EP4298065A1 - Régulation de four - Google Patents

Régulation de four

Info

Publication number
EP4298065A1
EP4298065A1 EP22710699.4A EP22710699A EP4298065A1 EP 4298065 A1 EP4298065 A1 EP 4298065A1 EP 22710699 A EP22710699 A EP 22710699A EP 4298065 A1 EP4298065 A1 EP 4298065A1
Authority
EP
European Patent Office
Prior art keywords
composition
control method
melting chamber
melting
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22710699.4A
Other languages
German (de)
English (en)
Inventor
Antoine Guillet
Merwane MAIZA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Isover SA France
Original Assignee
Saint Gobain Isover SA France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Isover SA France filed Critical Saint Gobain Isover SA France
Publication of EP4298065A1 publication Critical patent/EP4298065A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/24Automatically regulating the melting process
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B1/00Preparing the batches
    • C03B1/02Compacting the glass batches, e.g. pelletising
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/005Charging the melting furnaces using screw feeders
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/005Melting in furnaces; Furnaces so far as specially adapted for glass manufacture of glass-forming waste materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/193Stirring devices; Homogenisation using gas, e.g. bubblers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2356Submerged heating, e.g. by using heat pipes, hot gas or submerged combustion burners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Definitions

  • the present invention relates to an installation for melting a composition of raw materials suitable for obtaining glass fibers of the mineral wool type for thermal or sound insulation, cullet, so-called reinforcing textile glass yarns , and/or flat or hollow glass.
  • these “raw materials” first of all comprise vitrifiable materials which make it possible to obtain the targeted mineral composition of the glass or rock or silicate type.
  • vitrifiable materials include silica sand, but also all additives (sodium carbonate, limestone, dolomite, alumina, etc.), and any type of cullet.
  • the expressions “liquid glass” and “glass bath” designate the product of the fusion of these vitrifiable materials.
  • compositions of raw materials are recyclable materials containing combustible (organic) elements such as, for example, waste sized mineral fibers with binder (of the type used in thermal or acoustic insulation or of those used in the reinforcement of plastic material), from production sites of said fibers (factories), construction sites (construction or deconstruction) and/or recycling channels making it possible to recover such fibers in end products, whether or not they are used.
  • mineral fibers can in particular consist of glass and/or rock. We then speak respectively of glass wool and rock wool.
  • glazing laminated with polymer sheets of the polyvinyl butyral type such as windshields, glass bottles (household cullet), or any type of “composite” material combining glass and plastic materials such as certain bottles.
  • Glass-metal composites or metal compounds such as glazing coated with layers of enamel, layers of metal and/or various connectors are also recyclable. Also included in the raw materials are all forms of biomass, i.e. organic matter of plant, animal, bacterial or fungal origin, usable mainly as fuel, but also playing the role of raw material influencing the composition of the vitrifiable material manufactured since its ash content is generally not zero.
  • this recyclable waste has the particularity of having high and very variable humidity levels.
  • moisture content means the mass percentage of water contained in a so-called “wet” mixture of recyclable waste, such a mixture generally consisting of mineral wool and/or biomass.
  • wet a so-called “wet” mixture of recyclable waste, such a mixture generally consisting of mineral wool and/or biomass.
  • mineral wool scraps are treated by users as waste, it is common that they are not stored in dry conditions. Even taking into account the hydrophobic behavior of mineral wool, we can thus expect that the scraps of mineral wool stored outside without a cover contain between 20 and 70% humidity, which is not negligible.
  • a variation in the humidity level therefore generates a variation in the mass of vitrifiable materials actually charged, and consequently a variation, or instability of the output from the kiln.
  • Pulled is the quantity of molten vitrifiable material leaving the furnace, per unit of time (for example, in tons per day).
  • Such variations in the instantaneous output of the furnace are detrimental to the quality of the glass products obtained after forming. In the particular case of the manufacture of mineral wool, these variations in pull thus bring about an instability at the fiber level, which generates more waste.
  • Another drawback is that the quantity of fibers created at a given instant also varies, which is detrimental to controlling the density of the products obtained. However, this is a key characteristic for assessing their quality.
  • the proposed technique aims to provide a technical solution to the drawbacks described above. More particularly, in at least one embodiment, the proposed technique relates to a method for controlling an installation for melting a composition of raw materials, suitable for obtaining mineral wool, cullet, wires textile glass and/or flat or hollow glass, which comprises a melting chamber suitable for melting said composition, characterized in that said composition comprises at least a wet mixture of mineral wool and/or biomass, and in that that said method comprises at least one step of controlling at least one physical variable imparting the pull of the melting chamber, said step of controlling being implemented as a function of the humidity level of said composition and/or of said wet mixture , as measured before introducing said composition and/or said wet mixture into the melting chamber.
  • a control method is new and inventive in that the various physical variables imparting, that is to say having a direct or indirect influence on the output of the furnace are controlled (regulated) according to the humidity level of said wet composition/mixture to be baked, and not on the sole basis of a temperature objective to be achieved within the melting chamber, as traditionally determined from complex thermodynamic models with multiple variables. And for good reason, melting in a glass furnace has so little inertia or in other words, such reactivity, that such a temperature target is very quickly caught up, even without specific regulation. On the other hand, any variation in the humidity level leads to an immediate response from the furnace, thus destabilizing the melting process and its pull.
  • a control method according to the invention therefore makes it possible to anticipate in a very reactive manner the negative effects generated by the humidity level of the wet composition/mixture on the oven, in order to help stabilize its pull. and thus makes it possible, ultimately, to improve the quality of the glass products formed.
  • the wet mixture of mineral wool and/or biomass represents between 1 and 50% by mass and preferably between 10 and 40% by mass of the composition of raw materials.
  • said at least one physical variable impacting the output of the melting chamber is the charging rate in the melting chamber of said composition.
  • the installation is equipped with at least one burner, preferably of the submerged type, and/or at least one bubbler.
  • the submerged burners are supplied with gas and air, and generally arranged so as to be flush with the level of the floor of the melting chamber, so that the flame develops within the very mass of the raw materials. being liquefied.
  • These burners can be such that their gas supply ducts are flush with the wall they pass through. According to certain embodiments, it is possible to choose to inject only gases resulting from the combustion, the latter then being carried out outside the melting chamber proper.
  • said composition is at least partly placed in the oven below the level of the glass bath.
  • said at least one physical variable imparting the output of the melting chamber is the power of said at least one burner.
  • control method implements a plurality of burners, and in that said power control step is mainly implemented on the burner(s) arranged ) closest to a charging point of said composition of raw materials in the melting chamber.
  • the implementation of said power control step is mainly centered on the burner(s) arranged so-called "proximal" from a point of introduction of raw materials, in that the ratio of the power deviation applied to the proximal burner(s) to the power deviation applied to the other burners is greater than 75%, preferably greater than 90%, preferably greater than 95%.
  • control method comprises at least one step of direct or indirect measurement of the humidity level of said composition and/or of said wet mixture, preferably by means of at least one sensor of the type radar.
  • a measurement of the humidity level makes it possible to adapt the targeted physical variable(s) in real time, with the aim of stability of the output.
  • Empirical tests carried out by the inventors have made it possible to identify radar-type sensors as particularly suitable for measuring this humidity level.
  • Such sensors are suitable for applying an electric field to the wet composition/mixture evaluated in order to measure its electric permittivity and to deduce its humidity level.
  • control method comprises at least one step of pressing said wet mixture, preferably by means of a pressing screw, and a subsequent step of measuring the humidity level of said pressed wet mixture, after and/or preferably before incorporating said pressed wet mixture into said composition of raw materials.
  • the prior pressing of said wet mixture makes it possible to reduce its humidity level, and therefore the negative influence of the latter on the melting process.
  • the measurement of the moisture content before incorporating the pressed wet mixture into the composition of raw materials is carried out on a reduced volume of material, and is therefore more reliable.
  • the same measurement carried out after incorporation makes it possible to take into account the humidity level of the whole of the composition in the oven.
  • the combination of these two measurements makes it possible to deduce the moisture content of the composition excluding the wet mixture.
  • control method comprises a preliminary step of measuring the humidity level of said wet mixture, before pressing.
  • the comparison of the measurements taken before and after pressing makes it possible to evaluate the effectiveness of the pressing on the evolution of the humidity rate and, preferably, to adapt the setting of the pressing tool, generally a screw, in order to obtain and maintain a target efficiency value.
  • the rate of introduction into the melting chamber of vitrifiable materials is greater than or equal to 10 tons per day, preferably greater than or equal to 25 tons per day, preferably greater than or equal to 50 tons per day, preferably greater than or equal to 100 tons per day.
  • the step of controlling the physical variable imparting the pull implements a PID regulator which varies this physical variable, from said measured humidity level.
  • said measured humidity level is between 3% and 50% by mass, preferentially between 4% and 30% by mass, preferentially between 5% and 15% by mass, preferentially between 6 % and 10% by mass.
  • the invention also relates to a computer program downloadable from a communication network and/or recorded on a recording medium adapted to be read by a computer and/or executed by a processor, comprising an instruction code to implement the control method described above.
  • the invention also relates to a computer recording medium on which such a computer program is recorded.
  • the invention also relates to an installation for melting a composition of raw materials comprising at least one wet mixture of mineral wool and/or biomass, suitable for obtaining mineral wool, cullet, son of textile glass and/or flat or hollow glass, said installation comprising a melting chamber suitable for melting said composition and a control system suitable for implementing such a control method.
  • said installation is equipped with at least one burner, preferably of the submerged type, and/or at least one bubbler and/or is suitable for charging said composition of raw materials below the level of the glass bath.
  • the invention also relates to a process for manufacturing glass or rock mineral wool, cullet, textile glass yarns and/or flat or hollow glass, implementing such an installation.
  • the vitrifiable material produced by the process according to the invention is a mineral material, generally of the oxide type, generally comprising at least 30% by mass of silica, such as a glass or a rock or a silicate such as a silicate of alkaline and/or alkaline-earth.
  • a glass or a rock generally comprises: SiO2: 30 to 75% by weight, CaO+MgO: 5 to 40% by weight, Na2O+K2O: 0 to 20% by weight, Al2O3: 0 to 30% by weight , Iron oxide: 0 to 15% by weight.
  • composition of the manufactured vitrifiable material generally comprises:
  • SiO2 50 to 75% by weight
  • AI2O3 0 to 8% by weight
  • Iron oxide 0 to 3% by weight
  • B2O3 2 to 10% by weight.
  • the composition of the manufactured vitrifiable material generally includes:
  • SiO2 30 to 50% by weight
  • the molten vitrifiable mineral material produced according to the invention is extracted from the furnace to be solidified by cooling in a suitable form.
  • it can be extracted from the furnace in the molten state to be directly used in a fiber drawing device to form reinforcing yarn or mineral wool.
  • the vitrifiable mineral material can be extracted from the furnace and transformed into fiber in a fiber-drawing device.
  • the vitrifiable material is generally glass or rock.
  • the invention also relates to a production line for glass or rock mineral wool, cullet, textile glass yarns and/or flat glass comprising:
  • said furnace comprising a charging device.
  • the separate and prior preparation of a mixture preconstituted by the unit for preparing the composition to be baked has the advantage of being able to carefully dose the various ingredients of this mixture, independently of the operation of the oven.
  • This pre-constituted mixture can be stored before being introduced into the oven when the time comes.
  • a preconstituted mixture of this kind can also be more homogeneous than if the various ingredients were introduced simultaneously into a charging device.
  • Figure 1 is a schematic cross-sectional view of an installation for melting a composition of raw materials, according to a particular embodiment of the invention
  • Figure 2 is a schematic sectional view of a unit for preparing a composition of raw materials to be baked, as implemented by a manufacturing method according to the invention
  • FIG. 3 Figure 3 a schematic representation of a control system of an installation such as that shown in Figure 1.
  • FIG. 1 schematically shows a furnace (installation) with submerged burners usable in the context of the invention, seen in section and from the side.
  • a furnace 1 comprising burners 2A and a bubbler 2B immersed in a bath 3 of vitrifiable materials being melted, at a temperature generally between 1200°C and 1700°C.
  • An endless screw 13 pushes a composition 5 of raw material under the surface 6 of the material being melted in the furnace.
  • a distributor 17 doses and feeds a preconstituted mixture into a feed hopper 7, which then feeds the endless screw 13 rotating in a sheath 4.
  • the distributor 17 is therefore the master of the instantaneous charging rate.
  • the preconstituted mixture is introduced into the oven through port 12, also called the charging point.
  • the interior of the furnace comprises a tank 8 containing the bath 3 of verifiable material being melted.
  • the mineral material formed exits through the outlet 11 below the level of the molten materials.
  • the combustion gases escape through a chimney 16.
  • FIG. 2 schematically shows in section a unit for preparing a composition of raw materials to be baked in the oven 1 described in Figure 1.
  • the humidity level of a wet mixture 20 of mineral wool and/or biomass is measured (step M1) before the mixture is pressurized (step S1) using a pressing screw 21.
  • the moisture content of the pressed wet mixture is subsequently again measured (step M2) before the latter is transferred to a storage silo 22.
  • the wet mixture 20 is subsequently incorporated (step S2) into the rest of the raw materials, hitherto stored in a dedicated silo 23.
  • the rate humidity of the composition thus obtained 20 is then measured (step M3) before the latter is stored in a silo 24, while waiting to be charged and melted (step S3) in the oven 1.
  • the invention also relates to a system 30 for controlling an installation 1 such as that described in the present text.
  • a control system 30 comprises a processor 31 having the function of a processing module, a storage unit 32, an interface unit 33 and at least one device 34 for measuring the rate of humidity, which are connected by a computer bus.
  • the processor 31 controls the oven 1, and in particular the charging and charging rate of the charging auger 13, as well as the power of the burners 2A.
  • the storage unit 32 stores at least one program to be executed by the processor 31, and various data, including the data collected by the measuring device(s) 34, the parameters used by calculations carried out by the processor 31, or the intermediate data of the calculations performed by the processor 31.
  • the processor 31 can be formed by any known or suitable hardware or software, or by a combination of hardware and software.
  • Storage unit 32 may be formed by any suitable storage or suitable means for storing the program and data in a computer readable manner.
  • the program causes the processor 31 to implement a control method such as that described in the present text.
  • the interface unit 33 provides an interface between the control system 30 and an external device.
  • the interface unit 33 can in particular be in communication with the external device via a cable or a wireless communication.
  • the external device may be the charging auger 13 and/or the first burner 2A.
  • values measured by the measuring device 34 can be entered into the system 30 through the interface unit 33, then stored in the storage unit 32.
  • processor 31 can include different modules and units implementing the functions performed by the control system 30. These functions can also be performed by a plurality of processors 31 communicating with each other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Procédé de contrôle d´une installation (1 ) pour la fusion d´une composition (5) de matières premières, adaptée à l´obtention de laine minérale, de calcin, de fils de verre textile et/ou de verre plat ou creux, qui comprend une chambre de fusion (8) adaptée pour la fusion de ladite composition (5), caractérisé en ce que ladite composition (5) comprend au moins un mélange humide (20) de laine minérale et/ou de biomasse, et en ce que ledit procédé comprend au moins une étape de contrôle d´au moins une variable physique impactant la tirée de la chambre de fusion (8), ladite étape de contrôle étant mise en œuvre en fonction du taux d´humidité de ladite composition (5) et/ou dudit mélange humide (20), tel que mesuré avant introduction de ladite composition et/ou dudit mélange humide dans la chambre de fusion (8).

Description

Description
Titre de l'invention : Régulation de four
[0001] La présente invention concerne une installation pour la fusion d'une composition de matières premières adaptée à l’obtention de fibres de verre du type laine minérale d'isolation thermique ou phonique, de calcin, de fils de verre textile dits de renforcement, et/ou de verre plat ou creux.
[0002] Dans le présent texte, ces « matières premières » comprennent tout d’abord des matières vitrifiables qui permettent l'obtention de la composition minérale visée du type verre ou roche ou silicate. Ces matières vitrifiables comprennent le sable silicique, mais également tous les additifs (carbonate de sodium, calcaire, dolomie, alumine...), et tout type de calcin. Dans la description, les expressions « verre liquide » et « bain de verre » désignent le produit de la fusion de ces matières vitrifiables. Sont également inclus dans les compositions de matières premières des matériaux recyclables contenant des éléments combustibles (organiques) tels que par exemple, les déchets de fibres minérales ensimées, avec liant (du type de celles utilisées dans l’isolation thermique ou acoustique ou de celles utilisées dans le renforcement de matière plastique), issues de sites de production desdites fibres (usines), de chantiers (construction ou déconstruction) et/ou de filières de recyclage permettant de récupérer de telles fibres dans des produits finaux, qu'ils soient ou non usagés. De telles fibres minérales peuvent en particulier être constituées de verre et/ou de roche. On parle alors respectivement de laine de verre et de laine de roche. Sont également inclus les vitrages feuilletés avec des feuilles de polymère du type polyvinylbutyral tels que des parebrises, des bouteilles en verre (calcin ménager), ou tout type de matériau “ composite ” associant du verre et des matériaux plastiques tels que certaines bouteilles. Sont également recyclables les “ composites verre-métal ou composés métalliques ” tels que vitrages revêtus de couches d’émail, de couches de métal et/ou de différents éléments de connectique. Sont également incluses dans les matières premières toutes les formes de biomasse, c’est-à-dire de matière organique d'origine végétale, animale, bactérienne ou fongique, utilisable principalement comme combustible, mais jouant par ailleurs le rôle de matière première influençant la composition de la matière vitrifiable fabriquée puisque son taux de cendre n’est généralement pas nul.
[0003] L’utilisation comme matières premières de matériaux issus des filières de recyclage présente des avantages indéniables tels que la réduction de la consommation de matières premières et d’énergie, et plus généralement, la réduction de l'empreinte carbone de l’ensemble du procédé de fabrication.
[0004] Ces déchets recyclables ont cependant pour particularité de présenter des taux d’humidité importants et très variables. Dans la description, on entend par taux d'humidité le pourcentage massique d’eau contenu dans un mélange dit « humide » de déchets recyclables, un tel mélange étant généralement constitué de laine minérale et/ou de biomasse. Les restes de laine minérale étant traités par les utilisateurs comme des déchets, il est courant qu'ils ne soient pas stockés dans des conditions sèches. Même en tenant compte du comportement hydrophobe de la laine minérale, on peut ainsi s'attendre à ce que les chutes de laine minérale stockées à l'extérieur sans couverture contiennent entre 20 et 70% d'humidité, ce qui est non négligeable.
[0005] Or, l’expérience du terrain, acquise par les inventeurs, met en avant l’impact doublement négatif de cette humidité, qui provoque d’une part une baisse momentanée de la température du four et contribue d’autre part à l'instabilité de sa tirée. En effet, l’eau introduite dans la chambre de combustion doit être évacuée sous forme de vapeur et consomme pour ce faire une partie de la chaleur générée par le bain de verre. L’évaporation de cette eau entraîne donc une perte temporaire et localisée en température, et par conséquent une instabilité de tirée. Cette eau fait de plus partie intégrante de la masse globale de la composition de matières premières enfournée. A débit constant d’enfournement, une variation du taux d'humidité engendre donc une variation de la masse de matières vitrifiables effectivement enfournée, et par conséquent une variation, ou instabilité de la tirée du four. On nomme tirée la quantité de matière vitrifiable en fusion en sortie de four, par unité de temps (par exemple, en tonnes par jour). De telles variations de la tirée instantanée du four nuisent à la qualité des produits verriers obtenus après formage. Dans le cas particulier de la fabrication de laine minérale, ces variations de tirée amènent ainsi une instabilité au niveau du fibrage, ce qui génère plus de déchets. Autre inconvénient, la quantité de fibres crée à un instant donné varie aussi, ce qui nuit au contrôle de densité des produits obtenus. Or, c'est là une caractéristique de premier plan pour évaluer leur qualité.
[0006] L’invention vise à fournir une solution technique aux inconvénients décrits ci- dessus. Plus particulièrement, dans au moins un mode de réalisation, la technique proposée se rapporte à un procédé de contrôle d’une installation pour la fusion d’une composition de matières premières, adaptée à l’obtention de laine minérale, de calcin, de fils de verre textile et/ou de verre plat ou creux, qui comprend une chambre de fusion adaptée pour la fusion de ladite composition, caractérisé en ce que ladite composition comprend au moins un mélange humide de laine minérale et/ou de biomasse, et en ce que ledit procédé comprend au moins une étape de contrôle d'au moins une variable physique impartant la tirée de la chambre de fusion, ladite étape de contrôle étant mise en œuvre en fonction du taux d’humidité de ladite composition et/ou dudit mélange humide, tel que mesuré avant introduction de ladite composition et/ou dudit mélange humide dans la chambre de fusion.
[0007] Un procédé de contrôle selon l'invention est nouveau et inventif en ce que les différentes variables physiques impartant, c’est-à-dire ayant une influence directe ou indirecte sur la tirée du four sont contrôlées (régulées) en fonction du taux d’humidité de ladite composition/mélange humide à enfourner, et non sur le seul fondement d’un objectif de température à atteindre au sein de la chambre de fusion, tel que traditionnellement déterminé à partir de modèles thermodynamiques complexes à multiples variables. Et pour cause, la fusion dans un four verrier présente tellement peu d’inertie ou en d’autres termes, une telle réactivité, qu’un tel objectif de température est très vite rattrapé, même sans régulation spécifique. A contrario, toute variation du taux d'humidité entraîne une réponse immédiate du four, déstabilisant ainsi le procédé de fusion, et sa tirée.
[0008] Un procédé de contrôle selon l’invention permet donc d’anticiper de manière très réactive les effets négatifs engendrés par le taux d’humidité de la composition/mélange humide sur le four, afin d’aider à la stabilisation de sa tirée et permet ainsi, in fine, d'améliorer la qualité des produits verriers formés. [0009] Selon un mode de réalisation particulier, le mélange humide de laines minérales et/ou de biomasse représente entre 1 à 50 % en masse et de préférence entre 10 et 40% en masse de la composition de matières premières.
[0010] Selon un mode de réalisation particulier, ladite au moins une variable physique impactant la tirée de la chambre de fusion est le débit d’enfournement dans la chambre de fusion de ladite composition.
[0011] Tel que détaillé dans la description, à débit constant d’enfournement dans le four de la composition de matières premières, une variation du taux d’humidité engendre une variation de la masse de matières vitrrfîables effectivement enfournée, et par conséquent une variation, ou instabilité de la tirée du four. L'adaptation du débit d’enfournement en fonction de ce taux d’humidité permet donc de pallier ce problème, afin d’aider à la stabilisation de la tirée.
[0012] Selon un mode de réalisation particulier, l’installation est équipée d’au moins un brûleur, préférentiellement de type immergé, et/ou d’au moins un bouillonneur.
[0013] Les brûleurs immergés sont alimentés en gaz et en air, et généralement disposés de manière à affleurer au niveau de la sole de la chambre de fusion, de façon à ce que la flamme se développe au sein même de la masse des matières premières en cours de liquéfaction. Ces brûleurs peuvent être tels que leurs conduits d'amenée des gaz affleurent la paroi qu’ils traversent. Selon certains modes de réalisations, on peut choisir de n’injecter que des gaz issus de la combustion, cette dernière étant alors réalisée hors de la chambre de fusion à proprement dite.
[0014] Compte tenu de la forte réactivité des fours à brûleurs immergés, et donc des instabilités de tirée qui peuvent en résulter, un procédé selon l'invention est particulièrement adapté à ce type de four.
[0015] Selon un mode de réalisation particulier, ladite composition est au moins en partie enfournée sous le niveau du bain de verre.
[0016] Compte tenu de la forte réactivité des fours dans lesquels l'enfournement est au moins en partie réalisé sous le niveau du bain de verre ou en d’autres termes, au sein même de la matière verifiable en cours de fusion, et donc des instabilités de tirée qui peuvent en résulter, un procédé selon l'invention est particulièrement adapté à ce type de four.
[0017] Selon un mode de réalisation particulier, ladite au moins une variable physique impartant la tirée de la chambre de fusion est la puissance dudit au moins un brûleur.
[0018] Tel que détaillé dans la description, l'évacuation de l’eau introduite dans le four engendre une perte temporaire et localisée en température, et par conséquent une instabilité de tirée. L’adaptation de la puissance de chauffe du bain de verre par le(s) brûleur(s), généralement exprimée en Kwh, en fonction de ce taux d’humidité permet donc de pallier par anticipation ce problème, afin de prévenir et éviter les instabilités de tirée.
[0019] Selon un mode de réalisation particulier, le procédé de contrôle met en œuvre une pluralité de brûleurs, et en ce que ladite étape de contrôle de la puissance est majoritairement mise en œuvre sur le(s) brûleur(s) agencé(s) le plus près d’un point d’enfournement de ladite composition de matières premières dans la chambre de fusion.
[0020] Au sens de l’invention, la mise en œuvre de ladite étape de contrôle de la puissance est majoritairement centrée sur le(s) brûleur(s) agencé(s) dit(s) « proximal » d'un point d’introduction de matières premières, en ce que le rapport de la déviation de puissance appliquée au(x) brûleur(s) proximal sur la déviation de puissance appliquée aux autres brûleurs est supérieur à 75%, préférentiellement supérieur à 90%, préférentiellement supérieur à 95%.
[0021] Il a été observé par les inventeurs que les chutes de températures occasionnées par l'humidité de la composition enfournée sont localisées en entrée de four. C’est donc au plus près de ce point d’enfournement qu’il est préférable de concentrer la régulation de puissance.
[0022] Selon un mode de réalisation particulier, le procédé de contrôle comprend au moins une étape de mesure directe ou indirecte du taux d’humidité de ladite composition et/ou dudit mélange humide, préférentiellement au moyen d'au moins un capteur de type radar. [0023] Une mesure du taux d’humidité permet d’adapter en temps réel la ou les variable(s) physique(s) ciblées, dans un objectif de stabilité de la tirée.
[0024] Des tests empiriques réalisés par les inventeurs ont permis d’identifier les capteurs de type radar comme particulièrement adaptés à la mesure de ce taux d’humidité. De tels capteurs sont adaptés pour appliquer un champ électrique à la composition/mélange humide évalué afin de mesurer sa permittivité électrique et d’en déduire son taux d’humidité.
[0025] Selon un mode de réalisation particulier, le procédé de contrôle comprend au moins une étape de pressage dudit mélange humide, préférentiellement au moyen d’une vis presseuse, et une étape subséquente de mesure du taux d'humidité dudit mélange humide pressé, après et/ou préférentiellement avant incorporation dudit mélange humide pressé dans ladite composition de matières premières.
[0026] Le pressage préalable dudit mélange humide permet de réduire son taux d’humidité, et donc l’influence négative de cette dernière sur le procédé de fusion. La mesure du taux d’humidité avant incorporation du mélange humide pressé dans la composition de matières premières est effectuée sur un volume réduit de matière, et est donc plus fiable. La même mesure effectuée après incorporation permet de prendre en compte le taux d'humidité de l’ensemble de la composition enfournée. Enfin, la combinaison de ces deux mesures permet de déduire le taux d’humidité de la composition hors mélange humide.
[0027] Selon un mode de réalisation particulier, le procédé de contrôle comprend une étape préalable de mesure du taux d'humidité dudit mélange humide, avant pressage.
[0028] La comparaison des mesures effectuées avant et après pressage permet d'évaluer l'efficacité du pressage sur l’évolution du taux d’humidité et, de manière préférentielle, d'adapter le paramétrage de l’outil de pressage, généralement une vis, afin d’obtenir et conserver une valeur cible d’efficacité.
[0029] Selon un mode de réalisation particulier, le débit d'introduction dans la chambre de fusion de matières vitrifiables est supérieur ou égal à 10 tonnes par jour, préférentiellement supérieur ou égal à 25 tonnes par jour, préférentiellement supérieur ou égal à 50 tonnes par jour, préférentiellement supérieur ou égal à 100 tonnes par jour.
[0030] Selon un mode de réalisation particulier, l’étape de contrôle de la variable physique impartant la tirée met en œuvre un régulateur PID qui fait varier cette variable physique, à partir dudit taux d’humidité mesuré.
[0031] Selon un mode de réalisation particulier, ledit taux d’humidité mesuré est compris entre 3% et 50% en masse, préférentiellement entre 4% et 30% en masse, préférentiellement entre 5% et 15% en masse, préférentiellement entre 6% et 10% en masse.
[0032] Plus le taux d’humidité de la composition et/ou du mélange humide introduit dans la chambre de fusion est faible, et plus les instabilités générées au sein de cette dernière sont limitées.
[0033] L’invention concerne également un programme d’ordinateurs téléchargeable depuis un réseau de communication et/ou enregistré sur un support d’enregistrement adapté pour être lu par un ordinateur et/ou exécuté par un processeur, comprenant un code d’instructions pour mettre en œuvre le procédé de contrôle décrit ci-dessus.
[0034] L’invention concerne également un support d’enregistrement informatique, sur lequel est enregistré un tel programme d'ordinateurs.
[0035] L'invention concerne également une installation pour la fusion d’une composition de matières premières comprenant au moins un mélange humide de laines minérales et/ou de biomasse, adaptée à l’obtention de laine minérale, de calcin, de fils de verre textile et/ou de verre plat ou creux, ladite installation comprenant une chambre de fusion adaptée pour la fusion de ladite composition et un système de contrôle adapté pour mettre en œuvre un tel procédé de contrôle.
[0036] Selon un mode de réalisation particulier, ladite installation est équipée d’au moins un brûleur, préférentiellement de type immergé, et/ou d’au moins un bouillonneur et/ou est adaptée pour l’enfournement de ladite composition de matières premières sous le niveau du bain de verre. [0037] L’invention concerne également un procédé de fabrication de laine minérale de verre ou de roche, de calcin, de fils de verre textile et/ou de verre plat ou creux, mettant en œuvre une telle installation.
[0038] La matière vitrifiable fabriquée par le procédé selon l'invention est une matière minérale, généralement du type oxyde, comprenant généralement au moins 30% en masse de silice, telle qu'un verre ou une roche ou un silicate comme un silicate d’alcalin et/ou d’alcalino-terreux.
[0039] Un verre ou une roche comprend généralement : SiO2 : 30 à 75% en poids, CaO+MgO : 5 à 40% en poids, Na2O+K2O : 0 à 20% en poids, AI2O3 : 0 à 30% en poids, Oxyde de fer : 0 à 15% en poids.
[0040] Si un verre est visé alors la composition de la matière vitrifiable fabriquée comprend généralement :
SiO2 : 50 à 75% en poids,
CaO+MgO : 5 à 20% en poids,
Na2O+K2O : 12 à 20% en poids,
AI2O3 : 0 à 8% en poids,
Oxyde de fer : 0 à 3% en poids, B2O3 : 2 à 10% en poids.
[0041] Si une roche (également appelé « verre noir » par l’homme du métier) est visée alors la composition de la matière vitrifiable fabriquée comprend généralement :
SiO2 : 30 à 50% en poids,
CaO+MgO : 20 à 40% en poids,
AI2O3 : 10 à 26% en poids, Oxyde de fer : 3 à 15% en poids.
[0042] La matière minérale vitrifiable fondue fabriquée selon l'invention est extraite du four pour être solidifiée par refroidissement sous une forme appropriée. Notamment, elle peut être extraite du four à l'état fondu pour être directement utilisée dans un dispositif de fibrage pour former du fil de renforcement ou de la laine minérale. Ainsi, la matière minérale vitrifiable peut être extraite du four et transformée en fibre dans un dispositif de fibrage. Dans l’application fibrage, la matière vitrifiable est généralement du verre ou de la roche.
[0043] L’invention concerne également une ligne de fabrication de laine minérale de verre ou de roche, de calcin, de fils de verre textile et/ou de verre plat comprenant :
- une unité de préparation d’une composition de matières premières, et
- une installation pour la fusion de cette composition comme décrit ci-dessus, ledit four comprenant un dispositif d'enfournement.
[0044] La préparation séparée et préalable d'un mélange préconstitué par l'unité de préparation de la composition à enfourner présente l’avantage de pouvoir doser avec précaution les différents ingrédients de ce mélange, indépendamment du fonctionnement du four. Ce mélange préconstitué peut être stocké avant d’être introduit dans le four le moment venu. Généralement, un mélange préconstitué de la sorte peut également être plus homogène que si les différents ingrédients étaient introduits simultanément dans un dispositif d’enfournement.
[0045] D'autres caractéristiques et avantages de l’invention apparaîtront à la lecture de la description suivante de modes de réalisation particuliers, donnés à titre de simples exemples illustratifs et non limitatifs, et des figures annexées, pour lesquelles :
[0046] [Fig. 1] la figure 1 est une vue schématique en coupe transversale d’une installation pour la fusion d'une composition de matières premières, selon un mode de réalisation particulier de l’invention,
[0047] [Fig. 2] la figure 2 est une vue schématique en coupe d’une unité de préparation d’une composition de matières premières à enfourner, telle que mise en œuvre par un procédé de fabrication selon l’invention,
[0048] [Fig. 3] la figure 3 une représentation schématique d’un système de contrôle d’une installation telle que celle représentée sur la figure 1.
[0049] Les différents éléments illustrés par les figures ne sont pas nécessairement représentés à l’échelle réelle, l’accent étant davantage porté sur la représentation du fonctionnement général de l’invention. Sur les différentes figures, sauf indication contraire, les numéros de référence qui sont identiques représentent des éléments similaires ou identiques.
[0050] Il est de plus entendu que la présente invention n’est nullement limitée par les modes de réalisation particuliers décrits et/ou représentés, et que d’autres modes de réalisation peuvent parfaitement être mis en œuvre.
[0051] La figure 1 représente schématiquement un four (installation) à brûleurs immergés utilisable dans le cadre de l’invention, vu en coupe et de côté. On distingue un four 1 comprenant des brûleurs 2A et un bouillonneur 2B immergés dans un bain 3 des matières vitrifiables en cours de fusion, à une température généralement comprise entre 1200°C et 1700°C. Une vis sans fin 13 pousse une composition 5 de matière première sous la surface 6 de la matière en cours de fusion dans le four. Un distributeur 17 dose et alimente en mélange préconstitué une trémie d’alimentation 7, laquelle alimente ensuite la vis sans fin 13 tournant dans un fourreau 4. Le distributeur 17 est donc le maître du débit instantané d'enfournement. Le mélange préconstitué est introduit dans le four par l'orifice 12, également nommé point d’enfournement. L’intérieur du four comprend une cuve 8 contenant le bain 3 de matière verifiable en cours de fusion. La matière minérale formée sort par la sortie 11 sous le niveau des matières en fusion. Les gaz de combustion s’échappent par une cheminée 16.
[0052] La figure 2 représente schématiquement en coupe une unité de préparation d’une composition de matières premières à enfourner dans le four 1 décrit à la figure 1. Dans un premier temps, le taux d’humidité d'un mélange humide 20 de laine minérale et/ou de biomasse est mesuré (étape M1) avant que le mélange ne soit pressurisé (étape S1) à l’aide d'une vis presseuse 21. Le taux d’humidité du mélange humide pressé est par la suite de nouveau mesuré (étape M2) avant que ce dernier ne soit transvasé dans un silo de stockage 22. Le mélange humide 20 est par la suite incorporé (étape S2) au reste des matières premières, jusque-là stockées dans un silo dédié 23. Le taux d'humidité de la composition ainsi obtenue 20 est alors mesuré (étape M3) avant que cette dernière soit stockée dans un silo 24, en attendant d’être enfournée et fondue (étape S3) dans le four 1. [0053] L’invention se rapporte également à un système 30 de contrôle d'une installation 1 telle que celle décrite dans le présent texte. Tel qu’illustré par la figure 3, un tel système 30 de contrôle comprend un processeur 31 ayant fonction de module de traitement, une unité de stockage 32, une unité d'interface 33 et au moins un dispositif de mesure 34 du taux d’humidité, qui sont connectés par un bus 35 informatique.
[0054] Le processeur 31 commande le four 1 , et en particulier le chargement et le débit d’enfournement de la vis d’enfournement 13, de même que la puissance des brûleurs 2A. L'unité de stockage 32 stocke au moins un programme à exécuter par le processeur 31 , et diverses données, y compris les données recueillies par le(s) dispositif(s) de mesure 34, les paramètres utilisés par des calculs réalisés par le processeur 31 , ou les données intermédiaires des calculs effectués par le processeur 31. Le processeur 31 peut être formé par tout matériel ou logiciel connu ou approprié, ou par une combinaison de matériel et de logiciel. L'unité de stockage 32 peut être formée par tout stockage approprié ou moyen adapté pour stocker le programme et les données de manière lisible par ordinateur. Le programme fait que le processeur 31 met en œuvre un procédé de contrôle tel que celui décrit dans le présent texte.
[0055] L'unité d'interface 33 fournit une interface entre le système de contrôle 30 et un appareil externe. L'unité d'interface 33 peut notamment être en communication avec l'appareil externe via un câble ou une communication sans fil. Dans ce mode de réalisation, l'appareil externe peut être la vis d’enfournement 13 et/ou le premier brûleur 2A. Dans ce cas, des valeurs mesurées par le dispositif de mesure 34 peuvent être entrées dans le système 30 à travers l'unité d'interface 33, puis stockées dans l'unité de stockage 32.
[0056] Bien qu'un seul processeur 31 soit représenté sur la figure 3, une personne du métier comprendra qu'un tel processeur 31 peut comprendre différents modules et unités mettant en œuvre les fonctions exécutées par le système de contrôle 30. Ces fonctions peuvent également être réalisées par une pluralité de processeurs 31 communiquant entre eux.

Claims

Revendications
[Revendication 1] 1 . Procédé de contrôle d’une installation (1) pour la fusion d’une composition (5) de matières premières, adaptée à l'obtention de laine minérale, de calcin, de fils de verre textile et/ou de verre plat ou creux, qui comprend une chambre de fusion (8) adaptée pour la fusion de ladite composition (5), caractérisé en ce que ladite composition (5) comprend au moins un mélange humide (20) de laine minérale et/ou de biomasse, et en ce que ledit procédé comprend au moins une étape de contrôle d’au moins une variable physique impactant la tirée de la chambre de fusion (8), ladite étape de contrôle étant mise en œuvre en fonction du taux d'humidité de ladite composition (5) et/ou dudit mélange humide (20), tel que mesuré avant introduction de ladite composition et/ou dudit mélange humide dans la chambre de fusion (8).
[Revendication 2] 2. Procédé de contrôle selon la revendication 1 , caractérisé en ce que ladite au moins une variable physique impactant la tirée de la chambre de fusion (8) est le débit d'enfournement dans la chambre de fusion (8) de ladite composition (5).
[Revendication 3] 3. Procédé de contrôle selon l’une des revendications précédentes, caractérisé en ce que l'installation (1 ) est équipée d’au moins un brûleur (2A), préférentiellement de type immergé, et/ou d’au moins un bouillonneur (2B).
[Revendication 4] 4. Procédé de contrôle selon l’une des revendications précédentes, caractérisé en ce que ladite composition (5) est au moins en partie enfournée sous le niveau du bain de verre.
[Revendication 5] 5. Procédé de contrôle selon l’une des revendications 3 et 4, caractérisé en ce que ladite au moins une variable physique impactant la tirée de la chambre de fusion (8) est la puissance dudit au moins un brûleur (2A).
[Revendication 6] 6. Procédé de contrôle selon la revendication 5, caractérisé en ce qu'il met en œuvre une pluralité de brûleurs (2A), et en ce que ladite étape de contrôle de la puissance est majoritairement mise en œuvre sur le(s) brûleur(s) agencé(s) le plus près d’un point d’enfournement de ladite composition (5) de matières premières dans la chambre de fusion (8).
[Revendication 7] 7. Procédé de contrôle selon l’une des revendications précédentes, caractérisé en ce qu'il comprend au moins une étape de mesure directe ou indirecte du taux d'humidité de ladite composition (5) et/ou dudit mélange humide (20), préférentiellement au moyen d’au moins un capteur de type radar.
[Revendication 8] 8. Procédé de contrôle selon la revendication 7, caractérisé en ce qu’il comprend au moins une étape de pressage (étape S1) dudit mélange humide (20), préférentiellement au moyen d'une vis presseuse (21), et une étape subséquente de mesure du taux d’humidité dudit mélange humide pressé, après (étape M3) et/ou préférentiellement avant (étape M2) incorporation (étape S3) dudit mélange humide (20) pressé dans ladite composition (5) de matières premières.
[Revendication 9] 9. Procédé de contrôle selon la revendication 8, caractérisé en ce qu’il comprend une étape préalable de mesure (étape M1) du taux d'humidité dudit mélange humide (20), avant pressage (étape S1).
[Revendication 10] 10. Procédé de contrôle selon l’une des revendications précédentes, caractérisé en ce que le débit d'introduction dans la chambre de fusion (8) de matières vitrifiables est supérieur ou égal à 10 tonnes par jour, préférentiellement supérieur ou égal à 25 tonnes par jour, préférentiellement supérieur ou égal à 50 tonnes par jour, préférentiellement supérieur ou égal à 100 tonnes par jour.
[Revendication 11] 11. Procédé de contrôle selon l’une des revendications précédentes, caractérisé en ce que ladite étape de contrôle met en œuvre un régulateur PID qui fait varier ladite variable physique impactant la tirée de la chambre de fusion (8), à partir dudit taux d’humidité mesuré.
[Revendication 12] 12. Procédé de contrôle selon l’une des revendications précédentes, caractérisé en ce que ledit taux d’humidité est compris entre 3% et 50% en masse, préférentiellement entre 4% et 30% en masse, préférentiellement entre 5% et 15% en masse, préférentiellement entre 6% et 10% en masse.
[Revendication 13] 13. Programme d’ordinateurs téléchargeable depuis un réseau de communication et/ou enregistré sur un support d’enregistrement adapté pour être exécuté par un processeur, comprenant un code d’instructions pour mettre en œuvre un procédé de contrôle selon l'une des revendications précédentes.
[Revendication 14] 14. Support d’enregistrement informatique, sur lequel est enregistré un programme d’ordinateurs selon la revendication 13.
[Revendication 15] 15. Installation (1 ) pour la fusion d’une composition (5) de matières premières comprenant au moins un mélange humide (20) de laines minérales et/ou de biomasse, adaptée à l'obtention de laine minérale, de calcin, de fils de verre textile et/ou de verre plat ou creux, ladite installation (1) comprenant une chambre de fusion (8) adaptée pour la fusion de ladite composition (5) et un système de contrôle (30) adapté pour mettre en œuvre un procédé de contrôle selon l’une des revendications 1 à 12.
[Revendication 16] 16. Installation (1) selon la revendication 15, caractérisée en ce qu’elle est équipée d’au moins un brûleur (2A), préférentiellement de type immergé, et/ou d'au moins un bouillonneur (2B) et/ou est adaptée pour l’enfournement de ladite composition (5) de matières premières sous le niveau (6) du bain de verre (3).
[Revendication 17] 17. Procédé de fabrication de laine minérale de verre ou de roche, de calcin, de fils de verre textile et/ou de verre plat ou creux, mettant en œuvre une installation (1) selon l’une des revendications 15 et 16.
EP22710699.4A 2021-02-26 2022-02-25 Régulation de four Pending EP4298065A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2101878A FR3120233A1 (fr) 2021-02-26 2021-02-26 Régulation de four
PCT/FR2022/050347 WO2022180345A1 (fr) 2021-02-26 2022-02-25 Régulation de four

Publications (1)

Publication Number Publication Date
EP4298065A1 true EP4298065A1 (fr) 2024-01-03

Family

ID=76159496

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22710699.4A Pending EP4298065A1 (fr) 2021-02-26 2022-02-25 Régulation de four

Country Status (9)

Country Link
US (1) US20240092673A1 (fr)
EP (1) EP4298065A1 (fr)
JP (1) JP2024507186A (fr)
KR (1) KR20230151990A (fr)
AU (1) AU2022225146A1 (fr)
CA (1) CA3205727A1 (fr)
FR (1) FR3120233A1 (fr)
MX (1) MX2023009518A (fr)
WO (1) WO2022180345A1 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3284606B2 (ja) * 1992-09-24 2002-05-20 石川島播磨重工業株式会社 灰溶融炉
DE19521513C2 (de) * 1995-06-13 1998-04-09 Sorg Gmbh & Co Kg Verfahren zur Regelung der Beheizung von Glas-Wannenöfen
FR2987617B1 (fr) * 2012-03-05 2017-03-24 Saint Gobain Isover Enfourneuse avec tete amovible pour enfournement immerge

Also Published As

Publication number Publication date
AU2022225146A9 (en) 2024-05-16
FR3120233A1 (fr) 2022-09-02
US20240092673A1 (en) 2024-03-21
AU2022225146A1 (en) 2023-08-17
JP2024507186A (ja) 2024-02-16
KR20230151990A (ko) 2023-11-02
MX2023009518A (es) 2023-08-24
CA3205727A1 (fr) 2022-09-01
WO2022180345A1 (fr) 2022-09-01

Similar Documents

Publication Publication Date Title
JP4234211B2 (ja) ミネラル繊維を製造するための工場におけるスクラップをリサイクルする方法および装置
US20190263701A1 (en) Processes for producing molten glasses from glass batches using turbulent submerged combustion melting, and systems for carrying out such processes
EP2858955B1 (fr) Installation et procede de fusion de verre
CN1120332A (zh) 用废玻璃制造纤维的方法和装置
CN101918187A (zh) 再生碳纤维
EP0410889B1 (fr) Procédé et dispositif pour le traitement de déchets de verre ou de fibres minérales en vue de leur récupération
CN101980972A (zh) 用于制造矿物熔体的方法和装置
CN104870381A (zh) 用于形成人造玻璃质纤维的工艺和装置
CA2145772C (fr) Methode et dispositif pour la fabrication d'huile minerale a partir de residus de laine minerale utilises comme matiere premiere recyclee
WO2022180345A1 (fr) Régulation de four
CN104918893A (zh) 用于形成人造玻璃质纤维的工艺和装置
CN104854040A (zh) 用于形成人造玻璃质纤维的工艺和装置
JPH02261589A (ja) 物質の溶融方法及びその実施装置
CN107840560A (zh) 一种新型纳米微晶板生产系统
WO2022064150A1 (fr) Preparation d'une composition de matieres premieres
CN208136070U (zh) 一种新型纳米微晶板生产系统
WO2022229571A1 (fr) Procede de fabrication de fibres de verre a partir de matieres minerales non transformees
WO2022112723A1 (fr) Procede de traitement de dechets verriers
EP0527169A1 (fr) Four de fusion destine a la fusion de matiere brute a fibres minerales
EP0972750A1 (fr) Elaboration de matrices minérales par fusion par induction en creuset froid

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230926

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)