 4 ein Diagramm, das den Verlauf des gemessenen Stroms über die Zeit darstellt, und
Figur 5 eine schematische Darstellung des Schaltbilds der erfindungs gemäßen Bodenkontakteinheit gemäß einer dritten Ausführungsform.
In Figur 1 ist eine Bodenkontakteinheit 10 für ein Fahrzeugbatterieladesystem gezeigt, welches zur automatischen, konduktiven Verbindung mit einer hier nicht dargestellten Fahrzeugkontakteinheit dient.
Die Bodenkontakteinheit 10 weist einen plattenförmigen Grundkörper 12 auf, der eine freiliegende Ladefläche 14 hat, an der mehrere Kontaktbereiche 16 angeordnet sind.
Aus der Figur 1 wird deutlich, dass die mehreren Kontaktbereiche 16 matrixartig angeordnet sind, wobei an den jeweiligen Kontaktbereichen 16 die Fahrzeugkontakteinheit über ihren Konnektor zur Anlage kommen kann, um die elektrische Verbindung mit der Bodenkontakteinheit 10 herzustellen. Die mehreren Kontaktbereiche 16 sind wenigstens einer Potenziallage 18 zugeordnet, wobei es sich in der gezeigten Ausführungsform um ein Drei-Phasen- Netzsystem handelt, sodass drei Potenziallagen, die den Phasen L1 , L2 und L3 entsprechen, sowie eine Potenziallage vorgesehen sind, die dem Neutralleiter entspricht. Zudem kann noch ein Schutzleiter vorgesehen sein, der zur Erdung der Bodenkontakteinheit 10 dient.
Die mehreren Kontaktbereiche 16 sind dabei den mehreren Potenziallagen 18 zugeordnet, sodass sich unterschiedliche Anschlusssituationen für die Fahrzeugkontakteinheit ergeben können, insbesondere in Abhängigkeit der jeweiligen Orientierung des Konnektors an der Bodenkontakteinheit 10.
Zudem sind die mehreren Kontaktbereiche 16, insbesondere die den Kontaktbereichen 16 zugeordneten Potenziallegen 18, elektrisch abgesichert, wobei hierzu eine Schutzbaugruppe 20 vorgesehen ist, die den Kontaktbereichen 16 der wenigstens einen Potenziallage 18 zugeordnet ist.
Die Schutzbaugruppe 20 ist in Figur 2 gemäß einer ersten Ausführungsform für eine der Potenziallagen detaillierter gezeigt, worauf nachfolgend Bezug genommen wird.
Die Schutzbaugruppe 20 umfasst eine Strommesseinheit 22 sowie einen Schalter 24, die beide in einem Strompfad 26 der jeweiligen Potenziallage 18 angeordnet sind.
Insofern umfasst die Bodenkontakteinheit 10 pro Potenziallage 18 eine Schutzbaugruppe 20.
Die Schutzbaugruppe 20 ist generell eingerichtet, einen Kurzschluss, einen bevorstehenden Überstrom, einen Überstrom und/oder einen Fehlerstrom zu erkennen, insbesondere während eines durchgeführten Ladevorgangs, also wenn ein Ladestrom über den Strompfad 26 fließt.
Die Schutzbaugruppe 20 ist eingerichtet, den entsprechenden Schalter 24 in seiner Offenstellung zu steuern, sofern ein Kurzschluss, ein (bevorstehender) Überstrom und/oder ein Fehlerstrom detektiert worden ist. Insofern kann die zumindest eine Schutzbaugruppe 20 eingerichtet sein, einen Differenzstrom zu ermitteln. Der Differenzstrom kann zwischen zwei Potenzial lagen 18 gemessen werden, beispielsweise zwischen zwei Außenleitern, also zwei Phasen, oder zwischen einer Phase und dem Neutralleiter oder zwischen dem Schutzleiter und einer Phase bzw. dem Neutralleiter.
Zur Ansteuerung des Schalters 24 der Schutzbaugruppe 20 ist in der gezeigten Ausführungsform eine Steuer- und/oder Auswerteeinheit 28 vorgesehen, die zwischen der Strommesseinheit 22 und dem entsprechenden Schalter 24 angeordnet ist.
Bei der Steuer- und/oder Auswerteeinheit 28 kann es sich um eine übergeordnete Steuer- und/oder Auswerteeinheit handeln, die mit sämtlichen Schutzbaugruppen 20 der Bodenkontakteinheit 10 zusammenwirkt, also denjenigen der anderen Potenziallagen 18. Insofern kann die eine Steuer- und/oder Auswerteeinheit 28 die gemessenen Ströme sämtlicher Strommesseinheiten 22 erhalten, woraufhin die eine Steuer- und/oder Auswerteeinheit 28 sämtliche Schalter 24, die den jeweiligen Potenziallagen 18 zugeordnet sind, ansteuern kann, sofern dies notwendig ist.
Alternativ kann auch vorgesehen sein, dass die Strommesseinheit 22 direkt den zugeordneten Schalter 24 ansteuert, der sich daraufhin in seine Offenstellung begibt, um den Stromkreis zu unterbrechen.
In der in Figur 2 gezeigten Ausführungsform umfasst die Schutzbaugruppe 20 zudem ein Schaltermodul 30, welches zwei Schalter 24 aufweist, die antiseriell angeordnet sind. Bei den Schaltern 24 handelt es sich um Leistungsschalter, also Halbleiterbauteile, beispielsweise MOSFETs, IGBTs oder Triacs.
In der gezeigten Ausführungsform umfasst die Strommesseinheit 22 einen Shunt-Widerstand 32, der im Strompfad 26 angeordnet ist, sowie einen Komparator 34. Alternativ kann die Schutzbaugruppe 20 auch eine Operationsverstärkerschaltung und einen Hall-Sensor anstelle des Shunt- Widerstands umfassen.
Grundsätzlich ist die Schutzbaugruppe 20 eingerichtet, eine Stromkurve mittels der Strommesseinheit 22 zu erfassen, wobei Charakteristika der erfassten Stromkurve ermittelt werden. Hierzu kann eine Auswertung der Flanken und/oder des Pegels der erfassten Stromkurve durchgeführt werden, um einen entsprechenden Auslösefall der Schutzbaugruppe 20 zu detektieren. Ebenso kann die Schutzbaugruppe 20 eingerichtet sein, einen auftretenden Lichtbogen zu erkennen, wenn sich die Kontaktierung zwischen der Fahrzeugkontakteinheit und der Bodenkontakteinheit 10 verändert, sodass ein entsprechender Lichtbogen zwischen den jeweiligen Kontakten auftritt.
Die Schutzbaugruppe 20 kann dann den entsprechenden Schalter 24 ansteuern, sodass der Stromkreis unterbrochen wird. Hierdurch werden die jeweiligen Kontaktbereiche 16, die der entsprechenden Potenziallage 18 zugeordnet sind, die der Schutzbaugruppe 20 zugeordnet ist, entsprechend geschützt, da der Stromfluss schnell unterbrochen wird.
Darüber hinaus geht aus Figur 2 hervor, dass die Bodenkontakteinheit 10 zumindest eine zusätzliche Schalteinheit 36 aufweist, insbesondere ein Relais. Die zusätzliche Schalteinheit 36 ist in Stromflussrichtung nach der Schutzbaugruppe 20 vorgesehen, also zwischen der Schutzbaugruppe 20 und den Kontaktbereichen 16 angeordnet.
Mit anderen Worten ist die zumindest eine zusätzliche Schalteinheit 36 mit wenigstens einem der Kontaktbereiche 16 gekoppelt, sodass die zusätzliche Schalteinheit 36 dementsprechend wenigstens einen Kontaktbereich 16 mit der dem Kontaktbereich 16 zugeordneten wenigstens einen Potenziallage 18 elektrisch verbinden und unterbrechen kann, sodass im unterbrochenen Zustand eine galvanische Trennung vorliegt.
In der in Figur 2 gezeigten Ausführungsform ist für sämtliche Kontaktbereiche 16 der entsprechenden Potenziallage 18 lediglich eine zusätzliche Schalteinheit
36 vorgesehen, sodass pro Potenziallage 18 genau eine zusätzliche Schalteinheit 36 vorgesehen ist. Hierdurch werden sämtliche Kontaktbereiche 16 der Potenziallage 18 zusammen galvanisch getrennt, sofern die zusätzliche Schalteinheit 36 auslöst bzw. angesteuert wird. In der in Figur 3 gezeigten Ausführungsform ist dagegen vorgesehen, dass die Schutzbaugruppe 20 mehreren zusätzlichen Schalteinheiten 36 zugeordnet ist, wobei jedem Kontaktbereich 16 eine eigene zusätzliche Schalteinheit 36 zugeordnet ist. Hierdurch lassen sich die einzelnen Kontaktbereiche 16 individuell galvanisch trennen, indem die entsprechend zugeordnete zusätzliche Schalteinheit 36 entsprechend angesteuert wird.
Grundsätzlich kann zur Ansteuerung der zumindest einen zusätzlichen Schalteinheit 36 eine Triggerschaltung 38 vorgesehen sein, die insbesondere mit der Steuer- und/oder Auswerteeinheit 28 in Verbindung steht oder Teil davon ist, wie dies in den Ausführungsformen gezeigt ist. Andernfalls steuert die Steuer- und/oder Auswerteeinheit 28 die Triggerschaltung 38 entsprechend an.
Insofern kann vorgesehen sein, dass bei einem detektierten Fehler, also bei einem Auslösefall wie bei einem Kurzschluss, einem Fehlerstrom bzw. einem (bevorstehenden) Überstrom, die zusätzlich Schalteinheit 36 (über die T riggerschaltung 38) sowie der wenigstens eine Schalter 24 der Schutzbaugruppe 20 gleichzeitig angesteuert werden.
Der Auslösefall kann, wie zuvor beschrieben, über die Schutzbaugruppe 20, insbesondere die Strommesseinheit 22 und die damit gekoppelte Steuer- und/oder Auswerteeinheit 28, festgestellt werden, indem Charakteristika der Stromkurve erfasst und ausgewertet werden, beispielsweise eine Auswertung der Flanken und/oder des Pegels der erfassten Stromkurve.
Dies ist beispielsweise in Figur 4 gezeigt, in der ein Auslösefall dadurch erkannt werden kann, dass der erfasste Stromwert über einen Schwellenwert ansteigt und gleichzeitig eine entsprechende Flanke vorliegt. Die entsprechenden Charakteristika, also die für den Auslösefall herangezogenen Kriterien, werden von der Schutzbaugruppe 20 bzw. der Steuer- und/oder Auswerteeinheit 28 zum Zeitpunkt tFehier erkannt. Daraufhin wird, wie oben beschrieben, der Schalter 24 und die zusätzliche Schalteinheit 36 (gleichzeitig) angesteuert.
Der Schalter 24, der eine deutlich bessere Reaktionszeit als die zusätzliche Schalteinheit 36 hat, reagiert innerhalb einiger Hundert Nanosekunden, sodass der Stromkreis zum Zeitpunkt tAbschait unterbrochen wird, insbesondere bevor die Stromstärke weiter angestiegen ist. Die zusätzliche Schalteinheit 36 würde dagegen erst zum Zeitpunkt tReiais reagieren, zu dem die Stromstärke schon deutlich angestiegen wäre, wie der gestrichelte Verlauf der Stromkurve verdeutlicht.
Der Schalter 24 reagiert demnach deutlich schneller als die zusätzliche Schalteinheit 36, sodass die zusätzliche Schalteinheit 36 zunächst vor der Belastung des hohen Stroms im Auslösefall geschützt wird. Mit anderen Worten kann die zusätzliche Schalteinheit 36 nahezu lastfrei schalten.
Die gleichzeitige Ansteuerung der zusätzlichen Schalteinheit 36 (über die Triggerschaltung 38) stellt jedoch sicher, dass die zusätzliche Schalteinheit 36 möglichst zeitnah ebenfalls schaltet, um die galvanische Trennung herzustellen, sodass der Berührungsschutz gewährleistet ist.
Grundsätzlich kann auch eine Kombination der Figuren 2 und 3 vorgesehen sein, sodass eine zentrale zusätzliche Schalteinheit 36 vorgesehen ist, wie dies in Figur 2 gezeigt ist, sowie die mehreren zusätzlichen Schalteinheiten 36, die den Kontaktbereichen 16 jeweils zugeordnet sind.
In Figur 5 ist eine weitere Ausführungsform gezeigt, die auf derjenigen der Figur 3 basiert.
In Figur 5 ist zudem ein Überspannungsableiter 40 vorgesehen, der stromabwärts von einem Flauptterminal der Bodenkontakteinheit 10 angeordnet ist, das die wenigstens eine Potenziallage 18 zur Verfügung stellt, insbesondere die Phasen L1 , L2, L3, N.
Der Überspannungsableiter 40 ist demnach vor der Schutzbaugruppe 20 angeordnet, sodass diese aufgrund des Überspannungsableiters 40 vor Überspannungen geschützt ist, die während des Betriebs der Bodenkontakteinheit 10 auftreten können, insbesondere während eines Ladevorgangs. Aufgrund des
Überspannungsableiters 40 ist demnach ein Bereich stromabwärts vom Überspannungsableiter 40 durch diesen derart geschützt, sodass dieser der Überspannungskategorie III („Over Voltage Category III“ - OVC III) entspricht.
In diesem Bereich ist eine zusätzliche Schalteinheit 42 angeordnet, die als Hauptschütz ausgebildet ist. Das Hauptschütz stellt wiederum sicher, dass ein Bereich stromabwärts des Hauptschützes weiter geschützt ist, sodass dieser der Überspannungskategorie II („Over Voltage Category II“ - OVC II) entspricht.
Dies bedeutet, dass die Komponenten der Bodenkontakteinheit 10, welche stromabwärts der zusätzlichen Schalteinheit 42 angeordnet sind, also des Hauptschützes, lediglich den Anforderungen der Überspannungskategorie II entsprechen müssen, sodass diese auf eine Bemessungsstoßspannung von 2,5 kV ausgelegt sein müssen. Dies trifft somit auf die Schutzbaugruppe 20 sowie die Relais 36 und die Kontaktbereiche 16 zu.
Darüber hinaus weist der Überspannungsableiter 40 wenigstens einen Diagnosekontakt 44 auf, mit dem der Überspannungsableiter 40 mit der Steuer- und /oder Auswerteeinheit 28 signalübertragend verbunden ist, sodass Diagnosedaten des Überspannungsableiters 40 an die Steuer- und /oder Auswerteeinheit 28 zur Auswertung übermittelt werden können.
Sollte die Steuer- und /oder Auswerteeinheit 28 bei der Auswertung der Diagnosedaten feststellen, dass der Überspannungsableiter 40 verschlissen ist oder Alterungserscheinungen hat, so kann die Steuer- und /oder Auswerteeinheit 28 eine Meldung ausgeben, um den Nutzer und/oder Betreiber der Bodenkontakteinheit 10 zu informieren.
Alternativ oder ergänzend kann die Steuer- und /oder Auswerteeinheit 28 die zusätzliche Schalteinheit 42, also den Hauptschütz, ansteuern, sodass dieser den Strompfad 26 unterbricht, um sicherzustellen, dass kein Laden mehr erfolgen kann.

Claims

Patentansprüche
1. Bodenkontakteinheit für ein Fahrzeugbatterieladesystem zur automatischen, konduktiven Verbindung mit einer Fahrzeugkontakteinheit, wobei die Bodenkontakteinheit (10) einen plattenförmigen Grundkörper (12), wenigstens eine Potenziallage (18) sowie mehrere Kontaktbereiche (16) aufweist, die auf einer freiliegenden Ladefläche (14) des Grundkörpers (12), an der die Fahrzeug kontakteinheit zur Anlage kommen kann, angeordnet und der wenigstens einen Potenziallage (18) zugeordnet sind, wobei zumindest eine Schutzbaugruppe (20) den Kontaktbereichen (16) der wenigstens einen Potenziallage (18) zugeordnet ist, wobei die zumindest eine Schutzbaugruppe (20) eine im Strompfad (26) vorgesehene Strommesseinheit (22) zur Strommessung und einen im Strompfad (26) angeordneten Schalter (24) aufweist, der unter anderem in Abhängigkeit des Ergebnisses der Strommesseinheit (22) gesteuert ist.
2. Bodenkontakteinheit nach Anspruch 1 , dadurch gekennzeichnet, dass die mehrere Kontaktbereiche (16) genau einer Potenziallage (18) zugeordnet sind, wobei die der genau einen Potenziallage (18) zugeordneten Kontaktbereiche (16) nur einer Schutzbaugruppe (20) zugeordnet sind.
3. Bodenkontakteinheit nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Schutzbaugruppe (20) eingerichtet ist, einen Kurzschluss, einen bevorstehenden Überstrom und/oder einen Überstrom zu erkennen, wobei die Schutzbaugruppe (20) eingerichtet ist, den Schalter (24) in seine Offenstellung zu steuern, wenn ein Kurzschluss, ein bevorstehender Überstrom und/oder ein Überstrom detektiert worden ist.
4. Bodenkontakteinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schutzbaugruppe (20) eingerichtet ist, eine Stromkurve zu erfassen und Charakteristika der erfassten Stromkurve zu ermitteln.
5. Bodenkontakteinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schutzbaugruppe (20) eingerichtet ist, eine Auswertung der Flanken und/oder des Pegels einer erfassten Stromkurve durchzuführen und/oder einen auftretenden Lichtbogen zu erkennen.
6. Bodenkontakteinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schutzbaugruppe (20) eine Operations verstärkerschaltung und/oder einen Komparator (34) sowie einen Shunt- Widerstand (32) und/oder einen Hall-Sensor umfasst.
7. Bodenkontakteinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schalter (24) ein Leistungshalbleiter ist, insbesondere ein MOSFET, ein Triac oder ein IGBT.
8. Bodenkontakteinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zumindest eine Schutzbaugruppe (20) eingerichtet ist, einen Differenzstrom zu ermitteln.
9. Bodenkontakteinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bodenkontakteinheit (10) zumindest eine zusätzliche Schalteinheit (36), insbesondere ein Relais, aufweist, wobei die zumindest eine zusätzliche Schalteinheit (36) derart mit wenigstens einem der Kontaktbereiche (16) gekoppelt ist, dass die zusätzliche Schalteinheit (36) den entsprechenden wenigstens einen Kontaktbereich (16) mit der dem Kontaktbereich (16) zugeordneten wenigstens einen Potenziallage (18) elektrisch verbinden und unterbrechen kann, sodass im unterbrochenen Zustand eine galvanische Trennung vorliegt.
10. Bodenkontakteinheit nach Anspruch 9, dadurch gekennzeichnet, dass nur eine zusätzliche Schalteinheit (36) pro Potenziallage (18) vorgesehen ist.
11 . Bodenkontakteinheit nach Anspruch 9, dadurch gekennzeichnet, dass die zumindest eine Schutzbaugruppe (20) mehreren zusätzlichen Schalteinheiten (36) zugeordnet ist, wobei jedem Kontaktbereich (16) eine eigene zusätzliche Schalteinheit (36) zugeordnet ist.
12. Bodenkontakteinheit nach einem der Ansprüche 9 bis 11 , dadurch gekennzeichnet, dass eine Triggerschaltung (38) vorgesehen ist, die eingerichtet ist die zumindest eine zusätzliche Schalteinheit (36) anzusteuern.
13. Bodenkontakteinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Überspannungsableiter (40) vorgesehen ist, der vor der Schutzbaugruppe (20) angeordnet ist.
14. Bodenkontakteinheit nach Anspruch 13, dadurch gekennzeichnet, dass eine zusätzliche Schalteinheit (42), insbesondere ein Hauptschütz, zwischen den Überspannungsableiter (40) und der Schutzbaugruppe (20) angeordnet ist.
15. Bodenkontakteinheit nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass der Überspannungsableiter (40) einen Diagnosekontakt (44) aufweist, über den der Überspannungsableiter (40) mit einer Steuer- und/oder Auswerteeinheit (28) signalübertragend verbunden ist.
EP22727290.3A 2021-05-04 2022-05-03 Bodenkontakteinheit Pending EP4334158A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021111481.0A DE102021111481A1 (de) 2021-05-04 2021-05-04 Bodenkontakteinheit
PCT/EP2022/061867 WO2022233881A1 (de) 2021-05-04 2022-05-03 Bodenkontakteinheit

Publications (1)

Publication Number Publication Date
EP4334158A1 true EP4334158A1 (de) 2024-03-13

Family

ID=81927705

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22727290.3A Pending EP4334158A1 (de) 2021-05-04 2022-05-03 Bodenkontakteinheit

Country Status (6)

Country Link
US (1) US20240217355A1 (de)
EP (1) EP4334158A1 (de)
KR (1) KR20240004545A (de)
CN (1) CN117460640A (de)
DE (1) DE102021111481A1 (de)
WO (1) WO2022233881A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023105117A1 (de) 2023-03-01 2024-09-05 Lisa Dräxlmaier GmbH Halbleiter-basierte sicherung zum sicheren trennen eines ladestrompfads

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20060610A1 (it) * 2006-08-17 2008-02-18 Sequoia Automation Srl Sistema di biberonaggio energetico a ricarica rapida di un mezzo di trasporto a trazione elettrica, realizzato ad ogni fermata prevista dal veicolo per mezzo di una connessione effettuabile direttamente e automaticamente in prossimita' della fermata
DE102014100493A1 (de) 2014-01-17 2015-07-23 Michele Dallachiesa Ladevorrichtung und Verfahren zum elektrischen Laden von Batteriezellen
US10286799B2 (en) * 2016-08-23 2019-05-14 GM Global Technology Operations LLC Hands-free conductive battery charger for an electric vehicle
WO2019052962A1 (de) 2017-09-12 2019-03-21 easE-Link GmbH Fahrzeugverbindungsvorrichtung, bodenkontakteinheit, fahrzeugkoppelsystem sowie verfahren zur automatischen, konduktiven verbindung einer fahrzeugkontakteinheit mit einer bodenkontakteinheit
DE102018112472A1 (de) 2017-10-17 2019-04-18 easE-Link GmbH Bodenkontakteinheit für ein Fahrzeugbatterieladesystem und Verfahren zur Schaltung eines Kontaktbereiches einer Bodenkontakteinheit
DE102018123350A1 (de) * 2018-09-21 2020-03-26 Webasto SE Ladevorrichtung zum Laden eines Elektrofahrzeugs
IT201900012207A1 (it) 2019-07-17 2021-01-17 Leo Puiatti Base e sistema di contatto per la ricarica di accumulatori di energia di dispositivi mobili

Also Published As

Publication number Publication date
US20240217355A1 (en) 2024-07-04
KR20240004545A (ko) 2024-01-11
CN117460640A (zh) 2024-01-26
DE102021111481A1 (de) 2022-11-10
WO2022233881A1 (de) 2022-11-10

Similar Documents

Publication Publication Date Title
EP3028357B1 (de) Anordnung zur elektrischen absicherung eines potentiellen kurzschlusses bzw. einer überlast in einem gleichstromnetz mit systembedingten, variablem quellinnenwiderstand
EP2593949B1 (de) Überstromschalter, verwendung eines überstromschalters und elektrokraftfahrzeug mit einem überstromschalter
DE102016216331B3 (de) Trennvorrichtung zur Stromunterbrechung, Schutzschalter mit einem Sensor und einer Trennvorrichtung sowie Verfahren zum Betrieb einer Trennvorrichtung
WO2016075106A1 (de) Kraftfahrzeug-versorgungsnetz
WO2006058824A2 (de) Elektrischer traktionsantrieb für fahrzeug mit fehlerstromschutz im gleichspannungszwischenkreis
EP3259827B1 (de) Netzersatzanlage, erdungseinrichtung für eine netzersatzanlage und betriebsverfahren
DE102009023801A1 (de) Sicherungsvorrichtung mit pyrotechnischer Sicherung
DE102012018321A1 (de) Verfahren zum Abschalten eines Batteriesystems unter Last sowie Batteriesystem
EP3552289B1 (de) Niederspannungs-schutzschaltgerät
EP3798653B1 (de) Kombinierte überwachungsvorrichtung zur isolationswiderstands- und schutzleiterwiderstands-überwachung eines stromversorgungssystems
DE102015107718B4 (de) Vorrichtung und Verfahren zum Absichern einer Bordnetz-Komponente eines Fahrzeug-Bordnetzes
DE102011083582A1 (de) Stromverteiler für Kraftfahrzeug-Bordnetze
EP4334158A1 (de) Bodenkontakteinheit
DE102012023460A1 (de) Kraftfahrzeug-Bordnetz und Verfahren zum Erkennen eines Lichtbogens in einem Kraftfahrzeug-Bordnetz
DE102015000576A1 (de) Kraftfahrzeug mit Schaltvorrichtung für eine bordnetzbetriebene Komponente
DE10333674B4 (de) Lichtbogenüberwachungssystem in einem Bordnetz
DE102017201488B4 (de) Detektieren eines Kurzschlusses in einem elektrischen Energieverteilungsnetz
EP2500208B2 (de) Schutzschaltungsanordnung
DE10110046A1 (de) Vorrichtung zum Ansteuern elektrischer Verbraucher in einem Kraftfahrzeug
EP2143184B1 (de) Verfahren zum selektiven auslösen von leistungsschaltern
EP2672595B1 (de) Schaltungsanordnung und Verfahren zur Gleichstromunterbrechung
EP3691128A1 (de) Elektronischer schalter
DE102019124213A1 (de) Galvanisch verbundenes AC-Ladegerät mit Überwachungs- und Diagnosesystem
DE102013224867B4 (de) Elektrische Verbindungsvorrichtung sowie Schaltungsanordnung und dazugehöriges Verfahren
BE1031306B1 (de) Gleichspannungsschaltgerät, insbesondere zum Unterbrechen eines Stromflusses, und Gleichspannungssystem

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)