EP4305682A1 - Optoelectronic component and method for a spectrally selective detection of electromagnetic radiation - Google Patents
Optoelectronic component and method for a spectrally selective detection of electromagnetic radiationInfo
- Publication number
- EP4305682A1 EP4305682A1 EP22714161.1A EP22714161A EP4305682A1 EP 4305682 A1 EP4305682 A1 EP 4305682A1 EP 22714161 A EP22714161 A EP 22714161A EP 4305682 A1 EP4305682 A1 EP 4305682A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrode
- photoactive layer
- compound
- optoelectronic component
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005693 optoelectronics Effects 0.000 title claims abstract description 100
- 238000001514 detection method Methods 0.000 title claims abstract description 13
- 230000005670 electromagnetic radiation Effects 0.000 title claims description 22
- 238000000034 method Methods 0.000 title claims description 11
- 150000001875 compounds Chemical class 0.000 claims abstract description 138
- 239000002800 charge carrier Substances 0.000 claims abstract description 95
- 230000003287 optical effect Effects 0.000 claims abstract description 20
- 238000009825 accumulation Methods 0.000 claims abstract description 13
- 230000000903 blocking effect Effects 0.000 claims description 32
- 230000005284 excitation Effects 0.000 claims description 15
- 238000005286 illumination Methods 0.000 claims description 10
- 238000002347 injection Methods 0.000 claims description 9
- 239000007924 injection Substances 0.000 claims description 9
- 238000012546 transfer Methods 0.000 claims description 9
- 125000006850 spacer group Chemical group 0.000 claims description 5
- 238000010494 dissociation reaction Methods 0.000 claims description 3
- 230000005593 dissociations Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 25
- 230000007704 transition Effects 0.000 abstract description 4
- 238000005535 overpotential deposition Methods 0.000 description 21
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 12
- 238000004770 highest occupied molecular orbital Methods 0.000 description 11
- 238000010521 absorption reaction Methods 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- WPUSEOSICYGUEW-UHFFFAOYSA-N 4-[4-(4-methoxy-n-(4-methoxyphenyl)anilino)phenyl]-n,n-bis(4-methoxyphenyl)aniline Chemical compound C1=CC(OC)=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 WPUSEOSICYGUEW-UHFFFAOYSA-N 0.000 description 3
- -1 B. P3HT Chemical class 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 230000005525 hole transport Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 238000005325 percolation Methods 0.000 description 3
- STPKWKPURVSAJF-LJEWAXOPSA-N (4r,5r)-5-[4-[[4-(1-aza-4-azoniabicyclo[2.2.2]octan-4-ylmethyl)phenyl]methoxy]phenyl]-3,3-dibutyl-7-(dimethylamino)-1,1-dioxo-4,5-dihydro-2h-1$l^{6}-benzothiepin-4-ol Chemical compound O[C@H]1C(CCCC)(CCCC)CS(=O)(=O)C2=CC=C(N(C)C)C=C2[C@H]1C(C=C1)=CC=C1OCC(C=C1)=CC=C1C[N+]1(CC2)CCN2CC1 STPKWKPURVSAJF-LJEWAXOPSA-N 0.000 description 2
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 2
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 description 2
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010893 electron trap Methods 0.000 description 2
- BJXYHBKEQFQVES-NWDGAFQWSA-N enpatoran Chemical compound N[C@H]1CN(C[C@H](C1)C(F)(F)F)C1=C2C=CC=NC2=C(C=C1)C#N BJXYHBKEQFQVES-NWDGAFQWSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- PKMUHQIDVVOXHQ-HXUWFJFHSA-N C[C@H](C1=CC(C2=CC=C(CNC3CCCC3)S2)=CC=C1)NC(C1=C(C)C=CC(NC2CNC2)=C1)=O Chemical compound C[C@H](C1=CC(C2=CC=C(CNC3CCCC3)S2)=CC=C1)NC(C1=C(C)C=CC(NC2CNC2)=C1)=O PKMUHQIDVVOXHQ-HXUWFJFHSA-N 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229940126179 compound 72 Drugs 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005524 hole trap Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- YTVNOVQHSGMMOV-UHFFFAOYSA-N naphthalenetetracarboxylic dianhydride Chemical compound C1=CC(C(=O)OC2=O)=C3C2=CC=C2C(=O)OC(=O)C1=C32 YTVNOVQHSGMMOV-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 1
- 150000002964 pentacenes Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/87—Light-trapping means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/211—Fullerenes, e.g. C60
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/311—Phthalocyanine
Definitions
- the invention relates to an optoelectronic component for the spectrally selective detection of electromagnetic radiation, having a first and a second electrode which are spaced apart and to which an electrical voltage can be applied, and a photoactive layer which is a mixed layer containing a donor compound and an acceptor - Compound comprises, wherein the energy equivalent of a wavelength to be detected of the electromagnetic radiation corresponds to the energy to be expended for direct excitation of an intermolecular charge transfer state at an interface between the donor compound and the acceptor compound, wherein the photoactive layer is arranged in an optical microcavity , which is arranged between the first and the second electrode and formed from two spaced mirror surfaces, wherein the distance between the mirror surfaces is designed to each other so that in the microcavity a standing wave for a simple lling wave of electromagnetic radiation is generated with the wavelength to be detected, as well as the associated method.
- Photodetectors for the spectrally selective detection of an electromagnetic wave are optoelectronic components that are used for the qualitative and quantitative detection of electromagnetic waves with predefined, specific wavelengths or photons with predefined, specific energies, with the waves irradiating the photodetector, hereinafter referred to as âincidentâ waves generally a large number of different wavelengths or the incident photons generally have a large number of different energies.
- a photodetector has a photoactive layer in which electromagnetic radiation is converted into charge carrier pairs, the charge carriers being negatively charged electrons and positively charged holes.
- Organic photodetectors typically have a photoactive layer that contains an electron donor compound (donor compound or donor for short, D), ie a material that emits electrons and holes or holes, and an electron acceptor compound (acceptor compound or acceptor, A for short), i.e. a material that accepts electrons.
- donor compound or donor for short, D an electron donor compound
- acceptor compound acceptor compound or acceptor, A for short
- the separation of the charge carrier pairs which is necessary to generate an electrical signal, can take place at the interface between donor and acceptor. After the separation of a charge carrier pair, the holes in the donor and the electrons in the acceptor are transported to the electrodes. In this sense, the holes are understood below as the charge carriers assigned to the donor compound and the electrons as the charge carriers assigned to the acceptor compound.
- EQE external quantum efficiency
- the near-infrared wavelength range (NIR range) between approx. 780 and 3000 nm, which stimulates molecular vibrations in particular, is particularly interesting for many measurement tasks.
- inorganic avalanche photodiodes used as highly sensitive photodetectors e.g. B. based on Si in the NIR range for wavelengths up to about 1000 nm or based on InGaAs in the NIR range for wavelengths from about 1000 to 1700 nm
- the functioning of inorganic avalanche photodiodes used as highly sensitive photodetectors is based on the fact that an additional highly p- or n-doped Layer the space charge distribution is modeled in such a way that a high field strength area can be generated by means of a large voltage in the reverse direction, which acts as a multiplication zone for the charge carriers generated by irradiation. These are accelerated in the multiplication zone so that impact ionization of the crystal lattice takes place, resulting in internal signal amplification.
- the photomultiplication effect can also be used in organic photodetectors (OPD), so that small photocurrents can be amplified with PM-OPD without additional external circuit components.
- the PM effect is based here on increased injection of a first type of charge carrier, i.e. electrons or holes (holes), favored by an energy band bending resulting from an accumulation of the opposite, second type of charge carrier, i.e. holes or electrons, in the vicinity of the injecting electrode results.
- the electric field caused by the accumulated, second type of charge carriers in the vicinity of the injecting electrode bends the relevant energy bands in such a way that the tunneling probability of the first type of charge carriers increases sharply due to the injection barrier and/or the conductivity for the first type of charge carrier.
- An accumulation of the second type of charge carrier can, for. B. be caused by missing percolation paths for this type of charge carrier and / or by trap states for this type of charge carrier.
- CN 1 09935699 A shows an organic PM-OPD whose layer structure comprises a transparent substrate, an anode, an anode modification layer, a photoactive layer and a cathode.
- the photoactive layer is a mixed layer containing a donor compound, e.g. B. P3HT, PBDB-T or PDPP3T, and an acceptor compound, e.g. B. PCBM.
- a range between 1:100 and 1:5 is given for the donor:acceptor mixing ratio.
- the anode modification layer is a hole transport or electron blocking layer (HTL or EBL), e.g. B. from PVC, Poly-TPD, ZnO or PEDOT:PSS.
- the PM-OPD described is suitable for a wavelength range between 300 and 800 nm.
- the photoactive layer contains an acceptor compound, e.g. B. PCBM, in which a thin film of an absorbing in the NIR range up to about 900 nm donor compound is embedded.
- an acceptor compound e.g. B. PCBM
- the optical excitation of the donor by absorption of a photon is accompanied by the formation of a Frenkel exciton, i.e. a strongly localized bound charge carrier pair.
- the detectable spectral range can be expanded by using the absorption of a photon with direct excitation of an intermolecular charge transfer state (CT state) at an interface between a donor and an acceptor compound.
- CT state intermolecular charge transfer state
- the donor and the acceptor compound do not necessarily have to absorb in the NIR region, ie the band gap between the highest occupied orbital (HOMO) and the lowest unoccupied orbital (LUMO) of both the donor and the acceptor compound do not necessarily have to correspond to an energy equivalent in the NIR range. Rather, the energy of a photon that can be absorbed via the CT state essentially corresponds to the difference between the energetically higher HOMO of one compound and the energetically lower LUMO of the other compound.
- lower-energy photons i.e. photons with longer wavelengths
- the energy ECT that can be absorbed via the CT state can also be somewhat lower than the above-mentioned difference between the energetically higher HOMO of one compound and the energetically lower LUMO of the other compound, since the charge carriers assigned to the compounds are located at the interface tighten and are thus bound a little more strongly.
- intermolecular CT states can generally also accept photons with an energy lower than the difference mentioned above.
- the absorption cross section is so small that conventional components have so far not focused on their use.
- EP 3 152 785 B1 discloses an OPD in which intermolecular CT states can be used to detect electromagnetic waves with wavelengths in the NIR or IR range (CT-OPD).
- CT-OPD the photoactive mixed layer consists of a donor and an acceptor compound between two mirror surfaces, e.g. B. two electrodes with facing reflective surfaces arranged, whereby an optical microcavity is formed.
- a complex sequence of material layers, hereinafter referred to as "layer structureâ, can be arranged in the microcavity of the CT-OPD.
- B. can be 50 nm, z.
- incident waves with wavelengths located in a range around the wavelength for which the above-mentioned resonance condition applies are amplified by the cavity.
- the EQE of the CT-OPD is increased if the optical path length between the mirror surfaces of the microcavity is 25% to 75% of the wavelength of the incident wave amounts to.
- the term "resonance waveâ is used for those waves in which resonance effects occur in the microcavity.
- the wavelengths for which resonance occurs can be varied by varying the distance between the mirror surfaces.
- the EQE of the CT-OPD is still low compared to the EQE of OPDs that exploit the intramolecular excitation of the donor or the acceptor via its band gap per se. Furthermore, an extension of the detectable wavelength range to longer wavelengths is desirable for many measurement tasks.
- the object of the invention is therefore to overcome the disadvantages of the prior art and to specify an optoelectronic component and an associated method which are particularly well suited for detecting electromagnetic radiation (electromagnetic waves) with wavelengths in the NIR range.
- the object is achieved by an optoelectronic component for the spectrally selective detection of electromagnetic radiation according to claim 1 and an associated method according to claim 9. Developments of the invention are specified in the subordinate claims.
- the optoelectronic component according to the invention for the spectrally selective detection of electromagnetic radiation has at least: a first and a second electrode which are spaced apart from one another and to which an electrical voltage can be applied, a photoactive layer which is a mixed layer containing a donor compound and an acceptor Compound comprises, wherein the energy equivalent of a wavelength to be detected of the electromagnetic radiation corresponds to the energy to be expended for the direct excitation of an intermolecular charge transfer state at an interface between the donor compound and the acceptor compound, the photoactive layer being arranged in an optical microcavity, which is arranged between the first and the second electrode and is formed from two mirror surfaces spaced apart from one another, the distance between the mirror surfaces being configured such that a standing wave is incident in the microcavity nde wave of electromagnetic radiation with the wavelength to
- the charge carriers assigned to the highly concentrated compound are referred to below as âmain charge carriersâ; the charge carriers assigned to the low-concentration compound as ânon-main charge carriersâ. is e.g.
- the photoactive layer is formed in such a way that the concentration of the acceptor molecules is low in the sense explained above, holes are the main charge carriers and electrons are the non-main charge carriers.
- the optoelectronic component according to the invention can be described as spectrally selective in that, due to the arrangement of the photoactive layer in the microcavity, the EQE for those incident waves that are resonant waves is particularly amplified.
- the wavelength of the resonance waves can be predetermined by choosing the distance between the mirror surfaces.
- the distance between the mirror surfaces is set in such a way that the resonance condition for a specific wavelength â * is met.
- This wavelength â * is referred to as the "wavelength to be detectedâ.
- the EQE is ultimately increased in a wavelength range around the wavelength to be detected.
- the energy equivalent of the wavelength to be detected corresponds to the energy of a photon which is absorbed with direct excitation of an intermolecular CT state at an interface between the donor compound and the acceptor compound in the photoactive layer.
- the incident waves can be emitted by an illumination system assigned to the optoelectronic component according to the invention.
- a mirror surface can be a reflective surface of an electrode.
- the microcavity is preferably formed by the spaced-apart, opposite surfaces of the two electrodes of the optoelectronic component, with the mentioned surfaces of the two electrodes being reflective in this case.
- the mirror surfaces have a high reflectivity, at least for the wavelength to be detected.
- the opposite mirror surfaces are preferably arranged plane-parallel to one another.
- the first and the second electrode of the optoelectronic component are designed in such a way that an electrical DC voltage can be applied between them.
- the voltage is preferably directed in such a way that the non-main charge carriers accumulate in a region of the photoactive layer facing the first electrode and are essentially not injected into the photoactive layer, while the main charge carriers are injected from the first electrode into the photoactive layer.
- the positive pole of the voltage is preferably applied to a first electrode functioning as a cathode, so that holes are injected as main charge carriers from the cathode into the photoactive layer, while the negative pole is to be applied to the second electrode, which then functions as an anode.
- Such Voltage with preferred polarity is hereinafter referred to as "reverse voltageâ or âreverse-bias voltageâ.
- One of the two electrodes can be formed in such a way that the optoelectronic component can be illuminated by this electrode.
- the second electrode can be made transparent at least for the wavelength to be detected. If the electrode through which the illumination is to take place has a reflective surface that represents a mirror surface of the microcavity, the electrode can be designed to be partially transparent at least for the wavelength to be detected, so that at least the wavelength to be detected can be transmitted through the electrode , but is also reflected by the reflective surface of the electrode.
- An optoelectronic component according to the invention can be connected to a readout unit for reading out, preferably also for further processing, electrical signals that are generated by the optoelectronic component.
- At least one of the electrodes can be multi-piece, i. H. from electrode segments arranged in an array-like manner. Different electrode segments can be assigned different wavelengths to be detected. The electrical signals are then expediently read out in such a way that the electrical signals that can be picked up from different electrode segments can be discriminated, e.g. B. in that each electrode segment is connected to a separate readout unit.
- the photoactive layer of the optoelectronic component according to the invention comprises a mixed layer in which a donor compound (D) and an acceptor compound (A) are mixed (frequently referred to in the literature as âD:A blendâ).
- the mixed layer represents a mixed heterojunction (bulk heterojunction).
- an intermolecular CT state (also referred to as an âinterchromophoricâ CT state) can be photoinduced directly.
- the intermolecular CT state is already excited by a photon with an energy essentially equal to the energy difference between the highest HOMO and corresponds to, or even be lower than, the lowest LUMO of the material combination D:A.
- a volume ratio D:A is preferably selected for the mixed layer, at which the interface between the two compounds in the mixed layer is at its maximum.
- a volume ratio D:A that is significantly different from 1:1 proves to be advantageous.
- the concentration or the mass fraction of the acceptor compound is so low, at least in a region of the mixed layer facing the first electrode, that the acceptor molecules act as electron traps, or the concentration or mass fraction of the donor compound is in at least one of the The area of the mixed layer facing the first electrode is so small that the donor molecules act as hole traps.
- a âtrapâ or âtrap conditionâ is a location or an energetic condition that restricts the movement of a charge carrier through the solid.
- the cause of the effect of the low-concentration acceptor molecules as electron traps is the energetic difference between the LUMO of the acceptor and the LUMO of the donor, with the LUMO of the acceptor being lower in energy than the LUMO of the donor. Due to the low concentration of the acceptor compound, at least in the region of the mixed layer close to the cathode, there are accordingly only very few percolation paths for electrons. If the optoelectronic component is illuminated so that charge carrier pairs are formed by photo-induced excitation of CT states, application of a blocking voltage between cathode and anode results in an accumulation of electrons in the area of the mixed layer close to the cathode.
- the electric field resulting from the increased charge density causes the energy bands to bend in the region of the mixed layer close to the cathode, which means that the opposite charge carriers, in this case the holes, can tunnel from the cathode through the injection barrier. Holes are therefore injected from the cathode into the donor phase of the mixed layer, so that the number of holes in the component increases the number of electrons exceeds. The injected holes are then transported to the anode together with the photo-induced holes.
- the area of the photoactive layer facing the first electrode is the area of the photoactive layer that adjoins the first electrode, although this can also be indirect, for example via one or more between the photoactive layer and the layers arranged in the first electrode.
- the area facing the first electrode can have a thickness, ie an extension essentially perpendicular to the surface of the first electrode, which is significantly less than the thickness of the photoactive layer, e.g. B. at most 10% of the thickness of the photoactive layer.
- the thickness of the area facing the first electrode can be between 5 and 10 nm.
- the concentration of the low-concentration compound may increase from the region facing the first electrode in a direction towards the surface of the second electrode in the photoactive layer, e.g. B.
- the photoactive layer has a volume ratio D:A in a region in which the standing wave forming for the wavelength to be detected in the optical microcavity of the optoelectronic component according to the invention has a spatial intensity maximum, in which the absorption cross section for the direct excitation of intermolecular CT states as high as possible, particularly preferably maximum.
- the increase in the concentration of the low-concentration compound from a region of the photoactive layer facing the first electrode at least up to a region of the photoactive layer which is different from the region facing the first electrode and is arranged closer to the second electrode than this can be in any desired way continuously, e.g. B. linear, or discontinuous, z. B. stepped, take place.
- the entire photoactive layer can also be designed with the low concentration of one of the compounds according to the invention, i.e. in such a way that the concentration of the donor compound or the concentration of the acceptor compound is so low that the low-concentration compound traps states for the compounds assigned to it Charge carrier provides.
- the optoelectronic component according to the invention is the first CT-OPD utilizing the PM effect.
- the optoelectronic component according to the invention shows that, unexpectedly, the generation of very few charge carriers, as is the case here due to the small absorption cross section of the CT states, is sufficient to trigger the PM effect.
- the optical losses in the photoactive layer are small enough to allow constructive interference of the waves reflected between the mirror surfaces.
- amplification is to be expected in particular for optical transitions with a small absorption cross section, such as the CT transition.
- An excessive increase in the EQE in this sense due to the PM effect can therefore have a negative effect on the detection behavior of a CT-OPD.
- One goal of utilizing the PM effect in the optoelectronic component according to the invention is therefore not primarily to increase the EQE above 100%. Rather, the EQE can advantageously be increased in wavelength ranges with an intrinsically particularly small EQE.
- the detection range of the component according to the invention can be extended to higher wavelengths, at which the EQE in known CT-OPD was too small to trigger a detectable signal.
- the optoelectronic component according to the invention can thus advantageously expand the wavelength range of the electromagnetic radiation that can be detected by means of the component to higher wavelengths while the EQE remains essentially the same.
- the EQE of the optoelectronic component can be increased by a suitable increase in the blocking voltage between the cathode and anode, that is to say the first and second electrodes, of the optoelectronic component. If no voltage is applied between the first and the second electrode of the optoelectronic component, no PM effect is observed.
- the low concentration of one of the compounds of the mixed layer which is necessary for exploiting the PM effect in the optoelectronic component according to the invention, can be controlled particularly advantageously in the case of vacuum-processed small molecule layers.
- a typical combination is, for example, ZnPc (zinc(II) phthalocyanine) as the donor compound and CO as the acceptor compound.
- Obo can be so low in concentration in the mixed layer that the C 6 O molecules provide trap states for electrons, which cause a photo-induced accumulation of electrons in a region of the mixed layer facing the cathode, so that holes are injected from the cathode into the mixed layer so that holes in the component as charge carriers predominate over electrons.
- D:A combinations that are particularly suitable for the photoactive layer of the optoelectronic component according to the invention are listed below as a non-exhaustive list: TPDP:C6o; MeO-TPD:C6o; m-MTDATA:C6o; pentacenes:C6o; TAPC:C 60 ; ZnPc:HATNA-CI 6 ; TPDP:HATNA-CI 6 ; MeO-TPD: HATNA-CI 6 ; m-MTDATA:HATNACl 6 ; Pentacene: HATNA-CI 6 ; TAPC:HATNA-CI 6 .
- the concentration of the donor compound in the mixed layer or the concentration of the acceptor compound is at least in the region of the mixed layer facing the first electrode between 0.1 and 10 percent by weight (wt%), which means that the proportion by mass of the low-concentration compound in this area of the mixed layer, based on the total mass of the mixed layer in this area, is between 0.1 and 10%, the limits included in each case.
- the mass fraction mentioned is preferably at least 1% by weight and/or at most 5% by weight.
- a concentration of 3% by weight of Obo has proven to be particularly advantageous in that both the EQE and the specific defectivity of a Component comprising said mixed layer at least at the wavelength to be detected compared to components with a mixed layer of the composition ZnPc: C 6 o with (varying in integral steps) lower and higher concentrations of Obo.
- the specific defectivity can be interpreted as a normalized signal-to-noise ratio, where, in a manner known to those skilled in the art, z. B. the dark current of the component is taken into account.
- the EQE of an optoelectronic component according to the invention is compared with a conventional CT-OPD, which has a mixed layer of the same donor and acceptor compound as the photoactive layer with a photoinduced excitation of an intermolecular CT state has an optimized concentration ratio, also in the higher NIR wavelength range, in which the EQE of the conventional CT-OPD is small, e.g. B. by a factor between 10 and 100.
- an optoelectronic component according to the invention in particular with a concentration ratio optimized in the above sense, can have an EQE of significantly more than 100% (eg 1000%).
- an optoelectronic component according to the invention can have further layers which are also arranged between the two electrodes and/or between the mirror surfaces of the microcavity.
- the wavelength to be detected of a CT-OPD can be varied by changing the optical path length between the mirror surfaces, whereby the variation does not have to be via the thickness of the photoactive layer, but via an arrangement of at least one layer that is largely transparent at least for the wavelength to be detected Spacer layer can be done between the mirror surfaces.
- Embodiments of the optoelectronic component according to the invention can have such an arrangement of optical spacer layers.
- a spacer layer that is transparent at least for the wavelength to be detected is arranged between the second electrode and the photoactive mixed layer, so that the mixed layer is arranged closer to the first electrode, i.e. to the charge carrier injecting electrode, than to the second electrode .
- the charge carrier injection from the first electrode into the photoactive layer can be further intensified with the aid of this embodiment.
- at least one first charge carrier blocking layer is arranged between the first electrode and the photoactive layer.
- the blocking layer can be an electron blocking layer (EBL) or a hole blocking layer (HBL).
- the first blocking layer can serve to weaken the transport of the charge carriers (main charge carriers) injected by the first electrode and assigned to the highly concentrated compound to the first electrode.
- the charge carriers main charge carriers
- an HBL can be arranged between the photoactive layer and the first electrode (cathode).
- the dark current of the component can advantageously be reduced by means of this embodiment.
- the thickness of the first blocking layer is to be selected in such a way, in particular so small, that an injection of the blocked charge carriers, e.g. in the case of HBL of the holes into the photoactive layer is not prevented.
- the first blocking layer for the charge carriers associated with the high-concentration compound can function as a transport layer for the other type of charge carrier associated with the low-concentration compound.
- the transport layer can be an electron transport layer (ETL) or a hole transport layer (HTL).
- ETL electron transport layer
- HTL hole transport layer
- an HBL can act as an ETL.
- Such a transport layer arranged between the photoactive layer and the first electrode is to be designed in such a way that the transported charge carriers are not efficiently extracted from the photoactive layer to the first electrode.
- an HBL placed between the cathode and the mixed layer acts as an ETL, where the ETL is designed such that the mobility of electrons in the ETL is low enough to ensure low extraction of electrons.
- This condition can e.g. B. be fulfilled in that the ETL is undoped.
- the optoelectronic component according to the invention there is at least a second electrode between the first electrode and the photoactive layer
- Charge carrier blocking layer is arranged, which, in contrast to the first blocking layer, additionally weakens the transport of the charge carriers associated with the low-concentration compound to the first electrode in relation to an optoelectronic component according to the invention without a second blocking layer and thus leads to an increase in the photo-induced accumulation of the low-concentration Connection associated charge carrier leads.
- the arrangement of a second blocking layer thus contributes to an increase in the photomultiplication effect in the component.
- the second blocking layer is an EBL.
- the second blocking layer is an HBL. It is clear to the person skilled in the art that the material of the second blocking layer must be selected in such a way that the energy levels, in the case of electrons to be blocked the LUMO, in the case of holes to be blocked the HOMO, in relation to the position of the energy levels of the photoactive layer blocking the desired type of charge carrier effect.
- the optoelectronic component according to the invention can have at least a first or at least a second or at least a first and at least a second blocking layer.
- the second blocking layer is expediently arranged on the photoactive layer and the first blocking layer on the first electrode.
- At least one transport layer for the charge carriers injected by the first electrode and associated with the highly concentrated compound is arranged between the second electrode and the photoactive layer, which transport layer can act as a blocking layer for the charge carriers associated with the low-concentrated compound. to largely prevent the transport of these charge carriers to the second electrode.
- an HTL can be placed between the photoactive layer and the anode, which acts as an EBL.
- an optoelectronic component according to the invention can have optical input filters in order to obtain a narrow-band output signal in the range of the wavelength to be detected.
- the optoelectronic component according to the invention can be arranged on a substrate which can be rigid, partially flexible or flexible.
- a substrate which can be rigid, partially flexible or flexible.
- the optoelectronic component can have an encapsulation in order to reduce the effects of harmful environmental influences.
- the invention also relates to a method for the spectrally selective detection of electromagnetic radiation, which has at least the following method steps: a. Providing an optoelectronic component according to the invention; b. illuminating the optoelectronic component with an incident wave of electromagnetic radiation having a wavelength to be detected and generating free charge carriers by direct excitation and dissociation of the intermolecular charge transfer state at an interface between donor compound and acceptor compound in the photoactive layer of the optoelectronic component; c.
- an electrical voltage to the electrodes of the optoelectronic component, the electrical voltage being directed in such a way that the charge carriers associated with the low-concentration compound of its photoactive layer accumulate in a region of the photoactive layer facing the first electrode; i.e. Accumulation associated with the low concentrated compound
- charge carriers in a region of the photoactive layer of the optoelectronic component facing the first electrode e. injecting charge carriers associated with the highly concentrated compound from the first electrode into the photoactive layer of the optoelectronic component; f. Transport of the charge carriers assigned to the highly concentrated compound and of the charge carriers of the same type generated by illumination to the second electrode of the optoelectronic component and generation of an electrical signal.
- the optoelectronic component according to the invention has a low concentration of the acceptor compound in at least one region of the photoactive layer facing the cathode, it occurs when the optoelectronic component is illuminated and a voltage is applied to the electrodes in the reverse direction (positive pole on the cathode, negative pole on the anode) to an accumulation of electrons in the region of the photoactive layer facing the cathode and consequently to the injection of holes from the cathode into the photoactive layer.
- the additional injected holes are transported to the anode with the photoinduced holes present after dissociation of the charge carrier pairs generated by direct excitation of the intermolecular CT state at an interface between donor compound and acceptor compound in the photoactive layer.
- the optoelectronic component according to the invention has at least one second blocking layer which is designed to block the non-main charge carriers associated with the low-concentration compound and is arranged between the photoactive layer and the first electrode, these charge carriers accumulate in method step c. additionally at this blocking layer.
- the term "at least oneâ is used for brevity, which can mean: one, exactly one, several (e.g. exactly two, or more than two), many (e.g. exactly three or more than three), etc. "Severalâ or âmanyâ does not necessarily mean that there are several or many identical elements, but rather several or many essentially functionally identical elements.
- the invention is not limited to the illustrated and described embodiments, but also includes all embodiments that have the same effect within the meaning of the invention. Furthermore, the invention is not limited to the combinations of features specifically described, but can also be defined by any other combination of specific features of all individual features disclosed overall, provided that the individual features are not mutually exclusive, or a specific combination of individual features is not explicitly excluded.
- FIG. 1 shows the layer structure of an optoelectronic component according to the invention in a first embodiment
- FIG. 1b shows the layer structure of an optoelectronic component according to the invention in a second embodiment
- 1c shows the layer structure of an optoelectronic component according to the invention in a third embodiment
- 1d shows the layer structure of an optoelectronic component according to the invention in a fourth embodiment
- FIG. 2 shows a schematic energy diagram for the optoelectronic component according to the invention from FIG. 1a;
- the optoelectronic component 1, T, 1", 1"" has a photoactive layer 2, which is a mixed layer made of a donor compound, e.g. B. ZnPc, and an acceptor compound, z. B. Obo, wherein the concentration, in terms of mass fraction, of Obo in the mixed layer is much lower than the concentration of ZnPc. For example, the mass fraction of Obo in the mixed layer is 3%.
- the photoactive layer 2 is arranged between two mirror surfaces 310, 320 located opposite one another at a distance.
- the mirror surfaces 310, 320 are arranged between two electrodes 31, 32.
- the layer structure is applied to a substrate 4 .
- the electrodes 31, 32 can consist of the same material or of different materials.
- the electrodes 31, 32 can, for. B. consist of a metal, z. B. silver, aluminum, etc.
- a typical oxidic material for the anode 32 can be ITO (indium tin oxide).
- the mirror surfaces 310, 320 can be surfaces of the electrodes 31, 32 designed to be reflective or layers that are separate from the electrodes 31, 32.
- the illumination system (not shown) for illuminating the optoelectronic component 1, T, 1", âTâ can be arranged on the substrate side, so that the illumination of the photoactive layer 2 through the substrate 4, the bottom electrode 32 and the bottom electrode arranged Mirror surface 320 takes place (illumination direction 100).
- the layers mentioned must therefore be at least partially transparent for the wavelength to be detected by means of the optoelectronic component 1, T, 1", T".
- the dependence of the wavelength to be detected on the thickness of the individual layers and the materials used can be evaluated using transfer matrix simulations.
- the optoelectronic component 1 shown in FIG. 1a can, for. B. have the following layer structure, with the material and the thickness of the layer being given in brackets: substrate 4 (glass, 1.1 mm)âpartially transparent bottom electrode 32 with a reflective surface 320 (Ag, 25 nm)âphotoactive layer 2 (ZnPc:C 6 O (3% by weight), 400 nm)âreflective top electrode 31 with a reflective surface 310 (Ag, 100 nm).
- the EQE of the optoelectronic component 1 with the layer structure mentioned shows a narrow peak (FWHM approx. 23 nm) at approx. 880 nm.
- the HBL can be e.g. B. be a 10 nm thick layer consisting of HATNA-CI 6 , preferably undoped HATNA-CI 6 to act only weakly electron-conducting.
- the optoelectronic component 1âČâČ shown in FIG. 1c has a hole transport layer (HTL) 6, which is arranged between the photoactive layer 2 and the bottom electrode/anode 32 with mirror surface 320 and also has an electron-blocking effect .
- the HTL can be e.g. B. be a 10 nm thick doped layer consisting of MeO-TPD:F 6 -TCNNQ.
- FIG. 2 schematically shows an energy diagram for an optoelectronic component with a layer structure as in FIG. 1a under illumination with electromagnetic radiation and with a voltage applied in the reverse direction to the electrodes of the optoelectronic component.
- a CT state in the photoactive layer of the optoelectronic component can be triggered by a photon whose energy is e.g. B. the difference between the HOMO of the donor compound 73 and the LUMO of the acceptor compound 74 in the photoactive layer, to form a charge carrier pair 80 are excited.
- the charge carrier pair has dissociated into free charge carriers, electrons 81 accumulate in the region of the photoactive layer close to the cathode, since there are only a few percolation paths for electrons due to the low concentration of the acceptor compound in the photoactive layer.
- the energy levels HOMO of the acceptor compound 72, HOMO of the donor compound 73, LUMO of the acceptor compound 74 and LUMO of the donor compound bend as shown 75.
- the bending allows holes 82 from the cathode (Fermi level 76) to tunnel through the injection barrier (tunneling action illustrated by arrow 77) and be injected into the photoactive layer. Due to the high donor concentration in the photoactive layer, the injected holes are efficiently transported together with the photo-induced holes 82 to the anode (Fermi level 71).
- FIG. 3 shows the dependency of the EQE on the wavelength for four different optoelectronic components, with a voltage in the reverse direction of â 10 V being applied to the electrodes of the optoelectronic component in each case.
- the optoelectronic components differ in the length L of the optical cavity.
- the EQE of an optoelectronic component according to the invention shows a narrow peak with a maximum at the wavelength / ec to be detected, for which the resonance condition is met with regard to the selected length of its cavity.
- the full width at half maximum (FWHM) of the peaks at the wavelengths to be detected is between 20 and 40 nm. Reference sign
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Light Receiving Elements (AREA)
Abstract
By directly exciting optical transitions in the intermolecular CT state, the wavelength range which can be detected by organic photodetectors can be expanded into the NIR or IR range, and the EQE is low even when using resonance effects by arranging the photoactive layer in an optical microcavity. The invention relates to an optoelectronic component (1, 1', 1'', 1''') and to a corresponding detection method in which the concentration of the donor compound in the photoactive layer (2) or the concentration of the acceptor compound in the photoactive layer (2) is so low that the compound with a low concentration provides trap conditions for the corresponding charge carriers (81), said conditions producing a photo-induced accumulation of the charge carriers (81) paired with the compound with a low concentration in a region of the photoactive layer (2) facing the first electrode (31) so that charge carriers (82) paired with the highly concentrated compound are injected into the photoactive layer (2) from the first electrode (31), whereby the charge carrier locations are predominantly in the component (1, 1', 1'', 1'''). In particular, the EQE increase achieved in this manner is advantageous in that the detectable wavelength range can be expanded to higher wavelengths by means of the invention.
Description
Optoelektronisches Bauelement und Verfahren zur spektral selektiven Detektion elektromagnetischer Strahlung Optoelectronic component and method for spectrally selective detection of electromagnetic radiation
Die Erfindung betrifft ein optoelektronisches Bauelement zur spektral selektiven Detektion elektromagnetischer Strahlung, aufweisend eine erste und eine zweite Elektrode, die voneinander beabstandet sind und an die eine elektrische Spannung anlegbar ist, und eine photoaktive Schicht, die eine Mischschicht enthaltend eine Donor-Verbindung und eine Akzeptor- Verbindung umfasst, wobei das EnergieĂ€quivalent einer zu detektierenden WellenlĂ€nge der elektromagnetischen Strahlung der zur direkten Anregung eines intermolekularen Ladungstransfer-Zustands an einer GrenzflĂ€che zwischen der Donor-Verbindung und der Akzeptor-Verbindung aufzuwendenden Energie entspricht, wobei die photoaktive Schicht angeordnet ist in einer optischen MikrokavitĂ€t, die zwischen der ersten und der zweiten Elektrode angeordnet und aus zwei voneinander beabstandeten SpiegelflĂ€chen gebildet ist, wobei der Abstand der SpiegelflĂ€chen zueinander so ausgestaltet ist, dass in der MikrokavitĂ€t eine stehende Welle fĂŒr eine einfallende Welle der elektromagnetischen Strahlung mit der zu detektierenden WellenlĂ€nge erzeugt wird, sowie das dazugehörige Verfahren. The invention relates to an optoelectronic component for the spectrally selective detection of electromagnetic radiation, having a first and a second electrode which are spaced apart and to which an electrical voltage can be applied, and a photoactive layer which is a mixed layer containing a donor compound and an acceptor - Compound comprises, wherein the energy equivalent of a wavelength to be detected of the electromagnetic radiation corresponds to the energy to be expended for direct excitation of an intermolecular charge transfer state at an interface between the donor compound and the acceptor compound, wherein the photoactive layer is arranged in an optical microcavity , which is arranged between the first and the second electrode and formed from two spaced mirror surfaces, wherein the distance between the mirror surfaces is designed to each other so that in the microcavity a standing wave for a simple lling wave of electromagnetic radiation is generated with the wavelength to be detected, as well as the associated method.
Um Messanforderungen z. B. in intelligenten Fahrzeugen oder GerĂ€ten, gerecht werden zu können, sind optoelektronische Bauelemente in Form von hochempfindlichen und schnellen Photodetektoren gefragt. Photodetektoren zur spektral selektiven Detektion einer elektromagnetischen Welle sind optoelektronische Bauelemente, die dem qualitativen und quantitativen Nachweis elektromagnetischer Wellen mit vordefinierten, spezifischen WellenlĂ€ngen bzw. Photonen mit vordefinierten, spezifischen Energien dienen, wobei die den Photodetektor bestrahlenden, im Folgenden als âeinfallendeâ bezeichnete, Wellen im Allgemeinen eine Vielzahl verschiedener WellenlĂ€ngen bzw. die einfallenden Photonen im Allgemeinen eine Vielzahl verschiedener Energien aufweisen. To measure requirements z. B. in intelligent vehicles or devices, optoelectronic components in the form of highly sensitive and fast photodetectors are in demand. Photodetectors for the spectrally selective detection of an electromagnetic wave are optoelectronic components that are used for the qualitative and quantitative detection of electromagnetic waves with predefined, specific wavelengths or photons with predefined, specific energies, with the waves irradiating the photodetector, hereinafter referred to as âincidentâ waves generally a large number of different wavelengths or the incident photons generally have a large number of different energies.
Im Folgenden wird zwischen dem Wellenbild und dem Photonenbild der elektromagnetischen Strahlung nicht unterschieden und die zugehörigen Begriffe im Wesentlichen synonym verwendet. In the following, no distinction is made between the wave image and the photon image of electromagnetic radiation and the associated terms are essentially used synonymously.
Ein Photodetektor weist eine photoaktive Schicht auf, in der elektromagnetische Strahlung in LadungstrÀgerpaare umgewandelt wird, wobei die LadungstrÀger negativ geladene Elektronen und positiv geladene Defektelektronen bzw. Löcher sind. Organische Photodetektoren weisen typischerweise eine photoaktive Schicht auf, die eine Elektrondonor-Verbindung (kurz Donor- Verbindung oder Donor, D), also ein Material, welches Elektronen abgibt und Defektelektronen
bzw. Löcher aufnimmt, und eine Elektronakzeptor-Verbindung (kurz Akzeptor-Verbindung oder Akzeptor, A), also ein Material, welches Elektronen aufnimmt, enthÀlt. Die zur Erzeugung eines elektrischen Signals notwendige Trennung der LadungstrÀgerpaare kann an der GrenzflÀche zwischen Donor und Akzeptor erfolgen. Nach der Trennung eines LadungstrÀgerpaars werden die Löcher im Donor und die Elektronen im Akzeptor zu den Elektroden transportiert. In diesem Sinne werden im Folgenden die Löcher als die der Donor-Verbindung zugeordneten LadungstrÀger und die Elektronen als die der Akzeptor-Verbindung zugeordneten LadungstrÀger verstanden. A photodetector has a photoactive layer in which electromagnetic radiation is converted into charge carrier pairs, the charge carriers being negatively charged electrons and positively charged holes. Organic photodetectors typically have a photoactive layer that contains an electron donor compound (donor compound or donor for short, D), ie a material that emits electrons and holes or holes, and an electron acceptor compound (acceptor compound or acceptor, A for short), i.e. a material that accepts electrons. The separation of the charge carrier pairs, which is necessary to generate an electrical signal, can take place at the interface between donor and acceptor. After the separation of a charge carrier pair, the holes in the donor and the electrons in the acceptor are transported to the electrodes. In this sense, the holes are understood below as the charge carriers assigned to the donor compound and the electrons as the charge carriers assigned to the acceptor compound.
Die Nutzung des Photomultiplikationseffekts zur Verbesserung der externen Quanteneffizienz (EQE) eines Photodetektors ist einer der wichtigsten AnsÀtze zur Erzielung einer hochempfindlichen Photodetektion. Die EQE bezeichnet das wellenlÀngenabhÀngige VerhÀltnis aus der Anzahl der einfallenden Photonen und der aus dem Bauelement entnommenen LadungstrÀger. Sie kann als eine Art wellenlÀngenabhÀngiger Wirkungsgrad verstanden werden. Using the photomultiplication effect to improve the external quantum efficiency (EQE) of a photodetector is one of the most important approaches to achieve highly sensitive photodetection. The EQE denotes the wavelength-dependent ratio of the number of incident photons and the charge carriers removed from the component. It can be understood as a kind of wavelength-dependent efficiency.
FĂŒr viele Messaufgaben besonders interessant ist dabei der insbesondere MolekĂŒlschwingungen anregende Nahinfrarot-WellenlĂ€ngenbereich (NIR-Bereich) zwischen ca. 780 und 3000 nm. The near-infrared wavelength range (NIR range) between approx. 780 and 3000 nm, which stimulates molecular vibrations in particular, is particularly interesting for many measurement tasks.
Die Funktionsweise von als hochempfindliche Photodetektoren eingesetzten, anorganischen Avalanche-Photodioden, z. B. auf Si-Basis im NIR-Bereich fĂŒr WellenlĂ€ngen bis ca. 1000 nm oder auf InGaAs-Basis im NIR-Bereich fĂŒr WellenlĂ€ngen von ca. 1000 bis 1700 nm, basiert darauf, dass durch eine zusĂ€tzliche hoch p- oder n-dotierte Schicht die Raumladungsverteilung so modelliert ist, dass mittels einer groĂen Spannung in Sperrrichtung ein Bereich hoher FeldstĂ€rke erzeugt werden kann, der als Multiplikationszone fĂŒr die durch Bestrahlung erzeugten LadungstrĂ€ger fungiert. Diese werden in der Multiplikationszone beschleunigt, so dass eine StoĂionisation des Kristallgitters stattfindet, wodurch eine interne SignalverstĂ€rkung erfolgt. The functioning of inorganic avalanche photodiodes used as highly sensitive photodetectors, e.g. B. based on Si in the NIR range for wavelengths up to about 1000 nm or based on InGaAs in the NIR range for wavelengths from about 1000 to 1700 nm, is based on the fact that an additional highly p- or n-doped Layer the space charge distribution is modeled in such a way that a high field strength area can be generated by means of a large voltage in the reverse direction, which acts as a multiplication zone for the charge carriers generated by irradiation. These are accelerated in the multiplication zone so that impact ionization of the crystal lattice takes place, resulting in internal signal amplification.
Auch in organischen Photodetektoren (OPD) kann der Photomultiplikationseffekt (PM-Effekt) genutzt werden, so dass mit PM-OPD kleine Photoströme ohne zusĂ€tzliche externe Schaltungsbauteile verstĂ€rkt werden können. Der PM-Effekt beruht hier allerdings auf erhöhter Injektion einer ersten LadungstrĂ€gersorte, also von Elektronen oder Löchern (Defektelektronen), begĂŒnstigt durch eine Energiebandverbiegung, die aus einer Akkumulation der entgegengesetzten, zweiten LadungstrĂ€gersorte, also von Löchern oder Elektronen, in der NĂ€he der injizierenden Elektrode resultiert. Das von der akkumulierten, zweiten LadungstrĂ€gersorte hervorgerufene elektrische Feld in der NĂ€he der injizierenden Elektrode verbiegt die relevanten EnergiebĂ€nder dergestalt, dass die Tunnelwahrscheinlichkeit der ersten LadungstrĂ€gersorte
durch die Injektionsbarriere und/oder die LeitfĂ€higkeit fĂŒr die erste LadungstrĂ€gersorte stark ansteigt. Eine Akkumulation der zweiten LadungstrĂ€gersorte kann z. B. durch fehlende Perkolationspfade fĂŒr diese LadungstrĂ€gersorte und/oder durch FallenzustĂ€nde fĂŒr diese LadungstrĂ€gersorte bedingt sein. Einen Ăberblick ĂŒber den Stand der Technik bezĂŒglich organischen PM-OPD geben jeweils Shi, L, et al. Recent Progress in Photomultiplication Type Organic Photodetectors. Nanomaterials 2018, 8, 713, und Miao, J., et al. Recent Progress on Photomultiplication Type Organic Photodetectors. Laser & Photonics Rev. 2019, 13, 1800204. The photomultiplication effect (PM effect) can also be used in organic photodetectors (OPD), so that small photocurrents can be amplified with PM-OPD without additional external circuit components. However, the PM effect is based here on increased injection of a first type of charge carrier, i.e. electrons or holes (holes), favored by an energy band bending resulting from an accumulation of the opposite, second type of charge carrier, i.e. holes or electrons, in the vicinity of the injecting electrode results. The electric field caused by the accumulated, second type of charge carriers in the vicinity of the injecting electrode bends the relevant energy bands in such a way that the tunneling probability of the first type of charge carriers increases sharply due to the injection barrier and/or the conductivity for the first type of charge carrier. An accumulation of the second type of charge carrier can, for. B. be caused by missing percolation paths for this type of charge carrier and / or by trap states for this type of charge carrier. An overview of the state of the art regarding organic PM-OPD is given by Shi, L, et al. Recent Progress in Photomultiplication Type Organic Photodetectors. Nanomaterials 2018, 8, 713, and Miao, J., et al. Recent Progress on Photomultiplication Type Organic Photodetectors. Laser & Photonics Rev. 2019, 13, 1800204.
Die CN 1 09935699 A zeigt einen organischen PM-OPD, dessen Schichtaufbau ein transparentes Substrat, eine Anode, eine Anodenmodifikationsschicht, eine photoaktive Schicht und eine Kathode umfasst. Die photoaktive Schicht ist eine Mischschicht enthaltend eine Donor- Verbindung, z. B. P3HT, PBDB-T oder PDPP3T, und eine Akzeptor-Verbindung, z. B. PCBM. FĂŒr das MischungsverhĂ€ltnis Donor:Akzeptor wird ein Bereich zwischen 1:100 und 1 :5 angegeben. Bei der Anodenmodifikationsschicht handelt es sich um eine Löchertransport- bzw. Elektronenblockierungsschicht (HTL bzw. EBL), z. B. aus PVK, Poly-TPD, ZnO oder PEDOT:PSS. Der beschriebene PM-OPD ist fĂŒr einen WellenlĂ€ngenbereich zwischen 300 und 800 nm geeignet. CN 1 09935699 A shows an organic PM-OPD whose layer structure comprises a transparent substrate, an anode, an anode modification layer, a photoactive layer and a cathode. The photoactive layer is a mixed layer containing a donor compound, e.g. B. P3HT, PBDB-T or PDPP3T, and an acceptor compound, e.g. B. PCBM. A range between 1:100 and 1:5 is given for the donor:acceptor mixing ratio. The anode modification layer is a hole transport or electron blocking layer (HTL or EBL), e.g. B. from PVC, Poly-TPD, ZnO or PEDOT:PSS. The PM-OPD described is suitable for a wavelength range between 300 and 800 nm.
Um in den NIR-WellenlĂ€ngenbereich vorzudringen, existieren AnsĂ€tze wie der in der CN 1 08807683 A offenbarte. Im hier beschriebenen PM-OPD enthĂ€lt die photoaktive Schicht eine Akzeptor-Verbindung, z. B. PCBM, in die ein dĂŒnner Film einer im NIR-Bereich bis ca. 900 nm absorbierenden Donor-Verbindung eingebettet ist. Die optische Anregung des Donors durch Absorption eines Photons geht in diesem Fall mit der Bildung eines Frenkel-Exzitons, also eines stark lokalisierten gebundenen LadungstrĂ€gerpaars, einher. Approaches such as that disclosed in CN 1 08807683 A exist to advance into the NIR wavelength range. In the PM-OPD described here, the photoactive layer contains an acceptor compound, e.g. B. PCBM, in which a thin film of an absorbing in the NIR range up to about 900 nm donor compound is embedded. In this case, the optical excitation of the donor by absorption of a photon is accompanied by the formation of a Frenkel exciton, i.e. a strongly localized bound charge carrier pair.
Eine Ausweitung des detektierbaren Spektralbereichs kann andererseits durch Nutzung der Absorption eines Photons unter direkter Anregung eines intermolekularen Ladungstransfer- Zustands (CT-Zustands) an einer GrenzflĂ€che zwischen einer Donor- und einer Akzeptor- Verbindung erfolgen. Die Donor- und die Akzeptor-Verbindung mĂŒssen dabei nicht notwendigerweise fĂŒr sich genommen im NIR-Bereich absorbieren, d. h. die BandlĂŒcke zwischen dem höchsten besetzten Orbital (HOMO) und dem niedrigsten unbesetzten Orbital (LUMO) sowohl der Donor- als auch der Akzeptor-Verbindung mĂŒssen nicht notwendigerweise einem im NIR-Bereich liegenden EnergieĂ€quivalent entsprechen. Vielmehr entspricht die ĂŒber den CT- Zustand absorbierbare Energie eines Photons im Wesentlichen der Differenz zwischen dem energetisch höher liegenden HOMO der einen Verbindung und dem energetisch niedriger liegenden LUMO der anderen Verbindung. In einer Mischschicht aus einer Donor-Verbindung
und einer Akzeptor-Verbindung werden an den GrenzflĂ€chen jeweils zwischen einem MolekĂŒl der Donor-Verbindung und einem MolekĂŒl der Akzeptor-Verbindung niederenergetischere Photonen, also Photonen mit gröĂerer WellenlĂ€nge, absorbiert als von einem MolekĂŒl der Donor-Verbindung oder von einem MolekĂŒl der Akzeptor-Verbindung. Typischerweise kann die ĂŒber den CT- Zustand absorbierbare Energie ECT auch etwas niedriger als die oben erwĂ€hnte Differenz zwischen dem energetisch höher liegenden HOMO der einen Verbindung und dem energetisch niedriger liegenden LUMO der anderen Verbindung ausfallen, da sich die jeweils den Verbindungen zugeordneten LadungstrĂ€ger an der GrenzflĂ€che anziehen und dadurch etwas stĂ€rker gebunden sind. Des Weiteren wird beobachtet, dass intermolekulare CT-ZustĂ€nde generell auch Photonen, die eine geringere Energie als die oben erwĂ€hnte Differenz haben, aufnehmen können. Insbesondere fĂŒr diese ĂbergĂ€nge ist der Absorptionsquerschnitt allerdings so gering, dass konventionelle Bauelemente bisher nicht auf deren Nutzung abstellen. Einen Ăberblick ĂŒber die Physik intermolekularer CT-ZustĂ€nde gibt z. B. Vandewal, K. Interfacial Charge Transfer States in Condensed Phase Systems. Annual Review of Physical Chemistry 2016, 67, 113-133. On the other hand, the detectable spectral range can be expanded by using the absorption of a photon with direct excitation of an intermolecular charge transfer state (CT state) at an interface between a donor and an acceptor compound. The donor and the acceptor compound do not necessarily have to absorb in the NIR region, ie the band gap between the highest occupied orbital (HOMO) and the lowest unoccupied orbital (LUMO) of both the donor and the acceptor compound do not necessarily have to correspond to an energy equivalent in the NIR range. Rather, the energy of a photon that can be absorbed via the CT state essentially corresponds to the difference between the energetically higher HOMO of one compound and the energetically lower LUMO of the other compound. In a mixed layer of a donor compound and an acceptor compound, lower-energy photons, i.e. photons with longer wavelengths, are absorbed at the interfaces between a molecule of the donor compound and a molecule of the acceptor compound than by a molecule of the donor compound or by a molecule of the acceptor compound . Typically, the energy ECT that can be absorbed via the CT state can also be somewhat lower than the above-mentioned difference between the energetically higher HOMO of one compound and the energetically lower LUMO of the other compound, since the charge carriers assigned to the compounds are located at the interface tighten and are thus bound a little more strongly. Furthermore, it is observed that intermolecular CT states can generally also accept photons with an energy lower than the difference mentioned above. For these transitions in particular, however, the absorption cross section is so small that conventional components have so far not focused on their use. An overview of the physics of intermolecular CT states is given e.g. B. Vandewal, K. Interfacial Charge Transfer States in Condensed Phase Systems. Annual Review of Physical Chemistry 2016, 67, 113-133.
In der EP 3 152 785 B1 ist ein OPD offenbart, in dem intermolekulare CT-ZustĂ€nde zur Detektion von elektromagnetischen Wellen mit WellenlĂ€ngen im NIR- oder IR-Bereich ausgenutzt werden können (CT-OPD). Im CT-OPD ist die photoaktive Mischschicht aus einer Donor- und einer Akzeptor-Verbindung zwischen zwei SpiegelflĂ€chen, z. B. zwei Elektroden mit einander zugewandten reflektiven FlĂ€chen, angeordnet, wodurch eine optische MikrokavitĂ€t gebildet wird. In der MikrokavitĂ€t des CT-OPD kann eine komplexe Abfolge von Materialschichten, im Folgenden als âSchichtaufbauâ bezeichnet, angeordnet sein, wobei der Schichtaufbau neben der photoaktiven Schicht, deren Dicke z. B. 50 nm betragen kann, z. B. Filterschichten fĂŒr bestimmte WellenlĂ€ngenbereiche, LadungstrĂ€gertransportschichten, LadungstrĂ€gerblockierschichten, optisch transparente Abstandshalterschichten, etc., aufweisen kann. EP 3 152 785 B1 discloses an OPD in which intermolecular CT states can be used to detect electromagnetic waves with wavelengths in the NIR or IR range (CT-OPD). In the CT-OPD, the photoactive mixed layer consists of a donor and an acceptor compound between two mirror surfaces, e.g. B. two electrodes with facing reflective surfaces arranged, whereby an optical microcavity is formed. A complex sequence of material layers, hereinafter referred to as "layer structure", can be arranged in the microcavity of the CT-OPD. B. can be 50 nm, z. B. filter layers for specific wavelength ranges, charge carrier transport layers, charge carrier blocking layers, optically transparent spacer layers, etc., may have.
FĂŒr elektromagnetische Wellen mit einer WellenlĂ€nge, die die Resonanzbedingung der optischen MikrokavitĂ€t erfĂŒllt, bilden sich stehende Wellen in der MikrokavitĂ€t aus. Die EGE des CT-OPD ist fĂŒr eine solche WellenlĂ€nge schmalbandig und signifikant erhöht. Typischerweise ist die Resonanzbedingung einer optischen KavitĂ€t, die als Fabry-Perot-KavitĂ€t ausgebildet ist, erfĂŒllt, wenn fĂŒr deren optische LĂ€nge n-L gilt: n-L = (7v\i COS a)/2,
wobei n die effektive Brechzahl ĂŒber die physikalische LĂ€nge L der KavitĂ€t, die, unter VernachlĂ€ssigung der Eindringtiefe des elektromagnetischen Felds in das die SpiegelflĂ€chen aufweisende Material, dem Abstand der SpiegelflĂ€chen voneinander entspricht, / die Ordnung der sich ausbildenden stehenden Welle, L die WellenlĂ€nge der einfallenden Welle und a den Einfallswinkel der einfallenden Welle in Bezug auf eine Richtung parallel zur physikalischen LĂ€nge L der KavitĂ€t bezeichnen. Bei zur physikalischen LĂ€nge L paralleler Bestrahlung der KavitĂ€t (er = 0) ist die Resonanzbedingung erfĂŒllt, wenn die optische WeglĂ€nge der KavitĂ€t ein ganzzahliges Vielfaches der halben WellenlĂ€nge der einfallenden Welle ist. For electromagnetic waves with a wavelength that satisfies the resonance condition of the optical microcavity, standing waves form in the microcavity. The EGE of the CT-OPD is narrow-band for such a wavelength and significantly increased. Typically, the resonance condition of an optical cavity designed as a Fabry-Perot cavity is met if the optical length nL is: nL = (7v\i COS a)/2, where n is the effective refractive index over the physical length L of the cavity, which, neglecting the penetration depth of the electromagnetic field into the material containing the mirror surfaces, corresponds to the distance between the mirror surfaces, / the order of the standing wave that forms, L the wavelength of the incident wave wave and a denote the angle of incidence of the incident wave with respect to a direction parallel to the physical length L of the cavity. If the cavity is irradiated parallel to the physical length L (er = 0), the resonance condition is met if the optical path length of the cavity is an integer multiple of half the wavelength of the incident wave.
Realiter werden einfallende Wellen mit WellenlĂ€ngen, die sich in einem Bereich um die WellenlĂ€nge, fĂŒr die oben erwĂ€hnte Resonanzbedingung gilt, befinden, durch die KavitĂ€t verstĂ€rkt. So ist im Vergleich mit einem dem Schichtaufbau des CT-OPD entsprechenden Schichtaufbau, der nicht in einer MikrokavitĂ€t angeordnet ist, die EQE des CT-OPD erhöht, wenn die optische WeglĂ€nge zwischen den SpiegelflĂ€chen der MikrokavitĂ€t 25 % bis 75 % der WellenlĂ€nge der einfallenden Welle betrĂ€gt. Im Folgenden wird der Begriff âResonanzwelleâ fĂŒr diejenigen Wellen verwendet, bei denen Resonanzeffekte in der MikrokavitĂ€t auftreten. Vorteilhaft können durch Variation des Abstands der SpiegelflĂ€chen die WellenlĂ€ngen, fĂŒr die Resonanz auftritt, variiert werden. Actually, incident waves with wavelengths located in a range around the wavelength for which the above-mentioned resonance condition applies are amplified by the cavity. In comparison with a layer structure corresponding to the layer structure of the CT-OPD, which is not arranged in a microcavity, the EQE of the CT-OPD is increased if the optical path length between the mirror surfaces of the microcavity is 25% to 75% of the wavelength of the incident wave amounts to. In the following, the term "resonance wave" is used for those waves in which resonance effects occur in the microcavity. Advantageously, the wavelengths for which resonance occurs can be varied by varying the distance between the mirror surfaces.
Jedoch ist, trotz der signifikanten Erhöhung der EQE durch das Einbetten der photoaktiven Mischschicht in eine MikrokavitĂ€t, die EQE des CT-OPD immer noch gering gegenĂŒber der EQE von OPD, die die intramolekulare Anregung des Donors oder des Akzeptors ĂŒber dessen BandlĂŒcke per se ausnutzen. Des Weiteren ist fĂŒr viele Messaufgaben eine Ausweitung des detektierbaren WellenlĂ€ngenbereichs hin zu gröĂeren WellenlĂ€ngen wĂŒnschenswert. However, despite the significant increase in EQE by embedding the mixed photoactive layer in a microcavity, the EQE of the CT-OPD is still low compared to the EQE of OPDs that exploit the intramolecular excitation of the donor or the acceptor via its band gap per se. Furthermore, an extension of the detectable wavelength range to longer wavelengths is desirable for many measurement tasks.
Aufgabe der Erfindung ist es daher, die Nachteile des Stands der Technik zu ĂŒberwinden und ein optoelektronisches Bauelement sowie ein zugehöriges Verfahren anzugeben, welche zur Detektion von elektromagnetischer Strahlung (elektromagnetischen Wellen) mit WellenlĂ€ngen im NIR-Bereich besonders gut geeignet sind. The object of the invention is therefore to overcome the disadvantages of the prior art and to specify an optoelectronic component and an associated method which are particularly well suited for detecting electromagnetic radiation (electromagnetic waves) with wavelengths in the NIR range.
Die Aufgabe wird gelöst durch ein optoelektronisches Bauelement zur spektral selektiven Detektion elektromagnetischer Strahlung gemÀà Anspruch 1 und ein zugehöriges Verfahren gemÀà Anspruch 9. Weiterbildungen der Erfindung sind in untergeordneten AnsprĂŒchen angegeben.
Das erfindungsgemĂ€Ăe optoelektronische Bauelement zur spektral selektiven Detektion elektromagnetischer Strahlung weist zumindest auf: eine erste und eine zweite Elektrode, die voneinander beabstandet sind und an die eine elektrische Spannung anlegbar ist, eine photoaktive Schicht, die eine Mischschicht enthaltend eine Donor-Verbindung und eine Akzeptor-Verbindung umfasst, wobei das EnergieĂ€quivalent einer zu detektierenden WellenlĂ€nge der elektromagnetischen Strahlung der zur direkten Anregung eines intermolekularen Ladungstransfer-Zustands an einer GrenzflĂ€che zwischen der Donor-Verbindung und der Akzeptor-Verbindung aufzuwendenden Energie entspricht, wobei die photoaktive Schicht angeordnet ist in einer optischen MikrokavitĂ€t, die zwischen der ersten und der zweiten Elektrode angeordnet und aus zwei voneinander beabstandeten SpiegelflĂ€chen gebildet ist, wobei der Abstand der SpiegelflĂ€chen zueinander so ausgestaltet ist, dass in der MikrokavitĂ€t eine stehende Welle fĂŒr eine einfallende Welle der elektromagnetischen Strahlung mit der zu detektierenden WellenlĂ€nge erzeugt wird, wobei die Konzentration der Donor-Verbindung zumindest in einem der ersten Elektrode zugewandten Bereich der photoaktiven Schicht oder die Konzentration der Akzeptor-Verbindung zumindest in einem der ersten Elektrode zugewandten Bereich der photoaktiven Schicht so gering ist, dass die niedrig konzentrierte Verbindung FallenzustĂ€nde fĂŒr die ihr zugeordneten LadungstrĂ€ger bereitstellt, die eine photoinduzierte AnhĂ€ufung von der niedrig konzentrierten Verbindung zugeordneten LadungstrĂ€gern in dem der ersten Elektrode zugewandten Bereich der photoaktiven Schicht bewirken, so dass der hoch konzentrierten Verbindung zugeordnete LadungstrĂ€ger von der ersten Elektrode in die photoaktive Schicht injiziert werden, wodurch diese LadungstrĂ€gersorte im Bauelement ĂŒberwiegt. Diese der hoch konzentrierten Verbindung zugeordneten LadungstrĂ€ger werden zur zweiten Elektrode transportiert. The object is achieved by an optoelectronic component for the spectrally selective detection of electromagnetic radiation according to claim 1 and an associated method according to claim 9. Developments of the invention are specified in the subordinate claims. The optoelectronic component according to the invention for the spectrally selective detection of electromagnetic radiation has at least: a first and a second electrode which are spaced apart from one another and to which an electrical voltage can be applied, a photoactive layer which is a mixed layer containing a donor compound and an acceptor Compound comprises, wherein the energy equivalent of a wavelength to be detected of the electromagnetic radiation corresponds to the energy to be expended for the direct excitation of an intermolecular charge transfer state at an interface between the donor compound and the acceptor compound, the photoactive layer being arranged in an optical microcavity, which is arranged between the first and the second electrode and is formed from two mirror surfaces spaced apart from one another, the distance between the mirror surfaces being configured such that a standing wave is incident in the microcavity nde wave of electromagnetic radiation with the wavelength to be detected is generated, the concentration of the donor compound at least in a region of the photoactive layer facing the first electrode or the concentration of the acceptor compound in at least one region of the photoactive layer facing the first electrode is small that the low concentration compound provides trap states for its associated charge carriers, which cause a photo-induced accumulation of charge carriers associated with the low concentration compound in the region of the photoactive layer facing the first electrode, so that charge carriers associated with the high concentration compound are separated from the first Electrode are injected into the photoactive layer, whereby this type of charge carrier predominates in the component. These charge carriers assigned to the highly concentrated compound are transported to the second electrode.
Die der hoch konzentrierten Verbindung zugeordneten LadungstrĂ€ger werden im Folgenden als âHauptladungstrĂ€gerâ bezeichnet; die der niedrig konzentrierten Verbindung zugeordneten LadungstrĂ€ger als âNicht-HauptladungstrĂ€gerâ. Ist z. B. die photoaktive Schicht so ausgebildet, dass die Konzentration der Akzeptor-MolekĂŒle niedrig im oben ausgefĂŒhrten Sinn ist, sind Löcher die HauptladungstrĂ€ger und Elektronen die Nicht-HauptladungstrĂ€ger.
Das erfindungsgemĂ€Ăe optoelektronische Bauelement ist insofern als spektral selektiv zu bezeichnen, als dass, bedingt durch die Anordnung der photoaktiven Schicht in der MikrokavitĂ€t, die EQE fĂŒr diejenigen einfallenden Wellen, die Resonanzwellen sind, besonders verstĂ€rkt ist. Die WellenlĂ€nge der Resonanzwellen kann durch die Wahl des Abstands der SpiegelflĂ€chen voneinander vorbestimmt werden. Dabei wird der Abstand der SpiegelflĂ€chen voneinander so eingestellt, dass die Resonanzbedingung fĂŒr eine bestimmte WellenlĂ€nge A* erfĂŒllt ist. Diese WellenlĂ€nge A* wird als die âzu detektierende WellenlĂ€ngeâ bezeichnet. Wie oben ausgefĂŒhrt, ist letztendlich die EQE in einem WellenlĂ€ngenbereich um die zu detektierende WellenlĂ€nge erhöht. Das EnergieĂ€quivalent der zu detektierenden WellenlĂ€nge entspricht der Energie eines Photons, welches unter direkter Anregung eines intermolekularen CT-Zustands an einer GrenzflĂ€che zwischen Donor-Verbindung und Akzeptor-Verbindung in der photoaktiven Schicht absorbiert wird. The charge carriers assigned to the highly concentrated compound are referred to below as "main charge carriers"; the charge carriers assigned to the low-concentration compound as "non-main charge carriers". is e.g. For example, if the photoactive layer is formed in such a way that the concentration of the acceptor molecules is low in the sense explained above, holes are the main charge carriers and electrons are the non-main charge carriers. The optoelectronic component according to the invention can be described as spectrally selective in that, due to the arrangement of the photoactive layer in the microcavity, the EQE for those incident waves that are resonant waves is particularly amplified. The wavelength of the resonance waves can be predetermined by choosing the distance between the mirror surfaces. The distance between the mirror surfaces is set in such a way that the resonance condition for a specific wavelength λ* is met. This wavelength λ* is referred to as the "wavelength to be detected". As explained above, the EQE is ultimately increased in a wavelength range around the wavelength to be detected. The energy equivalent of the wavelength to be detected corresponds to the energy of a photon which is absorbed with direct excitation of an intermolecular CT state at an interface between the donor compound and the acceptor compound in the photoactive layer.
Die einfallenden Wellen können von einem dem erfindungsgemĂ€Ăen optoelektronischen Bauelement zugeordneten Beleuchtungssystem emittiert werden. The incident waves can be emitted by an illumination system assigned to the optoelectronic component according to the invention.
Bei einer SpiegelflĂ€che kann es sich um eine spiegelnd ausgebildete FlĂ€che einer Elektrode handeln. Vorzugsweise wird die MikrokavitĂ€t durch die beabstandeten, sich gegenĂŒberliegenden FlĂ€chen der beiden Elektroden des optoelektronischen Bauelements gebildet, wobei die genannten FlĂ€chen der beiden Elektroden in diesem Fall spiegelnd ausgebildet sind. Die SpiegelflĂ€chen weisen eine hohe ReflektivitĂ€t zumindest fĂŒr die zu detektierende WellenlĂ€nge auf. A mirror surface can be a reflective surface of an electrode. The microcavity is preferably formed by the spaced-apart, opposite surfaces of the two electrodes of the optoelectronic component, with the mentioned surfaces of the two electrodes being reflective in this case. The mirror surfaces have a high reflectivity, at least for the wavelength to be detected.
Vorzugsweise sind die sich gegenĂŒberliegenden SpiegelflĂ€chen planparallel zueinander angeordnet. The opposite mirror surfaces are preferably arranged plane-parallel to one another.
Die erste und die zweite Elektrode des optoelektronischen Bauelements, wobei eine der beiden Elektroden als Kathode und die andere der beiden Elektroden als Anode fungiert, sind so ausgebildet, dass zwischen ihnen eine elektrische Gleichspannung anlegbar ist. Die Spannung ist dabei vorzugsweise so gerichtet, dass sich die Nicht-HauptladungstrÀger in einem der ersten Elektrode zugewandten Bereich der photoaktiven Schicht ansammeln und im Wesentlichen nicht in die photoaktive Schicht injiziert werden, wÀhrend die HauptladungstrÀger von der ersten Elektrode in die photoaktive Schicht injiziert werden. An eine als Kathode fungierende erste Elektrode ist vorzugsweise der Pluspol der Spannung anzulegen, so dass Löcher als HauptladungstrÀger aus der Kathode in die photoaktive Schicht injiziert werden, wÀhrend der Minuspol an die dann als Anode fungierende zweite Elektrode anzulegen ist. Eine solche
Spannung mit bevorzugter Polung wird im Folgenden als âSperrspannungâ oder âSpannung in Sperrrichtungâ bezeichnet. The first and the second electrode of the optoelectronic component, one of the two electrodes acting as a cathode and the other of the two electrodes acting as an anode, are designed in such a way that an electrical DC voltage can be applied between them. The voltage is preferably directed in such a way that the non-main charge carriers accumulate in a region of the photoactive layer facing the first electrode and are essentially not injected into the photoactive layer, while the main charge carriers are injected from the first electrode into the photoactive layer. The positive pole of the voltage is preferably applied to a first electrode functioning as a cathode, so that holes are injected as main charge carriers from the cathode into the photoactive layer, while the negative pole is to be applied to the second electrode, which then functions as an anode. Such Voltage with preferred polarity is hereinafter referred to as "reverse voltage" or "reverse-bias voltage".
Eine der beiden Elektroden kann so ausgebildet sein, dass eine Beleuchtung des optoelektronischen Bauelements durch diese Elektrode erfolgen kann. Zum Beispiel kann die zweite Elektrode transparent zumindest fĂŒr die zu detektierende WellenlĂ€nge ausgebildet sein. Falls die Elektrode, durch die die Beleuchtung erfolgen soll, eine spiegelnd ausgebildete FlĂ€che aufweist, die eine SpiegelflĂ€che der MikrokavitĂ€t darstellt, kann die Elektrode teiltransparent zumindest fĂŒr die zu detektierende WellenlĂ€nge ausgebildet sein, so dass sowohl zumindest die zu detektierende WellenlĂ€nge durch die Elektrode transmittieren kann, aber auch von der spiegelnd ausgebildeten FlĂ€che der Elektrode reflektiert wird. One of the two electrodes can be formed in such a way that the optoelectronic component can be illuminated by this electrode. For example, the second electrode can be made transparent at least for the wavelength to be detected. If the electrode through which the illumination is to take place has a reflective surface that represents a mirror surface of the microcavity, the electrode can be designed to be partially transparent at least for the wavelength to be detected, so that at least the wavelength to be detected can be transmitted through the electrode , but is also reflected by the reflective surface of the electrode.
Ein erfindungsgemĂ€Ăes optoelektronisches Bauelement kann mit einer Ausleseeinheit zum Auslesen, bevorzugt auch zur Weiterverarbeitung, elektrischer Signale, die durch das optoelektronische Bauelement erzeugt werden, verbunden sein. An optoelectronic component according to the invention can be connected to a readout unit for reading out, preferably also for further processing, electrical signals that are generated by the optoelectronic component.
Zumindest eine der Elektroden kann mehrstĂŒckig, d. h. aus arrayartig angeordneten Elektrodensegmenten, ausgebildet sein. Voneinander verschiedene Elektrodensegmente können voneinander verschiedenen zu detektierenden WellenlĂ€ngen zugeordnet sein. Das Auslesen der elektrischen Signale erfolgt dann zweckdienlich so, dass die von verschiedenen Elektrodensegmenten abgreifbaren elektrischen Signale diskriminiert werden können, z. B. dadurch, dass jedes Elektrodensegment mit einer separaten Ausleseeinheit verbunden ist. At least one of the electrodes can be multi-piece, i. H. from electrode segments arranged in an array-like manner. Different electrode segments can be assigned different wavelengths to be detected. The electrical signals are then expediently read out in such a way that the electrical signals that can be picked up from different electrode segments can be discriminated, e.g. B. in that each electrode segment is connected to a separate readout unit.
Die photoaktive Schicht des erfindungsgemĂ€Ăen optoelektronischen Bauelements umfasst eine Mischschicht, in der eine Donor-Verbindung (D) und eine Akzeptor-Verbindung (A) gemischt vorliegen (in der Literatur hĂ€ufig als âD:A blendâ bezeichnet). Die Mischschicht stellt einen Misch- HeteroĂŒbergang (bulk heterojunction) dar. The photoactive layer of the optoelectronic component according to the invention comprises a mixed layer in which a donor compound (D) and an acceptor compound (A) are mixed (frequently referred to in the literature as âD:A blendâ). The mixed layer represents a mixed heterojunction (bulk heterojunction).
An der GrenzflĂ€che zwischen einem MolekĂŒl der Donor-Verbindung und einem MolekĂŒl der Akzeptor-Verbindung kann es photoinduziert zur direkten Anregung eines intermolekularen CT- Zustands (auch als âinterchromophorerâ CT-Zustand bezeichnet) kommen. Im Gegensatz zur Anregung von Donor oder Akzeptor durch Absorption eines Photons mit Energien gröĂer oder gleich der EnergielĂŒcke zwischen HOMO und LUMO der jeweiligen Verbindung, wird der intermolekulare CT-Zustand bereits durch ein Photon mit einer Energie, die im Wesentlichen der Energiedifferenz zwischen dem höchsten HOMO und dem niedrigsten LUMO der Materialkombination D:A entspricht, oder sogar geringer sein kann als diese, angeregt.
Bei den bekannten CT-OPD wird fĂŒr die Mischschicht vorzugsweise ein VolumenverhĂ€ltnis D:A gewĂ€hlt, bei dem die GrenzflĂ€che zwischen den beiden Verbindungen in der Mischschicht maximal ist. FĂŒr die typische Materialkombination ZnPc:C6o ist dies bei einem VolumenverhĂ€ltnis von 1:1 bzw. einem Massenanteil von 50 % sowohl fĂŒr die Donor- als auch fĂŒr die Akzeptor- Verbindung, bezogen auf die Gesamtmasse der Mischschicht, der Fall. At the interface between a molecule of the donor compound and a molecule of the acceptor compound, an intermolecular CT state (also referred to as an âinterchromophoricâ CT state) can be photoinduced directly. In contrast to the excitation of donor or acceptor by absorption of a photon with energies greater than or equal to the energy gap between the HOMO and LUMO of the respective compound, the intermolecular CT state is already excited by a photon with an energy essentially equal to the energy difference between the highest HOMO and corresponds to, or even be lower than, the lowest LUMO of the material combination D:A. In the case of the known CT-OPD, a volume ratio D:A is preferably selected for the mixed layer, at which the interface between the two compounds in the mixed layer is at its maximum. For the typical material combination ZnPc:C 6 o, this is the case with a volume ratio of 1:1 or a mass fraction of 50% for both the donor and the acceptor compound, based on the total mass of the mixed layer.
Ăberraschenderweise erweist sich bei dem erfindungsgemĂ€Ăen optoelektronischen Bauelement allerdings ein VolumenverhĂ€ltnis D:A, das deutlich von 1 :1 verschieden ist, als vorteilhaft. Dabei ist entweder die Konzentration bzw. der Massenanteil der Akzeptor-Verbindung zumindest in einem der ersten Elektrode zugewandten Bereich der Mischschicht so gering, dass die Akzeptor- MolekĂŒle als Elektronenfallen wirken, oder die Konzentration bzw. der Massenanteil der Donor- Verbindung in zumindest einem der ersten Elektrode zugewandten Bereich der Mischschicht ist so gering, dass die Donor-MolekĂŒle als Löcherfallen wirken. Als âFalleâ oder âFallenzustandâ wird dabei ein Ort bzw. ein energetischer Zustand bezeichnet, der die Bewegung eines LadungstrĂ€gers durch den Festkörper einschrĂ€nkt. Surprisingly, with the optoelectronic component according to the invention, however, a volume ratio D:A that is significantly different from 1:1 proves to be advantageous. Either the concentration or the mass fraction of the acceptor compound is so low, at least in a region of the mixed layer facing the first electrode, that the acceptor molecules act as electron traps, or the concentration or mass fraction of the donor compound is in at least one of the The area of the mixed layer facing the first electrode is so small that the donor molecules act as hole traps. A âtrapâ or âtrap conditionâ is a location or an energetic condition that restricts the movement of a charge carrier through the solid.
Der aus der niedrigen Konzentration einer der Verbindungen der Mischschicht resultierende Effekt wird im Folgenden am Beispiel einer niedrigen Konzentration der Akzeptor-Verbindung erlĂ€utert. Der Fachmann kann die ErlĂ€uterung ohne Weiteres auf eine Ausgestaltung des erfindungsgemĂ€Ăen Bauelements mit einer niedrigen Konzentration der Donor-Verbindung ĂŒbertragen. The effect resulting from the low concentration of one of the compounds in the mixed layer is explained below using the example of a low concentration of the acceptor compound. The person skilled in the art can readily transfer the explanation to an embodiment of the component according to the invention with a low concentration of the donor compound.
UrsĂ€chlich fĂŒr die Wirkung der niedrig konzentrierten Akzeptor-MolekĂŒle als Elektronenfallen ist der energetische Unterschied des LUMO des Akzeptors zum LUMO des Donors, wobei das LUMO des Akzeptors energetisch niedriger als das LUMO des Donors liegt. Aufgrund der niedrigen Konzentration der Akzeptor-Verbindung zumindest im kathodennahen Bereich der Mischschicht gibt es entsprechend nur sehr wenige Perkolationspfade fĂŒr Elektronen. Wird das optoelektronische Bauelement beleuchtet, so dass sich, durch photoinduzierte Anregung von CT- ZustĂ€nden, LadungstrĂ€gerpaare bilden, kommt es bei Anlegen einer Sperrspannung zwischen Kathode und Anode zu einer AnhĂ€ufung von Elektronen im kathodennahen Bereich der Mischschicht. Das aus der erhöhten Ladungsdichte resultierende elektrische Feld ruft eine Verbiegung der EnergiebĂ€nder im kathodennahen Bereich der Mischschicht hervor, die dazu fĂŒhrt, dass die entgegengesetzten LadungstrĂ€ger, hier also die Löcher, von der Kathode durch die Injektionsbarriere tunneln können. Es werden also Löcher aus der Kathode in die Donor- Phase der Mischschicht injiziert, so dass die Löcheranzahl im Bauelement die Elektronenanzahl
ĂŒbersteigt. Zusammen mit den photoinduzierten Löchern werden die injizierten Löcher dann zur Anode transportiert. The cause of the effect of the low-concentration acceptor molecules as electron traps is the energetic difference between the LUMO of the acceptor and the LUMO of the donor, with the LUMO of the acceptor being lower in energy than the LUMO of the donor. Due to the low concentration of the acceptor compound, at least in the region of the mixed layer close to the cathode, there are accordingly only very few percolation paths for electrons. If the optoelectronic component is illuminated so that charge carrier pairs are formed by photo-induced excitation of CT states, application of a blocking voltage between cathode and anode results in an accumulation of electrons in the area of the mixed layer close to the cathode. The electric field resulting from the increased charge density causes the energy bands to bend in the region of the mixed layer close to the cathode, which means that the opposite charge carriers, in this case the holes, can tunnel from the cathode through the injection barrier. Holes are therefore injected from the cathode into the donor phase of the mixed layer, so that the number of holes in the component increases the number of electrons exceeds. The injected holes are then transported to the anode together with the photo-induced holes.
Dass sich eine derartig niedrige Konzentration einer der Verbindungen der Mischschicht auch in einem CT-OPD als vorteilhaft erweist, ist insofern ĂŒberraschend, als dass die angesprochene niedrige Konzentration, die fĂŒr den PM-Effekt erforderlich ist, die Anzahl der CT-ZustĂ€nde verringert, wodurch ein Zielkonflikt zwischen erhöhter EQE durch den PM-Effekt bei niedriger Konzentration und erhöhter Absorption durch eine gröĂere Anzahl von CT-ZustĂ€nden bei höherer Konzentration (Maximierung der KontaktflĂ€che von Donor und Akzeptor) besteht. That such a low concentration of one of the compounds of the mixed layer also proves to be advantageous in a CT-OPD is surprising in that the mentioned low concentration, which is required for the PM effect, reduces the number of CT states, whereby there is a trade-off between increased EQE from the PM effect at low concentration and increased absorption from a larger number of CT states at higher concentration (maximizing the contact area of donor and acceptor).
Um den beschriebenen vorteilhaften Effekt im erfindungsgemĂ€Ăen optoelektronischen Bauelement auszunutzen, ist es prinzipiell ausreichend, wenn ein der ersten Elektrode, z. B. der Kathode, zugewandter Bereich der photoaktiven Schicht eine ausreichend niedrige Konzentration einer Verbindung, z. B. der Akzeptor-Verbindung, aufweist. Bei dem der ersten Elektrode zugewandten Bereich der photoaktiven Schicht handelt es sich im Sinne dieser Beschreibung um den Bereich der photoaktiven Schicht, der an die erste Elektrode angrenzt, wobei dies auch mittelbar sein kann, also beispielsweise ĂŒber eine oder mehrere zwischen der photoaktiven Schicht und der ersten Elektrode angeordnete Schichten. In order to utilize the advantageous effect described in the optoelectronic component according to the invention, it is in principle sufficient if one of the first electrodes, e.g. B. the cathode, area of the photoactive layer facing a sufficiently low concentration of a compound, z. B. the acceptor compound. In the sense of this description, the area of the photoactive layer facing the first electrode is the area of the photoactive layer that adjoins the first electrode, although this can also be indirect, for example via one or more between the photoactive layer and the layers arranged in the first electrode.
Es muss also nicht notwendigerweise die gesamte photoaktive Schicht eine derart niedrige Konzentration der betreffenden Verbindung aufweisen. Der der ersten Elektrode zugewandte Bereich kann eine Dicke, also eine Ausdehnung im Wesentlichen senkrecht zur OberflĂ€che der ersten Elektrode, aufweisen, die deutlich geringer als die Dicke der photoaktiven Schicht ist, z. B. höchstens 10 % der Dicke der photoaktiven Schicht. Typischerweise kann die Dicke des der ersten Elektrode zugewandten Bereichs zwischen 5 und 10 nm betragen. Die Konzentration der niedrig konzentrierten Verbindung kann von dem der ersten Elektrode zugewandten Bereich in einer zur OberflĂ€che der zweiten Elektrode weisenden Richtung in der photoaktiven Schicht ansteigen, z. B. bis ein VolumenverhĂ€ltnis D:A erreicht ist, bei dem die GrenzflĂ€che zwischen den beiden Verbindungen in der photoaktiven Schicht maximal ist, um den Absorptionsquerschnitt fĂŒr die direkte Anregung von intermolekularen CT-ZustĂ€nden zu erhöhen. Vorzugsweise weist die photoaktive Schicht in einem Bereich, in dem die sich fĂŒr die zu detektierende WellenlĂ€nge in der optischen MikrokavitĂ€t des erfindungsgemĂ€Ăen optoelektronischen Bauelements ausbildende stehende Welle ein rĂ€umliches IntensitĂ€tsmaximum aufweist, ein VolumenverhĂ€ltnis D:A auf, bei dem der Absorptionsquerschnitt fĂŒr die direkte Anregung von intermolekularen CT-ZustĂ€nden möglichst hoch, besonders bevorzugt maximal ist.
Der Anstieg der Konzentration der niedrig konzentrierten Verbindung von einem der ersten Elektrode zugewandten Bereich der photoaktiven Schicht zumindest bis zu einem Bereich der photoaktiven Schicht, der von dem der ersten Elektrode zugewandten Bereich verschieden und nĂ€her als dieser an der zweiten Elektrode angeordnet ist, kann in beliebiger Weise kontinuierlich, z. B. linear, oder diskontinuierlich, z. B. stufenförmig, erfolgen. Es kann aber auch die gesamte photoaktive Schicht mit der erfindungsgemÀà niedrigen Konzentration einer der Verbindungen ausgefĂŒhrt sein, also so, dass die Konzentration der Donor-Verbindung oder die Konzentration der Akzeptor-Verbindung so niedrig ist, dass die niedrig konzentrierte Verbindung FallenzustĂ€nde fĂŒr die ihr zugeordneten LadungstrĂ€ger bereitstellt. It is therefore not necessary for the entire photoactive layer to have such a low concentration of the compound in question. The area facing the first electrode can have a thickness, ie an extension essentially perpendicular to the surface of the first electrode, which is significantly less than the thickness of the photoactive layer, e.g. B. at most 10% of the thickness of the photoactive layer. Typically, the thickness of the area facing the first electrode can be between 5 and 10 nm. The concentration of the low-concentration compound may increase from the region facing the first electrode in a direction towards the surface of the second electrode in the photoactive layer, e.g. B. until a volume ratio D:A is reached, at which the interface between the two compounds in the photoactive layer is maximal, in order to increase the absorption cross section for the direct excitation of intermolecular CT states. Preferably, the photoactive layer has a volume ratio D:A in a region in which the standing wave forming for the wavelength to be detected in the optical microcavity of the optoelectronic component according to the invention has a spatial intensity maximum, in which the absorption cross section for the direct excitation of intermolecular CT states as high as possible, particularly preferably maximum. The increase in the concentration of the low-concentration compound from a region of the photoactive layer facing the first electrode at least up to a region of the photoactive layer which is different from the region facing the first electrode and is arranged closer to the second electrode than this can be in any desired way continuously, e.g. B. linear, or discontinuous, z. B. stepped, take place. However, the entire photoactive layer can also be designed with the low concentration of one of the compounds according to the invention, i.e. in such a way that the concentration of the donor compound or the concentration of the acceptor compound is so low that the low-concentration compound traps states for the compounds assigned to it Charge carrier provides.
Bei dem erfindungsgemĂ€Ăen optoelektronischen Bauelement handelt es sich um den ersten CT- OPD mit Ausnutzung des PM-Effekts. Das erfindungsgemĂ€Ăe optoelektronische Bauelement zeigt, dass unerwarteterweise auch das Erzeugen sehr weniger LadungstrĂ€ger, wie es durch den geringen Absorptionsquerschnitt der CT-ZustĂ€nde hier der Fall ist, ausreichend ist, um den PM- Effekt auszulösen. The optoelectronic component according to the invention is the first CT-OPD utilizing the PM effect. The optoelectronic component according to the invention shows that, unexpectedly, the generation of very few charge carriers, as is the case here due to the small absorption cross section of the CT states, is sufficient to trigger the PM effect.
Um einen VerstĂ€rkungseffekt durch Anordnung der photoaktiven Schicht in einer MikrokavitĂ€t zu erzielen, ist es förderlich, wenn die optischen Verluste in der photoaktiven Schicht klein genug sind, um die konstruktive Interferenz der zwischen den SpiegelflĂ€chen reflektierten Wellen zu ermöglichen. Eine VerstĂ€rkung ist dadurch insbesondere fĂŒr optische ĂbergĂ€nge mit kleinem Absorptionsquerschnitt, wie beispielsweise den CT-Ăbergang, zu erwarten. Eine in diesem Sinne ĂŒbermĂ€Ăig starke Erhöhung der EQE durch den PM-Effekt kann sich daher unter UmstĂ€nden negativ auf das Detektionsverhalten eines CT-OPD auswirken. Ein Ziel der Ausnutzung des PM- Effekts im erfindungsgemĂ€Ăen optoelektronischen Bauelement ist daher nicht vorrangig, die EQE ĂŒber 100 % zu erhöhen. Vielmehr kann vorteilhaft die EQE in WellenlĂ€ngenbereichen mit intrinsisch besonders kleiner EQE erhöht werden. Der Detektionsbereich des erfindungsgemĂ€Ăen Bauelements kann dadurch zu höheren WellenlĂ€ngen ausgeweitet werden, bei denen die EQE bei bekannten CT-OPD zu klein war, um ein detektierbares Signal auszulösen. Durch das erfindungsgemĂ€Ăe optoelektronische Bauelement kann also vorteilhaft bei im Wesentlichen gleichbleibender EQE der WellenlĂ€ngenbereich der mittels des Bauelements detektierbaren elektromagnetischen Strahlung zu höheren WellenlĂ€ngen erweitert werden. In order to achieve an amplification effect by arranging the photoactive layer in a microcavity, it is beneficial if the optical losses in the photoactive layer are small enough to allow constructive interference of the waves reflected between the mirror surfaces. As a result, amplification is to be expected in particular for optical transitions with a small absorption cross section, such as the CT transition. An excessive increase in the EQE in this sense due to the PM effect can therefore have a negative effect on the detection behavior of a CT-OPD. One goal of utilizing the PM effect in the optoelectronic component according to the invention is therefore not primarily to increase the EQE above 100%. Rather, the EQE can advantageously be increased in wavelength ranges with an intrinsically particularly small EQE. As a result, the detection range of the component according to the invention can be extended to higher wavelengths, at which the EQE in known CT-OPD was too small to trigger a detectable signal. The optoelectronic component according to the invention can thus advantageously expand the wavelength range of the electromagnetic radiation that can be detected by means of the component to higher wavelengths while the EQE remains essentially the same.
Durch eine geeignete Erhöhung der Sperrspannung zwischen Kathode und Anode, also erster und zweiter Elektrode, des optoelektronischen Bauelements kann die EQE des optoelektronischen Bauelements erhöht werden.
Ist keine Spannung zwischen der ersten und der zweiten Elektrode des optoelektronischen Bauelements angelegt, wird kein PM-Effekt beobachtet. The EQE of the optoelectronic component can be increased by a suitable increase in the blocking voltage between the cathode and anode, that is to say the first and second electrodes, of the optoelectronic component. If no voltage is applied between the first and the second electrode of the optoelectronic component, no PM effect is observed.
Besonders vorteilhaft kann die zur Ausnutzung des PM-Effekts im erfindungsgemĂ€Ăen optoelektronischen Bauelement notwendige niedrige Konzentration einer der Verbindungen der Mischschicht bei vakuumprozessierten Small-Molecule-Schichten kontrolliert werden. Gleiches gilt fĂŒr ein optional vorhandenes KonzentrationsgefĂ€lle in der photoaktiven Schicht. The low concentration of one of the compounds of the mixed layer, which is necessary for exploiting the PM effect in the optoelectronic component according to the invention, can be controlled particularly advantageously in the case of vacuum-processed small molecule layers. The same applies to an optionally present concentration gradient in the photoactive layer.
FĂŒr die photoaktive Mischschicht eines erfindungsgemĂ€Ăen optoelektronischen Bauelements sind verschiedene Kombinationen von Donor- und Akzeptor-Verbindungen geeignet. Eine typische Kombination ist beispielsweise ZnPc (Zink(ll)-Phtalocyanin) als Donor-Verbindung und CĂO als Akzeptor-Verbindung. Dabei kann beispielsweise Obo in der Mischschicht so niedrig konzentriert sein, dass die C6o-MolekĂŒle FallenzustĂ€nde fĂŒr Elektronen bereitstellen, die eine photoinduzierte AnhĂ€ufung der Elektronen in einem der Kathode zugewandten Bereich der Mischschicht bewirken, so dass Löcher von der Kathode in die Mischschicht injiziert werden, wodurch im Bauelement Löcher als LadungstrĂ€ger gegenĂŒber Elektronen ĂŒberwiegen. Various combinations of donor and acceptor compounds are suitable for the photoactive mixed layer of an optoelectronic component according to the invention. A typical combination is, for example, ZnPc (zinc(II) phthalocyanine) as the donor compound and CO as the acceptor compound. In this case, for example, Obo can be so low in concentration in the mixed layer that the C 6 O molecules provide trap states for electrons, which cause a photo-induced accumulation of electrons in a region of the mixed layer facing the cathode, so that holes are injected from the cathode into the mixed layer so that holes in the component as charge carriers predominate over electrons.
Andere typische D:A-Kombinationen, die fĂŒr die photoaktive Schicht des erfindungsgemĂ€Ăen optoelektronischen Bauelements besonders geeignet sind, sind im Folgenden als nicht abschlieĂende Liste aufgefĂŒhrt: TPDP:C6o; MeO-TPD:C6o; m-MTDATA:C6o; Pentacene:C6o; TAPC:C60; ZnPc:HATNA-CI6; TPDP:HATNA-CI6; MeO-TPD: HATNA-CI6; m-MTDATA:HATNA- Cl6; Pentacene: HATNA-CI6; TAPC:HATNA-CI6. Other typical D:A combinations that are particularly suitable for the photoactive layer of the optoelectronic component according to the invention are listed below as a non-exhaustive list: TPDP:C6o; MeO-TPD:C6o; m-MTDATA:C6o; pentacenes:C6o; TAPC:C 60 ; ZnPc:HATNA-CI 6 ; TPDP:HATNA-CI 6 ; MeO-TPD: HATNA-CI 6 ; m-MTDATA:HATNACl 6 ; Pentacene: HATNA-CI 6 ; TAPC:HATNA-CI 6 .
In einer AusfĂŒhrungsform des erfindungsgemĂ€Ăen optoelektronischen Bauelements betrĂ€gt die Konzentration der Donor-Verbindung in der Mischschicht oder die Konzentration der Akzeptor- Verbindung zumindest in dem der ersten Elektrode zugewandten Bereich der Mischschicht zwischen 0,1 und 10 Gewichtsprozent (Gew%), was bedeutet, dass der Massenanteil der niedrig konzentrierten Verbindung in diesem Bereich der Mischschicht, bezogen auf die Gesamtmasse der Mischschicht in diesem Bereich, zwischen 0,1 und 10 % betrĂ€gt, die Grenzen jeweils eingeschlossen. Vorzugsweise betrĂ€gt der genannte Massenanteil mindestens 1 Gew% und/oder höchstens 5 Gew%. Besonders bevorzugt ist ein Massenanteil von höchstens 4 Gew%, ganz besonders bevorzugt von höchstens 3 Gew%,die Grenzen jeweils eingeschlossen. In one embodiment of the optoelectronic component according to the invention, the concentration of the donor compound in the mixed layer or the concentration of the acceptor compound is at least in the region of the mixed layer facing the first electrode between 0.1 and 10 percent by weight (wt%), which means that the proportion by mass of the low-concentration compound in this area of the mixed layer, based on the total mass of the mixed layer in this area, is between 0.1 and 10%, the limits included in each case. The mass fraction mentioned is preferably at least 1% by weight and/or at most 5% by weight. A mass fraction of at most 4% by weight, very particularly preferably of at most 3% by weight, including the respective limits, is particularly preferred.
Beispielsweise hat sich bei einer Mischschicht enthaltend ZnPc als Donor-Verbindung und Obo als Akzeptor-Verbindung eine Konzentration von Obo von 3 Gew% insofern als besonders vorteilhaft erwiesen, als dass sowohl die EQE als auch die spezifische DefektivitÀt eines
Bauelements aufweisend die genannte Mischschicht zumindest bei der zu detektierenden WellenlĂ€nge gegenĂŒber Bauelementen mit einer Mischschicht der Zusammensetzung ZnPc:C6o mit (in ganzzahligen Schritten variierten) niedrigeren und höheren Konzentrationen von Obo maximal ist. Die spezifische DefektivitĂ€t kann als ein normiertes Signal-Rausch-VerhĂ€ltnis aufgefasst werden, wobei, auf dem Fachmann bekannte Weise, neben der EQE auch z. B. der Dunkelstrom des Bauelements berĂŒcksichtigt wird. For example, in a mixed layer containing ZnPc as the donor compound and Obo as the acceptor compound, a concentration of 3% by weight of Obo has proven to be particularly advantageous in that both the EQE and the specific defectivity of a Component comprising said mixed layer at least at the wavelength to be detected compared to components with a mixed layer of the composition ZnPc: C 6 o with (varying in integral steps) lower and higher concentrations of Obo. The specific defectivity can be interpreted as a normalized signal-to-noise ratio, where, in a manner known to those skilled in the art, z. B. the dark current of the component is taken into account.
Durch Ausnutzung des PM-Effekts ist die EQE eines erfindungsgemĂ€Ăen optoelektronischen Bauelements, insbesondere mit im obigen Sinne optimierten KonzentrationsverhĂ€ltnis, im Vergleich mit einem konventionellen CT-OPD, der als photoaktive Schicht eine Mischschicht aus der gleichen Donor- und Akzeptor-Verbindung mit einem fĂŒr die photoinduzierte Anregung eines intermolekularen CT-Zustands optimierten KonzentrationsverhĂ€ltnis aufweist, auch im höheren NIR-WellenlĂ€ngenbereich, in dem die EQE des konventionellen CT-OPD klein ist, signifikant erhöht, z. B. um einen Faktor zwischen 10 und 100. Bei einigen zu detektierenden WellenlĂ€nge kann ein erfindungsgemĂ€Ăes optoelektronisches Bauelement, insbesondere mit im obigen Sinne optimierten KonzentrationsverhĂ€ltnis, eine EQE von deutlich ĂŒber 100 % (z. B. 1000 %) aufweisen. By utilizing the PM effect, the EQE of an optoelectronic component according to the invention, in particular with a concentration ratio optimized in the above sense, is compared with a conventional CT-OPD, which has a mixed layer of the same donor and acceptor compound as the photoactive layer with a photoinduced excitation of an intermolecular CT state has an optimized concentration ratio, also in the higher NIR wavelength range, in which the EQE of the conventional CT-OPD is small, e.g. B. by a factor between 10 and 100. For some wavelengths to be detected, an optoelectronic component according to the invention, in particular with a concentration ratio optimized in the above sense, can have an EQE of significantly more than 100% (eg 1000%).
Ein erfindungsgemĂ€Ăes optoelektronisches Bauelement kann zusĂ€tzlich zu der photoaktiven Schicht weitere Schichten aufweisen, die ebenfalls zwischen den beiden Elektroden und/oder zwischen den SpiegelflĂ€chen der MikrokavitĂ€t angeordnet sind. In addition to the photoactive layer, an optoelectronic component according to the invention can have further layers which are also arranged between the two electrodes and/or between the mirror surfaces of the microcavity.
Prinzipiell kann die zu detektierende WellenlĂ€nge eines CT-OPD durch eine Ănderung der optischen WeglĂ€nge zwischen den SpiegelflĂ€chen variiert werden, wobei die Variation nicht ĂŒber die Dicke der photoaktiven Schicht erfolgen muss, sondern ĂŒber eine Anordnung von mindestens einer zumindest fĂŒr die zu detektierende WellenlĂ€nge weitgehend transparenten Abstandshalterschicht zwischen den SpiegelflĂ€chen erfolgen kann. AusfĂŒhrungsformen des erfindungsgemĂ€Ăen optoelektronischen Bauelements können solch eine Anordnung von optischen Abstandshalterschichten aufweisen. In principle, the wavelength to be detected of a CT-OPD can be varied by changing the optical path length between the mirror surfaces, whereby the variation does not have to be via the thickness of the photoactive layer, but via an arrangement of at least one layer that is largely transparent at least for the wavelength to be detected Spacer layer can be done between the mirror surfaces. Embodiments of the optoelectronic component according to the invention can have such an arrangement of optical spacer layers.
In einer AusfĂŒhrungsform des erfindungsgemĂ€Ăen optoelektronischen Bauelements ist zwischen der zweiten Elektrode und der photoaktiven Mischschicht eine zumindest fĂŒr die zu detektierende WellenlĂ€nge transparente Abstandshalterschicht angeordnet, so dass die Mischschicht nĂ€her an der ersten, also an der LadungstrĂ€ger injizierenden, Elektrode als an der zweiten Elektrode angeordnet ist. Vorteilhaft kann mit Hilfe dieser AusfĂŒhrungsform die LadungstrĂ€gerinjektion von der ersten Elektrode in die photoaktive Schicht weiter verstĂ€rkt werden.
In einer weiteren AusfĂŒhrungsform des erfindungsgemĂ€Ăen optoelektronischen Bauelements ist zwischen der ersten Elektrode und der photoaktiven Schicht mindestens eine erste LadungstrĂ€ger-Blockierungsschicht angeordnet. Je nach zu blockierender LadungstrĂ€gersorte kann die Blockierungsschicht eine Elektronenblockierungsschicht (EBL) oder eine Löcherblockierungsschicht (HBL) sein. Die erste Blockierungsschicht kann dazu dienen, im nicht- beleuchteten Zustand des optoelektronischen Bauelements den Transport der von der ersten Elektrode injizierten, der hoch konzentrierten Verbindung zugeordneten LadungstrĂ€ger (HauptladungstrĂ€ger) zur ersten Elektrode abzuschwĂ€chen. Beispielsweise kann bei einer photoaktiven Schicht mit erfindungsgemÀà niedriger Konzentration der Akzeptor-Verbindung eine HBL zwischen der photoaktiven Schicht und der ersten Elektrode (Kathode) angeordnet sein. Vorteilhaft kann mittels dieser AusfĂŒhrungsform der Dunkelstrom des Bauelements verringert werden. Die Dicke der ersten Blockierungsschicht ist dabei so, insbesondere so gering, zu wĂ€hlen, dass eine Injektion der blockierten LadungstrĂ€ger, z. B. im Fall einer HBL der Löcher, in die photoaktive Schicht nicht verhindert wird. In one embodiment of the optoelectronic component according to the invention, a spacer layer that is transparent at least for the wavelength to be detected is arranged between the second electrode and the photoactive mixed layer, so that the mixed layer is arranged closer to the first electrode, i.e. to the charge carrier injecting electrode, than to the second electrode . Advantageously, the charge carrier injection from the first electrode into the photoactive layer can be further intensified with the aid of this embodiment. In a further embodiment of the optoelectronic component according to the invention, at least one first charge carrier blocking layer is arranged between the first electrode and the photoactive layer. Depending on the type of charge carrier to be blocked, the blocking layer can be an electron blocking layer (EBL) or a hole blocking layer (HBL). In the non-illuminated state of the optoelectronic component, the first blocking layer can serve to weaken the transport of the charge carriers (main charge carriers) injected by the first electrode and assigned to the highly concentrated compound to the first electrode. For example, in the case of a photoactive layer with a low concentration of the acceptor compound according to the invention, an HBL can be arranged between the photoactive layer and the first electrode (cathode). The dark current of the component can advantageously be reduced by means of this embodiment. The thickness of the first blocking layer is to be selected in such a way, in particular so small, that an injection of the blocked charge carriers, e.g. in the case of HBL of the holes into the photoactive layer is not prevented.
Dem Fachmann ist klar, dass die sich im Schichtstapel ausbildende Lage der Energieniveaus dafĂŒr entscheidend ist, ob eine Schicht effektiv zur Blockierung oder zum Transport einer bestimmten LadungstrĂ€gersorte fĂŒhrt. It is clear to the person skilled in the art that the position of the energy levels that forms in the layer stack is decisive for whether a layer effectively leads to the blocking or to the transport of a specific type of charge carrier.
Die erste Blockierungsschicht fĂŒr die der hoch konzentrierten Verbindung zugeordneten LadungstrĂ€ger kann als Transportschicht fĂŒr die andere, der niedrig konzentrierten Verbindung zugeordnete LadungstrĂ€gersorte fungieren. Je nach zu transportierender LadungstrĂ€gersorte kann die Transportschicht eine Elektronentransportschicht (ETL) oder eine Löchertransportschicht (HTL) sein. Beispielsweise kann eine HBL als ETL wirken. The first blocking layer for the charge carriers associated with the high-concentration compound can function as a transport layer for the other type of charge carrier associated with the low-concentration compound. Depending on the type of charge carrier to be transported, the transport layer can be an electron transport layer (ETL) or a hole transport layer (HTL). For example, an HBL can act as an ETL.
Eine solche zwischen der photoaktiven Schicht und der ersten Elektrode angeordnete Transportschicht ist so auszufĂŒhren, dass keine effiziente Extraktion der transportierten LadungstrĂ€ger aus der photoaktiven Schicht zur ersten Elektrode erfolgt. Beispielsweise wirkt eine zwischen der Kathode und der Mischschicht angeordnete HBL als ETL, wobei die ETL so ausgefĂŒhrt ist, dass die Beweglichkeit von Elektronen in der ETL gering genug ist, um eine geringe Extraktion von Elektronen zu gewĂ€hrleisten. Diese Bedingung kann z. B. dadurch erfĂŒllt sein, dass die ETL undotiert ausgefĂŒhrt ist. Such a transport layer arranged between the photoactive layer and the first electrode is to be designed in such a way that the transported charge carriers are not efficiently extracted from the photoactive layer to the first electrode. For example, an HBL placed between the cathode and the mixed layer acts as an ETL, where the ETL is designed such that the mobility of electrons in the ETL is low enough to ensure low extraction of electrons. This condition can e.g. B. be fulfilled in that the ETL is undoped.
In einer weiteren AusfĂŒhrungsform des erfindungsgemĂ€Ăen optoelektronischen Bauelements ist zwischen der ersten Elektrode und der photoaktiven Schicht mindestens eine zweite
LadungstrĂ€ger-Blockierungsschicht angeordnet, die, im Gegensatz zur ersten Blockierungsschicht, den Transport der der niedrig konzentrierten Verbindung zugeordneten LadungstrĂ€ger zur ersten Elektrode hin in Relation zu einem erfindungsgemĂ€Ăen optoelektronischen Bauelement ohne zweite Blockierungsschicht zusĂ€tzlich abschwĂ€cht und so zu einer VerstĂ€rkung der photoinduzierten AnhĂ€ufung der der niedrig konzentrierten Verbindung zugeordneten LadungstrĂ€ger fĂŒhrt. Die Anordnung einer zweiten Blockierungsschicht trĂ€gt damit zu einer VerstĂ€rkung des Photomultiplikationseffekts im Bauelement bei. In a further embodiment of the optoelectronic component according to the invention, there is at least a second electrode between the first electrode and the photoactive layer Charge carrier blocking layer is arranged, which, in contrast to the first blocking layer, additionally weakens the transport of the charge carriers associated with the low-concentration compound to the first electrode in relation to an optoelectronic component according to the invention without a second blocking layer and thus leads to an increase in the photo-induced accumulation of the low-concentration Connection associated charge carrier leads. The arrangement of a second blocking layer thus contributes to an increase in the photomultiplication effect in the component.
Ist die niedrig konzentrierte Verbindung der Akzeptor, sollen also Elektronen akkumuliert werden, ist die zweite Blockierungsschicht eine EBL. Im Fall des Donors als niedrig konzentrierter Verbindung ist die zweite Blockierungsschicht eine HBL. Dem Fachmann ist klar, dass das Material der zweiten Blockierungsschicht so zu wĂ€hlen ist, dass die Energieniveaus, im Fall zu blockierender Elektronen das LUMO, im Fall zu blockierender Löcher das HOMO, in Relation zur Lage der Energieniveaus der photoaktiven Schicht eine Blockierung der gewĂŒnschten LadungstrĂ€gersorte bewirken. If the low concentration compound is the acceptor, i.e. electrons are to be accumulated, the second blocking layer is an EBL. In the case of the low-concentration compound donor, the second blocking layer is an HBL. It is clear to the person skilled in the art that the material of the second blocking layer must be selected in such a way that the energy levels, in the case of electrons to be blocked the LUMO, in the case of holes to be blocked the HOMO, in relation to the position of the energy levels of the photoactive layer blocking the desired type of charge carrier effect.
Das erfindungsgemĂ€Ăe optoelektronische Bauelement kann zumindest eine erste oder zumindest eine zweite oder zumindest eine erste und zumindest eine zweite Blockierungsschicht aufweisen. Im letzteren Fall ist zweckmĂ€Ăigerweise die zweite Blockierungsschicht an der photoaktiven Schicht und die erste Blockierungsschicht an der ersten Elektrode angeordnet. The optoelectronic component according to the invention can have at least a first or at least a second or at least a first and at least a second blocking layer. In the latter case, the second blocking layer is expediently arranged on the photoactive layer and the first blocking layer on the first electrode.
In einer weiteren AusfĂŒhrungsform des erfindungsgemĂ€Ăen optoelektronischen Bauelements ist zwischen der zweiten Elektrode und der photoaktiven Schicht zumindest eine Transportschicht fĂŒr die von der ersten Elektrode injizierten, der hoch konzentrierten Verbindung zugeordneten LadungstrĂ€ger angeordnet, die als Blockierungsschicht fĂŒr die der niedrig konzentrierten Verbindung zugeordneten LadungstrĂ€ger wirken kann, um den Transport dieser LadungstrĂ€ger zur zweiten Elektrode weitgehend zu unterbinden. Beispielsweise kann eine HTL zwischen der photoaktiven Schicht und der Anode angeordnet sein, die als EBL wirkt. In a further embodiment of the optoelectronic component according to the invention, at least one transport layer for the charge carriers injected by the first electrode and associated with the highly concentrated compound is arranged between the second electrode and the photoactive layer, which transport layer can act as a blocking layer for the charge carriers associated with the low-concentrated compound. to largely prevent the transport of these charge carriers to the second electrode. For example, an HTL can be placed between the photoactive layer and the anode, which acts as an EBL.
Des Weiteren kann ein erfindungsgemĂ€Ăes optoelektronisches Bauelement optische Eingangsfilter aufweisen, um ein schmalbandiges Ausgangssignal im Bereich der zu detektierenden WellenlĂ€nge zu erhalten. Furthermore, an optoelectronic component according to the invention can have optical input filters in order to obtain a narrow-band output signal in the range of the wavelength to be detected.
Das erfindungsgemĂ€Ăe optoelektronische Bauelement kann auf einem Substrat angeordnet sein, das steif, teilflexibel oder flexibel sein kann. Insbesondere ist es zweckdienlich, das Substrat transparent zumindest fĂŒr die zu detektierende WellenlĂ€nge auszufĂŒhren, um das
optoelektronische Bauelement durch das Substrat hindurch beleuchten zu können. Das optoelektronische Bauelement kann eine Verkapselung aufweisen, um das Einwirken schĂ€dlicher UmwelteinflĂŒsse zu vermindern. The optoelectronic component according to the invention can be arranged on a substrate which can be rigid, partially flexible or flexible. In particular, it is expedient to make the substrate transparent at least for the wavelength to be detected in order to to be able to illuminate the optoelectronic component through the substrate. The optoelectronic component can have an encapsulation in order to reduce the effects of harmful environmental influences.
Die Erfindung betrifft auĂerdem ein Verfahren zur spektral selektiven Detektion elektromagnetischer Strahlung, welches zumindest folgende Verfahrensschritte aufweist: a. Bereitstellen eines erfindungsgemĂ€Ăen optoelektronischen Bauelements; b. Beleuchten des optoelektronischen Bauelements mit einer einfallenden Welle der elektromagnetischen Strahlung mit einer zu detektierenden WellenlĂ€nge und Erzeugung freier LadungstrĂ€ger durch direkte Anregung und Dissoziation des intermolekularen Ladungstransferzustands an einer GrenzflĂ€che zwischen Donor- Verbindung und Akzeptor-Verbindung in der photoaktiven Schicht des optoelektronischen Bauelements; c. Anlegen einer elektrischen Spannung an die Elektroden des optoelektronischen Bauelements, wobei die elektrische Spannung so gerichtet ist, dass sich die der niedrig konzentrierten Verbindung dessen photoaktiver Schicht zugeordneten LadungstrĂ€ger in einem der ersten Elektrode zugewandten Bereich der photoaktiven Schicht anhĂ€ufen; d. AnhĂ€ufung von der niedrig konzentrierten Verbindung zugeordnetenThe invention also relates to a method for the spectrally selective detection of electromagnetic radiation, which has at least the following method steps: a. Providing an optoelectronic component according to the invention; b. illuminating the optoelectronic component with an incident wave of electromagnetic radiation having a wavelength to be detected and generating free charge carriers by direct excitation and dissociation of the intermolecular charge transfer state at an interface between donor compound and acceptor compound in the photoactive layer of the optoelectronic component; c. Application of an electrical voltage to the electrodes of the optoelectronic component, the electrical voltage being directed in such a way that the charge carriers associated with the low-concentration compound of its photoactive layer accumulate in a region of the photoactive layer facing the first electrode; i.e. Accumulation associated with the low concentrated compound
LadungstrÀgern in einem der ersten Elektrode zugewandten Bereich der photoaktiven Schicht des optoelektronischen Bauelements; e. Injektion von der hoch konzentrierten Verbindung zugeordneten LadungstrÀgern von der ersten Elektrode in die photoaktive Schicht des optoelektronischen Bauelements; f. Transport der der hoch konzentrierten Verbindung zugeordneten LadungstrÀger und der durch Beleuchtung erzeugten LadungstrÀger gleichen Typs zur zweiten Elektrode des optoelektronischen Bauelements und Erzeugen eines elektrischen Signals. charge carriers in a region of the photoactive layer of the optoelectronic component facing the first electrode; e. injecting charge carriers associated with the highly concentrated compound from the first electrode into the photoactive layer of the optoelectronic component; f. Transport of the charge carriers assigned to the highly concentrated compound and of the charge carriers of the same type generated by illumination to the second electrode of the optoelectronic component and generation of an electrical signal.
Weist das erfindungsgemĂ€Ăe optoelektronische Bauelement eine niedrige Konzentration der Akzeptor-Verbindung in zumindest in einem der Kathode zugewandten Bereich der photoaktiven Schicht auf, kommt es unter Beleuchtung des optoelektronischen Bauelements und bei einer in Sperrrichtung an die Elektroden angelegten Spannung (Pluspol an der Kathode, Minuspol an der Anode) zu einer AnhĂ€ufung von Elektronen in dem der Kathode zugewandten Bereich der photoaktiven Schicht und infolgedessen zur Injektion von Löchern aus der Kathode in die
photoaktive Schicht. Die zusÀtzlichen, injizierten Löcher werden mit den photoinduzierten, nach Dissoziation der durch direkte Anregung des intermolekularen CT-Zustands an einer GrenzflÀche zwischen Donor-Verbindung und Akzeptor-Verbindung in der photoaktiven Schicht erzeugten LadungstrÀgerpaare vorhandenen Löcher zur Anode transportiert. If the optoelectronic component according to the invention has a low concentration of the acceptor compound in at least one region of the photoactive layer facing the cathode, it occurs when the optoelectronic component is illuminated and a voltage is applied to the electrodes in the reverse direction (positive pole on the cathode, negative pole on the anode) to an accumulation of electrons in the region of the photoactive layer facing the cathode and consequently to the injection of holes from the cathode into the photoactive layer. The additional injected holes are transported to the anode with the photoinduced holes present after dissociation of the charge carrier pairs generated by direct excitation of the intermolecular CT state at an interface between donor compound and acceptor compound in the photoactive layer.
Diese fĂŒr den Fall einer niedrigen Akzeptor-Verbindung ausgefĂŒhrte ErlĂ€uterung des erfindungsgemĂ€Ăen Verfahrens kann der Fachmann ohne Weiteres auf eine Ausgestaltung des erfindungsgemĂ€Ăen Bauelements mit einer niedrigen Konzentration der Donor-Verbindung ĂŒbertragen. This explanation of the method according to the invention, which is given for the case of a low acceptor compound, can easily be transferred by a person skilled in the art to an embodiment of the component according to the invention with a low concentration of the donor compound.
Weist das erfindungsgemĂ€Ăe optoelektronische Bauelement mindestens eine zweite Blockierungsschicht auf, die zur Blockierung der der niedrig konzentrierten Verbindung zugeordneten Nicht-HauptladungstrĂ€ger ausgebildet und zwischen der photoaktiven Schicht und der ersten Elektrode angeordnet ist, findet eine AnhĂ€ufung dieser LadungstrĂ€ger in Verfahrensschritt c. zusĂ€tzlich an dieser Blockierungsschicht statt. If the optoelectronic component according to the invention has at least one second blocking layer which is designed to block the non-main charge carriers associated with the low-concentration compound and is arranged between the photoactive layer and the first electrode, these charge carriers accumulate in method step c. additionally at this blocking layer.
Im Rahmen dieser Beschreibung wird im Sinne der KĂŒrze der Begriff "mindestens ein(e)" verwendet, welcher bedeuten kann: eins, genau eins, mehrere (z. B. genau zwei, oder mehr als zwei), viele (z. B. genau drei oder mehr als drei), etc. Dabei muss âmehrere" oder âvieleâ nicht unbedingt bedeuten, dass es mehrere oder viele identische Elemente gibt, sondern mehrere oder viele im Wesentlichen funktional gleiche Elemente. In the context of this description, the term "at least one" is used for brevity, which can mean: one, exactly one, several (e.g. exactly two, or more than two), many (e.g. exactly three or more than three), etc. "Several" or "many" does not necessarily mean that there are several or many identical elements, but rather several or many essentially functionally identical elements.
Die Erfindung ist nicht auf die dargestellten und beschriebenen AusfĂŒhrungsformen beschrĂ€nkt, sondern umfasst auch alle im Sinne der Erfindung gleich wirkenden AusfĂŒhrungsformen. Ferner ist die Erfindung auch nicht auf die speziell beschriebenen Merkmalskombinationen beschrĂ€nkt, sondern kann auch durch jede beliebige andere Kombination von bestimmten Merkmalen aller insgesamt offenbarten Einzelmerkmale definiert sein, sofern sich die Einzelmerkmale nicht gegenseitig ausschlieĂen, oder eine spezifische Kombination von Einzelmerkmalen nicht explizit ausgeschlossen ist. The invention is not limited to the illustrated and described embodiments, but also includes all embodiments that have the same effect within the meaning of the invention. Furthermore, the invention is not limited to the combinations of features specifically described, but can also be defined by any other combination of specific features of all individual features disclosed overall, provided that the individual features are not mutually exclusive, or a specific combination of individual features is not explicitly excluded.
Die Erfindung wird im Folgenden durch AusfĂŒhrungsbeispiele anhand von Figuren erlĂ€utert, ohne auf diese beschrĂ€nkt zu sein.
Dabei zeigt die The invention is explained below using exemplary embodiments with reference to figures, without being restricted to these. The
Fig. laden Schichtaufbau eines erfindungsgemĂ€Ăen optoelektronischen Bauelements in einer ersten AusfĂŒhrungsform; 1 shows the layer structure of an optoelectronic component according to the invention in a first embodiment;
Fig. 1b den Schichtaufbau eines erfindungsgemĂ€Ăen optoelektronischen Bauelements in einer zweiten AusfĂŒhrungsform; 1b shows the layer structure of an optoelectronic component according to the invention in a second embodiment;
Fig. 1c den Schichtaufbau eines erfindungsgemĂ€Ăen optoelektronischen Bauelements in einer dritten AusfĂŒhrungsform; 1c shows the layer structure of an optoelectronic component according to the invention in a third embodiment;
Fig. 1dden Schichtaufbau eines erfindungsgemĂ€Ăen optoelektronischen Bauelements in einer vierten AusfĂŒhrungsform; 1d shows the layer structure of an optoelectronic component according to the invention in a fourth embodiment;
Fig. 2 ein schematisches Energiediagramm fĂŒr das erfindungsgemĂ€Ăe optoelektronische Bauelement der Fig. 1a; FIG. 2 shows a schematic energy diagram for the optoelectronic component according to the invention from FIG. 1a;
Fig. 3 die WellenlĂ€ngenabhĂ€ngigkeit der EQE eines erfindungsgemĂ€Ăen optoelektronischen Bauelements bei verschiedenen LĂ€ngen L der optischen MikrokavitĂ€t. 3 shows the wavelength dependency of the EQE of an optoelectronic component according to the invention for different lengths L of the optical microcavity.
Die Fig. 1a - d zeigen jeweils schematisch den Schichtaufbau eines erfindungsgemĂ€Ăen optoelektronischen Bauelements 1, T, 1â,1ââ. Das optoelektronische Bauelement 1, T, 1â,1ââ weist eine photoaktive Schicht 2 auf, die als eine Mischschicht aus einer Donor-Verbindung, z. B. ZnPc, und einer Akzeptor-Verbindung, z. B. Obo, ausgebildet ist, wobei die Konzentration, im Sinne des Massenanteils, von Obo in der Mischschicht sehr viel geringer ist als die Konzentration von ZnPc. Beispielsweise betrĂ€gt der Massenanteil von Obo in der Mischschicht 3 %. Die photoaktive Schicht 2 ist zwischen zwei sich beabstandet gegenĂŒberliegenden SpiegelflĂ€chen 310, 320 angeordnet. Die SpiegelflĂ€chen 310, 320 sind zwischen zwei Elektroden 31, 32 angeordnet. Der Schichtaufbau ist auf einem Substrat 4 aufgebracht. 1a-d each show a schematic of the layer structure of an optoelectronic component 1, T, 1", 1'" according to the invention. The optoelectronic component 1, T, 1", 1"" has a photoactive layer 2, which is a mixed layer made of a donor compound, e.g. B. ZnPc, and an acceptor compound, z. B. Obo, wherein the concentration, in terms of mass fraction, of Obo in the mixed layer is much lower than the concentration of ZnPc. For example, the mass fraction of Obo in the mixed layer is 3%. The photoactive layer 2 is arranged between two mirror surfaces 310, 320 located opposite one another at a distance. The mirror surfaces 310, 320 are arranged between two electrodes 31, 32. The layer structure is applied to a substrate 4 .
Die erste Elektrode, die Top-Elektrode, fungiert als Kathode 31, die zweite Elektrode, die Bottom- Elektrode, als Anode 32. Zwischen Kathode 31 und Anode 32 ist eine Spannung in Sperrrichtung anlegbar, d. h. der Pluspol ist an die Kathode 31 und der Minuspol an die Anode 32 angelegt. Die Elektroden 31, 32 können aus dem gleichen Material bestehen oder aus voneinander verschiedenen Materialien. Die Elektroden 31, 32 können z. B. aus einem Metall bestehen, z. B. Silber, Aluminium, etc. Ein typischer oxidischer Werkstoff fĂŒr die Anode 32 kann ITO (Indiumzinnoxid) sein. Die SpiegelflĂ€chen 310, 320 können spiegelnd ausgebildete FlĂ€chen der Elektroden 31, 32 oder von den Elektroden 31, 32 separate Schichten sein. Das Beleuchtungssystem (nicht dargestellt) zur Beleuchtung des optoelektronischen Bauelements 1, T, 1â, Tâ kann substratseitig angeordnet sein, so dass die Beleuchtung der photoaktiven Schicht 2 durch das Substrat 4, die Bottom-Elektrode 32 und die an der Bottom-Elektrode angeordnete
SpiegelflĂ€che 320 erfolgt (Beleuchtungsrichtung 100). Die genannten Schichten mĂŒssen also zumindest teiltransparent fĂŒr die mittels des optoelektronischen Bauelements 1 , T, 1â, Tâ zu detektierende WellenlĂ€nge ausgebildet sein. Die AbhĂ€ngigkeit der zu detektierenden WellenlĂ€nge von den Dicken der einzelnen Schichten und den verwendeten Materialien kann ĂŒber T ransfermatrix-Simulationen ausgewertet werden. The first electrode, the top electrode, acts as cathode 31, the second electrode, the bottom electrode, as anode 32. Between cathode 31 and anode 32, a voltage can be applied in the reverse direction, ie the positive pole is connected to the cathode 31 and the Negative pole applied to the anode 32. The electrodes 31, 32 can consist of the same material or of different materials. The electrodes 31, 32 can, for. B. consist of a metal, z. B. silver, aluminum, etc. A typical oxidic material for the anode 32 can be ITO (indium tin oxide). The mirror surfaces 310, 320 can be surfaces of the electrodes 31, 32 designed to be reflective or layers that are separate from the electrodes 31, 32. The illumination system (not shown) for illuminating the optoelectronic component 1, T, 1", "T" can be arranged on the substrate side, so that the illumination of the photoactive layer 2 through the substrate 4, the bottom electrode 32 and the bottom electrode arranged Mirror surface 320 takes place (illumination direction 100). The layers mentioned must therefore be at least partially transparent for the wavelength to be detected by means of the optoelectronic component 1, T, 1", T". The dependence of the wavelength to be detected on the thickness of the individual layers and the materials used can be evaluated using transfer matrix simulations.
Das in Fig. 1a gezeigte optoelektronische Bauelement 1 kann z. B. folgenden Schichtaufbau aufweisen, wobei das Material und die Dicke der Schicht jeweils in Klammern angegeben sind: Substrat 4 (Glas, 1 ,1 mm) - teiltransparente Bottom-Elektrode 32 mit spiegelnd ausgebildeter FlĂ€che 320 (Ag, 25 nm) - photoaktive Schicht 2 (ZnPc:C6o (3 Gew%), 400 nm) - reflektierende Top-Elektrode 31 mit spiegelnd ausgebildeter FlĂ€che 310 (Ag, 100 nm). The optoelectronic component 1 shown in FIG. 1a can, for. B. have the following layer structure, with the material and the thickness of the layer being given in brackets: substrate 4 (glass, 1.1 mm)âpartially transparent bottom electrode 32 with a reflective surface 320 (Ag, 25 nm)âphotoactive layer 2 (ZnPc:C 6 O (3% by weight), 400 nm)âreflective top electrode 31 with a reflective surface 310 (Ag, 100 nm).
Die EQE des optoelektronischen Bauelement 1 mit dem genannten Schichtaufbau zeigt einen schmalen Peak (FWHM ca. 23 nm) bei ca. 880 nm. The EQE of the optoelectronic component 1 with the layer structure mentioned shows a narrow peak (FWHM approx. 23 nm) at approx. 880 nm.
Das in Fig. 1b gezeigte optoelektronische Bauelement T weist zusÀtzlich zum Schichtaufbau des optoelektronischen Bauelements 1 eine Löcherblockierungsschicht (HBL) 5 auf, die zwischen der photoaktiven Schicht 2 und der Top-Elektrode/Kathode 31 mit SpiegelflÀche 310 angeordnet ist. Bei der HBL kann es sich z. B. um eine 10 nm dicke Schicht bestehend aus HATNA-CI6 handeln, vorzugsweise aus undotiertem HATNA-CI6, um nur schwach elektronenleitend zu wirken. In addition to the layered structure of the optoelectronic component 1 , the optoelectronic component T shown in FIG. The HBL can be e.g. B. be a 10 nm thick layer consisting of HATNA-CI 6 , preferably undoped HATNA-CI 6 to act only weakly electron-conducting.
Das in Fig. 1 c gezeigte optoelektronische Bauelement 1 â weist zusĂ€tzlich zum Schichtaufbau des optoelektronischen Bauelements T eine Löchertransportschicht (HTL) 6 auf, die zwischen der photoaktiven Schicht 2 und der Bottom-Elektrode/Anode 32 mit SpiegelflĂ€che 320 angeordnet ist und zusĂ€tzlich elektronenblockierend wirkt. Bei der HTL kann es sich z. B. um eine 10 nm dicke dotierte Schicht bestehend aus MeO-TPD:F6-TCNNQ handeln. In addition to the layer structure of the optoelectronic component T, the optoelectronic component 1âł shown in FIG. 1c has a hole transport layer (HTL) 6, which is arranged between the photoactive layer 2 and the bottom electrode/anode 32 with mirror surface 320 and also has an electron-blocking effect . The HTL can be e.g. B. be a 10 nm thick doped layer consisting of MeO-TPD:F 6 -TCNNQ.
Das optoelektronische Bauelement Tâ der Fig. 1d weist zusĂ€tzlich zum Schichtaufbau des optoelektronischen Bauelements 1â eine Elektronenblockierungsschicht (EBL) 7 auf, die zwischen der photoaktiven Schicht 2 und der HBL 5 angeordnet ist und der Akkumulation von Elektronen also den der niedrig konzentrierten Akzeptor-Verbindung Obo zugeordneten LadungstrĂ€gern, im der Top-Elektrode/Kathode 31 zugewandten Bereich der photoaktiven Schicht 2 dient. Bei der EBL 6 kann es sich z. B. um eine 10 nm dicke Schicht NTCDA oder HAT(CN)6 handeln.
Die Fig. 2 zeigt auf schematische Weise ein Energiediagramm fĂŒr ein optoelektronisches Bauelement mit einem Schichtaufbau wie in Fig. 1a unter Beleuchtung mit elektromagnetischer Strahlung und bei einer in Sperrrichtung an die Elektroden des optoelektronischen Bauelements angelegten Spannung. Durch Beleuchtung des optoelektronisches Bauelements mit elektromagnetischer Strahlung kann ein CT-Zustand in der photoaktiven Schicht des optoelektronischen Bauelements durch ein Photon, dessen Energie z. B. der Differenz zwischen dem HOMO der Donor-Verbindung 73 und dem LUMO der Akzeptor-Verbindung 74 in der photoaktiven Schicht entspricht, unter Bildung eines LadungstrĂ€gerpaars 80 angeregt werden. Nach der Dissoziation des LadungstrĂ€gerpaars in freie LadungstrĂ€ger hĂ€ufen sich Elektronen 81 im kathodennahen Bereich der photoaktiven Schicht an, da sich aufgrund der niedrigen Konzentration der Akzeptor-Verbindung in der photoaktiven Schicht nur wenige Perkolationspfade fĂŒr Elektronen bieten. Aufgrund des durch die Anreicherung der Elektronen 81 im kathodennahen Bereich der photoaktiven Schicht entstehende elektrische Feld kommt es zur dargestellten Verbiegung der Energieniveaus HOMO der Akzeptor-Verbindung 72, HOMO der Donor-Verbindung 73, LUMO der Akzeptor-Verbindung 74 und LUMO der Donor-Verbindung 75. Die Verbiegung ermöglicht Löchern 82 aus der Kathode (Fermi-Niveau 76), die Injektionsbarriere zu durchtunneln (Tunnelvorgang illustriert durch den Pfeil 77) und in die photoaktive Schicht injiziert zu werden. Aufgrund der hohen Donor-Konzentration in der photoaktiven Schicht erfolgt ein effizienter Transport der injizierten Löcher zusammen mit den photoinduzierten Löchern 82 zur Anode (Fermi-Niveau 71). In addition to the layer structure of the optoelectronic component 1", the optoelectronic component T" of FIG. Connection Obo associated charge carriers, in the top electrode / cathode 31 facing area of the photoactive layer 2 is used. The EBL 6 can be e.g. B. be a 10 nm thick layer NTCDA or HAT (CN) 6 act. FIG. 2 schematically shows an energy diagram for an optoelectronic component with a layer structure as in FIG. 1a under illumination with electromagnetic radiation and with a voltage applied in the reverse direction to the electrodes of the optoelectronic component. By illuminating the optoelectronic component with electromagnetic radiation, a CT state in the photoactive layer of the optoelectronic component can be triggered by a photon whose energy is e.g. B. the difference between the HOMO of the donor compound 73 and the LUMO of the acceptor compound 74 in the photoactive layer, to form a charge carrier pair 80 are excited. After the charge carrier pair has dissociated into free charge carriers, electrons 81 accumulate in the region of the photoactive layer close to the cathode, since there are only a few percolation paths for electrons due to the low concentration of the acceptor compound in the photoactive layer. Due to the electric field created by the enrichment of the electrons 81 in the region of the photoactive layer close to the cathode, the energy levels HOMO of the acceptor compound 72, HOMO of the donor compound 73, LUMO of the acceptor compound 74 and LUMO of the donor compound bend as shown 75. The bending allows holes 82 from the cathode (Fermi level 76) to tunnel through the injection barrier (tunneling action illustrated by arrow 77) and be injected into the photoactive layer. Due to the high donor concentration in the photoactive layer, the injected holes are efficiently transported together with the photo-induced holes 82 to the anode (Fermi level 71).
In Fig. 3 ist die AbhĂ€ngigkeit der EQE von der WellenlĂ€nge fĂŒr vier verschiedene optoelektronische Bauelemente dargestellt, wobei jeweils eine Spannung in Sperrrichtung von -10 V an die Elektroden des optoelektronischen Bauelements angelegt wurde. Die optoelektronischen Bauelemente unterscheiden sich durch die LĂ€nge L der optischen KavitĂ€t. Die EQE eines erfindungsgemĂ€Ăen optoelektronischen Bauelements zeigt einen schmalen Peak mit einem Maximum bei der zu detektierenden WellenlĂ€nge / ec., fĂŒr die die Resonanzbedingung hinsichtlich der gewĂ€hlten LĂ€nge ihrer KavitĂ€t erfĂŒllt ist. Die Halbwertsbreite (FWHM) der Peaks bei den dargestellten zu detektierenden WellenlĂ€ngen betrĂ€gt zwischen 20 und 40 nm.
Bezugszeichen FIG. 3 shows the dependency of the EQE on the wavelength for four different optoelectronic components, with a voltage in the reverse direction of â10 V being applied to the electrodes of the optoelectronic component in each case. The optoelectronic components differ in the length L of the optical cavity. The EQE of an optoelectronic component according to the invention shows a narrow peak with a maximum at the wavelength / ec to be detected, for which the resonance condition is met with regard to the selected length of its cavity. The full width at half maximum (FWHM) of the peaks at the wavelengths to be detected is between 20 and 40 nm. Reference sign
1, r, 1â,1 Optoelektronisches Bauelement 100 Beleuchtungsrichtung 2 Photoaktive Schicht 1, r, 1â,1 optoelectronic component 100 direction of illumination 2 photoactive layer
31 Top-Elektrode, Kathode 310 An der Top-Elektrode angeordnete SpiegelflÀche 31 Top electrode, cathode 310 Mirror surface arranged on the top electrode
32 Bottom-Elektrode, Anode 320 An der Bottom-Elektrode angeordnete SpiegelflÀche 32 bottom electrode, anode 320 Mirror surface arranged on the bottom electrode
4 Substrat 4 substrate
5 HBL 5 HBL
6 HTL 7 EBL 6 HTL 7 EBL
71 Fermi-Niveau der Bottom-Elektrode/Anode 71 Fermi level of bottom electrode/anode
72 HOMO der Akzeptor-Verbindung 72 HOMO of the acceptor compound
73 HOMO der Donor-Verbindung 73 HOMO of the donor compound
74 LUMO der Akzeptor-Verbindung 74 LUMO of the acceptor compound
75 LUMO der Donor-Verbindung 75 LUMO of the donor compound
76 Fermi-Niveau der Top-Elektrode/Kathode 76 Fermi level of top electrode/cathode
77 Pfeil zur Darstellung der Injektion von Löchern aus der77 Arrow showing the injection of holes from the
Kathode in die photoaktive Schicht Cathode into the photoactive layer
80 LadungstrÀgerpaar 80 pairs of carriers
81 Elektron 81 electron
82 In die photoaktive Schicht injiziertes Loch
82 Hole injected into the photoactive layer
Claims
1. Optoelektronisches Bauelement (1, 1â, 1â, Vâ) zur spektral selektiven Detektion elektromagnetischer Strahlung, aufweisend eine erste (31) und eine zweite Elektrode (32), die voneinander beabstandet sind und an die eine elektrische Spannung anlegbar ist, eine photoaktive Schicht (2), die eine Mischschicht enthaltend eine Donor- Verbindung und eine Akzeptor-Verbindung umfasst, wobei das EnergieĂ€quivalent einer zu detektierenden WellenlĂ€nge der elektromagnetischen Strahlung einer zur direkten Anregung des intermolekularen Ladungstransfer-Zustands an einer GrenzflĂ€che zwischen der Donor-Verbindung und der Akzeptor-Verbindung aufzuwendenden Energie entspricht, wobei die photoaktive Schicht (2) angeordnet ist in einer optischen MikrokavitĂ€t, die zwischen der ersten (31) und der zweiten Elektrode (32) angeordnet und aus zwei voneinander beabstandeten SpiegelflĂ€chen (310, 320) gebildet ist, wobei der Abstand der SpiegelflĂ€chen (310, 320) zueinander so ausgestaltet ist, dass in der MikrokavitĂ€t eine stehende Welle fĂŒr eine einfallende Welle der elektromagnetischen Strahlung mit der zu detektierenden WellenlĂ€nge erzeugt wird, dadurch gekennzeichnet, dass die Konzentration der Donor-Verbindung zumindest in einem der ersten Elektrode (31) zugewandten Bereich der photoaktiven Schicht (2) oder die Konzentration der Akzeptor-Verbindung zumindest in einem der ersten Elektrode (31) zugewandten Bereich der photoaktiven Schicht (2) so niedrig ist, dass die niedrig konzentrierte Verbindung FallenzustĂ€nde fĂŒr die ihr zugeordneten LadungstrĂ€ger bereitstellt, die eine photoinduzierte AnhĂ€ufung der der niedrig konzentrierten Verbindung zugeordneten LadungstrĂ€ger (81) in einem der ersten Elektrode (31) zugewandten Bereich der photoaktiven Schicht (2) bewirken, so dass der hoch konzentrierten Verbindung zugeordnete LadungstrĂ€ger (82) von der ersten Elektrode (31) in die photoaktive Schicht injiziert werden, wodurch diese1. Optoelectronic component (1, 1', 1", V") for the spectrally selective detection of electromagnetic radiation, having a first (31) and a second electrode (32) which are spaced apart and to which an electrical voltage can be applied, a photoactive layer (2) comprising a mixed layer containing a donor compound and an acceptor compound, the energy equivalent of a wavelength to be detected of the electromagnetic radiation being one for direct excitation of the intermolecular charge transfer state at an interface between the donor compound and corresponds to the energy to be used for the acceptor compound, the photoactive layer (2) being arranged in an optical microcavity which is arranged between the first (31) and the second electrode (32) and is formed from two mirror surfaces (310, 320) spaced apart from one another , The distance between the mirror surfaces (310, 320) being designed to one another in such a way that in the microcavi tĂ€t a standing wave is generated for an incident wave of the electromagnetic radiation with the wavelength to be detected, characterized in that the concentration of the donor compound at least in a region of the photoactive layer (2) facing the first electrode (31) or the concentration of the acceptor compound is so low, at least in a region of the photoactive layer (2) facing the first electrode (31), that the low-concentration compound provides trap states for the charge carriers assigned to it, which cause a photo-induced accumulation of the charge carriers (81 ) in a region of the photoactive layer (2) facing the first electrode (31), so that charge carriers (82) associated with the highly concentrated compound are injected from the first electrode (31) into the photoactive layer, whereby these
LadungstrĂ€gersorte im Bauelement (1, 1â, 1â, Vâ) ĂŒberwiegt. Type of charge carrier in the component (1, 1', 1", V") predominates.
2. Optoelektronisches Bauelement (1, 1â, 1â, Vâ) nach Anspruch 1, dadurch gekennzeichnet, dass die Konzentration der Donor-Verbindung in der gesamten photoaktiven Schicht (2) oder die Konzentration der Akzeptor-Verbindung in der gesamten photoaktiven Schicht (2) so niedrig ist, dass die niedrig konzentrierte Verbindung FallenzustĂ€nde fĂŒr die ihr zugeordneten LadungstrĂ€ger bereitstellt, die eine photoinduzierte AnhĂ€ufung der der niedrig konzentrierten Verbindung zugeordneten LadungstrĂ€ger (81) in einem der ersten Elektrode (31) zugewandten Bereich der photoaktiven Schicht (2) bewirken, so dass der hoch konzentrierten Verbindung
zugeordnete LadungstrĂ€ger (82) von der ersten Elektrode (31) in die photoaktive Schicht injiziert werden, wodurch diese LadungstrĂ€gersorte im Bauelement (1, 1â, 1â) ĂŒberwiegt. 2. Optoelectronic component (1, 1', 1", V") according to claim 1, characterized in that the concentration of the donor compound in the entire photoactive layer (2) or the concentration of the acceptor compound in the entire photoactive layer (2) is so low that the low-concentration compound provides trap states for the charge carriers associated with it, which cause a photo-induced accumulation of the charge carriers (81) associated with the low-concentration compound in a region of the photoactive layer (2) facing the first electrode (31) cause so that the highly concentrated compound associated charge carriers (82) are injected from the first electrode (31) into the photoactive layer, as a result of which this type of charge carrier predominates in the component (1, 1', 1").
3. Optoelektronisches Bauelement nach Anspruch 1, dadurch gekennzeichnet, dass die Konzentration der niedrig konzentrierten Verbindung von dem der ersten Elektrode (31) zugewandten Bereich der photoaktiven Schicht (2) zumindest bis zu einem von dem der ersten Elektrode zugewandten Bereich verschiedenen Bereich der photoaktiven Schicht (2) in Richtung der zweiten Elektrode (32) ansteigt, wobei der Konzentrationsanstieg kontinuierlich oder diskontinuierlich erfolgen kann. 3. Optoelectronic component according to claim 1, characterized in that the concentration of the low-concentration compound from the area of the photoactive layer (2) facing the first electrode (31) to at least one area of the photoactive layer that differs from the area facing the first electrode (2) increases in the direction of the second electrode (32), it being possible for the concentration to increase continuously or discontinuously.
4. Optoelektronisches Bauelement (1, 1â, 1â, Tâ) nach einem der AnsprĂŒche 1 bis 3, dadurch gekennzeichnet, dass die Konzentration der Donor-Verbindung zumindest in dem der ersten Elektrode zugewandten Bereich der photoaktiven Schicht (2) oder die Konzentration der Akzeptor-Verbindung zumindest in dem der ersten Elektrode zugewandten Bereich der photoaktiven Schicht (2) zwischen 1 und 10 Gew%, vorzugsweise zwischen 1 und 5 Gew%, besonders bevorzugt zwischen 1 und 4 Gew%, ganz besonders bevorzugt zwischen 1 und 3 Gew% betrĂ€gt. 4. Optoelectronic component (1, 1âČ, 1âłTâł) according to one of claims 1 to 3, characterized in that the concentration of the donor compound is at least in the area of the photoactive layer (2) or the area facing the first electrode Concentration of the acceptor compound at least in the area of the photoactive layer (2) facing the first electrode between 1 and 10% by weight, preferably between 1 and 5% by weight, particularly preferably between 1 and 4% by weight, very particularly preferably between 1 and 3 % by weight.
5. Optoelektronisches Bauelement nach einem der vorangegangenen AnsprĂŒche, dadurch gekennzeichnet, dass zwischen der zweiten Elektrode (32) und der photoaktiven Schicht (2) eine optisch transparente Abstandshalterschicht angeordnet ist, so dass die photoaktive Schicht (2) nĂ€her an der ersten Elektrode (31) als an der zweiten Elektrode (32) angeordnet ist. 5. Optoelectronic component according to one of the preceding claims, characterized in that an optically transparent spacer layer is arranged between the second electrode (32) and the photoactive layer (2), so that the photoactive layer (2) is closer to the first electrode (31 ) than on the second electrode (32).
6. Optoelektronisches Bauelement (1â, 1â, Tâ) nach einem der vorangegangenen AnsprĂŒche, dadurch gekennzeichnet, dass zwischen der ersten Elektrode (31) und der photoaktiven Schicht (2) mindestens eine erste Blockierungsschicht (5) angeordnet ist, wobei die erste Blockierungsschicht (5) im nicht-beleuchteten Zustand des optoelektronischen Bauelements (1â, 1â, Tâ) den Transport der von der ersten Elektrode (31) injizierten, der hoch konzentrierten Verbindung der photoaktiven Schicht (2) zugeordneten LadungstrĂ€ger (82) zur ersten Elektrode (31) abschwĂ€cht. 6. Optoelectronic component (1', 1", T") according to one of the preceding claims, characterized in that between the first electrode (31) and the photoactive layer (2) at least one first blocking layer (5) is arranged, wherein the first blocking layer (5) in the non-illuminated state of the optoelectronic component (1', 1", T") the transport of the charge carriers (82) injected by the first electrode (31) and assigned to the highly concentrated compound of the photoactive layer (2) to the first electrode (31) weakens.
7. Optoelektronisches Bauelement (1ââ) nach einem der vorangegangenen AnsprĂŒche, dadurch gekennzeichnet, dass zwischen der ersten Elektrode (31) und der photoaktiven Schicht (2) mindestens eine zweite Blockierungsschicht (7) angeordnet ist, wobei die zweite Blockierungsschicht (7) den Transport der der niedrig konzentrierten Verbindung
der photoaktiven Schicht (2) zugeordneten LadungstrÀger (81) zur ersten Elektrode (31) zumindest abschwÀcht und die photoinduzierte AnhÀufung der der niedrig konzentrierten Verbindung zugeordneten LadungstrÀger (81) an der zweiten Blockierungsschicht (7) bewirkt. 7. Optoelectronic component (1"') according to one of the preceding claims, characterized in that at least one second blocking layer (7) is arranged between the first electrode (31) and the photoactive layer (2), the second blocking layer (7) the transport of the low-level compound at least weakens the charge carriers (81) assigned to the photoactive layer (2) to the first electrode (31) and causes the photo-induced accumulation of the charge carriers (81) assigned to the low-concentration compound on the second blocking layer (7).
8. Optoelektronisches Bauelement (1â,1ââ) nach einem der vorangegangenen AnsprĂŒche, dadurch gekennzeichnet, dass zwischen der zweiten Elektrode (32) und der photoaktiven Schicht (2) mindestens eine Transportschicht (6) fĂŒr die von der ersten Elektrode (31) injizierten, der hoch konzentrierten Verbindung der photoaktiven Schicht (2) zugeordneten LadungstrĂ€ger (82) angeordnet ist, die als Blockierungsschicht fĂŒr die der niedrig konzentrierten Verbindung der photoaktiven Schicht zugeordneten LadungstrĂ€ger (81) wirkt. 8. Optoelectronic component (1", 1"') according to one of the preceding claims, characterized in that between the second electrode (32) and the photoactive layer (2) there is at least one transport layer (6) for the transport layer (6) from the first electrode (31 ) injected charge carriers (82) associated with the highly concentrated compound of the photoactive layer (2), which acts as a blocking layer for the charge carriers (81) associated with the low-concentrated compound of the photoactive layer.
9. Verfahren zur spektral selektiven Detektion elektromagnetischer Strahlung, aufweisend zumindest folgende Verfahrensschritte: a. Bereitstellen eines optoelektronischen Bauelements (1, T, 1â, Tâ) nach einem der AnsprĂŒche 1 bis 8; b. Beleuchten des optoelektronischen Bauelements (1, T, 1â, Tâ) mit einer einfallenden Welle der elektromagnetischen Strahlung mit einer zu detektierenden WellenlĂ€nge und Erzeugung freier LadungstrĂ€ger durch direkte Anregung und Dissoziation des intermolekularen Ladungstransferzustands an einer GrenzflĂ€che zwischen Donor-Verbindung und Akzeptor-Verbindung in der photoaktiven Schicht (2) des optoelektronischen Bauelements (1, T, 1â, Tâ); c. Anlegen einer elektrischen Spannung an die Elektroden (31, 32) des optoelektronischen Bauelements (1, T, 1â, Tâ), wobei die elektrische Spannung so gerichtet ist, dass sich die der niedrig konzentrierten Verbindung zugeordneten LadungstrĂ€ger (81) in einem der ersten Elektrode (31) zugewandten Bereich der photoaktiven Schicht (2) anhĂ€ufen; d. AnhĂ€ufung von der niedrig konzentrierten Verbindung der photoaktiven Schicht (2) zugeordneten LadungstrĂ€gern (81) in einem der ersten Elektrode (31) zugewandten Bereich der photoaktiven Schicht (2) des optoelektronischen Bauelements (1, T, 1â, Tâ); e. Injektion von der hoch konzentrierten Verbindung der photoaktiven Schicht (2) zugeordneten LadungstrĂ€gern (82) von der ersten Elektrode (31) in die photoaktive Schicht (2) des optoelektronischen Bauelements (1, T, 1â, Tâ);
f. Transport der der hoch konzentrierten Verbindung der photoaktiven Schicht zugeordneten, injizierten LadungstrĂ€ger (82) und der durch Beleuchtung erzeugten LadungstrĂ€ger gleichen Typs zur zweiten Elektrode (32) des optoelektronischen Bauelements (1, T, 1â, Tâ) und Erzeugen eines auslesbaren elektrischen Signals.
9. Method for the spectrally selective detection of electromagnetic radiation, having at least the following method steps: a. Providing an optoelectronic component (1, T, 1", "T") according to one of Claims 1 to 8; b. Illumination of the optoelectronic component (1, T, 1", "T") with an incident wave of electromagnetic radiation with a wavelength to be detected and generation of free charge carriers by direct excitation and dissociation of the intermolecular charge transfer state at an interface between donor compound and acceptor compound in the photoactive layer (2) of the optoelectronic component (1, T, 1", T"); c. Application of an electrical voltage to the electrodes (31, 32) of the optoelectronic component (1, T, 1", "T"), the electrical voltage being directed in such a way that the charge carriers (81) associated with the low-concentration compound are in one of the pile up the region of the photoactive layer (2) facing the first electrode (31); i.e. Accumulation of charge carriers (81) associated with the low-concentration compound of the photoactive layer (2) in a region of the photoactive layer (2) of the optoelectronic component (1, T, 1", T") facing the first electrode (31); e. Injection of charge carriers (82) assigned to the highly concentrated compound of the photoactive layer (2) from the first electrode (31) into the photoactive layer (2) of the optoelectronic component (1, T, 1", T"); f. Transport of the injected charge carriers (82) assigned to the highly concentrated compound of the photoactive layer and the charge carriers of the same type generated by illumination to the second electrode (32) of the optoelectronic component (1, T, 1", T") and generation of a readable one electrical signal.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102021106049.4A DE102021106049A1 (en) | 2021-03-12 | 2021-03-12 | Optoelectronic component and method for spectrally selective detection of electromagnetic radiation |
PCT/EP2022/056338 WO2022189629A1 (en) | 2021-03-12 | 2022-03-11 | Optoelectronic component and method for a spectrally selective detection of electromagnetic radiation |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4305682A1 true EP4305682A1 (en) | 2024-01-17 |
Family
ID=81074133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22714161.1A Pending EP4305682A1 (en) | 2021-03-12 | 2022-03-11 | Optoelectronic component and method for a spectrally selective detection of electromagnetic radiation |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240159593A1 (en) |
EP (1) | EP4305682A1 (en) |
DE (1) | DE102021106049A1 (en) |
WO (1) | WO2022189629A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220373463A1 (en) * | 2021-05-07 | 2022-11-24 | University Of South Carolina | Spatially resolved fourier transform impedance spectroscopy and applications to optoelectronics |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008036310A1 (en) * | 2008-07-29 | 2010-02-11 | Technische UniversitÀt Dresden | Organic photoactive component, in particular organic solar cell or organic photodetector |
US11227959B2 (en) | 2015-08-14 | 2022-01-18 | Senorics Gmbh | Method for detecting and converting infrared electromagnetic radiation |
CN108807683B (en) | 2018-07-05 | 2021-04-30 | ćäșŹéźç”ć€§ćŠ | Wide-spectral-response multiplication type organic photoelectric detector |
CN109935699B (en) | 2019-04-02 | 2020-10-09 | ćäșŹäș€éć€§ćŠ | Multiplication type organic photoelectric detector and preparation method thereof |
-
2021
- 2021-03-12 DE DE102021106049.4A patent/DE102021106049A1/en active Pending
-
2022
- 2022-03-11 WO PCT/EP2022/056338 patent/WO2022189629A1/en active Application Filing
- 2022-03-11 US US18/549,834 patent/US20240159593A1/en active Pending
- 2022-03-11 EP EP22714161.1A patent/EP4305682A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
DE102021106049A1 (en) | 2022-09-15 |
US20240159593A1 (en) | 2024-05-16 |
WO2022189629A1 (en) | 2022-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3152785B1 (en) | Method for detecting and converting infrared electromagnetic radiation | |
DE69527039T2 (en) | LIGHT SENSITIVE DEVICE | |
EP2188855B1 (en) | Organic photodetector for the detection of infrared radiation, method for the production thereof, and use thereof | |
EP1611484B1 (en) | Photoactive component comprising organic layers | |
DE69311289T2 (en) | PHOTOVOLTAIC CELL | |
WO2006092135A1 (en) | Photoactive component with organic layers | |
DE102010043749A1 (en) | Hybrid organic photodiode | |
WO2007017474A1 (en) | Photodetector, flat x-ray detector and method for producing the same | |
WO2013092313A1 (en) | Organic molecules for oleds and other optoelectronic devices | |
WO2015173414A1 (en) | Integrated measuring system for the spectral measuring technique | |
WO2022189629A1 (en) | Optoelectronic component and method for a spectrally selective detection of electromagnetic radiation | |
DE2952289A1 (en) | CHARGED COUPLING DEVICE | |
DE102006046210B4 (en) | Process for the preparation of an organic photodetector | |
DE102007009995A1 (en) | Organic solar cell comprises two electrodes and disposed between photoactive layer having two partial layers, where partial layer emits electrons and later partial layer receives electrons | |
DE10339629B4 (en) | Process to encapsulate an organic electronic component with a layer of hydrophobic, linear or two-dimensional polycyclic aromatic material | |
WO2010139804A1 (en) | Photoactive component comprising double or multiple mixed layers | |
DE102011077961A1 (en) | Low light detection with organic photosensitive component | |
DE69214991T2 (en) | Infrared detector | |
DE69935947T2 (en) | Quantum well detector with photo-excited electron storage device | |
EP1652410A1 (en) | Use of a layer consisting of hydrophobic, linear or two-dimensional polycyclic aromatics as a barrier layer or an encapsulation and electric components constructed with a layer of this type and comprising organic polymers | |
EP2342769B1 (en) | Organic, radiation-emitting component and method for producing the same | |
DE19711505C1 (en) | Semiconductor heterostructure radiation detector for wavelengths from the infrared spectral range | |
EP3973580A1 (en) | Photodetector with improved detection result | |
DE102007019327A1 (en) | Organic drift diode for single photon emission computed tomographic detector, has one electrode layer with type that does not correspond to another type of another electrode layer, and substrate arranged on side of photoactive layer | |
DE102008050335B4 (en) | Multiple solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20231004 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |