EP4301096A1 - Electronic device and method of converting audio to light effect thereof - Google Patents

Electronic device and method of converting audio to light effect thereof Download PDF

Info

Publication number
EP4301096A1
EP4301096A1 EP23182280.0A EP23182280A EP4301096A1 EP 4301096 A1 EP4301096 A1 EP 4301096A1 EP 23182280 A EP23182280 A EP 23182280A EP 4301096 A1 EP4301096 A1 EP 4301096A1
Authority
EP
European Patent Office
Prior art keywords
light
audio file
light effect
audio
control instructions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP23182280.0A
Other languages
German (de)
French (fr)
Inventor
Thomas Douglas RIDLEY
Raymond ZHU
Qi Xu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nothing Technology Ltd
Original Assignee
Nothing Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nothing Technology Ltd filed Critical Nothing Technology Ltd
Publication of EP4301096A1 publication Critical patent/EP4301096A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1656Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/165Controlling the light source following a pre-assigned programmed sequence; Logic control [LC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V33/00Structural combinations of lighting devices with other articles, not otherwise provided for
    • F21V33/0004Personal or domestic articles
    • F21V33/0052Audio or video equipment, e.g. televisions, telephones, cameras or computers; Remote control devices therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/155Coordinated control of two or more light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S4/00Lighting devices or systems using a string or strip of light sources

Definitions

  • the present disclosure relates to fields of electronic devices, and in particular to an electronic device and a method of converting audio to light effects thereof.
  • the present discloses provides an electronic device and a method of converting audio to light effect to solve at least one of the technical problems mentioned above.
  • the present disclosure provides a method of converting audio to light effect, applied to an electronic device.
  • the electronic device includes a main body.
  • the electronic device further includes light strips located on a back surface of the main body, and a transparent back cover.
  • the transparent back cover overall covers the back surface of the main body having the light strips.
  • the electronic device further includes an audio playing unit.
  • the method includes steps as follows.
  • An audio file is obtained in real time.
  • Light effect control instructions corresponding to the audio file are obtained based on the audio file.
  • the light effect control instructions are a plurality of control instructions which control the light strips to be lit up in a lighting manner matching playback parameters of the audio file.
  • the lighting manner includes one or more of a lighting area, a lighting colour, a lighting frequency, a lighting duration, and a number of light flashes.
  • a light effect consistent with the playback parameters of the audio file is created by controlling the audio playing unit play the audio file, and synchronously controlling the light strips to light up in accordance with the lighting manner in response to the light effect control instructions.
  • the present disclosure provides an electronic device.
  • the electronic device includes a main body.
  • the electronic device further includes light strips located on a back surface of the main body, and a transparent back cover.
  • the transparent back cover overall covers the back surface of the main body having the light strips.
  • the electronic device further includes an audio playing unit.
  • the electronic device further includes a processor and a memory.
  • the memory stores computer program, and the processor runs the computer program to execute the method of converting audio to light effect as mentioned in the first aspect.
  • the light strips located on the back surface of the electronic device are synchronously controlled to light up according to the lighting manner of the light effect control instructions, forming a lighting effect consistent with the playback parameters of the audio file. This allows the electronic device to have corresponding light effects while playing audio, bringing a better visual impact and a better user experience.
  • first, second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or as implicitly specifying the number of technical features indicated. Thus, a feature qualified with “first”, “second” may explicitly or implicitly include one or more such features.
  • “plurality” means two or more, unless otherwise expressly and specifically limited.
  • connect and “fixed” should be interpreted in a broad sense.
  • they can be fixed connections, detachable connections, or integrated structures; they can be mechanical connections, electrical connections; they can be directly connected or indirectly connected via intermediaries, and can be internal connections or interaction relationships between two components.
  • connect and “fixed” should be interpreted in a broad sense.
  • they can be fixed connections, detachable connections, or integrated structures; they can be mechanical connections, electrical connections; they can be directly connected or indirectly connected via intermediaries, and can be internal connections or interaction relationships between two components.
  • FIG. 1 shows a structural schematic diagram of an electronic device in accordance with one embodiment of the present disclosure
  • FIG. 2 shows a cross-sectional diagram of the electronic device in accordance with one embodiment of the present disclosure
  • the electronic device 100 can include a main body 1.
  • the electronic device 100 can further include light strips 2 located on a back surface 11 of the main body 1 and a transparent back cover 3.
  • the transparent back cover 3 overall covers the back surface 11 of the main body 1 having the light strips 2.
  • the transparent back cover 3 is capable of transmitting the light emitted by the light strips 2.
  • the main body 1 can further include a rear camera 4 and a rear wireless charging zone 5.
  • the wireless charging zone 5 is electrically coupled to a battery of the electronic device 100.
  • the wireless charging zone 5 is used for charging or discharging in coupling with an external wireless charging device.
  • the back surface 11 of the main body 1 is divided into four zones, namely a first zone 31 and a second zone 32 arranged side by side at a top end of the transparent back cover 3, a third zone 33 located in a middle portion of the transparent back cover 3, and a fourth zone 34 located at a bottom end of the transparent back cover 3.
  • the top end, middle portion, and bottom end refer to the top end, middle portion, and bottom end of the electronic device 100 when it is in a vertical screen use state.
  • the rear camera 4 is located in the first zone 31.
  • the wireless charging zone 5 is located in the third zone 33.
  • the light strips 2 can include a first light strip 21, a second light strip 22, a third light strip 23, and a fourth light strip 24.
  • the first light strip 21 is roughly C-shaped and is located in the first zone 31, surrounding the rear camera 4 of the electronic device 100.
  • the second light strip 22 is roughly inclined from top to bottom and is located in the second zone 32.
  • the third light strip 23 is roughly C-shaped and is located in the third zone 33, surrounding the wireless charging zone 5.
  • the second light strip 22 and the third light strip 23 can form a roughly lollipop shape.
  • the fourth light strip 24 is roughly in an "! shape and is located in the fourth zone 34. In other embodiments, it should be understood that the number, the shape, and the placement of the light strips 2 are not limited to the description of the above embodiment and may be changed as needed.
  • FIG. 3 shows a module diagram of the electronic device in accordance with one embodiment of the present disclosure.
  • the electronic device 100 can further include a processor 6, a memory 7 and an audio playing unit 8.
  • the memory 7 and the audio playing unit 8 are electrically connected to the processor 6, respectively.
  • the memory 7 stores a computer program.
  • the processor 6 runs the computer program and executes the method of converting audio to light effect.
  • the storage 7 also stores relevant data for executing the method of converting audio to light effect.
  • the processor 6 runs the computer program to execute as follows.
  • An audio file is obtained in real time.
  • Light effect control instructions corresponding to the audio file are obtained based on the audio file.
  • the light effect control instructions include a plurality of control instructions which control the light strips to be lit up in a lighting manner matching playback parameters of the audio file.
  • the lighting manner includes one or more of a lighting area, a lighting colour, a lighting frequency, a lighting duration, and a number of light flashes.
  • a light effect consistent with the playback parameters of the audio file is created by controlling the audio playing unit 8 to play the audio file, and synchronously controlling the light strips 2 to light up in accordance with the lighting manner in response to the light effect control instructions.
  • the light strips 2 located on the back surface of the electronic device 100 are synchronously controlled to light up according to the lighting manner of the light effect control instructions, forming a lighting effect consistent with the playback parameters of the audio file. This allows the electronic device 100 to have corresponding light effects while playing audio, bringing a better user experience.
  • the playback parameters can include at least one of playback volume, playback rhythm, playback speed, etc.
  • the audio file comes from a wide range of sources.
  • the audio file is a system pre-stored audio file.
  • the system pre-stored audio file can be, but is not limited to, one or more of system pre-stored ringtone files, music files, audio files, videos files containing audio, etc.
  • the system has pre-stored light effect control instructions, and the pre-stored light effect control instructions match the system pre-stored audio file. Therefore, when the processor 6 obtains this type of audio file, it does not need to perform data processing and analysis, but rather obtains the corresponding light effect control instructions directly from the system.
  • the system pre-stored audio file and/or pre-stored light effect control instructions can be stored in the memory 7 and/or on cloud storage devices, etc. Thereby, when the electronic device 100 obtains the system pre-stored audio file, it can obtain the light effect control instructions directly from the system based on the system pre-stored audio file, reducing the amount of data processing and accelerating the system response speed to bring convenience to users.
  • the system pre-stored audio file and/or light effect control instructions can be stored in the memory 7 before leaving the factory, or pre-stored in an application related to converting audio to light effect, which can be downloaded from an application download platform after leaving the factory
  • the processor 6 can perform spectrum analysis on the audio file to obtain the spectrum of the audio file, and determine the light effect control instructions corresponding to the audio file in accordance with the spectrum of the audio file.
  • the processor 6 can perform spectrum analysis on the audio file to obtain the spectrum of the audio file, and determine the light effect control instructions corresponding to the audio file in accordance with the spectrum of the audio file, thus greatly expanding the application range for obtaining the corresponding light effects by using the light strips 2.
  • the processor 6 when the audio file is a conventional audio file and not a system pre-stored audio file and there are no light effect control instructions matching the conventional audio file pre-stored in the system, the processor 6 generates light effect control instructions corresponding to the spectrum of the audio file according to the spectrum of the audio file, in accordance with an audio-light effect conversion algorithm.
  • some basic parameter values in the audio-light effect conversion algorithm are not unchangeable, and different audio light effect conversion algorithms can also be selected according to the usage environment or the source of the audio file.
  • the category of the usage environment of the audio file and the source of the audio file can be pre-set by the system or set by the user.
  • different light effect control instructions can be generated by changing some basic parameter values in the audio light effect conversion algorithm or by directly changing the audio light effect conversion algorithm when used in different environments such as a conference room, at home, outdoors, in a cinema, during the day, at night, etc..
  • the source of the audio file e.g.
  • different light effect control instructions can be generated in accordance with the reminder ringtone by changing some basic parameter values in the audio light effect conversion algorithm or by directly changing the audio light effect conversion algorithm, which causes the light effect of the reminder ringtone for the key contact to be made different from a reminder way of the light effect of the regular contact.
  • a focused alarm clock e.g.
  • different light effect control instructions can be generated in accordance with the wake up alarm clock ringtone by changing some basic parameter values in the audio light effect conversion algorithm or by directly changing the audio light effect conversion algorithm, which causes the light effect of the reminder ringtone for the wake up alarm clock to be different from a reminder way of the light effect of the conventional alarm clock.
  • the conventional audio file can be one or more of ringtone files, music files, audio files, videos files containing audio, an instant voice, a voice in an instant video.
  • the ringtone file may be, but is not limited to, a telephone ringtone file, an SMS ringtone file, an alarm clock ringtone file, and other reminder ringtones, etc.
  • the music file may be a music file downloaded locally from the internet, and may also be a music file obtained from the internet by a music application.
  • the audio file is a file containing audio and/or voice, for example, a voice file in a live chat application, etc.
  • the video file is a video file containing audio, for example, various types of video files, such as a short video on the web (e.g., a short video in an application such as Shake, Racer, Watermelon Video, etc.), a short video in a live chat application, a movie file, a TV series file, etc.
  • the voice file is a piece of voice.
  • the instant voice includes an audio file generated in a scenario such as being on a phone call or being in a voice chat.
  • the voice in an instant video recording includes an audio file generated in a scenario such as live streaming or being in a video chat, for example, an audio file generated in real time during a live stream or video chat.
  • the above is not a limitation, but rather an example.
  • the above-mentioned types of conventional audio files can be divided into four main types, namely ringtone files, music files, audio/video files, and instant voice/video call files.
  • the lighting manner is a combination of one or more of a lighting area, a lighting colour and a lighting frequency.
  • the processor 6 may be used to select a different lighting area according to a type of audio file.
  • the first light strip 21 is controlled to work for the light effect.
  • the fourth light strip 24 is controlled to work for the light effect in accordance with a first audio signal obtained in real time by an audio collection unit of the electronic device 100.
  • the second light strip 22 is controlled to work for the light effect in accordance with the second audio signal played in real time by a receiver unit of the electronic device 100.
  • the first light strip 21, the second light strip 22, the third light strip 22 and the fourth light strip 24 are controlled to work together to achieve the light effect when playing music files/audio files/video files.
  • the processor 6 may select at least two different lighting areas to work to achieve the light effect according to the type of audio file.
  • the first light strip 21 and the second light strip 22 are controlled to achieve the light effect when playing a ringtone file; the second light strip 22 and the third light strip 23 are controlled to achieve the light effect when playing a music/audio files/video file.
  • the above are examples only, to illustrate the application more clearly and not to limit it.
  • the light strips located in different areas will be selected to work to present different light effects.
  • the light strips located in at least two different areas are selected to work to present different light effects.
  • the type of the audio file can be differentiated according to the area where the light effect is produced. This makes it easier for the user to identify the type of audio file and also allows for the individual presentation of the light effects of the audio file.
  • the processor 6 controls the audio playing unit 8 to play a music file
  • the processor 6 controls the first light strip 21 to play a first chorus part
  • the processor 6 is used to obtain the volume value of the audio file and to select a different lighting colour based on the difference in the volume value of the audio file. For example, when the current audio file is a music file and the volume value of the music file is lower than a first preset value, the processor 6 selects the corresponding lighting area to be first light strip 21 and controls the first light strip 21 to display green. When the current audio file is a music file and the volume value of the music file is higher than the first preset value and lower than a second preset value, the processor 6 selects the corresponding lighted area to be first light strip 21 and controls the first light strip 21 to display yellow.
  • the processor 6 selects the corresponding lighted area to be first light strip 21 and controls the first light strip 21 to display red.
  • the first preset value is less than the second preset value.
  • the first preset value is 30 db and the second preset value is 50 db.
  • the third preset value is 20 db. It should be understood that when the lighting manner includes not only the lighting area and the lighting frequency but also the lighting colour, not only a flashing light effect but also a colour light effect will be created when the volume value of the audio file is greater than the first preset value.
  • the spectrum of the audio file has a correspondence with the lighting frequency, i.e. it is also possible to match the lighting frequency to the spectrum of the audio file.
  • the light strips 2 are presented with different light effects.
  • the sound effects may be, but are not limited to, 3D li-vox, subwoofer, HIFI live, space sound, concert, acoustic vintage, pure vocals, 5.1 panorama, 3D rotation, vinyl record, reggae electro, generic car sound, unicorn sound, etc. Since under different sound effects, the sound effects attached to the audio playing unit 8 when playing the audio file are different, the processor 6, according to different sound effects of the audio playing unit 8 playing the audio file, uses different audio light effect conversion algorithms to generate different light effect control instructions.
  • the electronic device 100 receives a new incoming call
  • the telephone ringtone preset for the new incoming call is a system pre-stored audio file.
  • the processor 6 obtains the light effect control instructions corresponding to the telephone ringtone, and, while controlling the audio playing unit 8 to play the telephone ringtone, the processor 6 controls the first light strip 21 to light up in accordance with the light effect control instructions, so that the light effect presented by the light strips 2 is consistent with the rhythm of the ringing tone played by the audio playing unit 8, which serves as a double reminder and an effect of enhancing the atmosphere.
  • the processor 6 when the processor 6 controls the audio playing unit 8 to play a music file, since the music file is not a pre-stored system file, the processor 6 first generates corresponding light effect control instructions based on the music file using the audio light effect conversion algorithm, and then controls the audio playing unit 8 to play the music file, simultaneously controls the first light strip 21 to present the corresponding light effect.
  • the processor 6 determines whether it is currently performing a human-computer dialogue in a voice input/output scenario. When it is determined in a voice input/output scenario, the processor 6 obtains the first audio signal collected by the audio collection unit in real time and the second audio signal played by the receiver unit. The processor controls the fourth light strip 24 to present the corresponding light effect in accordance with the first audio signal and controls the second light strip 22 to present the corresponding light effect in accordance with the second audio signal.
  • the processor 6 controlling the fourth light strip 24 to present the corresponding light effect in accordance with the first audio signal and controlling the second light strip 22 to present the corresponding light effect in accordance with the second audio signal includes: the processor 6 obtaining the volume of the first audio signal and controlling the fourth light strip 24 to light up or light down so as to present a corresponding light effect in accordance with the volume of the first audio signal, and obtaining the volume of the second audio signal and controlling the second light strip 22 to light up or light down so as to present a corresponding light effect in accordance with the volume of the second audio signal.
  • the processor 6 determines, in response to the shading sensing signal, whether a transparent area of the transparent back cover 3 is shaded (or blocked/covered); when it determines that the transparent area of the transparent back cover 3 is not shaded (or blocked/covered), the processor 6, in response to the light effect control instructions, controls the light strips 2 to light up in accordance with the lighting manner to create a lighting effect consistent with the rhythm of the audio file.
  • the processor 6 further determines whether to control the light strips 2 to produce a light effect based on whether the back surface 11 of the electronic device 100 is facing upwards. Specifically, the processor 6 controls the light strips 2 to produce a light effect when the back surface 11 of the electronic device 100 faces upwards. The processor 6 does not control the light strips 2 to produce the light effect when the back surface 11 of the electronic device 100 faces downwards.. The processor 6 may detect whether the back surface 11 of the electronic device 100 is facing up or down by means of a gyroscope. Specifically, the processor 6 may detect whether the back surface 11 of the electronic device 100 is facing up or down based on a positive or negative Z-axis data of the gyroscope.
  • the processor 6 when the processor 6 detects the back surface 11 of the electronic device 100 to be facing downwards by a gyroscope, it further detects whether the electronic device 100 is horizontally placed by means of the gyroscope. Only if the electronic device 100 is horizontally positioned, the light strips 2 are not controlled to produce the light effect. The processor 6 may determine whether the electronic device 100 is horizontally positioned by means of the X-axis and Y-axis data of the gyroscope.
  • the processor 6 controls the light strips 2 to produce the light effect only when the transparent area of the transparent back cover 3 is not shaded (or blocked/covered) and/or the back surface 11 of the electronic device 100 is facing upwards.
  • the processor 6 does not control the light strips 2 to produce the light effect, so that excessive power consumption can be avoided.
  • the processor 6 determines, before controlling the light strips 2 to light up in response to the light effect control instructions, whether to obtain a light effect enabled instruction before playing the audio file or during playing the audio file. Only when the light effect enabled instruction is obtained, the processor 6 controls the light strips 2 to light up in response to the light effect control instructions.
  • the light effect enabled instructions may be, but are not limited to, voice instructions, manually entered control instructions, a flip operation by the user to flip the electronic device 100, etc.
  • the user's voice says: please turn on the light effect, or, for example, during playing an audio file, the user flips the electronic device 100, and when the gyroscope of the electronic device 100 detects the flip angle of the electronic device 100 to be greater than a preset angle threshold, the light effect enabled instruction is generated.
  • FIG. 4 is a flowchart of a method of converting audio to light effect in accordance with one embodiment of the present disclosure. It should be understood that the order of the steps of the method can be adjusted according to practical needs. The method includes following steps.
  • Block 41 an audio file is obtained in real time.
  • Block 42 light effect control instructions corresponding to the audio file are obtained based on the audio file.
  • the light effect control instructions includes a plurality of control instructions which control the light strips 2 to be lit up in a lighting manner matching playback parameters of the audio file.
  • the lighting manner includes one or more of a lighting area, a lighting colour, a lighting frequency, a lighting duration, and a number of light flashes.
  • Block 43 the audio playing unit 8 is controlled to play the audio file, and the light strips 2 are synchronously controlled to light up in accordance with the lighting manner in response to the light effect control instructions, so as to create a light effect consistent with the playback parameters of the audio file.
  • the light strips 2 located on the back surface of the electronic device 100 are synchronously controlled to light up according to the lighting manner of the light effect control instructions, forming a lighting effect consistent with the playback parameters of the audio file. This allows the electronic device 100 to have corresponding light effects while playing audio, bringing a better user experience.
  • the audio file comes from a wide range of sources.
  • the audio file is a system pre-stored audio file.
  • the system pre-stored audio file can be system pre-stored ringtone files or music files.
  • the system has pre-stored light effect control instructions, and the pre-stored light effect control instructions match the system pre-stored audio file. Therefore, when this type of audio file is obtained, it does not need to perform data processing and analysis, but rather obtains the corresponding light effect control instructions directly from the system.
  • Obtaining light effect control instructions corresponding to the audio file based on the audio file includes: obtaining light effect control instructions corresponding to the audio file based on the audio file from the system.
  • the electronic device 100 obtains the system pre-stored audio file
  • the light effect control instructions are obtained based on the system pre-stored audio file from the system, which reduces the data calculation load of the electronic device 100, speeds up the system response time, and provides convenience for the user.
  • the system pre-stored audio file can include, but is not limited to, one or more of a ringtone file, a music file, an audio file, a video file containing audio. It can be understood that the system pre-stored can be stored in the memory 7 before leaving the factory, or pre-stored in an application related to converting audio to light effect, which can be downloaded from an application download platform after leaving the factory
  • the lighting manner can be one or more of lighting area, lighting colour, and lighting frequency.
  • obtaining light effect control instructions corresponding to the audio file based on the audio file includes: performing spectrum analysis on the audio file to obtain the spectrum of the audio file, and determining the light effect control instructions corresponding to the spectrum in accordance with the spectrum of the audio file.
  • the spectrum analysis can be performed on the audio file to obtain the spectrum of the audio file, and the light effect control instructions corresponding to the spectrum can be determined in accordance with the spectrum of the audio file, thus greatly expanding an application range for obtaining the corresponding light effects by using the light strips 2.
  • determining the light effect control instructions corresponding to the spectrum in accordance with the spectrum of the audio file includes: generating light effect control instructions corresponding to the spectrum of the audio file according to the spectrum of the audio file, in accordance with an audio-light effect conversion algorithm.
  • the audio-light effect conversion algorithm is one of conventional audio-light effect conversion algorithms.
  • the conventional audio file can be one or more of ringtone files, music files, audio files, videos files containing audio, an instant voice, a voice in an instant video.
  • the ringtone file may be, but is not limited to, a telephone ringtone file, an SMS ringtone file, an alarm clock ringtone file, and other reminder ringtones, etc.
  • the music file may be a music file downloaded locally from the internet, and may also be a music file obtained from the internet by a music application.
  • the audio file is a file containing audio and/or voice, for example, a voice file in a live chat application, etc.
  • the video file is a video file containing audio, for example, various types of video files, such as a short video on the web (e.g., a short video in an application such as Shake, Racer, Watermelon Video, etc.), a short video in a live chat application, a movie file, a TV series file, etc.
  • the voice file is a piece of voice.
  • the instant voice includes an audio file generated in a scenario such as being on a phone call or being in a voice chat.
  • the voice in an instant video recording includes an audio file generated in a scenario such as live streaming or being in a video chat, for example, an audio file generated in real time during a live stream or video chat.
  • the above is not a limitation, but rather an example.
  • the above-mentioned types of conventional audio files can be divided into four main types, namely ringtone files, music files, audio/video files, and instant voice/video call files.
  • the lighting manner can be a combination of a lighting area, a lighting colour, and a lighting frequency.
  • obtaining light effect control instructions corresponding to the audio file based on the audio file includes: determining a category of usage environment of the audio file; obtaining light effect control instructions corresponding to the category of the usage environment of the audio file based on the difference of the usage environment of the audio file.
  • one audio file can correspond to different light effects in different usage environment.
  • the light strips 2 include at least two light strips 2 located on different zones of the back surface 11 of the main body 1.
  • controlling the light strips 2 to light up in the lighting manner includes: determining a type of the audio file; controlling the light strips located in different areas to work, and presenting different light effects according to the type of the audio file; or controlling the light strips located in at least two different areas to work, and presenting different light effects according to the type of the audio file.
  • the method further includes: determining whether a transparent area of the transparent back cover 3 is shaded, and/or the back surface 11 of the electronic device 100 is facing upwards; controlling the light strips 2 to light up in accordance with the lighting manner in response to the light effect control instructions, so as to create a light effect consistent with the rhythm of the audio file, includes: controlling the light strips 2 to light up in accordance with the lighting manner, in response to the light effect control instructions, to create a lighting effect consistent with the rhythm of the audio file when the transparent area of the transparent back cover 3 is determined to be not shaded, and/or the back surface 11 of the electronic device 100 is determined to be facing upwards.
  • the light strips 2 produces the light effects.
  • the transparent area of the transparent back cover 3 is shaded and/or the back surface 11 of the electronic device 100 is facing downwards, the light strips 2 will not turn on and no light effect will be produced, thus avoiding excessive power consumption.
  • the method before controlling the light strips 2 to light up in response to the light effect control instructions, the method further comprises: determining whether a light effect enabled instruction is obtained before playing the audio file or during playing the audio file; controlling the light strips 2 to light up in response to the light effect control instructions only when the light effect enabled instruction is obtained.
  • the light effect enabled instruction may be, but are not limited to, voice instructions, manually entered control instructions, a flip operation by the user to flip the electronic device 100, etc.
  • voice instructions for example, the user's voice says: please turn on the light effect, or, for example, during playing an audio file, the user flips the electronic device 100, and when the gyroscope of the electronic device 100 detects the flip angle of the electronic device 100 to be greater than a preset angle threshold, the light effect enabled instruction is generated.
  • each audio file is played with a corresponding light effect, it will greatly increase the power consumption of the electronic device 100, resulting in a shortening of the endurance of the electronic device 100 and affecting the user experience. Therefore, in practical application, the light strips 2 will only be lit up in response to the light effect control instructions when light effect enabled instruction is received, so as to reduce unnecessary lighting and power consumption, which not only meets the user's demand for light effects, but also saves electricity.
  • the method further includes: determining whether a light effect closed instruction is obtained; controlling the strips 2 to turn off the light effect when the light effect closed instruction is received.
  • the light effect closed instruction may be, but is not limited to, voice instructions, manually entered control instructions, a flip operation by the user to flip the electronic device 100, etc.
  • voice instructions for example, the user's voice says: please turn off the light effect, or, for example, during playing an audio file, the user flips the electronic device 100 again and when the gyroscope of the electronic device 100 detects the flip angle of the electronic device 100 to be greater than the preset angle threshold, the light effect closed instruction is generated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

The present disclosure provides an electronic device and a method of converting audio to a light effect. The electronic device includes a main body, light strips located on a back surface of the main body, and a transparent back cover; the electronic device further includes an audio playing unit. The method includes: obtaining an audio file in real time; obtaining light effect control instructions corresponding to the audio file; the light effect control instructions including a plurality of control instructions which control the light strips to be lit up in a lighting manner matching playback parameters of the audio file; creating a light effect consistent with the playback parameters of the audio file by controlling the audio playing unit to play the audio file, and synchronously controlling the light strips to light up in accordance with the lighting manner in response to the light effect control instructions.

Description

    TECHNICAL FIELD
  • The present disclosure relates to fields of electronic devices, and in particular to an electronic device and a method of converting audio to light effects thereof.
  • BACKGROUND
  • In the last decade or so, with the rapid development of science and technology, there have been many examples of technology changing lives. In other words, because of the rapid development of science and technology, consumers are not only demanding more from electronic products in terms of functionality, but also in terms of their aesthetic appearance. In an increasingly competitive product market, products which are aesthetically pleasing and more recognisable are more likely to be favoured by consumers. However, the current consumer electronic products have a convergence effect in terms of appearance, and some electronic products are even difficult to distinguish from the appearance of which brand and which series of products they belong to, bringing aesthetic fatigue to consumers.
  • SUMMARY
  • For this purpose, the present discloses provides an electronic device and a method of converting audio to light effect to solve at least one of the technical problems mentioned above.
  • In order to solve the above technical problems, the technical solution of the present disclosure is illustrated as follows.
  • In a first aspect, the present disclosure provides a method of converting audio to light effect, applied to an electronic device. The electronic device includes a main body. The electronic device further includes light strips located on a back surface of the main body, and a transparent back cover. The transparent back cover overall covers the back surface of the main body having the light strips. The electronic device further includes an audio playing unit. The method includes steps as follows.
  • An audio file is obtained in real time.
  • Light effect control instructions corresponding to the audio file are obtained based on the audio file. The light effect control instructions are a plurality of control instructions which control the light strips to be lit up in a lighting manner matching playback parameters of the audio file. The lighting manner includes one or more of a lighting area, a lighting colour, a lighting frequency, a lighting duration, and a number of light flashes.
  • A light effect consistent with the playback parameters of the audio file is created by controlling the audio playing unit play the audio file, and synchronously controlling the light strips to light up in accordance with the lighting manner in response to the light effect control instructions.
  • In a second aspect, the present disclosure provides an electronic device. The electronic device includes a main body. The electronic device further includes light strips located on a back surface of the main body, and a transparent back cover. The transparent back cover overall covers the back surface of the main body having the light strips. The electronic device further includes an audio playing unit. The electronic device further includes a processor and a memory. The memory stores computer program, and the processor runs the computer program to execute the method of converting audio to light effect as mentioned in the first aspect.
  • Compared with the existing technology, the advantageous effect of this application is as follows:
  • In the present disclosure, while an audio file is obtained and the audio playing unit is controlled to play the audio file, the light strips located on the back surface of the electronic device are synchronously controlled to light up according to the lighting manner of the light effect control instructions, forming a lighting effect consistent with the playback parameters of the audio file. This allows the electronic device to have corresponding light effects while playing audio, bringing a better visual impact and a better user experience.
  • BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS
    • FIG. 1 shows a structural schematic diagram of an electronic device in accordance with one embodiment of the present disclosure;
    • FIG. 2 shows a cross-sectional diagram of the electronic device in accordance with one embodiment of the present disclosure;
    • FIG. 3 shows a module diagram of the electronic device in accordance with one embodiment of the present disclosure;
    • FIG. 4 is a flowchart of a method of converting audio to light effect in accordance with one embodiment of the present disclosure.
    DETAILED DESCRIPTION OF ILLUSTRATED EMBODIMENTS
  • Embodiments of the present disclosure are described in detail below and examples of the embodiments are shown in the accompanying drawings. The same or similar designations from beginning to end indicate the same or similar components or components having the same or similar functions. The embodiments described below with reference to the accompanying drawings are exemplary and are intended to explain the present disclosure and are not to be construed as a limit of the present disclosure.
  • Furthermore, the terms "first", "second" are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or as implicitly specifying the number of technical features indicated. Thus, a feature qualified with "first", "second" may explicitly or implicitly include one or more such features. In the description of the present disclosure, "plurality" means two or more, unless otherwise expressly and specifically limited.
  • In the present disclosure, unless expressly specified and limited, terms such as "connect" and "fixed" should be interpreted in a broad sense. For example, they can be fixed connections, detachable connections, or integrated structures; they can be mechanical connections, electrical connections; they can be directly connected or indirectly connected via intermediaries, and can be internal connections or interaction relationships between two components. For ordinary persons skilled in the art, the specific meanings of the above terms in the present disclosure can be understood according to specific circumstances.
  • Referring to FIGS. 1 and 2, FIG. 1 shows a structural schematic diagram of an electronic device in accordance with one embodiment of the present disclosure; FIG. 2 shows a cross-sectional diagram of the electronic device in accordance with one embodiment of the present disclosure. The electronic device 100 can include a main body 1. The electronic device 100 can further include light strips 2 located on a back surface 11 of the main body 1 and a transparent back cover 3. The transparent back cover 3 overall covers the back surface 11 of the main body 1 having the light strips 2. The transparent back cover 3 is capable of transmitting the light emitted by the light strips 2. In detail, in this embodiment, the main body 1 can further include a rear camera 4 and a rear wireless charging zone 5. The wireless charging zone 5 is electrically coupled to a battery of the electronic device 100. The wireless charging zone 5 is used for charging or discharging in coupling with an external wireless charging device. Optionally, the back surface 11 of the main body 1 is divided into four zones, namely a first zone 31 and a second zone 32 arranged side by side at a top end of the transparent back cover 3, a third zone 33 located in a middle portion of the transparent back cover 3, and a fourth zone 34 located at a bottom end of the transparent back cover 3. The top end, middle portion, and bottom end refer to the top end, middle portion, and bottom end of the electronic device 100 when it is in a vertical screen use state. The rear camera 4 is located in the first zone 31. The wireless charging zone 5 is located in the third zone 33. The light strips 2 can include a first light strip 21, a second light strip 22, a third light strip 23, and a fourth light strip 24. The first light strip 21 is roughly C-shaped and is located in the first zone 31, surrounding the rear camera 4 of the electronic device 100. The second light strip 22 is roughly inclined from top to bottom and is located in the second zone 32. The third light strip 23 is roughly C-shaped and is located in the third zone 33, surrounding the wireless charging zone 5. The second light strip 22 and the third light strip 23 can form a roughly lollipop shape. The fourth light strip 24 is roughly in an "!" shape and is located in the fourth zone 34. In other embodiments, it should be understood that the number, the shape, and the placement of the light strips 2 are not limited to the description of the above embodiment and may be changed as needed.
  • Referring to FIG. 3, FIG. 3 shows a module diagram of the electronic device in accordance with one embodiment of the present disclosure. The electronic device 100 can further include a processor 6, a memory 7 and an audio playing unit 8. The memory 7 and the audio playing unit 8 are electrically connected to the processor 6, respectively. The memory 7 stores a computer program. The processor 6 runs the computer program and executes the method of converting audio to light effect. The storage 7 also stores relevant data for executing the method of converting audio to light effect.
  • In detail, the processor 6 runs the computer program to execute as follows.
  • An audio file is obtained in real time.
  • Light effect control instructions corresponding to the audio file are obtained based on the audio file. The light effect control instructions include a plurality of control instructions which control the light strips to be lit up in a lighting manner matching playback parameters of the audio file. The lighting manner includes one or more of a lighting area, a lighting colour, a lighting frequency, a lighting duration, and a number of light flashes.
  • A light effect consistent with the playback parameters of the audio file is created by controlling the audio playing unit 8 to play the audio file, and synchronously controlling the light strips 2 to light up in accordance with the lighting manner in response to the light effect control instructions.
  • In the present disclosure, while an audio file is obtained and the audio playing unit 8 is controlled to play the audio file, the light strips 2 located on the back surface of the electronic device 100 are synchronously controlled to light up according to the lighting manner of the light effect control instructions, forming a lighting effect consistent with the playback parameters of the audio file. This allows the electronic device 100 to have corresponding light effects while playing audio, bringing a better user experience.
  • The playback parameters can include at least one of playback volume, playback rhythm, playback speed, etc.
  • The audio file comes from a wide range of sources. In one embodiment, the audio file is a system pre-stored audio file. The system pre-stored audio file can be, but is not limited to, one or more of system pre-stored ringtone files, music files, audio files, videos files containing audio, etc. The system has pre-stored light effect control instructions, and the pre-stored light effect control instructions match the system pre-stored audio file. Therefore, when the processor 6 obtains this type of audio file, it does not need to perform data processing and analysis, but rather obtains the corresponding light effect control instructions directly from the system. It should be understood that the system pre-stored audio file and/or pre-stored light effect control instructions can be stored in the memory 7 and/or on cloud storage devices, etc. Thereby, when the electronic device 100 obtains the system pre-stored audio file, it can obtain the light effect control instructions directly from the system based on the system pre-stored audio file, reducing the amount of data processing and accelerating the system response speed to bring convenience to users.
  • The system pre-stored audio file and/or light effect control instructions can be stored in the memory 7 before leaving the factory, or pre-stored in an application related to converting audio to light effect, which can be downloaded from an application download platform after leaving the factory
  • However, in the Big Data Era, there are very many types of audio files. Suppliers cannot pre-analyze and generate corresponding light effect control instructions for all the audio files. Therefore, if the processor 6 itself does not have the analytical and generating capabilities for these light effect control instructions, it will greatly reduce the application scope of obtaining corresponding light effects using the light strips 2. Therefore, in the present disclosure, the processor 6 can perform spectrum analysis on the audio file to obtain the spectrum of the audio file, and determine the light effect control instructions corresponding to the audio file in accordance with the spectrum of the audio file.
  • Therefore, even though the audio file obtained by the processor 6 is not the system pre-stored audio file, the processor 6 can perform spectrum analysis on the audio file to obtain the spectrum of the audio file, and determine the light effect control instructions corresponding to the audio file in accordance with the spectrum of the audio file, thus greatly expanding the application range for obtaining the corresponding light effects by using the light strips 2.
  • Optionally, in at least one embodiment, when the audio file is a conventional audio file and not a system pre-stored audio file and there are no light effect control instructions matching the conventional audio file pre-stored in the system, the processor 6 generates light effect control instructions corresponding to the spectrum of the audio file according to the spectrum of the audio file, in accordance with an audio-light effect conversion algorithm.
  • The audio-light effect conversion algorithm is one of conventional audio-light effect conversion algorithms. The processor 6 obtaining light effect control instructions corresponding to the audio file according to the audio file, includes: determining a category of usage environment of the audio file; obtaining light effect control instructions corresponding to the category of the usage environment of the audio file based on the difference of the usage environment of the audio file.
  • It can be understood that some basic parameter values in the audio-light effect conversion algorithm are not unchangeable, and different audio light effect conversion algorithms can also be selected according to the usage environment or the source of the audio file. Here, the category of the usage environment of the audio file and the source of the audio file can be pre-set by the system or set by the user. For example, different light effect control instructions can be generated by changing some basic parameter values in the audio light effect conversion algorithm or by directly changing the audio light effect conversion algorithm when used in different environments such as a conference room, at home, outdoors, in a cinema, during the day, at night, etc.. With regard to the source of the audio file, e.g. when the voice or video file is from a key contact, different light effect control instructions can be generated in accordance with the reminder ringtone by changing some basic parameter values in the audio light effect conversion algorithm or by directly changing the audio light effect conversion algorithm, which causes the light effect of the reminder ringtone for the key contact to be made different from a reminder way of the light effect of the regular contact. For example, for alarm clock ringtone, it is possible to set a focused alarm clock, e.g. a wake up alarm clock ringtone, different light effect control instructions can be generated in accordance with the wake up alarm clock ringtone by changing some basic parameter values in the audio light effect conversion algorithm or by directly changing the audio light effect conversion algorithm, which causes the light effect of the reminder ringtone for the wake up alarm clock to be different from a reminder way of the light effect of the conventional alarm clock.
  • The conventional audio file can be one or more of ringtone files, music files, audio files, videos files containing audio, an instant voice, a voice in an instant video. The ringtone file may be, but is not limited to, a telephone ringtone file, an SMS ringtone file, an alarm clock ringtone file, and other reminder ringtones, etc. The music file may be a music file downloaded locally from the internet, and may also be a music file obtained from the internet by a music application. The audio file is a file containing audio and/or voice, for example, a voice file in a live chat application, etc. The video file is a video file containing audio, for example, various types of video files, such as a short video on the web (e.g., a short video in an application such as Shake, Racer, Watermelon Video, etc.), a short video in a live chat application, a movie file, a TV series file, etc. The voice file is a piece of voice. The instant voice includes an audio file generated in a scenario such as being on a phone call or being in a voice chat. The voice in an instant video recording includes an audio file generated in a scenario such as live streaming or being in a video chat, for example, an audio file generated in real time during a live stream or video chat. The above is not a limitation, but rather an example.
  • Thus, the above-mentioned types of conventional audio files can be divided into four main types, namely ringtone files, music files, audio/video files, and instant voice/video call files.
  • The lighting manner is a combination of one or more of a lighting area, a lighting colour and a lighting frequency.
  • When the lighting manner includes the lighting area, the processor 6 may be used to select a different lighting area according to a type of audio file. For example, when playing a ringtone file, the first light strip 21 is controlled to work for the light effect. During a voice/video call, the fourth light strip 24 is controlled to work for the light effect in accordance with a first audio signal obtained in real time by an audio collection unit of the electronic device 100. The second light strip 22 is controlled to work for the light effect in accordance with the second audio signal played in real time by a receiver unit of the electronic device 100. The first light strip 21, the second light strip 22, the third light strip 22 and the fourth light strip 24 are controlled to work together to achieve the light effect when playing music files/audio files/video files. It can be understood that the above are examples only and are intended to illustrate the application more clearly and not to limit it. It can be understood that in another embodiment, the processor 6 may select at least two different lighting areas to work to achieve the light effect according to the type of audio file. For example, the first light strip 21 and the second light strip 22 are controlled to achieve the light effect when playing a ringtone file; the second light strip 22 and the third light strip 23 are controlled to achieve the light effect when playing a music/audio files/video file. It can be understood that the above are examples only, to illustrate the application more clearly and not to limit it.
  • Thereby, for different types of audio files, the light strips located in different areas (the first light strip 21, the second light strip 22, the third light strip 23 or the fourth light strip 24) will be selected to work to present different light effects. Alternatively, the light strips located in at least two different areas (the first light strip 21, the second light strip 22, the third light strip 23 or the fourth light strip 24) are selected to work to present different light effects. This means that the type of the audio file can be differentiated according to the area where the light effect is produced. This makes it easier for the user to identify the type of audio file and also allows for the individual presentation of the light effects of the audio file.
  • Of course, in another embodiment, the processor 6 also selects, according to the type of audio file, the light strips in at least two zones (the first light strip 21, the second light strip 22, the third light strip 23 and/or the fourth light strip 24) to work. The light strips within the at least two regions can also be controlled to work alternately to present an alternative light effect.
  • For example, when the processor 6 controls the audio playing unit 8 to play a music file, the processor 6 controls the first light strip 21 to play a first chorus part, controls the second light strip 22 and the third light strip 23 to play a verse part, and controls the fourth light strip 24 to play the final chorus part.
  • When the lighting manner includes a lighting area and a lighting colour, the processor 6 is used to obtain the volume value of the audio file and to select a different lighting colour based on the difference in the volume value of the audio file. For example, when the current audio file is a music file and the volume value of the music file is lower than a first preset value, the processor 6 selects the corresponding lighting area to be first light strip 21 and controls the first light strip 21 to display green. When the current audio file is a music file and the volume value of the music file is higher than the first preset value and lower than a second preset value, the processor 6 selects the corresponding lighted area to be first light strip 21 and controls the first light strip 21 to display yellow. When the current audio file is a music file and the volume value of the music file is higher than the second preset value, the processor 6 selects the corresponding lighted area to be first light strip 21 and controls the first light strip 21 to display red. It should be understood that the above are examples only and are intended to illustrate the present disclosure more clearly and not to limit it. The first preset value is less than the second preset value. For example, the first preset value is 30 db and the second preset value is 50 db.
  • When the lighting manner includes a lighting area and a lighting frequency. The processor 6 is used to obtain the volume value of the audio file, and to select light-up or light-down based on the magnitude of the volume value of the audio file. For example, when the current audio file is a music file and the volume value of the music file is lower than a third preset value, the processor 6 selects the corresponding light area to be the first light strip 21 and controls the first light strip 21 to turn off the light. When the current audio file is a music file and the volume value of the music file is higher than a fourth preset value, the processor 6 selects the corresponding light area to be first light strip 21 and controls the first light strip 21 to turn on the light. This results in a flashing light effect when the lights are alternately switched on and off. It should be understood that the above are examples only and are intended to illustrate the present disclosure more clearly and not to limit it. For example, the third preset value is 20 db. It should be understood that when the lighting manner includes not only the lighting area and the lighting frequency but also the lighting colour, not only a flashing light effect but also a colour light effect will be created when the volume value of the audio file is greater than the first preset value.
  • It should be understood that in one embodiment, the spectrum of the audio file has a correspondence with the lighting frequency, i.e. it is also possible to match the lighting frequency to the spectrum of the audio file.
  • In some embodiments, when the audio playing unit 8 plays the audio file with different sound effects, the light strips 2 are presented with different light effects. The sound effects may be, but are not limited to, 3D li-vox, subwoofer, HIFI live, space sound, concert, acoustic vintage, pure vocals, 5.1 panorama, 3D rotation, vinyl record, reggae electro, generic car sound, unicorn sound, etc. Since under different sound effects, the sound effects attached to the audio playing unit 8 when playing the audio file are different, the processor 6, according to different sound effects of the audio playing unit 8 playing the audio file, uses different audio light effect conversion algorithms to generate different light effect control instructions.
  • For example, in one scenario, the electronic device 100 receives a new incoming call, the telephone ringtone preset for the new incoming call is a system pre-stored audio file. At this time, the processor 6 obtains the light effect control instructions corresponding to the telephone ringtone, and, while controlling the audio playing unit 8 to play the telephone ringtone, the processor 6 controls the first light strip 21 to light up in accordance with the light effect control instructions, so that the light effect presented by the light strips 2 is consistent with the rhythm of the ringing tone played by the audio playing unit 8, which serves as a double reminder and an effect of enhancing the atmosphere.
  • For example, in another scenario, when the processor 6 controls the audio playing unit 8 to play a music file, since the music file is not a pre-stored system file, the processor 6 first generates corresponding light effect control instructions based on the music file using the audio light effect conversion algorithm, and then controls the audio playing unit 8 to play the music file, simultaneously controls the first light strip 21 to present the corresponding light effect.
  • For example, in yet another of these scenarios, in a voice/video call scenario, the processor 6 determines whether it is currently performing a human-computer dialogue in a voice input/output scenario. When it is determined in a voice input/output scenario, the processor 6 obtains the first audio signal collected by the audio collection unit in real time and the second audio signal played by the receiver unit. The processor controls the fourth light strip 24 to present the corresponding light effect in accordance with the first audio signal and controls the second light strip 22 to present the corresponding light effect in accordance with the second audio signal. The processor 6 controlling the fourth light strip 24 to present the corresponding light effect in accordance with the first audio signal and controlling the second light strip 22 to present the corresponding light effect in accordance with the second audio signal, includes: the processor 6 obtaining the volume of the first audio signal and controlling the fourth light strip 24 to light up or light down so as to present a corresponding light effect in accordance with the volume of the first audio signal, and obtaining the volume of the second audio signal and controlling the second light strip 22 to light up or light down so as to present a corresponding light effect in accordance with the volume of the second audio signal.
  • Optionally, in one embodiment, the electronic device 100 further includes a shading detection unit 9. The shading detection unit 9 is located at a corresponding position on the back surface 11 of the main body 1 and is electrically connected to the processor 6. The shading detection unit 9 generates a shading sensing signal when its ambient light is below a predetermined threshold. It should be understood that the shading detection unit 9 may be, but is not limited to, a light sensor, a camera, etc. The processor 6 determines, in response to the shading sensing signal, whether a transparent area of the transparent back cover 3 is shaded (or blocked/covered); when it determines that the transparent area of the transparent back cover 3 is not shaded (or blocked/covered), the processor 6, in response to the light effect control instructions, controls the light strips 2 to light up in accordance with the lighting manner to create a lighting effect consistent with the rhythm of the audio file.
  • It should be understood that the determination of whether the light is shaded/blocked/covered or not may be that the transparent area of the transparent back cover 3 is not shaded/blocked/covered at all or that the area of the transparent area of the transparent back cover 3 is shaded is less than a predetermined value.
  • It should be understood that in other embodiments, the processor 6 further determines whether to control the light strips 2 to produce a light effect based on whether the back surface 11 of the electronic device 100 is facing upwards. Specifically, the processor 6 controls the light strips 2 to produce a light effect when the back surface 11 of the electronic device 100 faces upwards. The processor 6 does not control the light strips 2 to produce the light effect when the back surface 11 of the electronic device 100 faces downwards.. The processor 6 may detect whether the back surface 11 of the electronic device 100 is facing up or down by means of a gyroscope. Specifically, the processor 6 may detect whether the back surface 11 of the electronic device 100 is facing up or down based on a positive or negative Z-axis data of the gyroscope. In some embodiments, when the processor 6 detects the back surface 11 of the electronic device 100 to be facing downwards by a gyroscope, it further detects whether the electronic device 100 is horizontally placed by means of the gyroscope. Only if the electronic device 100 is horizontally positioned, the light strips 2 are not controlled to produce the light effect. The processor 6 may determine whether the electronic device 100 is horizontally positioned by means of the X-axis and Y-axis data of the gyroscope.
  • Thereby, the processor 6 controls the light strips 2 to produce the light effect only when the transparent area of the transparent back cover 3 is not shaded (or blocked/covered) and/or the back surface 11 of the electronic device 100 is facing upwards. Of course, when the transparent area of the transparent back cover 3 is shaded and/or the back surface 11 of the electronic device 100 is facing downwards, the processor 6 does not control the light strips 2 to produce the light effect, so that excessive power consumption can be avoided.
  • Optionally, in one embodiment, the processor 6 determines, before controlling the light strips 2 to light up in response to the light effect control instructions, whether to obtain a light effect enabled instruction before playing the audio file or during playing the audio file. Only when the light effect enabled instruction is obtained, the processor 6 controls the light strips 2 to light up in response to the light effect control instructions. It should be understood that the light effect enabled instructions may be, but are not limited to, voice instructions, manually entered control instructions, a flip operation by the user to flip the electronic device 100, etc. For example, the user's voice says: please turn on the light effect, or, for example, during playing an audio file, the user flips the electronic device 100, and when the gyroscope of the electronic device 100 detects the flip angle of the electronic device 100 to be greater than a preset angle threshold, the light effect enabled instruction is generated.
  • Thereby, if each audio file is played with a corresponding light effect, it will greatly increase the power consumption of the electronic device 100, resulting in a shortening of the endurance of the electronic device 100 and affecting the user experience. Therefore, in practical application, the light strips 2 will only be lit up in response to the light effect control instructions when light effect enabled instruction is received, so as to reduce unnecessary lighting and power consumption, which not only meets the user's demand for light effects, but also saves electricity.
  • Optionally, in one embodiment, the processor 6, after controlling the light strips 2 to light up in accordance with the light effect control instructions, also determines whether a light effect end (or closed) instruction is obtained; when the light effect end instruction is obtained, the light strips 2 are controlled to turn off the light effect. It should be understood that the light effect end instruction may be, but is not limited to, voice instructions, manually entered control instructions, a flip operation by the user to flip the electronic device 100, etc. For example, the user's voice says: please turn off the light effect, or, for example, during playing an audio file, the user flips the phone again and when the gyroscope of the electronic device 100 detects the flip angle of the electronic device 100 to be greater than the preset angle threshold, the light effect end instruction is generated.
  • Referring to FIG. 4, FIG. 4 is a flowchart of a method of converting audio to light effect in accordance with one embodiment of the present disclosure. It should be understood that the order of the steps of the method can be adjusted according to practical needs. The method includes following steps.
  • Block 41: an audio file is obtained in real time.
  • Block 42: light effect control instructions corresponding to the audio file are obtained based on the audio file. The light effect control instructions includes a plurality of control instructions which control the light strips 2 to be lit up in a lighting manner matching playback parameters of the audio file. The lighting manner includes one or more of a lighting area, a lighting colour, a lighting frequency, a lighting duration, and a number of light flashes. Block 43: the audio playing unit 8 is controlled to play the audio file, and the light strips 2 are synchronously controlled to light up in accordance with the lighting manner in response to the light effect control instructions, so as to create a light effect consistent with the playback parameters of the audio file.
  • In the present disclosure, while an audio file is obtained and the audio playing unit 8 is controlled to play the audio file, the light strips 2 located on the back surface of the electronic device 100 are synchronously controlled to light up according to the lighting manner of the light effect control instructions, forming a lighting effect consistent with the playback parameters of the audio file. This allows the electronic device 100 to have corresponding light effects while playing audio, bringing a better user experience.
  • The audio file comes from a wide range of sources. In one embodiment, the audio file is a system pre-stored audio file. For example, the system pre-stored audio file can be system pre-stored ringtone files or music files. The system has pre-stored light effect control instructions, and the pre-stored light effect control instructions match the system pre-stored audio file. Therefore, when this type of audio file is obtained, it does not need to perform data processing and analysis, but rather obtains the corresponding light effect control instructions directly from the system. Obtaining light effect control instructions corresponding to the audio file based on the audio file, includes: obtaining light effect control instructions corresponding to the audio file based on the audio file from the system.
  • Therefore, when the electronic device 100 obtains the system pre-stored audio file, the light effect control instructions are obtained based on the system pre-stored audio file from the system, which reduces the data calculation load of the electronic device 100, speeds up the system response time, and provides convenience for the user.
  • The system pre-stored audio file can include, but is not limited to, one or more of a ringtone file, a music file, an audio file, a video file containing audio. It can be understood that the system pre-stored can be stored in the memory 7 before leaving the factory, or pre-stored in an application related to converting audio to light effect, which can be downloaded from an application download platform after leaving the factory
  • The lighting manner can be one or more of lighting area, lighting colour, and lighting frequency.
  • Optionally, in one embodiment, obtaining light effect control instructions corresponding to the audio file based on the audio file, includes: performing spectrum analysis on the audio file to obtain the spectrum of the audio file, and determining the light effect control instructions corresponding to the spectrum in accordance with the spectrum of the audio file.
  • Therefore, even though the audio file is not the system pre-stored audio file, the spectrum analysis can be performed on the audio file to obtain the spectrum of the audio file, and the light effect control instructions corresponding to the spectrum can be determined in accordance with the spectrum of the audio file, thus greatly expanding an application range for obtaining the corresponding light effects by using the light strips 2.
  • Optionally, in at least one embodiment, when the audio file is a conventional audio file and not a system pre-stored audio file and there are no light effect control instructions matching the conventional audio file pre-stored in the system, determining the light effect control instructions corresponding to the spectrum in accordance with the spectrum of the audio file, includes: generating light effect control instructions corresponding to the spectrum of the audio file according to the spectrum of the audio file, in accordance with an audio-light effect conversion algorithm.
  • The audio-light effect conversion algorithm is one of conventional audio-light effect conversion algorithms.
  • The conventional audio file can be one or more of ringtone files, music files, audio files, videos files containing audio, an instant voice, a voice in an instant video. The ringtone file may be, but is not limited to, a telephone ringtone file, an SMS ringtone file, an alarm clock ringtone file, and other reminder ringtones, etc. The music file may be a music file downloaded locally from the internet, and may also be a music file obtained from the internet by a music application. The audio file is a file containing audio and/or voice, for example, a voice file in a live chat application, etc. The video file is a video file containing audio, for example, various types of video files, such as a short video on the web (e.g., a short video in an application such as Shake, Racer, Watermelon Video, etc.), a short video in a live chat application, a movie file, a TV series file, etc. The voice file is a piece of voice. The instant voice includes an audio file generated in a scenario such as being on a phone call or being in a voice chat. The voice in an instant video recording includes an audio file generated in a scenario such as live streaming or being in a video chat, for example, an audio file generated in real time during a live stream or video chat. The above is not a limitation, but rather an example.
  • Thus, the above-mentioned types of conventional audio files can be divided into four main types, namely ringtone files, music files, audio/video files, and instant voice/video call files.
  • The lighting manner can be a combination of a lighting area, a lighting colour, and a lighting frequency.
  • Optionally, in one embodiment, obtaining light effect control instructions corresponding to the audio file based on the audio file, includes: determining a category of usage environment of the audio file; obtaining light effect control instructions corresponding to the category of the usage environment of the audio file based on the difference of the usage environment of the audio file.
  • Therefore, one audio file can correspond to different light effects in different usage environment.
  • Optionally, in one embodiment, the light strips 2 include at least two light strips 2 located on different zones of the back surface 11 of the main body 1. When the lighting manner at least includes the lighting area, controlling the light strips 2 to light up in the lighting manner, includes: determining a type of the audio file; controlling the light strips located in different areas to work, and presenting different light effects according to the type of the audio file; or controlling the light strips located in at least two different areas to work, and presenting different light effects according to the type of the audio file.
  • Optionally, in one embodiment, the method further includes: determining whether a transparent area of the transparent back cover 3 is shaded, and/or the back surface 11 of the electronic device 100 is facing upwards; controlling the light strips 2 to light up in accordance with the lighting manner in response to the light effect control instructions, so as to create a light effect consistent with the rhythm of the audio file, includes: controlling the light strips 2 to light up in accordance with the lighting manner, in response to the light effect control instructions, to create a lighting effect consistent with the rhythm of the audio file when the transparent area of the transparent back cover 3 is determined to be not shaded, and/or the back surface 11 of the electronic device 100 is determined to be facing upwards.
  • Thereby, only when the transparent area of the transparent back cover 3 is not shaded, and/or the back surface 11 of the electronic device 100 is facing upwards, the light strips 2 produces the light effects. Of course, when the transparent area of the transparent back cover 3 is shaded and/or the back surface 11 of the electronic device 100 is facing downwards, the light strips 2 will not turn on and no light effect will be produced, thus avoiding excessive power consumption.
  • Optionally, in one embodiment, before controlling the light strips 2 to light up in response to the light effect control instructions, the method further comprises: determining whether a light effect enabled instruction is obtained before playing the audio file or during playing the audio file; controlling the light strips 2 to light up in response to the light effect control instructions only when the light effect enabled instruction is obtained.
  • It should be understood that the light effect enabled instruction may be, but are not limited to, voice instructions, manually entered control instructions, a flip operation by the user to flip the electronic device 100, etc. For example, the user's voice says: please turn on the light effect, or, for example, during playing an audio file, the user flips the electronic device 100, and when the gyroscope of the electronic device 100 detects the flip angle of the electronic device 100 to be greater than a preset angle threshold, the light effect enabled instruction is generated.
  • Thereby, if each audio file is played with a corresponding light effect, it will greatly increase the power consumption of the electronic device 100, resulting in a shortening of the endurance of the electronic device 100 and affecting the user experience. Therefore, in practical application, the light strips 2 will only be lit up in response to the light effect control instructions when light effect enabled instruction is received, so as to reduce unnecessary lighting and power consumption, which not only meets the user's demand for light effects, but also saves electricity.
  • Optionally, in one embodiment, after controlling the light strips 2 to light up in accordance with the lighting manner of the light effect control instructions, the method further includes: determining whether a light effect closed instruction is obtained; controlling the strips 2 to turn off the light effect when the light effect closed instruction is received.
  • It should be understood that the light effect closed instruction may be, but is not limited to, voice instructions, manually entered control instructions, a flip operation by the user to flip the electronic device 100, etc. For example, the user's voice says: please turn off the light effect, or, for example, during playing an audio file, the user flips the electronic device 100 again and when the gyroscope of the electronic device 100 detects the flip angle of the electronic device 100 to be greater than the preset angle threshold, the light effect closed instruction is generated.
  • The technical solutions of the subject matter of the invention and the corresponding details have been described above, and it will be understood that the above descriptions are only some embodiments of the technical solutions of the subject matter of the invention, and that some of the details may be omitted in their specific implementation.
  • Furthermore, in some of the above embodiments of the invention, a number of embodiments are possible in combination, and the various combinations will not be enumerated for reasons of space. The person skilled in the art is free to combine the above embodiments according to the needs in order to obtain a better application experience.
  • From the above, it can be seen that this application has the above-mentioned excellent features, so that it can be used in a way that is not available in the previous technology and has practicality, becoming a product of great practical value.
  • The following clauses define further statements of invention:
    1. 1. A method of converting audio to light effect, applied to an electronic device, the electronic device comprising a main body; the electronic device further comprising light strips located on a back surface of the main body, and a transparent back cover; the transparent back cover overall covering the back surface of the main body having the light strips; the electronic device further comprising an audio playing unit, wherein, the method comprises: obtaining an audio file in real time; obtaining light effect control instructions corresponding to the audio file based on the audio file; the light effect control instructions comprises a plurality of control instructions which control the light strips to be lit up in a lighting manner matching playback parameters of the audio file; the lighting manner comprising one or more of a lighting area, a lighting colour, a lighting frequency, a lighting duration, and a number of light flashes; creating a light effect consistent with the playback parameters of the audio file by controlling the audio playing unit to play the audio file, and synchronously controlling the light strips to light up in accordance with the lighting manner in response to the light effect control instructions.
    2. 2. The method of converting audio to light effect according to clause 1, wherein the audio file is a system pre-stored audio file; a system has pre-stored light effect control instructions, the pre-stored light effect control instructions match the system pre-stored audio file; the obtaining light effect control instructions corresponding to the audio file based on the audio file, comprises: obtaining light effect control instructions corresponding to the audio file based on the audio file from the system.
    3. 3. The method of converting audio to light effect according to clause 1, wherein the audio file is a conventional audio file and not a system pre-stored audio file and there are no light effect control instructions matching the conventional audio file pre-stored in a system; the obtaining light effect control instructions corresponding to the audio file based on the audio file, comprises: performing spectrum analysis on the audio file to obtain a spectrum of the audio file; and determining the light effect control instructions corresponding to the spectrum in accordance with the spectrum of the audio file.
    4. 4. The method of converting audio to light effect according to clause 3, wherein determining the light effect control instructions corresponding to the spectrum in accordance with the spectrum of the audio file, comprises:generating light effect control instructions corresponding to the spectrum of the audio file according to the spectrum of the audio file, in accordance with an audio-light effect conversion algorithm.
    5. 5. The method of converting audio to light effect according to clause 3, wherein the audio file is one or more of a ringtone file, a music file, an audio file, a video file containing audio, an instant voice, a voice in an instant video.
    6. 6. The method of converting audio to light effect according to clause 5, wherein the light strips comprise at least two light strips located on different zones of the back surface of the main body; when the lighting manner at least includes the lighting area, controlling the light strips to light up in the lighting manner, comprises:
      • determining a type of the audio file; controlling the light strips located in different areas to work, and presenting different light effects according to the type of the audio file; or controlling the light strips located in at least two different areas to work, and
      • presenting different light effects according to the type of the audio file.
    7. 7. The method of converting audio to light effect according to any one of clauses 1 ~ 6, wherein the method further comprises: determining whether a transparent area of the transparent back cover is shaded, and/or the back surface of the electronic device is facing upwards; controlling the light strips to light up in accordance with the lighting manner in response to the light effect control instructions, comprising: controlling the light strips to light up in accordance with the lighting manner, in response to the light effect control instructions when the transparent area of the transparent back cover is determined to be not shaded, and/or the back surface of the electronic device is facing upwards.
    8. 8. The method of converting audio to light effect according to any one of clauses 1 ~ 6, wherein the method further comprises: determining a category of usage environment of the audio file; obtaining light effect control instructions corresponding to the category of the usage environment of the audio file based on a difference of the usage environment of the audio file.
    9. 9. The method of converting audio to light effect according to any one of clauses 1 ~ 6, wherein the method further comprises: determining whether a light effect enabled instruction is obtained before playing the audio file or during playing the audio file; controlling the light strips to light up in response to the light effect control instructions only when the light effect enabled instruction is obtained.
    10. 10. The method of converting audio to light effect according to any one of clauses 1 ~ 6, wherein the method further comprises: determining whether a light effect closed instruction is obtained; controlling the strips to turn off the light effect when the light effect closed instruction is received.
    11. 11. An electronic device, wherein the electronic device comprises a main body, the electronic device further comprises light strips located on a back surface of the main body, and a transparent back cover; the transparent back cover overall covers the back surface of the main body having the light strips; the electronic device further comprises an audio playing unit; the electronic device further comprises a processor and a memory, the memory stores computer program, and the processor runs the computer program to execute the method of converting audio to light effect according to any one of clauses 1-10.

Claims (11)

  1. A method of converting audio to a light effect, applied to an electronic device, the electronic device comprising a main body; the electronic device further comprising light strips located on a back surface of the main body, and a transparent back cover; the transparent back cover overall covering the back surface of the main body having the light strips; the electronic device further comprising an audio playing unit, wherein the method comprises:
    obtaining an audio file in real time;
    obtaining light effect control instructions corresponding to the audio file based on the audio file; the light effect control instructions comprising a plurality of control instructions which control the light strips to be lit up in a lighting manner matching playback parameters of the audio file; the lighting manner comprising one or more of a lighting area, a lighting colour, a lighting frequency, a lighting duration, and a number of light flashes;
    creating a light effect consistent with the playback parameters of the audio file by controlling the audio playing unit to play the audio file, and synchronously controlling the light strips to light up in accordance with the lighting manner in response to the light effect control instructions.
  2. The method of converting audio to a light effect according to claim 1, wherein the audio file is a system pre-stored audio file; a system has pre-stored light effect control instructions, the pre-stored light effect control instructions match the system pre-stored audio file; and wherein obtaining light effect control instructions corresponding to the audio file based on the audio file comprises: obtaining light effect control instructions corresponding to the audio file based on the audio file from the system.
  3. The method of converting audio to a light effect according to claim 1, wherein the audio file is a conventional audio file and not a system pre-stored audio file and there are no light effect control instructions matching the conventional audio file pre-stored in a system; and wherein obtaining light effect control instructions corresponding to the audio file based on the audio file comprises:
    performing spectrum analysis on the audio file to obtain a spectrum of the audio file; and
    determining the light effect control instructions corresponding to the audio file in accordance with the spectrum of the audio file.
  4. The method of converting audio to a light effect according to claim 3, wherein determining the light effect control instructions corresponding to the audio file in accordance with the spectrum of the audio file comprises:
    generating light effect control instructions corresponding to the audio file in accordance with the spectrum of the audio file in accordance with an audio-light effect conversion algorithm.
  5. The method of converting audio to a light effect according to claim 3 or claim 4, wherein the audio file is one or more of a ringtone file, a music file, an audio file, a video file containing audio, an instant voice, and a voice in an instant video.
  6. The method of converting audio to a light effect according to claim 5, wherein the light strips comprise at least two light strips located on different zones of the back surface of the main body; and wherein when the lighting manner at least includes the lighting area, controlling the light strips to light up in the lighting manner comprises:
    determining a type of the audio file;
    controlling the light strips located in different areas to present different light effects according to the type of the audio file; or controlling the light strips located in at least two different areas to present different light effects according to the type of the audio file.
  7. The method of converting audio to a light effect according to any preceding claim, wherein the method further comprises:
    determining whether a transparent area of the transparent back cover is blocked, and/or the back surface of the electronic device is facing upwards; and
    wherein controlling the light strips to light up in accordance with the lighting manner in response to the light effect control instructions comprises:
    controlling the light strips to light up in accordance with the lighting manner in response to the light effect control instructions when the transparent area of the transparent back cover is determined to be not blocked, and/or the back surface of the electronic device is facing upwards.
  8. The method of converting audio to a light effect according to any preceding claim, wherein the method further comprises:
    determining a category of usage environment of the audio file;
    obtaining light effect control instructions corresponding to the category of the usage environment of the audio file.
  9. The method of converting audio to a light effect according to any preceding claim, wherein the method further comprises:
    determining whether a light effect enabled instruction is obtained before playing the audio file or during playing the audio file; and
    controlling the light strips to light up in response to the light effect control instructions only when the light effect enabled instruction is obtained.
  10. The method of converting audio to a light effect according to any preceding claim, wherein the method further comprises:
    determining whether a light effect end instruction is obtained;
    controlling the strips to turn off the light effect when the light effect end instruction is received.
  11. An electronic device, wherein the electronic device comprises a main body, the electronic device further comprises light strips located on a back surface of the main body, and a transparent back cover; the transparent back cover overall covers the back surface of the main body having the light strips; the electronic device further comprises an audio playing unit; the electronic device further comprises a processor and a memory, the memory stores a computer program, and the processor is configured to run the computer program to execute the method of converting audio to light effect according to any one of claims 1-10.
EP23182280.0A 2022-06-30 2023-06-29 Electronic device and method of converting audio to light effect thereof Pending EP4301096A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210764543.5A CN115150998A (en) 2022-06-30 2022-06-30 Electronic equipment and method for converting audio frequency into light effect

Publications (1)

Publication Number Publication Date
EP4301096A1 true EP4301096A1 (en) 2024-01-03

Family

ID=83410721

Family Applications (1)

Application Number Title Priority Date Filing Date
EP23182280.0A Pending EP4301096A1 (en) 2022-06-30 2023-06-29 Electronic device and method of converting audio to light effect thereof

Country Status (3)

Country Link
US (1) US20240004434A1 (en)
EP (1) EP4301096A1 (en)
CN (1) CN115150998A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170340984A1 (en) * 2016-05-24 2017-11-30 Creative Technology Ltd Apparatus for controlling lighting behavior of a plurality of lighting elements and a method therefor
WO2021186420A1 (en) * 2020-03-20 2021-09-23 Ledworks Srl Method and system for generating light effects
CN114375083A (en) * 2021-12-17 2022-04-19 广西世纪创新显示电子有限公司 Light rhythm method, device, terminal equipment and storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170340984A1 (en) * 2016-05-24 2017-11-30 Creative Technology Ltd Apparatus for controlling lighting behavior of a plurality of lighting elements and a method therefor
WO2021186420A1 (en) * 2020-03-20 2021-09-23 Ledworks Srl Method and system for generating light effects
CN114375083A (en) * 2021-12-17 2022-04-19 广西世纪创新显示电子有限公司 Light rhythm method, device, terminal equipment and storage medium

Also Published As

Publication number Publication date
CN115150998A (en) 2022-10-04
US20240004434A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
CN110336960B (en) Video synthesis method, device, terminal and storage medium
CN107967706B (en) Multimedia data processing method and device and computer readable storage medium
WO2020253096A1 (en) Method and apparatus for video synthesis, terminal and storage medium
CN109379485B (en) Application feedback method, device, terminal and storage medium
CN107728400B (en) Information display method and mobile terminal
CN109587549B (en) Video recording method, device, terminal and storage medium
CN104967801A (en) Video data processing method and apparatus
CN111355974A (en) Method, apparatus, system, device and storage medium for virtual gift giving processing
CN112738607B (en) Playing method, device, equipment and storage medium
CN110139143B (en) Virtual article display method, device, computer equipment and storage medium
JP2018074410A (en) Optical output system
CN112445395A (en) Music fragment selection method, device, equipment and storage medium
CN111142838A (en) Audio playing method and device, computer equipment and storage medium
CN108364660B (en) Stress recognition method and device and computer readable storage medium
CN113420177A (en) Audio data processing method and device, computer equipment and storage medium
CN112468884A (en) Dynamic resource display method, device, terminal, server and storage medium
CN110808021A (en) Audio playing method, device, terminal and storage medium
EP4301096A1 (en) Electronic device and method of converting audio to light effect thereof
US20240005752A1 (en) New message reminder method and electronic device
CN111611430A (en) Song playing method, device, terminal and storage medium
CN111813970A (en) Multimedia content display method, device, terminal and storage medium
CN116095595B (en) Audio processing method and device
CN107071552B (en) Setting method, device, playback equipment and the controlling terminal of playback equipment
WO2022227589A1 (en) Audio processing method and apparatus
CN112464019B (en) Audio playing method, device, terminal and storage medium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR