EP4301094A1 - Display apparatus and control method therefor - Google Patents

Display apparatus and control method therefor Download PDF

Info

Publication number
EP4301094A1
EP4301094A1 EP21954349.3A EP21954349A EP4301094A1 EP 4301094 A1 EP4301094 A1 EP 4301094A1 EP 21954349 A EP21954349 A EP 21954349A EP 4301094 A1 EP4301094 A1 EP 4301094A1
Authority
EP
European Patent Office
Prior art keywords
power
voltage
chip
display apparatus
output end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21954349.3A
Other languages
German (de)
French (fr)
Inventor
Jiwon Lee
Sungyong JOO
Junhyun WON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210110498A external-priority patent/KR20230028051A/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of EP4301094A1 publication Critical patent/EP4301094A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/34Voltage stabilisation; Maintaining constant voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0413Details of dummy pixels or dummy lines in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/064Adjustment of display parameters for control of overall brightness by time modulation of the brightness of the illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving

Definitions

  • the disclosure relates to a display apparatus and a control method thereof. More particularly, the disclosure relates to a display apparatus which includes a power supply device configured to provide power to respective circuit configurations and a control method thereof.
  • a power supply device for example, a switched mode power supply (SMPS) included in a display apparatus may be a device configured to supply power to respective circuit configurations inside the display apparatus.
  • the power supply device may include a dummy circuit for limiting a voltage rise in the power supply device.
  • the dummy circuit may, in some cases, be constantly operated, there is a disadvantage in that the dummy circuit may consume too much power. Accordingly, there is a need to develop a circuit configuration for reducing power consumption of the dummy circuit.
  • a display apparatus comprising a power supply device, the power supply device comprising a power supply part configured to output a first power to drive a backlight and a second power to drive a main circuit; and an integrated circuit (IC) chip configured to increase, based on a control signal to adjust a brightness of the backlight being received, a current value of the second power, and reduce, based on the control signal not being received for a first threshold time, the current value of the second power.
  • IC integrated circuit
  • the power supply part may comprise a first output end configured to output the first power; and a second output end configured to output the second power, wherein the power supply device may further comprise a dummy circuit connected to the first output end, and wherein the IC chip is configured to detect a voltage of the first output end, and prevent, based on the detected voltage being greater than or equal to a first threshold value, a voltage of the first power from rising by turning on the dummy circuit.
  • the dummy circuit may comprise a transistor disposed between the first output end and a ground, and the IC chip may be configured to prevent the voltage of the first power from rising by turning on the transistor based on the detected voltage being greater than or equal to the first threshold value.
  • the IC chip may be configured to turn off the transistor based on a voltage detected while the transistor is in a turned on state decreasing to a voltage less than the first threshold value.
  • the power supply part may further comprise a capacitor connected to the first output end, and the IC chip may be configured to discharge the capacitor by turning on the transistor for a second threshold time based on the detected voltage decreasing to a voltage less than a second threshold value, which is less than the first threshold value.
  • the display apparatus may further comprise a feedback circuit connected to the second output end, wherein the feedback circuit is configured to provide a feedback signal to the power supply part based on a voltage magnitude of the second output end.
  • the control signal may comprise at least one of a pulse width modulation signal or an amplitude dimming signal.
  • the control signal may be received by the IC chip according a user command for turning on the display apparatus.
  • the IC chip may be configured to change an operation mode of the display apparatus to a first mode by increasing the current value of the second power, and change the operation mode of the display apparatus to a second mode by reducing the current value of the second power.
  • the first mode may be a normal mode, and the second mode may be a low power mode.
  • a control method of a display apparatus comprising outputting, by a power supply part, a first power to drive a backlight and a second power to drive a main circuit; and increasing, by an integrated circuit (IC) chip, a current value of the second power based on a control signal to adjust a brightness of the backlight, and reducing, based on the control signal not being received for a first threshold time, the current value of the second power.
  • IC integrated circuit
  • the method may further comprise detecting, by the IC chip, a voltage of a first output end of the power supply part, the first output end being configured to output the first power; and preventing, based on the detected voltage being greater than or equal to a first threshold value, a voltage of the first power from rising by turning on, by the IC chip, a dummy circuit connected to the first output end.
  • the preventing may comprise turning on, by the IC chip, a transistor in the dummy circuit, and the transistor may be disposed between the first output end and a ground.
  • the method may further comprise turning off, by the IC chip, the transistor based on the voltage detected while the transistor is in a turned on state decreasing to a voltage less than the first threshold value.
  • the method may further comprise discharging, based on the detected voltage decreasing to a voltage less than a second threshold value, a capacitor in the power supply part by turning on, by the IC chip, the transistor for a second threshold time, wherein the second threshold value is less than the first threshold value, and wherein the capacitor is connected to the first output end.
  • a display apparatus comprising a power supply device, the power supply device comprising a power supply part configured to output a first power to drive a backlight and a second power to drive a main circuit; and an integrated circuit (IC) chip configured to change an operation mode of the display apparatus to a low power mode from a normal mode, based on a control signal to adjust a brightness of the backlight not being received for a first threshold time.
  • IC integrated circuit
  • the IC chip may change the operation mode to the low power mode by reducing a current value of the second power.
  • the power supply part may comprise a first output end configured to output the first power; and a second output end configured to output the second power, wherein the power supply device further comprises a dummy circuit connected to the first output end and comprising a transistor disposed between the first output end and a ground, and wherein the IC chip is configured to detect a voltage of the first output end, and prevent, based on the detected voltage being greater than or equal to a first threshold value, a voltage of the first power from rising by turning on the transistor.
  • the IC chip may be configured to turn off the transistor based on a voltage detected while the transistor is in a turned on state decreasing to a voltage less than the first threshold value.
  • the power supply part may further comprise a capacitor connected to the first output end, wherein the IC chip is configured to discharge the capacitor by turning on the transistor for a second threshold time based on the detected voltage decreasing to a voltage less than a second threshold value, which is less than the first threshold value.
  • the manufacturing cost of the power supply device included in the display apparatus may be reduced because some configurations are removed compared to circuits of the related art, and power consumption may be reduced by operating at the low power mode based on the control signal of the main circuit.
  • the power supply device included in the display apparatus may reduce power consumption and the heat generated because the dummy circuit is not constantly operated, and enhance safety by discharging unnecessary overvoltage through the dummy circuit.
  • the term "user” may refer to a person using an electronic apparatus or a device (e.g., artificial intelligence electronic apparatus) using an electronic apparatus.
  • a power supply device for example, a switched mode power supply (SMPS), included in a display apparatus may be a device configured to supply power to respective circuit configurations inside the display apparatus.
  • SMPS switched mode power supply
  • a power supply device illustrated in FIG. 1A may include one feedback circuit in a direct current (DC)-DC converter, and the feedback circuit may be configured to perform feedback on a voltage of an A13V node.
  • DC direct current
  • the power supply device may be configured to control a B13V Switch Block by receiving a PS On/Off signal, and based on a B13V Switch Block being in a conducting state, the A13V node and an B13V node may conduct and a dummy circuit (dummy block) may be operated.
  • the voltage of the A13V node may have a small voltage variation through a feedback operation by the feedback circuit.
  • a Vdrv voltage LED Vdrv
  • a Vdrv voltage may have a relatively large voltage variation according to a 13V load and an LED load because there is no feedback circuit.
  • the dummy circuit may be used for the purpose of limiting a Vdrv voltage rise.
  • the dummy circuit is constantly operated after the PS On signal is input, there is a disadvantage that the dummy circuit consumes power even when the Vdrv voltage is not in a rising state.
  • Various embodiments disclosed here provide a display apparatus having an improved dummy circuit.
  • FIG. 2 is a block diagram illustrating a configuration of a display apparatus 100 according to an embodiment.
  • the display apparatus 100 may include a power supply part 110 and an integrated circuit (IC) chip 120.
  • the display apparatus 100 may include a power supply device, and the power supply device may include the power supply part 110 and the integrated circuit (IC) chip 120.
  • the power supply device may be a device configured to provide power to respective circuit configurations by generating power.
  • the power supply device may be configured to provide, as a configuration of the display apparatus 100, power to the respective circuit configurations included in the display apparatus 100.
  • the embodiment is not limited thereto, and in some embodiments, the power supply device may be realized as a separate device, and in this case, the power supply device may be configured to provide power to the respective circuit configurations included in an external device.
  • the power supply part 110 may be configured to output a first power for driving a backlight and a second power for driving a main circuit.
  • the power supply part 110 may include a first output end outputting the first power and a second output end outputting the second power, and the first output end may be connected with the backlight and the second output end may be connected with the main circuit.
  • a feedback circuit connected to the second output end may be configured to provide a feedback signal to the power supply part 110 based on a voltage magnitude of the second output end, and accordingly, the power supply part 110 may be configured to maintain the second power at a certain magnitude. That is, a variation width of the second power may be smaller than a variation width of the first power.
  • the embodiment is not limited thereto, and the first power and the second power may be provided to other circuit configurations other than the backlight and the main circuit, respectively.
  • the integrated circuit (IC) chip 120 may be configured to increase, based on a control signal for adjusting the brightness of the backlight being received from the main circuit, a current value of the second power, and reduce, based on the control signal not being received from the main circuit for a first threshold time or more, a current value of the second power.
  • the control signal may include at least one of a pulse width modulation (PWM) signal or an amplitude dimming (A-Dim) signal.
  • PWM pulse width modulation
  • A-Dim amplitude dimming
  • the control signal may be output from the main circuit to the IC chip 120 according to a user command to turn on the display apparatus.
  • the IC chip 120 may be configured to change an operation mode of the display apparatus to a first mode by increasing the current value of the second power based on the control signal being received, and change, based on the control signal not being received for the first threshold time or more, the operation mode of the display apparatus to a second mode by reducing the current value of the second power.
  • the first mode may be a normal mode
  • the second mode may be a low power mode.
  • the power supply device may be configured such that the operation mode is changeable by the IC chip 120 based on the control signal of the main circuit even if the PS On signal of the related art is not received, and accordingly, the power supply device may be operable without the PS On/Off Block of the related art.
  • the power supply device may further include a dummy circuit which is connected to the first output end, and the IC chip 120 may be configured to detect a voltage of the first output end, and prevent the voltage of the first power from rising by turning on the dummy circuit based on the detected voltage being greater than or equal to a first threshold value.
  • the dummy circuit may include a transistor disposed between the first output end and the ground, and the IC chip 120 may be configured to prevent the voltage of the first power from rising by turning on the transistor based on the detected voltage rising to the first threshold value or more. That is, when the transistor is turned on and conducting, a current path from the first output end to the ground through the transistor may be formed, and accordingly, the rising of the voltage of the first power may be prevented.
  • the IC chip 120 may be configured to turn off the transistor based on the voltage detected while the transistor is in the turned on state decreasing to a voltage less than the first threshold value.
  • the IC chip 120 actively controls the dummy circuit, the A13V node and the B13V node may be in a conducting state, and the B13V Switch Block of the related art is not necessary.
  • the dummy circuit was constantly operated after the PS On signal was input.
  • the power consumed in the dummy circuit may be reduced as compared to the related art.
  • the power supply part 110 may further include a capacitor configured to connect to the first output end, and the IC chip 120 may be configured to discharge the capacitor by turning on the transistor for a second threshold time based on the detected voltage decreasing to a voltage of less than the second threshold value.
  • the capacitor connected to the first output end may be in a charged state, and may lead to danger in situations such as fixing the power supply device. Accordingly, based on the IC chip 120 discharging the capacitor by turning on the transistor for the second threshold time, the danger as described above may be prevented.
  • the manufacturing cost may be reduced, the power supply device may be operated at the low power mode based on the control signal of the main circuit, power consumption and heat generation may be reduced because the dummy circuit is not constantly operated, and safety may be enhanced by discharging the unnecessary overvoltage through the dummy circuit.
  • FIG. 3 to FIG. 6 The circuit configuration and operation of the power supply device may be described in greater detail below with reference to FIG. 3 to FIG. 6 .
  • FIG. 3 to FIG. 6 individual embodiments will be described a separate for convenience of description. However, the individual embodiments of FIG. 3 to FIG. 6 may be implemented in a combined state.
  • FIG. 3 is a diagram illustrating a detailed circuit of the power supply device according to an embodiment.
  • the power supply device may include a power supply part 110, an IC chip 120, a dummy circuit 310, and a feedback circuit 320.
  • a power supply part 110 As compared with FIG. 1A , in the embodiment in FIG. 3 , the PS On/Off Block of the related art and the B13V Switch Block of the related art have been removed, and the power supply device according to an embodiment may be realized without the PS On/Off Block of the related art and the B13V Switch Block of the related art.
  • the power supply part 110 may include the first output end outputting the first power, and the first output end may be connected with the backlight.
  • One end of the dummy circuit and a Det terminal of the IC chip 120 may be connected to the first output end and a node A to which the backlight is connected.
  • the IC chip 120 may be configured to detect the voltage of the first output end through the Det terminal.
  • the power supply part 110 may include a second output end outputting the second power, and the second output end may be connected with a Vcc terminal of the IC chip 120.
  • the feedback circuit may be connected to the node B to which the second output end and the Vcc terminal of the IC chip 120 are connected, and provide the feedback signal to the power supply part based on the voltage magnitude of the second output end. Accordingly, the power supply part 110 may be configured to maintain the second power to a certain magnitude.
  • the main circuit may be connected to the second output end and may be supplied with the second power.
  • An OVP terminal of the IC chip 120 may be connected with other end of the dummy circuit.
  • a PWM terminal of the IC chip 120 may be configured to receive a PWM signal from the main circuit
  • an A-Dim terminal may be configured to receive an A-Dim signal from the main circuit.
  • the PWM signal and the A-Dim signal may be signals for adjusting the brightness of the backlight.
  • the main circuit may be configured to generate at least one of the PWM signal or the A-Dim signal according to a user command to turn on the display apparatus and provide to the IC chip 120.
  • the IC chip 120 may be configured to increase, based on at least one of the PWM signal or the A-Dim signal being received from the main circuit, the current value of the second power and change the operation mode of the display apparatus to the normal mode. That is, the power supply device may be configured to change the operation mode even if there is no separate PS On signal. Accordingly, the PS On/Off Block of the related art may be omitted.
  • the IC chip 120 may be configured to detect the voltage of the first output end through the Det terminal, and turn on the dummy circuit by outputting a high voltage through the OVP terminal based on the detected voltage being greater than or equal to the first threshold value.
  • the current path from the first output end to the ground may be formed because the transistor included in the dummy circuit is turned on and conducts, and the rising of the voltage of the first output end may be prevented.
  • the IC chip 120 may be configured to turn off the dummy circuit by outputting a low voltage through the OVP terminal based on the detected voltage decreasing to a voltage of less than or equal to the second threshold value, which is less than the first threshold value. That is, the IC chip 120 may be configured to prevent power consumption of the dummy circuit by turning off the dummy circuit after constraining the rising of the voltage of the first output end.
  • the power supply part 110 may further include a capacitor C which is connected to the first output end, and the IC chip 120 may be configured to turn on the dummy circuit by outputting a high voltage through the OVP terminal for the second threshold time based on the detected voltage decreasing to a voltage of less than the second threshold value, and accordingly discharge the capacitor C.
  • the IC chip 120 may be configured to change the operation mode of the display apparatus to the low power mode by reducing the current value of the second power based on the PWM signal and the A-Dim signal not being received from the main circuit for the first threshold time or more. That is, the power supply device may be configured to change the operation mode even without a separate PS Off signal. Accordingly, as compared with the related art, the PS On/Off Block may be omitted.
  • FIG. 4 is a diagram illustrating a change in operation mode by the IC chip 120 according to an embodiment.
  • the IC chip 120 may be configured to change the operation mode of the display apparatus to the low power mode when the PWM signal is not received from the main circuit for the first threshold time 410 or more while the operation mode of the display apparatus is in the normal mode state.
  • the IC chip 120 may be configured to change the operation mode of the electronic apparatus to the normal mode based on the PWM signal being received from the main circuit while the operation mode of the electronic apparatus is in the state of the low power mode.
  • a delay time 420 may be generated until the operation mode is changed to the normal mode after the PWM signal is received.
  • the operation mode may be changed even without the PS On/Off signal. Accordingly, as compared with the related art, the PS On/Off Block may be omitted.
  • the PWM signal has been provided as an example in FIG. 4 , in other embodiments, a similar operation may be achieved with the A-Dim signal.
  • the embodiment is not limited to the PWM signal or the A-Dim signal.
  • the IC chip 120 may be configured to change the operation of the electronic apparatus from the low power mode to the normal mode using any control signal that may be received to adjust the brightness of the backlight.
  • FIG. 5 is a diagram illustrating an operation of the dummy circuit according to an embodiment.
  • a voltage variation may be generated according to the 13V load and the backlight load.
  • the IC chip 120 may be configured to detect the voltage of the first output end, and prevent the voltage of the first power from rising by turning on the dummy circuit based on the detected voltage being greater than or equal to the first threshold value 510. Thereafter, the IC chip 120 may be configured to turn off the dummy circuit based on the detected voltage decreasing to a voltage of less than the first threshold value 510.
  • the IC chip 120 may be configured to discharge the capacitor C connected to the first output end by turning on the dummy circuit for a second threshold time 530 based on the detected voltage decreasing to a voltage of less than a second threshold value 520 which is less than the first threshold value 510.
  • the IC chip 120 may be configured to enhance safety by discharging unnecessary overvoltage through the dummy circuit.
  • FIG. 6 is a diagram illustrating a timing comparison between signals of the related art and signals according to an embodiment.
  • the left side of FIG. 6 illustrates timing between main signals of the related art, and the right side of FIG. 6 illustrates timing between main signals according to an embodiment.
  • the main signal accounts for the IC VCC current.
  • the operation mode may be varied according to whether the IC chip 120 receives the control signal from the main circuit.
  • the display apparatus may be configured such an LED Driver Switching is delayed more than the PWM signal and the A-Dim signal because the operation mode is changed according to at least one of the PWM signal or the A-Dim signal.
  • the delay may not be to an extent that is recognizable to the user.
  • power consumption may be reduced by also reducing the number of main signals.
  • FIG. 7 is a flowchart illustrating a control method of a display apparatus according to an embodiment.
  • the power supply part may be configured to output the first power for driving the backlight and the second power for driving the main circuit (S710).
  • the integrated circuit (IC) chip may be configured to increase, based on a control signal for adjusting the brightness of the backlight being received from a main circuit, the current value of the second power, and reduce, based on the control signal not being received from the main circuit for the first threshold time or more, the current value of the second power (S720).
  • Detecting, by the IC chip, the voltage of the first output end configured to output the first power of the power supply part and preventing, based on the detected voltage being greater than or equal to the first threshold value, the voltage of the first power from rising by turning on, by the IC chip, the dummy circuit connected to the first output end may be further included.
  • the preventing may include preventing the voltage of the first power from rising by turning on, by the IC chip, the transistor in the dummy circuit, and the transistor may be disposed between the first output end and the ground.
  • the turning off, by the IC chip, the transistor based on the voltage which is detected while the transistor is in a turned on state decreasing to a voltage, which is less than the first threshold value may be further included.
  • the discharging the capacitor in the power supply part by turning on, by the IC chip, the transistor for the second threshold time based on the detected voltage decreasing to a voltage of less than the second threshold value may be further included, and the capacitor may be connected to the first output end.
  • the feedback circuit connected to the second output end which outputs the second power of the power supply part providing the feedback signal to the power supply part based on the voltage magnitude of the second output end may be further included.
  • control signal may include at least one of the pulse width modulation (PWM) signal or the amplitude dimming (A-DIM) signal.
  • PWM pulse width modulation
  • A-DIM amplitude dimming
  • control signal may be output from the main circuit to the IC chip according to the user command to turn on the display apparatus.
  • the reducing (S720) may include changing the operation mode of the display apparatus to the first mode by increasing, by the IC chip, the current value of the second power, and changing the operation mode of the electronic apparatus to the second mode by reducing the current value of the second power.
  • the first mode may be the normal mode
  • the second mode may be the lower power mode
  • the manufacturing cost of the power supply device included in the display apparatus may be reduced because some configurations are removed compared to circuits of the related art, and power consumption may be reduced by operating at the low power mode based on the control signal of the main circuit.
  • the power supply device included in the display apparatus may reduce power consumption and the heat generated because the dummy circuit is not constantly operated, and enhance safety by discharging unnecessary overvoltage through the dummy circuit.
  • the various embodiments described above may be implemented with software including instructions stored in a machine-readable storage media (e.g., computer).
  • the machine may be configured to call an instruction stored in the storage medium, and as a device capable of operating according to the called instruction, may include an electronic apparatus (e.g., electronic apparatus A) according to the above-mentioned embodiments.
  • the processor may directly or using other elements under the control of the processor perform a function corresponding to the instruction.
  • the instructions may include a code generated by a compiler or executed by an interpreter.
  • the machine-readable storage medium may be provided in the form of a non-transitory storage medium.
  • ⁇ non-transitory' merely means that the storage medium is tangible and does not include a signal, and the term does not differentiate data being semi-permanently stored or being temporarily stored in the storage medium.
  • the ⁇ non-transitory storage medium' may include a buffer in which data is temporarily stored.
  • the method according to the various embodiments described above may be provided included a computer program product.
  • the computer program product may be exchanged between a seller and a purchaser as a commodity.
  • the computer program product may be distributed in the form of a machine-readable storage medium (e.g., a compact disc read only memory (CD-ROM)), or distributed online through an application store (e.g., PLAYSTORE TM ).
  • an application store e.g., PLAYSTORE TM
  • at least a portion of the computer program product e.g., downloadable app
  • the various embodiments described above may be realized in a recordable medium which is readable by a computer or a device similar to the computer using software, hardware, or the combination of software and hardware.
  • embodiments described herein may be realized by the processor itself.
  • embodiments such as the procedures and functions described herein may be realized with separate software modules. The respective software modules may perform one or more of the functions and operations described herein.
  • the computer instructions for performing processing operations in the device according to the various embodiments described above may be stored in a non-transitory computer-readable medium.
  • the computer instructions stored in this non-transitory computer-readable medium may cause a specific device to perform the processing operations in the device according to the above-described various embodiments when executed by the processor of the specific device.
  • the non-transitory computer readable medium may refer to a medium that stores data semi-permanently rather than storing data for a very short time, such as a register, a cache, a memory, or the like, and is readable by the device.
  • non-transitory computer readable medium may include, for example, and without limitation, a compact disc (CD), a digital versatile disc (DVD), a hard disc, a Blu-ray disc, a universal serial bus (USB), a memory card, a read only memory (ROM), and the like.
  • CD compact disc
  • DVD digital versatile disc
  • hard disc a hard disc
  • Blu-ray disc a universal serial bus
  • USB universal serial bus
  • memory card a read only memory (ROM), and the like.
  • each of the elements may be comprised of a single entity or a plurality of entities, and some sub-elements of the abovementioned sub-elements may be omitted or other sub-elements may be further included in various embodiments.
  • some elements e.g., modules or programs
  • Operations performed by a module, program, or other element, in accordance with various embodiments, may be performed sequentially, in parallel, repetitively, or in a heuristically manner, or at least some operations may be performed in a different order, omitted, or a different operation may be added.

Abstract

A display apparatus comprises a power supply apparatus. The power supply apparatus includes a power supply unit and an integrated circuit (IC) chip. The power supply unit outputs first power for driving a backlight and second power for driving a main circuit. The IC chip increases a current value of the second power when a control signal for adjusting the brightness of the backlight is received, and decreases the current value of the second power when the control signal is not received for a first threshold time.

Description

    [Technical Field]
  • The disclosure relates to a display apparatus and a control method thereof. More particularly, the disclosure relates to a display apparatus which includes a power supply device configured to provide power to respective circuit configurations and a control method thereof.
  • [Background Art]
  • A power supply device, for example, a switched mode power supply (SMPS) included in a display apparatus may be a device configured to supply power to respective circuit configurations inside the display apparatus. For various reasons, the power supply device may include a dummy circuit for limiting a voltage rise in the power supply device. However, because the dummy circuit may, in some cases, be constantly operated, there is a disadvantage in that the dummy circuit may consume too much power. Accordingly, there is a need to develop a circuit configuration for reducing power consumption of the dummy circuit.
  • [Technical Solution]
  • It is an aspect to provide a power supply device included in a display apparatus for reducing power consumption and manufacturing cost, and for enhancing safety and a control method thereof.
  • According to an aspect of an embodiment, there is provided a display apparatus comprising a power supply device, the power supply device comprising a power supply part configured to output a first power to drive a backlight and a second power to drive a main circuit; and an integrated circuit (IC) chip configured to increase, based on a control signal to adjust a brightness of the backlight being received, a current value of the second power, and reduce, based on the control signal not being received for a first threshold time, the current value of the second power.
  • The power supply part may comprise a first output end configured to output the first power; and a second output end configured to output the second power, wherein the power supply device may further comprise a dummy circuit connected to the first output end, and wherein the IC chip is configured to detect a voltage of the first output end, and prevent, based on the detected voltage being greater than or equal to a first threshold value, a voltage of the first power from rising by turning on the dummy circuit.
  • The dummy circuit may comprise a transistor disposed between the first output end and a ground, and the IC chip may be configured to prevent the voltage of the first power from rising by turning on the transistor based on the detected voltage being greater than or equal to the first threshold value.
  • The IC chip may be configured to turn off the transistor based on a voltage detected while the transistor is in a turned on state decreasing to a voltage less than the first threshold value.
  • The power supply part may further comprise a capacitor connected to the first output end, and the IC chip may be configured to discharge the capacitor by turning on the transistor for a second threshold time based on the detected voltage decreasing to a voltage less than a second threshold value, which is less than the first threshold value.
  • The display apparatus may further comprise a feedback circuit connected to the second output end, wherein the feedback circuit is configured to provide a feedback signal to the power supply part based on a voltage magnitude of the second output end.
  • The control signal may comprise at least one of a pulse width modulation signal or an amplitude dimming signal.
  • The control signal may be received by the IC chip according a user command for turning on the display apparatus.
  • The IC chip may be configured to change an operation mode of the display apparatus to a first mode by increasing the current value of the second power, and change the operation mode of the display apparatus to a second mode by reducing the current value of the second power.
  • The first mode may be a normal mode, and the second mode may be a low power mode.
  • According to another aspect of an embodiment, there is provided a control method of a display apparatus, the control method comprising outputting, by a power supply part, a first power to drive a backlight and a second power to drive a main circuit; and increasing, by an integrated circuit (IC) chip, a current value of the second power based on a control signal to adjust a brightness of the backlight, and reducing, based on the control signal not being received for a first threshold time, the current value of the second power.
  • The method may further comprise detecting, by the IC chip, a voltage of a first output end of the power supply part, the first output end being configured to output the first power; and preventing, based on the detected voltage being greater than or equal to a first threshold value, a voltage of the first power from rising by turning on, by the IC chip, a dummy circuit connected to the first output end.
  • The preventing may comprise turning on, by the IC chip, a transistor in the dummy circuit, and the transistor may be disposed between the first output end and a ground.
  • The method may further comprise turning off, by the IC chip, the transistor based on the voltage detected while the transistor is in a turned on state decreasing to a voltage less than the first threshold value.
  • The method may further comprise discharging, based on the detected voltage decreasing to a voltage less than a second threshold value, a capacitor in the power supply part by turning on, by the IC chip, the transistor for a second threshold time, wherein the second threshold value is less than the first threshold value, and wherein the capacitor is connected to the first output end.
  • According to another aspect of an embodiment, there is provided a display apparatus comprising a power supply device, the power supply device comprising a power supply part configured to output a first power to drive a backlight and a second power to drive a main circuit; and an integrated circuit (IC) chip configured to change an operation mode of the display apparatus to a low power mode from a normal mode, based on a control signal to adjust a brightness of the backlight not being received for a first threshold time.
  • The IC chip may change the operation mode to the low power mode by reducing a current value of the second power.
  • The power supply part may comprise a first output end configured to output the first power; and a second output end configured to output the second power, wherein the power supply device further comprises a dummy circuit connected to the first output end and comprising a transistor disposed between the first output end and a ground, and wherein the IC chip is configured to detect a voltage of the first output end, and prevent, based on the detected voltage being greater than or equal to a first threshold value, a voltage of the first power from rising by turning on the transistor.
  • The IC chip may be configured to turn off the transistor based on a voltage detected while the transistor is in a turned on state decreasing to a voltage less than the first threshold value.
  • The power supply part may further comprise a capacitor connected to the first output end, wherein the IC chip is configured to discharge the capacitor by turning on the transistor for a second threshold time based on the detected voltage decreasing to a voltage less than a second threshold value, which is less than the first threshold value.
  • According to the various embodiments as described above, the manufacturing cost of the power supply device included in the display apparatus may be reduced because some configurations are removed compared to circuits of the related art, and power consumption may be reduced by operating at the low power mode based on the control signal of the main circuit.
  • In addition, the power supply device included in the display apparatus may reduce power consumption and the heat generated because the dummy circuit is not constantly operated, and enhance safety by discharging unnecessary overvoltage through the dummy circuit.
  • [Brief Description of Drawings]
    • FIG. 1A and FIG. 1B are diagrams illustrating related art to assist in the understanding of the disclosure;
    • FIG. 2 is a block diagram illustrating a configuration of a display apparatus according to an embodiment;
    • FIG. 3 is a diagram illustrating a detailed circuit of a power supply device according to an embodiment;
    • FIG. 4 is a diagram illustrating a change in operation mode by an IC chip according to an embodiment;
    • FIG. 5 is a diagram illustrating an operation of a dummy circuit according to an embodiment;
    • FIG. 6 is a diagram illustrating timing between main signals according to an embodiment; and
    • FIG. 7 is a flowchart illustrating a control method of a display apparatus according to an embodiment.
    [Best Mode] [Detailed Description]
  • The disclosure will be explained in greater detail below with reference to the accompanying drawings.
  • The terms used in describing the various embodiments of the disclosure are general terms selected that are currently widely used considering their function herein. However, the terms may change depending on intention, legal or technical interpretation, emergence of new technologies, and the like of those skilled in the related art. Further, in certain cases, there may be terms arbitrarily selected, and in this case, the meaning of the term will be disclosed in greater detail in the corresponding description. Accordingly, the terms used herein are not to be understood simply as its designation but based on the meaning of the term and the overall context of the disclosure.
  • In the disclosure, expressions such as "comprise," "may comprise," "include," "may include," or the like are used to designate a presence of a corresponding characteristic (e.g., elements such as numerical value, function, operation, or component, etc.), and not to preclude a presence or a possibility of additional characteristics.
  • The expression "at least one of A and/or B" is to be understood as indicating at least one of "A" or "B" or "A and B."
  • Expressions such as "first," "second," "1st," "2nd," or so on used herein may be used to refer to various elements regardless of order and/or importance. Further, it should be noted that the expressions are merely used to distinguish an element from another element and not to limit the relevant elements.
  • A singular expression includes a plural expression, unless otherwise specified. It is to be understood that the terms such as "comprise" or "include" are used herein to designate a presence of a characteristic, number, step, operation, element, component, or a combination thereof, and not to preclude a presence or a possibility of adding one or more of other characteristics, numbers, steps, operations, elements, components or a combination thereof.
  • In the disclosure, the term "user" may refer to a person using an electronic apparatus or a device (e.g., artificial intelligence electronic apparatus) using an electronic apparatus.
  • As discussed above, a power supply device, for example, a switched mode power supply (SMPS), included in a display apparatus may be a device configured to supply power to respective circuit configurations inside the display apparatus.
  • For example, a power supply device illustrated in FIG. 1A may include one feedback circuit in a direct current (DC)-DC converter, and the feedback circuit may be configured to perform feedback on a voltage of an A13V node.
  • The power supply device may be configured to control a B13V Switch Block by receiving a PS On/Off signal, and based on a B13V Switch Block being in a conducting state, the A13V node and an B13V node may conduct and a dummy circuit (dummy block) may be operated.
  • As illustrated in FIG. 1B, the voltage of the A13V node may have a small voltage variation through a feedback operation by the feedback circuit. On the other hand, a Vdrv voltage (LED Vdrv) may have a relatively large voltage variation according to a 13V load and an LED load because there is no feedback circuit.
  • The dummy circuit may be used for the purpose of limiting a Vdrv voltage rise. However, because the dummy circuit is constantly operated after the PS On signal is input, there is a disadvantage that the dummy circuit consumes power even when the Vdrv voltage is not in a rising state.
  • Various embodiments disclosed here provide a display apparatus having an improved dummy circuit.
  • The disclosure will be described in greater detail below with reference to the accompanied drawings.
  • FIG. 2 is a block diagram illustrating a configuration of a display apparatus 100 according to an embodiment. As illustrated in FIG. 2, the display apparatus 100 may include a power supply part 110 and an integrated circuit (IC) chip 120. Alternatively, in some embodiments, the display apparatus 100 may include a power supply device, and the power supply device may include the power supply part 110 and the integrated circuit (IC) chip 120.
  • The power supply device may be a device configured to provide power to respective circuit configurations by generating power. For example, the power supply device may be configured to provide, as a configuration of the display apparatus 100, power to the respective circuit configurations included in the display apparatus 100.
  • However, the embodiment is not limited thereto, and in some embodiments, the power supply device may be realized as a separate device, and in this case, the power supply device may be configured to provide power to the respective circuit configurations included in an external device.
  • The power supply part 110 may be configured to output a first power for driving a backlight and a second power for driving a main circuit. The power supply part 110 may include a first output end outputting the first power and a second output end outputting the second power, and the first output end may be connected with the backlight and the second output end may be connected with the main circuit. In addition, a feedback circuit connected to the second output end may be configured to provide a feedback signal to the power supply part 110 based on a voltage magnitude of the second output end, and accordingly, the power supply part 110 may be configured to maintain the second power at a certain magnitude. That is, a variation width of the second power may be smaller than a variation width of the first power.
  • However, the embodiment is not limited thereto, and the first power and the second power may be provided to other circuit configurations other than the backlight and the main circuit, respectively.
  • The integrated circuit (IC) chip 120 may be configured to increase, based on a control signal for adjusting the brightness of the backlight being received from the main circuit, a current value of the second power, and reduce, based on the control signal not being received from the main circuit for a first threshold time or more, a current value of the second power. The control signal may include at least one of a pulse width modulation (PWM) signal or an amplitude dimming (A-Dim) signal. In addition, in some embodiments, the control signal may be output from the main circuit to the IC chip 120 according to a user command to turn on the display apparatus.
  • For example, the IC chip 120 may be configured to change an operation mode of the display apparatus to a first mode by increasing the current value of the second power based on the control signal being received, and change, based on the control signal not being received for the first threshold time or more, the operation mode of the display apparatus to a second mode by reducing the current value of the second power. The first mode may be a normal mode, and the second mode may be a low power mode.
  • That is, the power supply device may be configured such that the operation mode is changeable by the IC chip 120 based on the control signal of the main circuit even if the PS On signal of the related art is not received, and accordingly, the power supply device may be operable without the PS On/Off Block of the related art.
  • The power supply device may further include a dummy circuit which is connected to the first output end, and the IC chip 120 may be configured to detect a voltage of the first output end, and prevent the voltage of the first power from rising by turning on the dummy circuit based on the detected voltage being greater than or equal to a first threshold value.
  • Specifically, the dummy circuit may include a transistor disposed between the first output end and the ground, and the IC chip 120 may be configured to prevent the voltage of the first power from rising by turning on the transistor based on the detected voltage rising to the first threshold value or more. That is, when the transistor is turned on and conducting, a current path from the first output end to the ground through the transistor may be formed, and accordingly, the rising of the voltage of the first power may be prevented.
  • The IC chip 120 may be configured to turn off the transistor based on the voltage detected while the transistor is in the turned on state decreasing to a voltage less than the first threshold value.
  • That is, because the IC chip 120 actively controls the dummy circuit, the A13V node and the B13V node may be in a conducting state, and the B13V Switch Block of the related art is not necessary. In addition, according to the related art, the dummy circuit was constantly operated after the PS On signal was input. By contrast, according to an embodiment, because the dummy circuit is operated only when the voltage of the first output end is greater than or equal to the first threshold value, the power consumed in the dummy circuit may be reduced as compared to the related art.
  • The power supply part 110 may further include a capacitor configured to connect to the first output end, and the IC chip 120 may be configured to discharge the capacitor by turning on the transistor for a second threshold time based on the detected voltage decreasing to a voltage of less than the second threshold value.
  • For example, even if the voltage of the first output end decreases to a voltage of less than the second threshold value, the capacitor connected to the first output end may be in a charged state, and may lead to danger in situations such as fixing the power supply device. Accordingly, based on the IC chip 120 discharging the capacitor by turning on the transistor for the second threshold time, the danger as described above may be prevented.
  • As described above, because the power supply device is realized without the PS On/Off Block of the related art and the B13V Switch Block of the related art, the manufacturing cost may be reduced, the power supply device may be operated at the low power mode based on the control signal of the main circuit, power consumption and heat generation may be reduced because the dummy circuit is not constantly operated, and safety may be enhanced by discharging the unnecessary overvoltage through the dummy circuit.
  • The circuit configuration and operation of the power supply device may be described in greater detail below with reference to FIG. 3 to FIG. 6. In FIG. 3 to FIG. 6, individual embodiments will be described a separate for convenience of description. However, the individual embodiments of FIG. 3 to FIG. 6 may be implemented in a combined state.
  • FIG. 3 is a diagram illustrating a detailed circuit of the power supply device according to an embodiment.
  • The power supply device may include a power supply part 110, an IC chip 120, a dummy circuit 310, and a feedback circuit 320. As compared with FIG. 1A, in the embodiment in FIG. 3, the PS On/Off Block of the related art and the B13V Switch Block of the related art have been removed, and the power supply device according to an embodiment may be realized without the PS On/Off Block of the related art and the B13V Switch Block of the related art.
  • The power supply part 110 may include the first output end outputting the first power, and the first output end may be connected with the backlight. One end of the dummy circuit and a Det terminal of the IC chip 120 may be connected to the first output end and a node A to which the backlight is connected. The IC chip 120 may be configured to detect the voltage of the first output end through the Det terminal.
  • The power supply part 110 may include a second output end outputting the second power, and the second output end may be connected with a Vcc terminal of the IC chip 120. The feedback circuit may be connected to the node B to which the second output end and the Vcc terminal of the IC chip 120 are connected, and provide the feedback signal to the power supply part based on the voltage magnitude of the second output end. Accordingly, the power supply part 110 may be configured to maintain the second power to a certain magnitude.
  • In addition, although not illustrated in FIG. 3, the main circuit may be connected to the second output end and may be supplied with the second power.
  • An OVP terminal of the IC chip 120 may be connected with other end of the dummy circuit. In addition, a PWM terminal of the IC chip 120 may be configured to receive a PWM signal from the main circuit, and an A-Dim terminal may be configured to receive an A-Dim signal from the main circuit. The PWM signal and the A-Dim signal may be signals for adjusting the brightness of the backlight.
  • The main circuit may be configured to generate at least one of the PWM signal or the A-Dim signal according to a user command to turn on the display apparatus and provide to the IC chip 120.
  • The IC chip 120 may be configured to increase, based on at least one of the PWM signal or the A-Dim signal being received from the main circuit, the current value of the second power and change the operation mode of the display apparatus to the normal mode. That is, the power supply device may be configured to change the operation mode even if there is no separate PS On signal. Accordingly, the PS On/Off Block of the related art may be omitted.
  • The IC chip 120 may be configured to detect the voltage of the first output end through the Det terminal, and turn on the dummy circuit by outputting a high voltage through the OVP terminal based on the detected voltage being greater than or equal to the first threshold value. In this case, the current path from the first output end to the ground may be formed because the transistor included in the dummy circuit is turned on and conducts, and the rising of the voltage of the first output end may be prevented.
  • Thereafter, the IC chip 120 may be configured to turn off the dummy circuit by outputting a low voltage through the OVP terminal based on the detected voltage decreasing to a voltage of less than or equal to the second threshold value, which is less than the first threshold value. That is, the IC chip 120 may be configured to prevent power consumption of the dummy circuit by turning off the dummy circuit after constraining the rising of the voltage of the first output end.
  • The power supply part 110 may further include a capacitor C which is connected to the first output end, and the IC chip 120 may be configured to turn on the dummy circuit by outputting a high voltage through the OVP terminal for the second threshold time based on the detected voltage decreasing to a voltage of less than the second threshold value, and accordingly discharge the capacitor C. Through the operation described above, accidents due to power charged to the capacitor C may be prevented.
  • Thereafter, the IC chip 120 may be configured to change the operation mode of the display apparatus to the low power mode by reducing the current value of the second power based on the PWM signal and the A-Dim signal not being received from the main circuit for the first threshold time or more. That is, the power supply device may be configured to change the operation mode even without a separate PS Off signal. Accordingly, as compared with the related art, the PS On/Off Block may be omitted.
  • FIG. 4 is a diagram illustrating a change in operation mode by the IC chip 120 according to an embodiment.
  • As illustrated in FIG. 4, the IC chip 120 may be configured to change the operation mode of the display apparatus to the low power mode when the PWM signal is not received from the main circuit for the first threshold time 410 or more while the operation mode of the display apparatus is in the normal mode state.
  • Further, the IC chip 120 may be configured to change the operation mode of the electronic apparatus to the normal mode based on the PWM signal being received from the main circuit while the operation mode of the electronic apparatus is in the state of the low power mode. A delay time 420 may be generated until the operation mode is changed to the normal mode after the PWM signal is received.
  • Through the operation described above, the operation mode may be changed even without the PS On/Off signal. Accordingly, as compared with the related art, the PS On/Off Block may be omitted.
  • Although the PWM signal has been provided as an example in FIG. 4, in other embodiments, a similar operation may be achieved with the A-Dim signal.
  • In addition, the embodiment is not limited to the PWM signal or the A-Dim signal. In other embodiments, the IC chip 120 may be configured to change the operation of the electronic apparatus from the low power mode to the normal mode using any control signal that may be received to adjust the brightness of the backlight.
  • FIG. 5 is a diagram illustrating an operation of the dummy circuit according to an embodiment.
  • As illustrated in FIG. 5, because the voltage Vdrv of the first output end does not have a feedback circuit, a voltage variation may be generated according to the 13V load and the backlight load.
  • The IC chip 120 may be configured to detect the voltage of the first output end, and prevent the voltage of the first power from rising by turning on the dummy circuit based on the detected voltage being greater than or equal to the first threshold value 510. Thereafter, the IC chip 120 may be configured to turn off the dummy circuit based on the detected voltage decreasing to a voltage of less than the first threshold value 510.
  • The IC chip 120 may be configured to discharge the capacitor C connected to the first output end by turning on the dummy circuit for a second threshold time 530 based on the detected voltage decreasing to a voltage of less than a second threshold value 520 which is less than the first threshold value 510.
  • That is, the IC chip 120 may be configured to enhance safety by discharging unnecessary overvoltage through the dummy circuit.
  • FIG. 6 is a diagram illustrating a timing comparison between signals of the related art and signals according to an embodiment.
  • The left side of FIG. 6 illustrates timing between main signals of the related art, and the right side of FIG. 6 illustrates timing between main signals according to an embodiment.
  • First, there is no need for the main signal according to an embodiment to account for the PS On/Off signal, the operate dummy circuit signal, and the apply LED Driver VCC signal compared to the related art. However, the main signal accounts for the IC VCC current.
  • This is because the operation mode may be varied according to whether the IC chip 120 receives the control signal from the main circuit.
  • In addition, the display apparatus according to an embodiment may be configured such an LED Driver Switching is delayed more than the PWM signal and the A-Dim signal because the operation mode is changed according to at least one of the PWM signal or the A-Dim signal. However, the delay may not be to an extent that is recognizable to the user.
  • According to an embodiment as described above, power consumption may be reduced by also reducing the number of main signals.
  • FIG. 7 is a flowchart illustrating a control method of a display apparatus according to an embodiment.
  • The power supply part may be configured to output the first power for driving the backlight and the second power for driving the main circuit (S710). The integrated circuit (IC) chip may be configured to increase, based on a control signal for adjusting the brightness of the backlight being received from a main circuit, the current value of the second power, and reduce, based on the control signal not being received from the main circuit for the first threshold time or more, the current value of the second power (S720).
  • Detecting, by the IC chip, the voltage of the first output end configured to output the first power of the power supply part and preventing, based on the detected voltage being greater than or equal to the first threshold value, the voltage of the first power from rising by turning on, by the IC chip, the dummy circuit connected to the first output end may be further included.
  • Further, the preventing may include preventing the voltage of the first power from rising by turning on, by the IC chip, the transistor in the dummy circuit, and the transistor may be disposed between the first output end and the ground.
  • In addition, the turning off, by the IC chip, the transistor based on the voltage which is detected while the transistor is in a turned on state decreasing to a voltage, which is less than the first threshold value may be further included.
  • Further, the discharging the capacitor in the power supply part by turning on, by the IC chip, the transistor for the second threshold time based on the detected voltage decreasing to a voltage of less than the second threshold value may be further included, and the capacitor may be connected to the first output end.
  • The feedback circuit connected to the second output end which outputs the second power of the power supply part providing the feedback signal to the power supply part based on the voltage magnitude of the second output end may be further included.
  • Further, the control signal may include at least one of the pulse width modulation (PWM) signal or the amplitude dimming (A-DIM) signal.
  • In addition, the control signal may be output from the main circuit to the IC chip according to the user command to turn on the display apparatus.
  • The reducing (S720) may include changing the operation mode of the display apparatus to the first mode by increasing, by the IC chip, the current value of the second power, and changing the operation mode of the electronic apparatus to the second mode by reducing the current value of the second power.
  • Here, the first mode may be the normal mode, and the second mode may be the lower power mode.
  • According to the various embodiments as described above, the manufacturing cost of the power supply device included in the display apparatus may be reduced because some configurations are removed compared to circuits of the related art, and power consumption may be reduced by operating at the low power mode based on the control signal of the main circuit.
  • In addition, the power supply device included in the display apparatus may reduce power consumption and the heat generated because the dummy circuit is not constantly operated, and enhance safety by discharging unnecessary overvoltage through the dummy circuit.
  • According to an embodiment, the various embodiments described above may be implemented with software including instructions stored in a machine-readable storage media (e.g., computer). The machine may be configured to call an instruction stored in the storage medium, and as a device capable of operating according to the called instruction, may include an electronic apparatus (e.g., electronic apparatus A) according to the above-mentioned embodiments. Based on the instruction being executed by the processor, the processor may directly or using other elements under the control of the processor perform a function corresponding to the instruction. The instructions may include a code generated by a compiler or executed by an interpreter. The machine-readable storage medium may be provided in the form of a non-transitory storage medium. Herein, `non-transitory' merely means that the storage medium is tangible and does not include a signal, and the term does not differentiate data being semi-permanently stored or being temporarily stored in the storage medium. For example, the `non-transitory storage medium' may include a buffer in which data is temporarily stored.
  • According to an embodiment, the method according to the various embodiments described above may be provided included a computer program product. The computer program product may be exchanged between a seller and a purchaser as a commodity. The computer program product may be distributed in the form of a machine-readable storage medium (e.g., a compact disc read only memory (CD-ROM)), or distributed online through an application store (e.g., PLAYSTORE). In the case of online distribution, at least a portion of the computer program product (e.g., downloadable app) may be at least stored temporarily in a storage medium such as a server of a manufacturer, a server of an application store, or a memory of a relay server, or temporarily generated.
  • In addition, according to an embodiment, the various embodiments described above may be realized in a recordable medium which is readable by a computer or a device similar to the computer using software, hardware, or the combination of software and hardware. In some cases, embodiments described herein may be realized by the processor itself. According to a software implementation, embodiments such as the procedures and functions described herein may be realized with separate software modules. The respective software modules may perform one or more of the functions and operations described herein.
  • The computer instructions for performing processing operations in the device according to the various embodiments described above may be stored in a non-transitory computer-readable medium. The computer instructions stored in this non-transitory computer-readable medium may cause a specific device to perform the processing operations in the device according to the above-described various embodiments when executed by the processor of the specific device. The non-transitory computer readable medium may refer to a medium that stores data semi-permanently rather than storing data for a very short time, such as a register, a cache, a memory, or the like, and is readable by the device. Specific examples of the non-transitory computer readable medium may include, for example, and without limitation, a compact disc (CD), a digital versatile disc (DVD), a hard disc, a Blu-ray disc, a universal serial bus (USB), a memory card, a read only memory (ROM), and the like.
  • In addition, each of the elements (e.g., a module or a program) according to various embodiments may be comprised of a single entity or a plurality of entities, and some sub-elements of the abovementioned sub-elements may be omitted or other sub-elements may be further included in various embodiments. Alternatively or additionally, some elements (e.g., modules or programs) may be integrated into one entity to perform the same or similar functions performed by each respective element prior to integration. Operations performed by a module, program, or other element, in accordance with various embodiments, may be performed sequentially, in parallel, repetitively, or in a heuristically manner, or at least some operations may be performed in a different order, omitted, or a different operation may be added.
  • While the disclosure has been illustrated and described with reference to various example embodiments thereof, it will be understood that the various example embodiments are intended to be illustrative, not limiting. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the true spirit and full scope of the disclosure, including the appended claims and their equivalents.

Claims (15)

  1. A display apparatus comprising a power supply device, the power supply device comprising:
    a power supply part configured to output a first power to drive a backlight and a second power to drive a main circuit; and
    an integrated circuit (IC) chip configured to increase, based on a control signal to adjust a brightness of the backlight being received, a current value of the second power, and reduce, based on the control signal not being received for a first threshold time, the current value of the second power.
  2. The display apparatus of claim 1, wherein the power supply part comprises:
    a first output end configured to output the first power; and
    a second output end configured to output the second power,
    wherein the power supply device further comprises:
    a dummy circuit connected to the first output end, and
    wherein the IC chip is configured to detect a voltage of the first output end, and prevent, based on the detected voltage being greater than or equal to a first threshold value, a voltage of the first power from rising by turning on the dummy circuit.
  3. The display apparatus of claim 2, wherein the dummy circuit comprises a transistor disposed between the first output end and a ground, and
    wherein the IC chip is configured to prevent the voltage of the first power from rising by turning on the transistor based on the detected voltage being greater than or equal to the first threshold value.
  4. The display apparatus of claim 3, wherein the IC chip is configured to turn off the transistor based on a voltage detected while the transistor is in a turned on state decreasing to a voltage less than the first threshold value.
  5. The display apparatus of claim 4, wherein the power supply part further comprises:
    a capacitor connected to the first output end,
    wherein the IC chip is configured to discharge the capacitor by turning on the transistor for a second threshold time based on the detected voltage decreasing to a voltage less than a second threshold value, which is less than the first threshold value.
  6. The display apparatus of claim 2, further comprising:
    a feedback circuit connected to the second output end,
    wherein the feedback circuit is configured to provide a feedback signal to the power supply part based on a voltage magnitude of the second output end.
  7. The display apparatus of claim 1, wherein the control signal comprises at least one of a pulse width modulation signal or an amplitude dimming signal.
  8. The display apparatus of claim 1, wherein the control signal is received by the IC chip according a user command for turning on the display apparatus.
  9. The display apparatus of claim 1, wherein the IC chip is configured to:
    change an operation mode of the display apparatus to a first mode by increasing the current value of the second power, and
    change the operation mode of the display apparatus to a second mode by reducing the current value of the second power.
  10. The display apparatus of claim 9, wherein the first mode is a normal mode, and the second mode is a low power mode.
  11. A control method of a display apparatus, the method comprising:
    outputting, by a power supply part, a first power to drive a backlight and a second power to drive a main circuit; and
    increasing, by an integrated circuit (IC) chip, a current value of the second power based on a control signal to adjust a brightness of the backlight, and reducing, based on the control signal not being received for a first threshold time, the current value of the second power.
  12. The method of claim 11, further comprising:
    detecting, by the IC chip, a voltage of a first output end of the power supply part, the first output end being configured to output the first power; and
    preventing, based on the detected voltage being greater than or equal to a first threshold value, a voltage of the first power from rising by turning on, by the IC chip, a dummy circuit connected to the first output end.
  13. The method of claim 12, wherein the preventing comprises turning on, by the IC chip, a transistor in the dummy circuit, and
    the transistor is disposed between the first output end and a ground.
  14. The method of claim 13, further comprising:
    turning off, by the IC chip, the transistor based on the voltage detected while the transistor is in a turned on state decreasing to a voltage less than the first threshold value.
  15. The method of claim 14, further comprising:
    discharging, based on the detected voltage decreasing to a voltage less than a second threshold value, a capacitor in the power supply part by turning on, by the IC chip, the transistor for a second threshold time,
    wherein the second threshold value is less than the first threshold value, and
    wherein the capacitor is connected to the first output end.
EP21954349.3A 2021-08-20 2021-12-02 Display apparatus and control method therefor Pending EP4301094A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210110498A KR20230028051A (en) 2021-08-20 2021-08-20 Display apparatus and control method thereof
PCT/KR2021/018129 WO2023022303A1 (en) 2021-08-20 2021-12-02 Display apparatus and control method therefor

Publications (1)

Publication Number Publication Date
EP4301094A1 true EP4301094A1 (en) 2024-01-03

Family

ID=85229513

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21954349.3A Pending EP4301094A1 (en) 2021-08-20 2021-12-02 Display apparatus and control method therefor

Country Status (3)

Country Link
US (1) US11804186B2 (en)
EP (1) EP4301094A1 (en)
CN (1) CN117322136A (en)

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100218513B1 (en) 1997-03-07 1999-09-01 윤종용 Liquid crystal display compensating for backlight brightness and external temperature variation
JP4218259B2 (en) 2002-05-27 2009-02-04 パナソニック株式会社 Plasma display device
JP3981114B2 (en) * 2004-11-26 2007-09-26 Tdk株式会社 Switching power supply
JP2006280184A (en) 2005-03-30 2006-10-12 Funai Electric Co Ltd Switching power supply for video electrical device, and the switching power supply
TW200614640A (en) * 2006-01-23 2006-05-01 Seasonic Electronics Co Ltd Power supply having transient load
KR101773489B1 (en) * 2010-09-27 2017-08-31 삼성전자주식회사 Power supply apparatus and display apparatus including the same
CN102098853B (en) * 2011-01-30 2015-04-15 成都芯源系统有限公司 Light emitting element driving system, driving control circuit and driving method
CN102421224B (en) 2011-09-05 2013-09-25 电子科技大学 Self-feedback linear constant current device for driving LED (light-emitting diode)
KR101365602B1 (en) 2011-10-21 2014-03-14 삼성전자주식회사 Apparatus for power supplying and image forming apparatus including the same
CN103533705B (en) 2013-09-18 2015-12-02 浙江生辉照明有限公司 LED drives light adjusting circuit
JP6341378B2 (en) 2014-09-24 2018-06-13 東芝ライテック株式会社 Power supply device and lighting device
KR102389836B1 (en) 2015-06-05 2022-04-25 삼성전자주식회사 Power supply device, display apparatus having the same and method for power supply
CN105744682B (en) 2016-03-30 2017-09-26 北京经纬恒润科技有限公司 A kind of illumination control method and system
JP6732513B2 (en) 2016-04-22 2020-07-29 ローム株式会社 DC/DC converter, power adapter, and electronic device
KR20180009023A (en) 2016-07-15 2018-01-25 엘지디스플레이 주식회사 Touch display device and power circuit
KR20190128323A (en) 2018-05-08 2019-11-18 (주)에프알텍 Standby power saving SMPS
CN210245032U (en) * 2019-08-20 2020-04-03 惠州市尚霖科创电子有限公司 Power supply dynamic load circuit of liquid crystal display screen
WO2021185150A1 (en) * 2020-03-18 2021-09-23 海信视像科技股份有限公司 Display apparatus and display control method
KR102187120B1 (en) 2020-06-26 2020-12-07 주식회사 늑대와여우컴퓨터 Control apparatus for power consumption in PC system and method
KR20220012593A (en) 2020-07-23 2022-02-04 삼성전자주식회사 Display apparatus, control method thereof and integrated circuit chip
WO2022041873A1 (en) * 2020-08-24 2022-03-03 海信视像科技股份有限公司 Display apparatus and step power circuit

Also Published As

Publication number Publication date
US20230056903A1 (en) 2023-02-23
CN117322136A (en) 2023-12-29
US11804186B2 (en) 2023-10-31

Similar Documents

Publication Publication Date Title
US6654264B2 (en) System for providing a regulated voltage with high current capability and low quiescent current
KR20070120894A (en) Low voltage detection reset circuit
US20140077603A1 (en) Power supply apparatus with power backup mechanism
JP2006319316A (en) Single pin for controlling multiple functions
US20230162652A1 (en) Display device, control method thereof, and ic chip
US20120146976A1 (en) Source driver and display device
US8749214B2 (en) Power circuit and circuit board, electrical device using the same
US20060239044A1 (en) Pulse width modulation (pwm) controlling module and method for adjusting a pwm signal thereof
JPH11282427A (en) Driving voltage controller for liquid crystal display
EP4301094A1 (en) Display apparatus and control method therefor
CN108922489B (en) Drive circuit and correction method of internal overcurrent set value thereof
US20100079195A1 (en) Protected power switch with low current consumption
US20030058021A1 (en) Power-off protection device
US7193624B2 (en) Display apparatus with power saving capability
US9232585B2 (en) Backlight regulation circuit and liquid crystal display
US7453290B2 (en) Supply voltage removal detecting circuit, display device and method for removing latent image
US7882392B2 (en) Electronic device and method of controlling electronic device
US20140218000A1 (en) Voltage regulator circuit
US20150102727A1 (en) Led driver circuit capable of extending a lifespan of the led driver and reducing manufacturing cost
KR20230028051A (en) Display apparatus and control method thereof
US20110099309A1 (en) Power supply circuit for cpu
CN109586568B (en) Drive circuit and display panel
JP6852778B2 (en) Load drive circuit
US20150145499A1 (en) Interrupt protection circuits, systems and methods for sensors and other devices
US20100295835A1 (en) Voltage Boosting Circuit and Display Device Including the Same

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230928

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR