EP4299996A1 - Contrôleur central pour le nettoyage complet de la pollution de l'air intérieur - Google Patents

Contrôleur central pour le nettoyage complet de la pollution de l'air intérieur Download PDF

Info

Publication number
EP4299996A1
EP4299996A1 EP22187825.9A EP22187825A EP4299996A1 EP 4299996 A1 EP4299996 A1 EP 4299996A1 EP 22187825 A EP22187825 A EP 22187825A EP 4299996 A1 EP4299996 A1 EP 4299996A1
Authority
EP
European Patent Office
Prior art keywords
air pollution
gas
central controller
indoor air
completely cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22187825.9A
Other languages
German (de)
English (en)
Inventor
Hao-Jan Mou
Chin-Chuan Wu
Yung-Lung Han
Chi-Feng Huang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microjet Technology Co Ltd
Original Assignee
Microjet Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from TW111124545A external-priority patent/TWI837717B/zh
Application filed by Microjet Technology Co Ltd filed Critical Microjet Technology Co Ltd
Publication of EP4299996A1 publication Critical patent/EP4299996A1/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/46Auxiliary equipment or operation thereof controlling filtration automatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/003Ventilation in combination with air cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0028Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions provided with antibacterial or antifungal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0036Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions by adsorption or absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/429Means for wireless communication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/442Auxiliary equipment or operation thereof controlling filtration by measuring the concentration of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/56Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/007Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/346Controlling the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • B01D53/565Nitrogen oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/66Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • B01D53/85Biological processes with gas-solid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8696Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/108Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using dry filter elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/15Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means
    • F24F8/167Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means using catalytic reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/22Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/24Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using sterilising media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/804UV light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2273/00Operation of filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2273/30Means for generating a circulation of a fluid in a filtration system, e.g. using a pump or a fan
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/50Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for air conditioning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/65Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for the sterilisation of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/66Volatile organic compounds [VOC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • G06Q50/265Personal security, identity or safety

Definitions

  • the present disclosure relates to a central controller for detecting and completely cleaning air pollution, and more particularly to a central controller for completely cleaning indoor air pollution.
  • PM Particulate matter
  • PM 1 Particulate matter
  • PM 2.5 and PM 10 carbon monoxide, carbon dioxide, total volatile organic compounds (TVOC), formaldehyde and even suspended particles, aerosols, bacteria and viruses contained in the air and exposed in the environment might affect human health, and even endanger people's life.
  • TVOC total volatile organic compounds
  • One object of the present disclosure is to provide a central controller for completely cleaning indoor air pollution.
  • the central controller is disposed in an indoor space to detect air pollution in the indoor space and generate air pollution data, and to process the air pollution data using wireless communication. Then, the characteristic, the concentration and the location of the air pollution in the indoor space are intelligently determined, and the fan is intelligently driven to generate a directional air convection. Through the physical or chemical filtration elements, the air pollution in the indoor space is removed, so that the indoor air quality is promoted to form a clean and safe breathing air state in the indoor space.
  • a central controller for completely cleaning indoor air pollution is provided.
  • the central controller is disposed in an indoor space to detect air pollution and output air pollution data, wherein intelligence operations are implemented in accordance with the air pollution data by the central controller to determine a location of the air pollution, and a controlling instruction is intelligently and selectively issued through a wireless communication transmission to enable a plurality of physical filtration devices or a plurality of chemical filtration devices, wherein each of the physical filtration devices or the chemical filtration devices includes at least one fan and at least one filter element, wherein the fan is driven upon receiving the controlling instruction, so as to generate an airflow convection in a direction, wherein the air pollution is removed through the filter element, so that the air pollution in the indoor space is completely cleaned to form a clean and safe breathing air state.
  • the present disclosure provides a central controller B for completely cleaning indoor air pollution.
  • the central controller B is disposed in an indoor space to detect air pollution and output air pollution data.
  • intelligence operations are implemented in accordance with the air pollution data by the central controller B to determine a location of the air pollution, and a controlling instruction is intelligently and selectively issued through a wireless communication transmission to enable a plurality of physical filtration devices C or a plurality of chemical filtration devices C.
  • each of the physical filtration device C or the chemical filtration device C includes at least one fan 11 and at least one filter element 12, wherein the fan 11 is driven upon receiving the controlling instruction, so as to generate an airflow convection in a direction. The air pollution is removed through the filter element 12, so that the air pollution in the indoor space is completely cleaned to form a clean and safe breathing air state.
  • the air pollution is at least one selected from the group consisting of particulate matter, carbon monoxide, carbon dioxide, ozone, sulfur dioxide, nitrogen dioxide, lead, total volatile organic compounds (TVOC), formaldehyde, bacteria, fungi, virus and a combination thereof.
  • particulate matter carbon monoxide, carbon dioxide, ozone, sulfur dioxide, nitrogen dioxide, lead, total volatile organic compounds (TVOC), formaldehyde, bacteria, fungi, virus and a combination thereof.
  • the central controller B includes a central processing unit 13, a communication interface 14 and a gas detection device A.
  • the gas detection device A detects the air pollution, provides the air pollution data and outputs the air pollution data to the central processing unit 13.
  • the central processing unit 13 implements the intelligence operations in accordance with the air pollution data to determine the location of the air pollution, and intelligently and selectively issues the controlling instruction through the communication interface 14 to the plurality of the physical filtration device C or the chemical filtration device C.
  • the communication interface 14 is connected through a wired communication transmission or a wireless communication transmission.
  • the wireless communication transmission is one selected from the group consisting of a Wi-Fi communication transmission, a Bluetooth communication transmission, a radio frequency identification communication transmission and a near field communication (NFC) transmission.
  • the central processing unit 13 implements the intelligence operations through a connection of a cloud device E, so that artificial intelligence operations and big data comparison are implemented through the cloud device E to determine the location of the air pollution in the indoor space.
  • the controlling instruction is intelligently and selectively issued through the communication interface 14 to the plurality of the physical filtration device C or the plurality of chemical filtration device C.
  • the central controller B may be integrated and installed in other physical filtration devices C or chemical filtration devices C including the fan 11 and the filter element 12.
  • the physical filtration device C or the chemical filtration device C is a fresh air fan C1, a purifier C2, an exhaust fan C3, a range hood C4 or an electric fan C5.
  • the central controller B is installed on the filter device C as an example for illustration.
  • the central controller B is installed on the filter device C, and the air pollution data is detected by the gas detection device A of the central controller B.
  • the intelligence operations are implemented through the central processing unit 13.
  • the artificial intelligence operations and big data comparison are implemented through the connection of the cloud device E, so as to determine the location of the air pollution in the indoor space.
  • the controlling instruction is intelligently and selectively issued through the communication interface 14 to the plurality of the physical filtration device C or the plurality of chemical filtration device C.
  • the gas detection device A is disposed in the central controller B to detect the characteristic and the concentration of the air pollution.
  • the gas detection device A is used for detecting and outputting the air pollution data, and implementing the intelligence operations through the central processing unit 13.
  • the air pollution data detected by the gas detection devices A of the plurality of central controller B (disposed on different filtration device C) in the indoor space are received and compared through the connection of the cloud device E.
  • the artificial intelligence operations and big data comparison are implemented through the cloud device E to determine the location of the air pollution in the indoor space.
  • the controlling instruction is intelligently and selectively issued and transmitted through the wireless communication transmission to drive the plurality of physical filtration devices C or the plurality of chemical filtration device C.
  • the air pollution data detected and provided by each gas detection device A are compared to determine the value of the air pollution data through the intelligence operations, so that the location of the air pollution is determined, and the controlling instruction is transmitted through the wireless communication transmission to drive the plurality of physical filtration devices C or the plurality of chemical filtration device C.
  • each of the physical filtration device C or the chemical filtration device C includes at least one fan 11 and at least one filter element 12.
  • the fan 11 has the function of intaking and exhausting gas in both directions. In an airflow path (the direction shown by the arrow), the fan 11 is disposed at the front side of the filter element 12, or the fan 11 is disposed at the rear side of the filter element 12. As shown in FIG. 1A , the fans 11 are arranged at the front and rear sides of the filter element 12. Certainly, in other embodiments, the arrangement of the fans 11 is designed and adjustable according to the practical requirements.
  • the central processing unit 13 of the central controller B intelligently and selectively issues the controlling instruction through the communication interface 14 to enable a part of the plurality of physical filtration devices C or the plurality of chemical filtration devices C adjacent to the location of the air pollution first, and then intelligently and selectively issues the controlling instruction through the communication interface 14 to enable the rest of the plurality of physical filtration devices C or the plurality of chemical filtration devices C, so as to generate the airflow convection, whereby the flow of the air pollution is accelerated to drain through the airflow convection toward the plurality of physical filtration device C or the plurality of chemical filtration devices C adjacent to the location of the air pollution for filtering and cleaning the air pollution.
  • the air pollution in the indoor space is filtered and completely cleaned to form a clean and safe breathing air state. That is, while the plurality of gas detection devices A are connected through the cloud device E for outputting the detected air pollution data and implementing the artificial intelligence operations and big data comparison, a part of the physical filtration devices C or the chemical filtration devices C adjacent to the location of the air pollution receive the controlling instruction first, so as to be enabled for operation, and an airflow is generated first. Then, the controlling instruction is intelligently and selectively issued to enable the rest of the physical filtration devices B or the chemical filtration devices B in accordance with the position farther from the location of the air pollution for operation, so that the airflow is guided toward a direction.
  • what the air pollution is "completely cleaned” or “completely clean” means that the air pollution is filtered and cleaned to reach a safety detection value.
  • the safety detection value is zero to form a clean and safe breathing air state.
  • the safety detection value may also include at least one selected from the group consisting of a concentration of PM2.5 which is less than 35 ⁇ g/m 3 , a concentration of carbon dioxide which is less than 1000 ppm, a concentration of total volatile organic compounds which is less than 0.56 ppm, a concentration of formaldehyde which is less than 0.08 ppm, a colony-forming unit of bacteria which is less than 1500 CFU/m 3 , a colony-forming unit of fungi which is less than 1000 CFU/m 3 , a concentration of sulfur dioxide which is less than 0.075 ppm, a concentration of nitrogen dioxide which is less than 0.1 ppm, a concentration of carbon monoxide which is less than 9 ppm, a concentration of ozone which is less than 0.06 ppm, and a concentration of lead which is less than 0.15 ⁇ g/m 3 .
  • a concentration of PM2.5 which is less than 35 ⁇ g/m 3
  • a concentration of carbon dioxide which is less than 1000 ppm
  • the filter element 12 of the physical filtration device is a blocking and absorbing filter screen 124 to form a physical removal device.
  • the filter screen 124 is a high efficiency particulate air (HEPA) filter screen 124a, which is configured to absorb the chemical smoke, the bacteria, the dust particles and the pollen contained in the air pollution, so that the air pollution introduced into the filter element 12 is filtered and purified to achieve the effect of filtering and purification.
  • the filter element 12 of the chemical filtration device is coated with a decomposition layer 121 to form a chemical removal device.
  • the decomposition layer 121 is an activated carbon 121a, which is configured to remove the organic and inorganic substances in the air pollution and remove the colored and odorous substances.
  • the decomposition layer 121 is a cleansing factor containing chlorine dioxide layer 121b, which is configured to inhibit viruses, bacteria, fungi, influenza A, influenza B, enterovirus and norovirus in the air pollution introduced into the filter element 12, and the inhibition ratio can reach 99%, thereby reducing the cross-infection of viruses.
  • the decomposition layer 121 is an herbal protective layer 121c, which is configured to resist allergy effectively and destroy a surface protein of influenza virus (H1N1) passing therethrough.
  • the decomposition layer 121 is a silver ion 121d, which is configured to inhibit viruses, bacteria and fungi contained in the air pollution.
  • the decomposition layer 121 is a zeolite 121e, which is configured to remove ammonia nitrogen, heavy metals, organic pollutants, Escherichia coli, phenol, chloroform and anionic surfactants.
  • the filter element 12 of the chemical filtration device B is combined with a light irradiation element 122 to form a chemical removal device.
  • the light irradiation element 122 is a photo-catalyst unit including a photo catalyst 122a and an ultraviolet lamp 122b.
  • the photo catalyst 122a When the photo catalyst 122a is irradiated by the ultraviolet lamp 122b, the light energy is converted into the chemical energy to decompose harmful substances contained in the air pollution and disinfect bacteria contained in the air pollution, so as to achieve the effects of filtering and purifying.
  • the light irradiation element 122 is a photo-plasma unit including a nanometer irradiation tube 122c.
  • oxygen molecules and water molecules contained in the air pollution are decomposed into high oxidizing photo-plasma, and generates an ion flow capable of destroying organic molecules.
  • the filter element 12 of the chemical filtration device is combined with a decomposition unit 123 to form a chemical removal device.
  • the decomposition unit 123 is a negative ion unit 123a. It makes the suspended particles contained in the air pollution to carry with positive charge and adhered to a dust collecting plate carry with negative charges, so as to achieve the effects of filtering and purifying the air pollution introduced.
  • the decomposition unit 123 is a plasma ion unit 123b.
  • the oxygen molecules and the water molecules contained in the air pollution are decomposed into positive hydrogen ions (H + ) and negative oxygen ions (O 2 - ), and the substances attached with water around the ions are adhered on the surface of viruses and bacteria and converted into OH radicals with extremely strong oxidizing power, thereby removing hydrogen (H) from the protein on the surface of viruses and bacteria, and thus decomposing (oxidizing) the protein, so as to filter the introduced air pollution and achieve the effects of filtering and purifying.
  • the gas detection device 3 includes a controlling circuit board 31, a gas detection main part 32, a microprocessor 33 and a communicator 34.
  • the gas detection main part 32, the microprocessor 33 and the communicator 34 are integrally packaged on the controlling circuit board 31 and electrically connected to each other.
  • the microprocessor 33 and the communicator 34 are disposed on the controlling circuit board 31, and the microprocessor 33 controls the driving signal of the gas detection main part 32 to enable the detection.
  • the gas detection main part 32 detects the air pollution and outputs a detection signal.
  • the microprocessor 33 receives the detection signal for calculating, processing and outputting, so that the microprocessor 33 of the gas detection device 3 generates the air pollution data, which are provided to the communicator 34, and externally transmitted to a connection device through a wireless communication transmission.
  • the wireless communication transmission is one selected from the group consisting of a Wi-Fi communication transmission, a Bluetooth communication transmission, a radio frequency identification communication transmission and a near field communication (NFC) transmission.
  • the gas detection main part 32 includes a base 321, a piezoelectric actuator 322, a driving circuit board 323, a laser component 324, a particulate sensor 325 and an outer cover 326.
  • the base 321 includes a first surface 3211, a second surface 3212, a laser loading region 3213, a gas-inlet groove 3214, a gas-guiding-component loading region 3215 and a gas-outlet groove 3216.
  • the first surface 3211 and the second surface 3212 are two surfaces opposite to each other.
  • the laser loading region 3213 for the laser component 324 is hollowed out from the first surface 3211 toward the second surface 3212.
  • the outer cover 326 covers the base 321 and includes a side plate 3261.
  • the side plate 3261 has an inlet opening 3261a and an outlet opening 3261b.
  • the gas-inlet groove 3214 is concavely formed from the second surface 3212 and disposed adjacent to the laser loading region 3213.
  • the gas-inlet groove 3214 includes a gas-inlet 3214a and two lateral walls.
  • the gas-inlet 3214a is in communication with an environment outside the base 321, and is spatially corresponding in position to an inlet opening 3261a of the outer cover 326.
  • Two transparent windows 3214b are opened on the two lateral walls of the gas-inlet groove 3214 and are in communication with the laser loading region 3213. Therefore, the first surface 3211 of the base 321 is covered and attached by the outer cover 326, and the second surface 3212 is covered and attached by the driving circuit board 323, so that an inlet path is defined by the gas-inlet groove 3214.
  • the gas-guiding-component loading region 3215 mentioned above is concavely formed from the second surface 3212 and in communication with the gas-inlet groove 3214.
  • a ventilation hole 3215a penetrates a bottom surface of the gas-guiding-component loading region 3215.
  • the gas-guiding-component loading region 3215 includes four positioning protrusions 3215b disposed at four corners of the gas-guiding-component loading region 3215, respectively.
  • the gas-outlet groove 3216 includes a gas-outlet 3216a, and the gas-outlet 3216a is spatially corresponding to the outlet opening 3261b of the outer cover 326.
  • the gas-outlet groove 3216 includes a first section 3216b and a second section 3216c.
  • the first section 3216b is concavely formed out from the first surface 3211 in a region spatially corresponding to a vertical projection area of the gas-guiding-component loading region 3215.
  • the second section 3216c is hollowed out from the first surface 3211 to the second surface 3212 in a region where the first surface 3211 is extended from the vertical projection area of the gas-guiding-component loading region 3215.
  • the first section 3216b and the second section 3216c are connected to form a stepped structure.
  • the first section 3216b of the gas-outlet groove 3216 is in communication with the ventilation hole 3215a of the gas-guiding-component loading region 3215
  • the second section 3216c of the gas-outlet groove 3216 is in communication with the gas-outlet 3216a.
  • the laser component 324 and the particulate sensor 325 are disposed on and electrically connected to the driving circuit board 323 and located within the base 321.
  • the driving circuit board 323 is intentionally omitted.
  • the laser component 324 is accommodated in the laser loading region 3213 of the base 321
  • the particulate sensor 325 is accommodated in the gas-inlet groove 3214 of the base 321 and is aligned to the laser component 324.
  • the laser component 324 is spatially corresponding to the transparent window 3214b.
  • a light beam emitted by the laser component 324 passes through the transparent window 3214b and is irradiated into the gas-inlet groove 3214.
  • a light beam path from the laser component 324 passes through the transparent window 3214b and extends in an orthogonal direction perpendicular to the gas-inlet groove 3214.
  • the particulate sensor 325 is used for detecting the suspended particulate information.
  • a projecting light beam emitted from the laser component 324 passes through the transparent window 3214b and enters the gas-inlet groove 3214 to irradiate the suspended particles contained in the gas passing through the gas-inlet groove 3214.
  • a gas sensor 327 is positioned and disposed on the driving circuit board 323, electrically connected to the driving circuit board 323, and accommodated in the gas-outlet groove 3216, so as to detect the air pollution introduced into the gas-outlet groove 3216.
  • the gas sensor 327 includes a volatile-organic-compound sensor for detecting the gas information of carbon dioxide (CO 2 ) or volatile organic compounds (TVOC).
  • the gas sensor 327 includes a formaldehyde sensor for detecting the gas information of formaldehyde (HCHO).
  • the gas sensor 327 includes a bacteria sensor for detecting the gas information of bacteria or fungi.
  • the gas sensor 327 includes a virus sensor for detecting the gas information of virus.
  • the piezoelectric actuator 322 is accommodated in the square-shaped gas-guiding-component loading region 3215 of the base 321.
  • the gas-guiding-component loading region 3215 of the base 321 is in fluid communication with the gas-inlet groove 3214.
  • the piezoelectric actuator 322 is enabled, the gas in the gas-inlet 3214 is inhaled into the piezoelectric actuator 322, flows through the ventilation hole 3215a of the gas-guiding-component loading region 3215 into the gas-outlet groove 3216.
  • the driving circuit board 323 covers the second surface 3212 of the base 321, and the laser component 324 is positioned and disposed on the driving circuit board 323, and is electrically connected to the driving circuit board 323.
  • the particulate sensor 325 is also positioned and disposed on the driving circuit board 323, and is electrically connected to the driving circuit board 323.
  • the inlet opening 3261a is spatially corresponding to the gas-inlet 3214a of the base 321
  • the outlet opening 3261b is spatially corresponding to the gas-outlet 3216a of the base 321.
  • the piezoelectric actuator 322 includes a gas-injection plate 3221, a chamber frame 3222, an actuator element 3223, an insulation frame 3224 and a conductive frame 3225.
  • the gas-injection plate 3221 is made by a flexible material and includes a suspension plate 3221a and a hollow aperture 3221b.
  • the suspension plate 3221a is a sheet structure and is permitted to undergo a bending deformation.
  • the shape and the size of the suspension plate 3221a are accommodated in the inner edge of the gas-guiding-component loading region 3215, but not limited thereto.
  • the hollow aperture 3221b passes through a center of the suspension plate 3221a, so as to allow the gas to flow therethrough.
  • the shape of the suspension plate 3221a is selected from the group consisting of a square, a circle, an ellipse, a triangle and a polygon, but not limited thereto.
  • the chamber frame 3222 is carried and stacked on the gas-injection plate 3221.
  • the shape of the chamber frame 3222 is corresponding to the gas-injection plate 3221.
  • the actuator element 3223 is carried and stacked on the chamber frame 3222.
  • a resonance chamber 3226 is collaboratively defined by the actuator element 3223, the chamber frame 3222 and the suspension plate 3221a and is formed between the actuator element 3223, the chamber frame 3222 and the suspension plate 3221a.
  • the insulation frame 3224 is carried and stacked on the actuator element 3223 and the appearance of the insulation frame 3224 is similar to that of the chamber frame 3222.
  • the conductive frame 3225 is carried and stacked on the insulation frame 3224, and the appearance of the conductive frame 3225 is similar to that of the insulation frame 3224.
  • the conductive frame 3225 includes a conducting pin 3225a and a conducting electrode 3225b.
  • the conducting pin 3225a is extended outwardly from an outer edge of the conductive frame 3225
  • the conducting electrode 3225b is extended inwardly from an inner edge of the conductive frame 3225.
  • the actuator element 3223 further includes a piezoelectric carrying plate 3223a, an adjusting resonance plate 3223b and a piezoelectric plate 3223c.
  • the piezoelectric carrying plate 3223a is carried and stacked on the chamber frame 3222.
  • the adjusting resonance plate 3223b is carried and stacked on the piezoelectric carrying plate 3223a.
  • the piezoelectric plate 3223c is carried and stacked on the adjusting resonance plate 3223b.
  • the adjusting resonance plate 3223b and the piezoelectric plate 3223c are accommodated in the insulation frame 3224.
  • the conducting electrode 3225b of the conductive frame 3225 is electrically connected to the piezoelectric plate 3223c.
  • the piezoelectric carrying plate 3223a and the adjusting resonance plate 3223b are made by a conductive material.
  • the piezoelectric carrying plate 3223a includes a piezoelectric pin 3223d.
  • the piezoelectric pin 3223d and the conducting pin 3225a are electrically connected to a driving circuit (not shown) of the driving circuit board 323, so as to receive a driving signal, such as a driving frequency and a driving voltage.
  • a circuit is formed by the piezoelectric pin 3223d, the piezoelectric carrying plate 3223a, the adjusting resonance plate 3223b, the piezoelectric plate 3223c, the conducting electrode 3225b, the conductive frame 3225 and the conducting pin 3225a for transmitting the driving signal.
  • the insulation frame 3224 is insulated between the conductive frame 3225 and the actuator element 3223, so as to avoid the occurrence of a short circuit. Thereby, the driving signal is transmitted to the piezoelectric plate 3223c.
  • the piezoelectric plate 3223c After receiving the driving signal such as the driving frequency and the driving voltage, the piezoelectric plate 3223c deforms due to the piezoelectric effect, and the piezoelectric carrying plate 3223a and the adjusting resonance plate 3223b are further driven to generate the bending deformation in the reciprocating manner.
  • the adjusting resonance plate 3223b is located between the piezoelectric plate 3223c and the piezoelectric carrying plate 3223a and served as a cushion between the piezoelectric plate 3223c and the piezoelectric carrying plate 3223a.
  • the vibration frequency of the piezoelectric carrying plate 3223a is adjustable.
  • the thickness of the adjusting resonance plate 3223b is greater than the thickness of the piezoelectric carrying plate 3223a, and the vibration frequency of the actuator element 3223 can be adjusted by adjusting the thickness of the adjusting resonance plate 3223b.
  • the gas-injection plate 3221, the chamber frame 3222, the actuator element 3223, the insulation frame 3224 and the conductive frame 3225 are stacked and positioned in the gas-guiding-component loading region 3215 sequentially, so that the piezoelectric actuator 322 is supported and positioned in the gas-guiding-component loading region 3215.
  • a plurality of clearances 3221c are defined between the suspension plate 3221a of the gas-injection plate 3221 and an inner edge of the gas-guiding-component loading region 3215 for gas flowing therethrough.
  • a flowing chamber 3227 is formed between the gas-injection plate 3221 and the bottom surface of the gas-guiding-component loading region 3215.
  • the flowing chamber 3227 is in communication with the resonance chamber 3226 between the actuator element 3223, the chamber frame 3222 and the suspension plate 3221a through the hollow aperture 3221b of the gas-injection plate 3221.
  • the suspension plate 3221a of the gas-injection plate 3221 is driven to move away from the bottom surface of the gas-guiding-component loading region 3215 by the piezoelectric plate 3223c.
  • the volume of the flowing chamber 3227 is expanded rapidly, the internal pressure of the flowing chamber 3227 is decreased to form a negative pressure, and the gas outside the piezoelectric actuator 322 is inhaled through the clearances 3221c and enters the resonance chamber 3226 through the hollow aperture 3221b. Consequently, the pressure in the resonance chamber 3226 is increased to generate a pressure gradient.
  • the piezoelectric plate 3223c is driven to generate the bending deformation in a reciprocating manner.
  • the gas pressure inside the resonance chamber 3226 is lower than the equilibrium gas pressure after the converged gas is ejected out, the gas is introduced into the resonance chamber 3226 again.
  • the vibration frequency of the gas in the resonance chamber 3226 is controlled to be close to the vibration frequency of the piezoelectric plate 3223c, so as to generate the Helmholtz resonance effect to achieve the gas transportation at high speed and in large quantities.
  • the gas is inhaled through the inlet opening 3261a of the outer cover 326, flows into the gas-inlet groove 3214 of the base 321 through the gas-inlet 3214a, and is transported to the position of the particulate sensor 325.
  • the piezoelectric actuator 322 is enabled continuously to inhale the gas into the inlet path, and facilitate the gas outside the gas detection device to be introduced rapidly, flow stably, and transported above the particulate sensor 325.
  • a projecting light beam emitted from the laser component 324 passes through the transparent window 3214b to irritate the suspended particles contained in the gas flowing above the particulate sensor 325 in the gas-inlet groove 3214.
  • the scattered light spots are received and calculated by the particulate sensor 325 for obtaining related information about the sizes and the concentration of the suspended particles contained in the gas.
  • the gas above the particulate sensor 325 is continuously driven and transported by the piezoelectric actuator 322, flows into the ventilation hole 3215a of the gas-guiding-component loading region 3215, and is transported to the gas-outlet groove 3216.
  • the gas is continuously transported into the gas-outlet groove 3216 by the piezoelectric actuator 322, and thus the gas in the gas-outlet groove 3216 is pushed to discharge through the gas-outlet 3216a and the outlet opening 3261b.
  • the gas detection device A of the central controller B can not only detect the suspended particles in the gas, but also further detect the characteristics of the imported gas, such as formaldehyde, ammonia, carbon monoxide, carbon dioxide, oxygen and ozone. Therefore, the gas detection device A of the central controller B of the present disclosure further includes a gas sensor 327. Preferably but not exclusively, the gas sensor 327 is positioned and electrically connected to the driving circuit board 323, and is accommodated in the gas outlet groove 3216. Whereby, the concentration or the characteristics of volatile organic compounds contained in the gas drained out through the outlet path.
  • the present disclosure provides a central controller for completely cleaning indoor air pollution.
  • the central controller With the central controller disposed in an indoor space, the central controller detects air pollution in the indoor space and generates air pollution data, and process the air pollution data using the wireless communication. Then, the characteristic, the concentration and the location of the air pollution in the indoor space are intelligently determined, and the fan is intelligently driven to generate a directional air convection. Through the physical or chemical filtration elements, the air pollution in the indoor space is removed, so as to completely clean the indoor air pollution to form a clean and safe breathing air state in the indoor space.
  • the present disclosure includes the industrial applicability and the inventive steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Ventilation (AREA)
  • Air Conditioning Control Device (AREA)
  • Sampling And Sample Adjustment (AREA)
EP22187825.9A 2022-06-30 2022-07-29 Contrôleur central pour le nettoyage complet de la pollution de l'air intérieur Pending EP4299996A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111124545A TWI837717B (zh) 2022-06-30 室內空污清零的中心控制器

Publications (1)

Publication Number Publication Date
EP4299996A1 true EP4299996A1 (fr) 2024-01-03

Family

ID=82786482

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22187825.9A Pending EP4299996A1 (fr) 2022-06-30 2022-07-29 Contrôleur central pour le nettoyage complet de la pollution de l'air intérieur

Country Status (4)

Country Link
US (1) US20240001278A1 (fr)
EP (1) EP4299996A1 (fr)
JP (1) JP2024006844A (fr)
CN (1) CN117366744A (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175473A1 (fr) * 2015-04-29 2016-11-03 주식회사 랩죤 Système de purification d'air par stérilisation à l'ozone basé sur l'internet des objets
WO2018109522A1 (fr) * 2016-12-12 2018-06-21 Pramukha Technologies Pvt. Ltd. Système et procédé de purification efficace de l'air ambiant
EP3581854A1 (fr) * 2018-06-15 2019-12-18 Samsung Electronics Co., Ltd. Appareil terminal et procédé de transmission de commande de contrôle associé
US20210254845A1 (en) * 2020-02-19 2021-08-19 Microjet Technology Co., Ltd. Miniature gas detection and purification device
US20220196269A1 (en) * 2020-12-21 2022-06-23 Microjet Technology Co., Ltd. Method of filtering indoor air pollution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175473A1 (fr) * 2015-04-29 2016-11-03 주식회사 랩죤 Système de purification d'air par stérilisation à l'ozone basé sur l'internet des objets
WO2018109522A1 (fr) * 2016-12-12 2018-06-21 Pramukha Technologies Pvt. Ltd. Système et procédé de purification efficace de l'air ambiant
EP3581854A1 (fr) * 2018-06-15 2019-12-18 Samsung Electronics Co., Ltd. Appareil terminal et procédé de transmission de commande de contrôle associé
US20210254845A1 (en) * 2020-02-19 2021-08-19 Microjet Technology Co., Ltd. Miniature gas detection and purification device
US20220196269A1 (en) * 2020-12-21 2022-06-23 Microjet Technology Co., Ltd. Method of filtering indoor air pollution

Also Published As

Publication number Publication date
JP2024006844A (ja) 2024-01-17
US20240001278A1 (en) 2024-01-04
CN117366744A (zh) 2024-01-09
TW202403243A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
US20220196269A1 (en) Method of filtering indoor air pollution
US11772461B2 (en) Method of air pollution filtration in vehicle
US20220196276A1 (en) Method for intelligently preventing and handling indoor air pollution
US20220196277A1 (en) Method for intelligently preventing and handling indoor air pollution
US20230235914A1 (en) Air purifier for preventing air pollution
US20220339992A1 (en) In-car air pollution prevention system
US20220280897A1 (en) Method for detecting and filtering indoor polluted gas
EP4299996A1 (fr) Contrôleur central pour le nettoyage complet de la pollution de l'air intérieur
CN116481125A (zh) 防治空污吸尘器
US20220194182A1 (en) Method of preventing air pollution in vehicle
EP4299995A1 (fr) Conception de la localisation et du nettoyage complet de la pollution de l'air intérieur
US20240003563A1 (en) Method for detecting and cleaning indoor air pollution
US20230400209A1 (en) Indoor air pollution detecting and purifying prevention method
TWI842018B (zh) 室內空污檢測、定位與清零系統
US20240035691A1 (en) Method for detecting, locating and completely cleaning indoor microorganism
US11988393B2 (en) Range hood for preventing air pollution
US20230233976A1 (en) Exhaust fan for preventing air pollution
TWI837717B (zh) 室內空污清零的中心控制器
TWI834208B (zh) 室內空污定位與趨零之方法
TWI837968B (zh) 室內空污偵測清淨系統
CN114643827B (zh) 车内空气污染防治解决方法
US20240027090A1 (en) System for detecting, positioning, and cleaning indoor air pollution
TWI836330B (zh) 防治空污電風扇
US20220370946A1 (en) Air pollution prevention device for baby carriage
CN115342460A (zh) 室内空气污染防治系统

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR