EP4295045A1 - Device for compressing a fluid stored in the form of a cryogenic liquid, and associated method of manufacture - Google Patents

Device for compressing a fluid stored in the form of a cryogenic liquid, and associated method of manufacture

Info

Publication number
EP4295045A1
EP4295045A1 EP22710681.2A EP22710681A EP4295045A1 EP 4295045 A1 EP4295045 A1 EP 4295045A1 EP 22710681 A EP22710681 A EP 22710681A EP 4295045 A1 EP4295045 A1 EP 4295045A1
Authority
EP
European Patent Office
Prior art keywords
cryogenic
enclosure
pressure
gas
compression device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22710681.2A
Other languages
German (de)
French (fr)
Inventor
Sébastien Gorry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cyclair
Original Assignee
Cyclair
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cyclair filed Critical Cyclair
Publication of EP4295045A1 publication Critical patent/EP4295045A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/02Pumping installations or systems having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/001Thermal insulation specially adapted for cryogenic vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • F04B2015/081Liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • F04B2015/081Liquefied gases
    • F04B2015/0814Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • F04B2015/081Liquefied gases
    • F04B2015/0822Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • F04B2015/081Liquefied gases
    • F04B2015/0824Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • F04B2015/081Liquefied gases
    • F04B2015/0826Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/032Orientation with substantially vertical main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/014Suspension means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • F17C2205/0149Vessel mounted inside another one
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0367Arrangements in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2154Winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2181Metal working processes, e.g. deep drawing, stamping or cutting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/221Welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/043Localisation of the removal point in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • F17C2223/047Localisation of the removal point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/04Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
    • F17C2225/042Localisation of the filling point
    • F17C2225/046Localisation of the filling point in the liquid
    • F17C2225/047Localisation of the filling point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0107Propulsion of the fluid by pressurising the ullage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0304Heat exchange with the fluid by heating using an electric heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0323Heat exchange with the fluid by heating using another fluid in a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/065Fluid distribution for refuelling vehicle fuel tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0139Fuel stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the field of the invention is that of gas storage.
  • the invention relates to a device for compressing a fluid stored in the form of a cryogenic liquid and an associated method of manufacture.
  • the invention finds applications in particular for the storage of dihydrogen with a view to powering an electric vehicle, or for the storage of other fluids such as dioxygen, dinitrogen, argon or methane.
  • cryogenic techniques In order to reduce the bulk and transportation of the gas, techniques have been developed to store the gas in liquid form, usually at cryogenic temperatures. [8] Such techniques generally include a cryogenic tank whose insulation is carried out for a vacuum enclosure surrounding the internal enclosure of the tank.
  • cryogenic enclosures are most often a metallic material offering mechanical characteristics suitable for low temperatures, i.e. temperatures below -20°C.
  • reservoirs made of composite material, such as those comprising carbon fiber are poorly suited to low temperatures since they generally do not withstand the mechanical stresses associated with the pressure at these temperatures.
  • the present invention aims to remedy all or part of the drawbacks of the state of the art mentioned above.
  • the invention relates to a device for compressing a gas, such as dihydrogen, dioxygen, dinitrogen, or argon, comprising - a cryogenic enclosure, capable of containing the fluid in liquid form at a cryogenic temperature, and fluid in the form of gas originating from vaporization of the liquid in the cryogenic enclosure;
  • a gas such as dihydrogen, dioxygen, dinitrogen, or argon
  • a pressure enclosure including the cryogenic enclosure, configured to withstand internal pressure
  • the balancing device comprising a pipe configured to transfer gas under overpressure in the cryogenic enclosure in a space comprised between the pressure enclosure and the cryogenic enclosure, the piping comprising a device for heating the pressurized gas coming from the cryogenic enclosure, to a predetermined temperature above the cryogenic temperature.
  • the fluid can be compressed to a high pressure without the use of a complex mechanical device by reinjecting the pressurized gas resulting from the vaporization of the cryogenic liquid contained in the cryogenic enclosure.
  • the cryogenic enclosure is advantageously immersed in a pressurized environment in which the pressure is balanced between the interior and the exterior of the cryogenic enclosure. The pressure stresses are thus transferred to the pressure enclosure which includes the cryogenic enclosure.
  • the temperature of the pressure vessel in service is preferably greater than -20°C in order to guarantee the mechanical resistance of the pressure vessel at high pressures, the maximum value of which is for example order from 100 to 800 bar.
  • the compression device is not intended to store the fluid over a long period but is rather intended to be inserted into a storage system comprising a cryogenic tank storing the fluid in liquid form and a final storage tank.
  • the compression device corresponds to an intermediate stage making it possible to supply the final storage tank with a compressed gas resulting from the vaporization of part of the cryogenic liquid previously stored in the cryogenic tank.
  • the compressed gas can then be used to supply, for example, a tank of a vehicle equipped with a fuel cell to generate electricity that powers an electric motor of the vehicle.
  • the gas heating device is a heat exchanger placed outside the pressure vessel.
  • the heat exchanger can be of the gas/gas or gas/fluid type in order to heat the gas extracted from the cryogenic enclosure to a temperature suitable for the pressure enclosure.
  • a suitable temperature can be determined according to the stresses admissible by the pressure enclosure at the chosen operating pressure.
  • the shape and type of the heat exchanger are determined according to the power to be extracted and the inlet and outlet temperatures of the exchanger.
  • the heating device includes a thermal resistor inserted in the piping.
  • the thermal resistance can be inside or outside the pressure enclosure.
  • the compression device includes a conduit for introducing the fluid in liquid form into the cryogenic enclosure, the conduit passing through the walls of the pressure enclosure and of the cryogenic chamber, the piping of the balancing device comprising:
  • balancing duct passing through the pressure enclosure and emerging between the pressure enclosure and the cryogenic enclosure, the balancing duct being connected to an outlet of the heating device.
  • the compression device also comprises a heating device inside the cryogenic enclosure configured to vaporize the fluid in liquid form with a predetermined flow of energy.
  • the heating device comprises an electrical resistor and/or a conduit for the circulation of a heat transfer fluid.
  • the pressure vessel and the cryogenic vessel are generally cylindrical in shape around the same axis of revolution.
  • the pressure enclosure is essentially formed from a metallic material, and configured to withstand a maximum internal pressure of between 100 and 800 bar.
  • the cryogenic enclosure comprises a layer of a solid insulating material resistant to cryogenic temperatures and to the fluid.
  • the solid insulating material is polychlorotrifluoroethylene (PTCFE).
  • the invention also relates to a method of manufacturing a compression device according to any one of the preceding embodiments, the method of manufacturing comprising steps of:
  • a reflective material is introduced before the step of shaping the constriction in order to protect the cryogenic enclosure from thermal radiation.
  • the step of shaping a constriction is carried out by deforming the open end.
  • the deformation is carried out by forging.
  • the step of shaping a constriction is carried out by joining a part together.
  • the manufacturing method comprises a step of inserting a plug before the step of shaping a constriction, the plug making it possible to close the enclosure of pressure tightly.
  • the method of manufacture comprises a step of threading the narrowing of the open end of the pressure vessel, the thread being configured to mate with a thread of the cap.
  • the shaping of the pressure vessel is carried out by forging.
  • the manufacturing process includes a step of adding an outer reinforcing layer of composite material.
  • This addition step can advantageously be carried out by winding at least one strip of fibre, preferably carbon, coated with resin around the pressure vessel.
  • the protective material is a mixture of a granular material and a liquid resin.
  • the invention also relates to an alternative method of manufacturing a compression device according to any one of the preceding embodiments, comprising the steps of:
  • the invention also relates to a system for storing a fluid, such as dihydrogen, dioxygen, dinitrogen or argon, comprising:
  • cryogenic tank storing the fluid in liquid form at a pressure below 10 bar and at a temperature below -150°C;
  • a pressurized gas storage tank configured to withstand a maximum internal pressure of between 100 and 800 bar.
  • the invention also relates to a process for compressing a fluid stored in liquid form in a cryogenic tank of said storage system, comprising the steps of:
  • the compression method also comprises a step of bypassing the overpressure gas when the pressure inside the compression device is greater than a predetermined value, the bypass gas being transferred to the pressurized gas storage tank of the storage system.
  • the compression method also comprises a step of emptying part of the gas from the compression device, in order to lower the internal pressure of the compression device to a value lower than the pressure of the cryogenic tank, prior to a new filling of the cryogenic enclosure of the compression device with fluid in liquid form at a cryogenic temperature coming from the cryogenic tank.
  • FIG. 1 is a perspective view of a storage system comprising an exemplary embodiment of the compression device according to the invention
  • FIG. 1 is a sectional view of the compression device of Figure 1;
  • FIG. 3 is a block view of a mode of implementation of a method of manufacturing the compression device of Figure 1;
  • Figure 4 comprises five successive views illustrating the manufacturing process of Figure 3;
  • FIG. 5 is a block view of an implementation mode of a compression method implementing the system of Figure 1;
  • FIG. 6 includes two sectional views of another example embodiment of a compression device that can be inserted into the storage system of Figure 1;
  • FIG. 7 is a block view of an embodiment of a method of manufacturing the compression device of Figure 6.
  • Figure 1 is a perspective view of a storage system 100 comprising a compression device 110 according to the invention.
  • the compression device 110 corresponds to an intermediate stage between a cryogenic tank 120 storing a fluid in the form of a liquid and a second tank 130 storing the fluid in the form of a pressurized gas for example to feed a tank of a vehicle (not shown in Figure 1).
  • the fluid is dihydrogen (H2) used to power a fuel cell of the vehicle whose engine is electric.
  • H2 dihydrogen
  • the present invention can also be applied to the storage of other types of fluid, such as dinitrogen (N2), dioxygen (O2), argon (Ar) or methane (ChL) by adapting the dimensions if necessary. and the operating conditions which are described below.
  • the present invention applies to fluids whose liquid/gas phase change temperature is less than 120 K (that is to say approximately -150°C).
  • cryogenic liquid fluid in liquid form
  • gas in gaseous form fluid in gaseous form
  • the compression device 110 makes it possible on the one hand to vaporize the cryogenic liquid coming from the cryogenic tank 120 where it is stored for example at 10 bar and at a temperature of 3 K (that is to say -270 ° C), and on the other hand to compress the gas obtained without the use of complex mechanical parts at pressures of the order of 300 to 800 bar.
  • the compression device 110 is mainly composed of two chambers 210 formed by an internal cryogenic enclosure 220 and by an outer pressure enclosure 230 encompassing the enclosure cryogenic 220.
  • the cryogenic enclosure 220 and the pressure enclosure 230 are generally cylindrical in shape around the same axis 235 of revolution.
  • the cryogenic enclosure 220 is intended to contain a predetermined quantity of cryogenic liquid 225 which has been transferred from the cryogenic reservoir 120 through a conduit 240.
  • the conduit 240 passes through the walls of the pressure enclosure 230 and of the enclosure cryogenic 220, through plugs 231 and 221, and opens into a lower part of the cryogenic enclosure 220 in order to limit the evaporation of the cryogenic liquid during the filling phase.
  • part of the cryogenic liquid 225 vaporizes initially with a high flow rate, in particular in a phase of heating up the cryogenic enclosure 220, then with a lower flow rate when the temperature of the cryogenic chamber 220 has stabilized.
  • the flow rate then corresponds to the energy flow E P passing through the cryogenic enclosure 220 by conduction, the structure of which is not optimized to store the cryogenic liquid over a long period of time but configured only to contain the cryogenic liquid 225 during its vaporization phase. .
  • the compression device 110 comprises a device 250 for balancing the pressure between the chamber 210A inside the cryogenic enclosure 220 and the chamber 210B between the pressure enclosure 230 and the cryogenic enclosure 220 .
  • the pressure equalization device 250 comprises piping configured to transfer gas under overpressure into the cryogenic enclosure 220 in a space between the pressure enclosure 230 and the cryogenic enclosure 220, namely here in the chamber 210B whose volume is equal to the interior volume of the pressure enclosure 230 from which is subtracted the volume of the cryogenic enclosure 220.
  • the piping of the device 250 for balancing the pressure comprises a device 270 for heating the gas coming from the cryogenic enclosure 220, to a predetermined temperature above the cryogenic temperature.
  • the predetermined temperature may for example be equal to 250 K (about -20°C), at room temperature, or at any other temperature between 250 K and room temperature.
  • the device 270 for heating the gas is a heat exchanger placed outside the pressure enclosure 230, as shown in Figure 2.
  • the heat exchanger is configured to allow the gas coming from of the cryogenic enclosure 220 on average at the predetermined temperature.
  • the heat exchanger can be of the gas/gas or gas/liquid type, and is configured to withstand high pressures.
  • the advantage of the heat exchanger is to have zero impact on the energy balance of the operation of the compression device 110, the gas moving naturally between the two enclosures of the compression device 110, crossing the heat exchanger.
  • the heat exchanger can consist, for example, of projecting fins around the piping or of a more complex shape capable of withstanding the pressure, such as a tube exchanger.
  • the device 270 for heating the gas can be a resistance heater.
  • the piping of the device 250 for balancing the pressure comprises a pipe 251 for extracting gas under overpressure, passing through the pressure enclosure 230 and the cryogenic enclosure 220 towards an inlet of the device 270 for heating some gas.
  • the piping of the pressure equalization device 250 also includes an equalization conduit 252 allowing the gas extracted from the cryogenic enclosure 220 to be returned to the chamber 210B.
  • the balancing conduit 252 is connected to an outlet of the gas heating device 270, passes through the pressure enclosure 230 and emerges between the pressure enclosure 230 and the cryogenic enclosure 220.
  • Chamber 210B thus stores gas under pressure at a temperature of around 250 K, while chamber 210A stores fluid at a cryogenic temperature.
  • the flow of vaporization of the cryogenic liquid in the cryogenic enclosure 220 corresponds at least to the flow of thermal energy E P passing through the walls.
  • the vaporization flow can be increased by an energy supply made for example by means of a heating device 280 inserted inside the cryogenic enclosure 220. This energy supply which can be varied automatically or manually by an operator makes it possible to adjust the flow of vaporization of the cryogenic liquid.
  • the heating device 280 may for example be composed of an electrical resistor and/or a conduit for the circulation of a heat transfer fluid.
  • the pressure enclosure 230 is essentially formed in a metallic material, thus allowing a configuration of the enclosure to withstand a maximum internal pressure of the order of 800 bar.
  • the cryogenic enclosure 220 is essentially formed, in this non-limiting example of the invention, in a solid insulating material resistant to cryogenic temperatures.
  • the solid insulating material used for the cryogenic enclosure 220 is inert to the fluid contained.
  • the solid insulating material used is polychlorotrifluoroethylene (PTCFE), conferring good mechanical properties in terms of insulation and resistance of the materials to cryogenic temperatures.
  • PTCFE polychlorotrifluoroethylene
  • cryogenic enclosure 220 formed in such an insulating material tends to deteriorate when the internal pressure is greater than 5 or 10 bar compared to the external pressure. Its main role is then to provide a container suitable for the temporary storage of the cryogenic liquid coming from the cryogenic tank 120, during the phase of isochoric compression of the gas resulting from the vaporization of the cryogenic liquid, while minimizing the thermal losses in order to adjust to the better the quantity of gas produced by vaporization of the cryogenic liquid.
  • a valve 290 is opened in order to transfer pressurized gas into the storage tank 130.
  • a valve 295 for emptying the device 110 of compression can be included in the circuit in order to lower the internal pressure of the device 110 of compression to a value lower than the pressure of the cryogenic tank 120, prior to a new filling of the cryogenic enclosure 220 of the compression device 110 with cryogenic liquid coming from the cryogenic tank 120.
  • Figure 3 is a block view of an example of implementation of a method 300 of manufacturing the device 110 of compression according to the invention.
  • the figure 4 illustrates in schematic form the progress of the manufacture of the device 110 of compression.
  • the manufacturing process 300 includes a first step 310 of shaping the pressure vessel 230 into the overall shape of a slender cylinder 400 closed at one end 410, the other open end 420 being left straight in a first time to allow the insertion of the cryogenic enclosure 220 during a second 320 of the manufacturing process 300, as illustrated by sub-figure a) of FIG. 4.
  • the shaping of the first step 310 can be carried out by example by a classic boilermaking technique from a pipe or a disc deformed by a press.
  • a protective material 430 is inserted in a liquid form into the chamber 210B between the pressure enclosure 230 and the cryogenic enclosure 220 during a third step 330 of manufacture, as illustrated by sub-figure b) of figure 4.
  • the protective material which is for example a mixture of resin and of a granular material such as sand, will harden after its insertion in the chamber 210B .
  • the protective material may have been previously heated to thin it, thus allowing its insertion into the chamber 210B. As it cools, the protective material will harden, taking on the shape of the chamber 210B.
  • a shaping of a constriction 440 of the open end 420 of the pressure vessel 230 is then carried out during the fourth step 340 of the method 300 of manufacturing, after the protective material has hardened.
  • This shaping can be done by deforming the open end 420, for example by a forging technique, or by securing a complementary piece of suitable shape.
  • the joining of the complementary part can be done by brazing or welding.
  • the pressure vessel 230 is locally heated to a temperature high enough to be likely to irreversibly damage the cryogenic vessel 220.
  • the prior insertion of the protective material during the step 330 makes it possible to minimize the rise in temperature of the cryogenic enclosure 220 during the step 340 of shaping the narrowing of the open end of the enclosure under pressure 230.
  • the thickness of the pipe used to shape the pressure vessel 230 generally corresponds to that defined by the "schedule 160" type so that the ratio between the thickness and the diameter is large enough to resist mechanical stresses due to the nominal pressure of 700 to 800 bar.
  • reinforcement by adding an outer layer 460 of composite material can be considered during a optional step 345.
  • the outer layer 460 of composite material can for example be produced by winding at least one strip 465 of carbon fiber coated with resin.
  • a reflective material such as a screen can be introduced before the shaping step 340, in order to protect the cryogenic enclosure 220 from the thermal radiation induced during the shaping step. shaping.
  • the protective material 430 is then dissolved and extracted from the compression device 110 during a fifth step 350 of the manufacturing process 300.
  • the compression device 110 is finalized by closing the pressure vessel 230 in a sealed manner during a sixth step 360 of the manufacturing process 300, as illustrated in sub-figure d) of Figure 4.
  • a plug 450 of frustoconical shape making it possible to close the pressure enclosure is inserted before the step 340 of shaping the constriction 440 during an optional step 325 of the manufacturing process 300, for example just after the insertion of the cryogenic chamber 220.
  • the stopper 450 is threaded in a manner complementary to a thread of the constriction 440 of the open end 420, previously made.
  • a cylindrical plug is inserted into the constriction 440 and secured to the constriction by a welding or brazing technique.
  • the protective material 430 is advantageously retained, the steps 350 and 360 of the manufacturing process possibly being reversed.
  • the plugs have through holes, preferably threaded in order to allow the various conduits 240, 251 and 252 to pass through cable glands previously installed.
  • the protective material 430 can thus be extracted from the chamber 210B through the through hole provided for the duct 252 for balancing.
  • the cryogenic enclosure 220 is held in position inside the pressure enclosure 230 by means of cable glands tightly clamping the conduits 240 and 251 when they pass through the plugs 221 and 450 of each enclosure.
  • Figure 5 presents a block view of an implementation mode of a method 500 for compressing the fluid stored in the form of cryogenic liquid in the cryogenic tank 120.
  • the compression method 500 includes a first step 510 of filling the cryogenic enclosure 220 of the compression device 110 with cryogenic liquid via the conduit 240 for introduction.
  • the cryogenic liquid vaporizes inside the cryogenic enclosure during a third stage 530 of the compression process 500. This vaporization can be increased by adding an energy supply via the heating device 280 which preferentially immerses in the cryogenic liquid.
  • the pressurized gas above the cryogenic liquid in the cryogenic enclosure 220 is then extracted from the cryogenic enclosure 220 via the extraction conduit 251 during a fourth step 540 of the process 500 of compression.
  • the extracted gas is reheated to a temperature close to or greater than 250 K (approximately -20°C) during a fifth stage 550 before being reinjected into the pressure enclosure 230, more precisely into the chamber 210B between the pressure enclosure 230 and the cryogenic enclosure 220, during a sixth step 560 of the compression method 500.
  • bypass can advantageously be carried out in the circuit of the balancing device 250 after the gas has passed through the heating device 270.
  • the gas is diverted upstream of the heating device 270.
  • an auxiliary heating device is preferably installed on the pipe connecting the bypass of the balancing device 250 to the storage tank 130.
  • the method 500 may also include a step 580 of emptying part of the gas from the compression device 110, in order to lower the internal pressure of the compression device 110 to a value lower than the pressure of the cryogenic reservoir 120. The process 500 can then begin again.
  • the cryogenic tank 120 has a volume of the order of 3000 to 10000 liters.
  • the volume of the cryogenic enclosure 220 is for its part of the order of 100 to 300 liters.
  • the volume of chamber 210B is generally between two and five times larger, preferably three times larger, than that of cryogenic enclosure 220 in order to provide a high compression ratio.
  • the density of the gas is generally a thousand times lower than that of the liquid, the vaporization of the liquid in a given volume consequently leads to a natural increase in the pressure, which is allowed here thanks on the one hand to the presence of the pressure enclosure 230 and on the other hand thanks to the balancing circuit making it possible to transfer the gas between the two chambers 210 of the device 110 of compression while heating it to avoid a degradation of the mechanical resistance of the pressure enclosure 230.
  • the volume of the storage tank 130 is generally three times greater than that of the chamber 210B, composed for example of three sub-tanks of the same volume as that of the chamber 210B. These three sub-tanks can be in different sub-circuits so that they can be filled or emptied individually.
  • Figure 6 illustrates another example of a compression device 600 according to the invention which was produced according to an alternative manufacturing method 700 presented in the block diagram in Figure 7.
  • the compression device 600 differs from the compression device 100 of the previous exemplary embodiment in that the pressure vessel 630 is composed of a metal skeleton 631 of generally cylindrical shape, replacing the pipe used during of the manufacturing process 300, as shown in subfigure a) of Figure 6.
  • the metallic structure 631 is enveloped by an outer layer 632 of composite material maintaining the pressure, as shown in subfigure b) of Figure 6.
  • the cryogenic enclosure 620 of the compression device 600 can advantageously comprise a plurality of legs 621 making it possible to hold the cryogenic enclosure 620 during the development of the compression device 600.
  • the manufacturing process 700 thus comprises a first step 710 of producing the metal skeleton 631 surrounding the cryogenic enclosure 620 which can be positioned upstream or inserted when the metal skeleton 631 is produced.
  • the skeleton 631 of the pressure vessel 630 is then wrapped by at least one strip of resin coated carbon fiber to form the outer layer 632.
  • the thickness of the outer layer 632 is configured to resist the stresses mechanical due to the nominal pressure of 700 to 800 bar. It should be emphasized that any other type of composite material, responding to mechanical stresses, can be envisaged by those skilled in the art.
  • the pressure enclosure 630 can then be closed by the plug 650, during a third step 730, similar to the manufacturing process 300, the plug 650 having been previously inserted inside the skeleton 631 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

The invention relates to a device (110) for compressing a fluid, such as molecular hydrogen, molecular oxygen, molecular nitrogen or argon, comprising: - a cryogenic chamber (220) able to contain the fluid in liquid form at a cryogenic temperature, and fluid in gaseous form resulting from the boiling-off of the liquid in the cryogenic chamber; - a pressure chamber (230) surrounding the cryogenic chamber and configured to withstand an internal pressure; - a pressure equalizing device (250) for equalizing the pressure between the inside of the cryogenic chamber and the inside of the pressure chamber, the equalizing device comprising piping configured to transfer gas at overpressure in the cryogenic chamber into a space comprised between the pressure chamber and the cryogenic chamber, the piping comprising a device (270) for reheating the overpressure gas coming from the cryogenic chamber to a predetermined temperature higher than the cryogenic temperature.

Description

Dispositif de compression d’un fluide stocké sous la forme d’un liquide cryogénique, et procédé de fabrication associé Device for compressing a fluid stored in the form of a cryogenic liquid, and associated manufacturing method
DOMAINE TECHNIQUE DE L’INVENTION TECHNICAL FIELD OF THE INVENTION
[1] Le domaine de l’invention est celui du stockage d’un gaz. [1] The field of the invention is that of gas storage.
[2] Plus précisément, l’invention concerne un dispositif de compression d’un fluide stocké sous la forme d’un liquide cryogénique et un procédé de fabrication associé. [2] More specifically, the invention relates to a device for compressing a fluid stored in the form of a cryogenic liquid and an associated method of manufacture.
[3] L’invention trouve notamment des applications pour le stockage du dihydrogène en vue d’alimenter un véhicule électrique, ou pour le stockage d’autres fluides tels que le dioxygène, le diazote, l’argon ou le méthane. [3] The invention finds applications in particular for the storage of dihydrogen with a view to powering an electric vehicle, or for the storage of other fluids such as dioxygen, dinitrogen, argon or methane.
ÉTAT DE LA TECHNIQUE STATE OF THE ART
[4] Il est connu de l’art antérieur des techniques de stockage d’un gaz sous pression sous la forme de bouteilles stockées dans un râtelier. Chaque bouteille, formée le plus souvent en acier ou en aluminium, stocke généralement une quantité de gaz donnée à une pression maximale de l’ordre de 200 à 300 bar. Or, notamment pour le dihydrogène, il est couramment admis qu’une pression optimale de stockage est de l’ordre de 700 bar. Des bouteilles en composite avec structure fibre de carbone sont alors utilisés. [4] Techniques for storing pressurized gas in the form of bottles stored in a rack are known from the prior art. Each bottle, usually made of steel or aluminum, generally stores a given quantity of gas at a maximum pressure of around 200 to 300 bar. However, especially for dihydrogen, it is commonly accepted that an optimal storage pressure is around 700 bar. Composite cylinders with a carbon fiber structure are then used.
[5] Afin d’obtenir un tel niveau de pression, il est par conséquent nécessaire d’utiliser un compresseur mécanique complexe, notamment pour remplir un réservoir d’un véhicule à une pression supérieure à la pression des bouteilles. [5] In order to obtain such a level of pressure, it is therefore necessary to use a complex mechanical compressor, in particular to fill a tank of a vehicle to a pressure higher than the pressure of the cylinders.
[6] En outre, les techniques de stockages sous forme de bouteilles dans un râtelier présentent l’inconvénient d’être encombrantes. Par ailleurs, une gestion complexe de la flotte de bouteilles est généralement mise en place afin de manutentionner régulièrement les bouteilles pour les remplacer afin de permettre au stockage d’avoir une pression suffisante pour alimenter un réservoir d’un véhicule à proximité. [6] In addition, storage techniques in the form of bottles in a rack have the disadvantage of being cumbersome. In addition, a complex management of the fleet of bottles is generally put in place in order to regularly handle the bottles to replace them in order to allow the storage to have sufficient pressure to supply a tank of a nearby vehicle.
[7] Afin de réduire l’encombrement et le transport du gaz, il a été développé des techniques permettant de stocker le gaz sous forme liquide, généralement à des températures cryogéniques. [8] De telles techniques comprennent généralement un réservoir cryogénique dont l’isolation est effectuée pour une enceinte sous vide entourant l’enceinte interne du réservoir. [7] In order to reduce the bulk and transportation of the gas, techniques have been developed to store the gas in liquid form, usually at cryogenic temperatures. [8] Such techniques generally include a cryogenic tank whose insulation is carried out for a vacuum enclosure surrounding the internal enclosure of the tank.
[9] L’inconvénient de ces techniques est que le gaz sous forme liquide a tendance à se vaporiser sous l’effet des apports thermiques inhérents à tout dispositif cryogénique. Ainsi, afin d’éviter que les contraintes de pression ne dépassent les contraintes mécaniques admissibles pour un matériau soumis à une température cryogénique, une soupape de sécurité est généralement mise en place pour limiter la pression à l’intérieur de l’enceinte. La pression généralement admissible pour de telles enceintes est inférieure à 10 bar. [9] The disadvantage of these techniques is that the gas in liquid form tends to vaporize under the effect of the thermal inputs inherent in any cryogenic device. Thus, in order to prevent the pressure stresses from exceeding the allowable mechanical stresses for a material subjected to a cryogenic temperature, a safety valve is generally put in place to limit the pressure inside the enclosure. The generally allowable pressure for such enclosures is less than 10 bar.
[10] Il convient en effet de souligner que le matériau utilisé pour les enceintes cryogéniques est le plus souvent un matériau métallique offrant des caractéristiques mécaniques adaptées aux basses températures, c’est-à-dire à des températures inférieures à -20 °C. En outre, les réservoirs en matériau composite, tel que ceux comprenant de la fibre de carbone, sont peu adaptées aux basses températures car ne résistant généralement pas aux contraintes mécaniques liées à la pression à ces températures. [10] It should indeed be emphasized that the material used for cryogenic enclosures is most often a metallic material offering mechanical characteristics suitable for low temperatures, i.e. temperatures below -20°C. In addition, reservoirs made of composite material, such as those comprising carbon fiber, are poorly suited to low temperatures since they generally do not withstand the mechanical stresses associated with the pressure at these temperatures.
[11] Un exemple de technique de l’art antérieur concernant un réservoir de stockage de fluide cryogénique est notamment décrit dans la demande de brevet français publiée sous le numéro FR3089600. [11] An example of a prior art technique concerning a cryogenic fluid storage tank is described in particular in the French patent application published under number FR3089600.
[12] Aucun des systèmes actuels ne permet de répondre simultanément à tous les besoins requis, à savoir de proposer une technique qui permette de stocker une grande densité de gaz sous une forme compacte, et d’offrir une compression de gaz importante, pouvant aller jusqu’à 700 ou 800 bar, sans utilisation d’un dispositif mécanique complexe. [12] None of the current systems makes it possible to simultaneously meet all the required needs, namely to propose a technique which makes it possible to store a high density of gas in a compact form, and to offer a significant gas compression, which can go up to 700 or 800 bar, without the use of a complex mechanical device.
EXPOSÉ DE L’INVENTION DISCLOSURE OF THE INVENTION
[13] La présente invention vise à remédier à tout ou partie des inconvénients de l’état de la technique cités ci-dessus. [13] The present invention aims to remedy all or part of the drawbacks of the state of the art mentioned above.
[14] À cet effet, l’invention vise un dispositif de compression d’un gaz, tel que du dihydrogène, du dioxygène, du diazote, ou de l’argon, comprenant - une enceinte cryogénique, apte à contenir le fluide sous forme liquide à une température cryogénique, et du fluide sous forme de gaz provenant d’une vaporisation du liquide dans l’enceinte cryogénique ; [14] To this end, the invention relates to a device for compressing a gas, such as dihydrogen, dioxygen, dinitrogen, or argon, comprising - a cryogenic enclosure, capable of containing the fluid in liquid form at a cryogenic temperature, and fluid in the form of gas originating from vaporization of the liquid in the cryogenic enclosure;
- une enceinte de pression englobant l’enceinte cryogénique, configurée pour résister à une pression interne ; - a pressure enclosure including the cryogenic enclosure, configured to withstand internal pressure;
- un dispositif d’équilibrage de la pression entre l’intérieur de l’enceinte cryogénique et l’intérieur de l’enceinte de pression, le dispositif d’équilibrage comprenant une tuyauterie configurée pour transférer du gaz en surpression dans l’enceinte cryogénique dans un espace compris entre l’enceinte de pression et l’enceinte cryogénique, la tuyauterie comprenant un dispositif de réchauffage du gaz en surpression provenant de l’enceinte cryogénique, à une température prédéterminée supérieure à la température cryogénique. - a pressure balancing device between the interior of the cryogenic enclosure and the interior of the pressure enclosure, the balancing device comprising a pipe configured to transfer gas under overpressure in the cryogenic enclosure in a space comprised between the pressure enclosure and the cryogenic enclosure, the piping comprising a device for heating the pressurized gas coming from the cryogenic enclosure, to a predetermined temperature above the cryogenic temperature.
[15] Ainsi, le fluide peut être comprimé à une pression importante sans utilisation d’un dispositif mécanique complexe en réinjectant le gaz en surpression provenant de la vaporisation du liquide cryogénique contenu dans l’enceinte cryogénique. [15] Thus, the fluid can be compressed to a high pressure without the use of a complex mechanical device by reinjecting the pressurized gas resulting from the vaporization of the cryogenic liquid contained in the cryogenic enclosure.
[16] En outre, afin d’éviter une détérioration de l’enceinte cryogénique sous l’effet de la pression, l’enceinte cryogénique est avantageusement baignée dans un environnement sous pression dans lequel la pression est équilibrée entre l’intérieure et l’extérieure de l’enceinte cryogénique. Les contraintes de pression sont ainsi reportées sur l’enceinte de pression qui englobe l’enceinte cryogénique. [16] In addition, in order to avoid deterioration of the cryogenic enclosure under the effect of pressure, the cryogenic enclosure is advantageously immersed in a pressurized environment in which the pressure is balanced between the interior and the exterior of the cryogenic enclosure. The pressure stresses are thus transferred to the pressure enclosure which includes the cryogenic enclosure.
[17] Par ailleurs, la température de l’enceinte sous pression est en service préférentiellement supérieure à -20 °C afin de garantir la résistance mécanique de l’enceinte sous pression à des pressions élevées dont la valeur maximale est par exemple de l’ordre de 100 à 800 bar. [17] Furthermore, the temperature of the pressure vessel in service is preferably greater than -20°C in order to guarantee the mechanical resistance of the pressure vessel at high pressures, the maximum value of which is for example order from 100 to 800 bar.
[18] Il convient de souligner que le dispositif de compression n’a pas vocation à stocker le fluide sur une longue durée mais est plutôt destiné à s’insérer dans un système de stockage comprenant un réservoir cryogénique stockant le fluide sous forme liquide et un réservoir de stockage final. Dans ce système de stockage, le dispositif de compression correspond à un étage intermédiaire permettant de fournir au réservoir de stockage final un gaz comprimé issu de la vaporisation d’une partie du liquide cryogénique stocké préalablement dans le réservoir cryogénique. Le gaz comprimé peut ensuite être utilisé pour alimenter par exemple un réservoir d’un véhicule muni d’une pile à combustible pour générer de l’électricité alimentant un moteur électrique du véhicule. [18] It should be emphasized that the compression device is not intended to store the fluid over a long period but is rather intended to be inserted into a storage system comprising a cryogenic tank storing the fluid in liquid form and a final storage tank. In this storage system, the compression device corresponds to an intermediate stage making it possible to supply the final storage tank with a compressed gas resulting from the vaporization of part of the cryogenic liquid previously stored in the cryogenic tank. The compressed gas can then be used to supply, for example, a tank of a vehicle equipped with a fuel cell to generate electricity that powers an electric motor of the vehicle.
[19] Dans des modes de réalisation particuliers de l’invention, le dispositif de réchauffage du gaz est un échangeur thermique placé à l’extérieur de l’enceinte de pression. [19] In particular embodiments of the invention, the gas heating device is a heat exchanger placed outside the pressure vessel.
[20] L’échangeur thermique peut être du type gaz/gaz ou gaz/fluide afin de permettre de réchauffer le gaz extrait de l’enceinte cryogénique à une température adaptée pour l’enceinte de pression. Une telle température adaptée peut être déterminée en fonction des contraintes admissibles par l’enceinte de pression à la pression de service choisie. [20] The heat exchanger can be of the gas/gas or gas/fluid type in order to heat the gas extracted from the cryogenic enclosure to a temperature suitable for the pressure enclosure. Such a suitable temperature can be determined according to the stresses admissible by the pressure enclosure at the chosen operating pressure.
[21] La forme et le type de l’échangeur thermique sont déterminés en fonction de la puissance à extraire et des températures d’entrée et de sortie de l’échangeur. [21] The shape and type of the heat exchanger are determined according to the power to be extracted and the inlet and outlet temperatures of the exchanger.
[22] Alternativement ou en complément de l’échangeur thermique, le dispositif de réchauffage comprend une résistance thermique insérée dans la tuyauterie. La résistance thermique peut être à l’intérieur ou à l’extérieur de l’enceinte de pression. [22] Alternatively or in addition to the heat exchanger, the heating device includes a thermal resistor inserted in the piping. The thermal resistance can be inside or outside the pressure enclosure.
[23] Dans des modes de réalisation particuliers de l’invention, le dispositif de compression inclut un conduit d’introduction dans l’enceinte cryogénique du fluide sous forme liquide, le conduit traversant les parois de l’enceinte de pression et de l’enceinte cryogénique, la tuyauterie du dispositif d’équilibrage comprenant : [23] In particular embodiments of the invention, the compression device includes a conduit for introducing the fluid in liquid form into the cryogenic enclosure, the conduit passing through the walls of the pressure enclosure and of the cryogenic chamber, the piping of the balancing device comprising:
- un conduit d’extraction du gaz en surpression, traversant l’enceinte de pression et l’enceinte cryogénique en direction d’une entrée du dispositif de réchauffage ; - an overpressure gas extraction duct, passing through the pressure enclosure and the cryogenic enclosure towards an inlet of the heating device;
- un conduit d’équilibrage, traversant l’enceinte de pression et débouchant entre l’enceinte de pression et l’enceinte cryogénique, le conduit d’équilibrage étant relié à une sortie du dispositif de réchauffage. - a balancing duct, passing through the pressure enclosure and emerging between the pressure enclosure and the cryogenic enclosure, the balancing duct being connected to an outlet of the heating device.
[24] Dans des modes de réalisation particuliers de l’invention, le dispositif de compression comprend également un dispositif de chauffage à l’intérieur de l’enceinte cryogénique configuré pour vaporiser le fluide sous forme liquide avec un flux d’énergie prédéterminé. [24] In particular embodiments of the invention, the compression device also comprises a heating device inside the cryogenic enclosure configured to vaporize the fluid in liquid form with a predetermined flow of energy.
[25] Ainsi, il est possible d’augmenter le débit de gaz extrait de l’enceinte cryogénique et de contrôler cette quantité de gaz. Il convient de souligner que le débit de gaz extrait de l’enceinte ne peut être inférieur au débit de vaporisation naturelle du liquide cryogénique sous l’effet du flux d’apport énergétique traversant les parois de l’enceinte cryogénique. L’isolation de l’enceinte cryogénique est en effet configurée pour minimiser ce flux d’apport énergétique dans un environnement sous pression, ce qui exclut l’utilisation d’une enceinte sous vide qui permettrait de réduire d’avantage le flux d’apport énergétique en minimisant les ponts thermiques vers l’intérieur de l’enceinte cryogénique. En outre, dans la mesure où le dispositif de compression correspond à un étage intermédiaire du système de stockage, la qualité de l’isolation de l’enceinte cryogénique du dispositif de compression est peu prépondérante dans le fonctionnement du dispositif de compression. L’isolation de l’enceinte cryogénique est néanmoins configurée pour éviter une température trop basse dans l’enceinte de pression. [25] Thus, it is possible to increase the flow rate of gas extracted from the cryogenic enclosure and to control this quantity of gas. It should be emphasized that the flow rate of gas extracted from the enclosure cannot be less than the natural vaporization rate of the cryogenic liquid under the effect of the flow of energy input passing through the walls of the cryogenic enclosure. The insulation of the cryogenic enclosure is indeed configured to minimize this flow of energy input in a pressurized environment, which excludes the use of a vacuum enclosure which would make it possible to further reduce the flow of energy input by minimizing the thermal bridges towards the interior of the cryogenic chamber. Furthermore, insofar as the compression device corresponds to an intermediate stage of the storage system, the quality of the insulation of the cryogenic enclosure of the compression device is of little preponderance in the operation of the compression device. The insulation of the cryogenic enclosure is nevertheless configured to avoid too low a temperature in the pressure enclosure.
[26] Dans des modes de réalisation particuliers de l’invention, le dispositif de chauffage comprend une résistance électrique et/ou un conduit de circulation d’un fluide caloporteur. [26] In particular embodiments of the invention, the heating device comprises an electrical resistor and/or a conduit for the circulation of a heat transfer fluid.
[27] Dans des modes de réalisation particuliers de l’invention, l’enceinte de pression et l’enceinte cryogénique sont de forme globalement cylindrique autour d’un même axe de révolution. [27] In particular embodiments of the invention, the pressure vessel and the cryogenic vessel are generally cylindrical in shape around the same axis of revolution.
[28] Dans des modes de réalisation particuliers de l’invention, l’enceinte de pression est essentiellement formée dans un matériau métallique, et configurée pour résister à une pression interne maximale comprise entre 100 et 800 bar. [28] In particular embodiments of the invention, the pressure enclosure is essentially formed from a metallic material, and configured to withstand a maximum internal pressure of between 100 and 800 bar.
[29] Dans des modes de réalisation particuliers de l’invention, l’enceinte cryogénique comprend une couche d’un matériau solide isolant résistant aux températures cryogéniques et au fluide. [29] In particular embodiments of the invention, the cryogenic enclosure comprises a layer of a solid insulating material resistant to cryogenic temperatures and to the fluid.
[30] Dans des modes de réalisation particuliers de l’invention, le matériau solide isolant est du polychlorotrifluoroéthylène (PTCFE). [30] In particular embodiments of the invention, the solid insulating material is polychlorotrifluoroethylene (PTCFE).
[31] L’invention vise également un procédé de fabrication d’un dispositif de compression selon l’un quelconque des modes de réalisation précédents, le procédé de fabrication comprenant des étapes de : [31] The invention also relates to a method of manufacturing a compression device according to any one of the preceding embodiments, the method of manufacturing comprising steps of:
- façonnage de l’enceinte de pression sous une forme cylindrique fermée à une extrémité ; - shaping of the pressure vessel in a cylindrical shape closed at one end;
- insertion de l’enceinte cryogénique à l’intérieur de l’enceinte de pression ;- insertion of the cryogenic enclosure inside the pressure enclosure;
- insertion sous une forme liquide d’un matériau de protection entre l’enceinte extérieure et l’enceinte cryogénique, le matériau de protection se durcissant ;- insertion in liquid form of a protective material between the outer enclosure and the cryogenic enclosure, the protective material hardening;
- façonnage d’un rétrécissement à l’extrémité ouverte de l’enceinte de pression après durcissement du matériau de protection ; - dissolution et extraction du matériau de protection ; - shaping of a constriction at the open end of the pressure vessel after hardening of the protective material; - dissolution and extraction of the protective material;
- fermeture de l’enceinte de pression de manière étanche. - sealing of the pressure enclosure.
[32] Ainsi, grâce à la présence du matériau de protection, il est possible de façonner l’enceinte de pression du dispositif de compression sans endommager l’enceinte cryogénique qui est généralement plus fragile car réalisée essentiellement dans un matériau ayant tendance à se dégrader sous l’effet de la chaleur. [32] Thus, thanks to the presence of the protective material, it is possible to shape the pressure enclosure of the compression device without damaging the cryogenic enclosure which is generally more fragile because it is essentially made of a material that tends to degrade. under the effect of heat.
[33] Dans des modes de mise en œuvre particuliers de l’invention, un matériau réfléchissant est introduit avant l’étape de façonnage du rétrécissement afin de protéger l’enceinte cryogénique de la radiation thermique. [33] In particular embodiments of the invention, a reflective material is introduced before the step of shaping the constriction in order to protect the cryogenic enclosure from thermal radiation.
[34] Dans des modes de mise en œuvre particuliers de l’invention, l’étape de façonnage d’un rétrécissement est effectuée par déformation de l’extrémité ouverte. [34] In particular embodiments of the invention, the step of shaping a constriction is carried out by deforming the open end.
[35] Dans des modes de mise en œuvre particuliers de l’invention, la déformation est effectuée par forgeage. [35] In particular embodiments of the invention, the deformation is carried out by forging.
[36] Dans des modes de mise en œuvre particuliers de l’invention, l’étape de façonnage d’un rétrécissement est effectuée par solidarisation d’une pièce. [36] In particular embodiments of the invention, the step of shaping a constriction is carried out by joining a part together.
[37] Dans des modes de mise en œuvre particuliers de l’invention, le procédé de fabrication comprend une étape d’insertion d’un bouchon avant l’étape de façonnage d’un rétrécissement, le bouchon permettant de fermer l’enceinte de pression de manière étanche. [37] In particular embodiments of the invention, the manufacturing method comprises a step of inserting a plug before the step of shaping a constriction, the plug making it possible to close the enclosure of pressure tightly.
[38] Dans des modes de mise en œuvre particuliers de l’invention, le procédé de fabrication comprend une étape de filetage du rétrécissement de l’extrémité ouverte de l’enceinte de pression, le filetage étant configuré pour s’assembler avec un filetage du bouchon. [38] In particular embodiments of the invention, the method of manufacture comprises a step of threading the narrowing of the open end of the pressure vessel, the thread being configured to mate with a thread of the cap.
[39] Dans des modes de mise en œuvre particuliers de l’invention, le façonnage de l’enceinte de pression est effectué par forgeage. [39] In particular embodiments of the invention, the shaping of the pressure vessel is carried out by forging.
[40] Dans des modes de mise en œuvre particuliers de l’invention, le procédé de fabrication comprend une étape d’adjonction d’une couche extérieure de renfort en matériau composite. [40] In particular embodiments of the invention, the manufacturing process includes a step of adding an outer reinforcing layer of composite material.
[41] Cette étape d’adjonction peut avantageusement être effectuée par l’enroulement d’au moins une bande de fibre, préférentiellement de carbone, enduite de résine autour de l’enceinte de pression. [41] This addition step can advantageously be carried out by winding at least one strip of fibre, preferably carbon, coated with resin around the pressure vessel.
[42] Dans des modes de mise en œuvre particuliers de l’invention, le matériau de protection est un mélange d’un matériau granulaire et d’une résine liquide. [43] L’invention vise aussi un procédé alternatif de fabrication d’un dispositif de compression selon l’un quelconque des modes de réalisation précédents, comprenant des étapes de : [42] In particular embodiments of the invention, the protective material is a mixture of a granular material and a liquid resin. [43] The invention also relates to an alternative method of manufacturing a compression device according to any one of the preceding embodiments, comprising the steps of:
- façonnage d’un squelette de l’enceinte de pression sous forme cylindrique ;- shaping of a skeleton of the pressure vessel in cylindrical form;
- insertion de l’enceinte cryogénique à l’intérieur du squelette de l’enceinte de pression ; - insertion of the cryogenic enclosure inside the skeleton of the pressure enclosure;
- enrobage du squelette de l’enceinte de pression par enroulement d’au moins une bande de fibre enduite de résine ; - coating of the skeleton of the pressure vessel by winding at least one strip of fiber coated with resin;
- fermeture de l’enceinte de pression de manière étanche. - sealing of the pressure enclosure.
[44] L’invention vise également un système de stockage d’un fluide, tel que du dihydrogène, du dioxygène, du diazote ou de l’argon, comprenant : [44] The invention also relates to a system for storing a fluid, such as dihydrogen, dioxygen, dinitrogen or argon, comprising:
- un réservoir cryogénique stockant le fluide sous forme liquide à une pression inférieure à 10 bar et à une température inférieure à -150°C ; - a cryogenic tank storing the fluid in liquid form at a pressure below 10 bar and at a temperature below -150°C;
- un dispositif de compression selon l’un quelconque des modes de réalisation précédents, alimenté par le réservoir cryogénique ; - a compression device according to any one of the preceding embodiments, supplied by the cryogenic tank;
- un réservoir de stockage d’un gaz sous pression, configuré pour résister à une pression interne maximale comprise entre 100 et 800 bar. - a pressurized gas storage tank, configured to withstand a maximum internal pressure of between 100 and 800 bar.
[45] Enfin, l’invention vise aussi un procédé de compression d’un fluide stocké sous forme liquide dans un réservoir cryogénique dudit système de stockage, comprenant des étapes de : [45] Finally, the invention also relates to a process for compressing a fluid stored in liquid form in a cryogenic tank of said storage system, comprising the steps of:
- remplissage de l’enceinte cryogénique du dispositif de compression dudit système de stockage avec du fluide sous forme liquide à une température cryogénique ; - filling of the cryogenic enclosure of the compression device of the said storage system with fluid in liquid form at a cryogenic temperature;
- fermeture du circuit entre le réservoir cryogénique et le dispositif de compression ; - closing the circuit between the cryogenic tank and the compression device;
- vaporisation du fluide sous forme liquide en un gaz ; - vaporization of the fluid in liquid form into a gas;
- extraction naturelle en continu du gaz en surpression dans l’enceinte cryogénique ; - continuous natural extraction of overpressure gas in the cryogenic enclosure;
- réchauffage du gaz extrait à une température supérieure à -20 °C ; - heating of the extracted gas to a temperature above -20°C;
- augmentation de la pression dans le dispositif de compression par réinjection du gaz réchauffé dans un espace entre l’enceinte de pression et l’enceinte cryogénique. [46] Dans des modes de réalisation particuliers de l’invention, le procédé de compression comprend également une étape de dérivation du gaz en surpression lorsque la pression à l’intérieur du dispositif de compression est supérieure à une valeur prédéterminée, le gaz dérivé étant transféré dans le réservoir de stockage d’un gaz sous pression du système de stockage. - increasing the pressure in the compression device by reinjecting the heated gas into a space between the pressure enclosure and the cryogenic enclosure. [46] In particular embodiments of the invention, the compression method also comprises a step of bypassing the overpressure gas when the pressure inside the compression device is greater than a predetermined value, the bypass gas being transferred to the pressurized gas storage tank of the storage system.
[47] Dans des modes de réalisation particuliers de l’invention, le procédé de compression comprend également une étape de vidange d’une partie du gaz du dispositif de compression, afin de baisser la pression interne du dispositif de compression à une valeur inférieure à la pression du réservoir cryogénique, préalablement à un nouveau remplissage de l’enceinte cryogénique du dispositif de compression avec du fluide sous forme liquide à une température cryogénique provenant du réservoir cryogénique. [47] In particular embodiments of the invention, the compression method also comprises a step of emptying part of the gas from the compression device, in order to lower the internal pressure of the compression device to a value lower than the pressure of the cryogenic tank, prior to a new filling of the cryogenic enclosure of the compression device with fluid in liquid form at a cryogenic temperature coming from the cryogenic tank.
BRÈVE DESCRIPTION DES FIGURES BRIEF DESCRIPTION OF FIGURES
[48] D’autres avantages, buts et caractéristiques particulières de la présente invention ressortiront de la description non limitative qui suit d’au moins un mode de réalisation particulier des dispositifs et procédés objets de la présente invention, en regard des dessins annexés, dans lesquels : [48] Other advantages, objects and particular characteristics of the present invention will emerge from the non-limiting description which follows of at least one particular embodiment of the devices and methods which are the subject of the present invention, with reference to the appended drawings, in which :
- la figure 1 est une vue en perspective d’un système de stockage comprenant un exemple de mode de réalisation du dispositif de compression selon l’invention ; - Figure 1 is a perspective view of a storage system comprising an exemplary embodiment of the compression device according to the invention;
- la figure 2 est une vue en coupe du dispositif de compression de la figure 1 ;- Figure 2 is a sectional view of the compression device of Figure 1;
- la figure 3 est une vue synoptique d’un mode de mise en œuvre d’un procédé de fabrication du dispositif de compression de la figure 1 ; - Figure 3 is a block view of a mode of implementation of a method of manufacturing the compression device of Figure 1;
- la figure 4 comprend cinq vues successives illustrant le procédé de fabrication de la figure 3 ; - Figure 4 comprises five successive views illustrating the manufacturing process of Figure 3;
- la figure 5 est une vue synoptique d’un mode de mise en œuvre d’un procédé de compression mettant en œuvre le système de la figure 1 ; - Figure 5 is a block view of an implementation mode of a compression method implementing the system of Figure 1;
- la figure 6 comprend deux vues en coupe d’un autre exemple de mode de réalisation d’un dispositif de compression pouvant s’insérer dans le système de stockage de la figure 1 ; - Figure 6 includes two sectional views of another example embodiment of a compression device that can be inserted into the storage system of Figure 1;
- la figure 7 est une vue synoptique d’un mode de mise en œuvre d’un procédé de fabrication du dispositif de compression de la figure 6. DESCRIPTION DÉTAILLÉE DE L’INVENTION - Figure 7 is a block view of an embodiment of a method of manufacturing the compression device of Figure 6. DETAILED DESCRIPTION OF THE INVENTION
[49] La présente description est donnée à titre non limitatif, chaque caractéristique d’un mode de réalisation pouvant être combinée à toute autre caractéristique de tout autre mode de réalisation de manière avantageuse. [49] This description is given on a non-limiting basis, each characteristic of an embodiment can be combined with any other characteristic of any other embodiment in an advantageous manner.
[50] On note, dès à présent, que les figures ne sont pas à l’échelle. [50] We note, as of now, that the figures are not to scale.
Exemple d’un mode de réalisation particulier Example of a particular embodiment
[51] La figure 1 est une vue en perspective d’un système 100 de stockage comprenant un dispositif 110 de compression selon l’invention. [51] Figure 1 is a perspective view of a storage system 100 comprising a compression device 110 according to the invention.
[52] Le dispositif 110 de compression correspond à un étage intermédiaire entre un réservoir cryogénique 120 stockant un fluide sous la forme d’un liquide et un deuxième réservoir 130 stockant le fluide sous la forme d’un gaz sous pression en vue par exemple d’alimenter un réservoir d’un véhicule (non représenté sur la figure 1). [52] The compression device 110 corresponds to an intermediate stage between a cryogenic tank 120 storing a fluid in the form of a liquid and a second tank 130 storing the fluid in the form of a pressurized gas for example to feed a tank of a vehicle (not shown in Figure 1).
[53] Dans le présent non limitatif de l’invention, le fluide est du dihydrogène (H2) utilisé pour alimenter une pile à combustible du véhicule dont la motorisation est électrique. La présente invention peut également s’appliquer au stockage d’autres types de fluide, tel que du diazote (N2), du dioxygène (O2), de l’argon (Ar) ou du méthane (ChL) en adaptant si nécessaire les dimensions et les conditions de fonctionnement qui sont décrits ci-après. [53] In this non-limiting invention, the fluid is dihydrogen (H2) used to power a fuel cell of the vehicle whose engine is electric. The present invention can also be applied to the storage of other types of fluid, such as dinitrogen (N2), dioxygen (O2), argon (Ar) or methane (ChL) by adapting the dimensions if necessary. and the operating conditions which are described below.
[54] Préférentiellement, la présente invention s’applique aux fluides dont la température de changement de phase liquide/gaz est inférieure à 120 K (c’est-à-dire environ -150 °C). [54] Preferably, the present invention applies to fluids whose liquid/gas phase change temperature is less than 120 K (that is to say approximately -150°C).
[55] Par soucis de clarté, le fluide sous forme liquide est appelé par la suite liquide cryogénique et le fluide sous forme gazeuse est appelé gaz. [55] For the sake of clarity, fluid in liquid form is hereinafter referred to as cryogenic liquid and fluid in gaseous form is referred to as gas.
[56] Le dispositif 110 de compression permet d’une part de vaporiser le liquide cryogénique provenant du réservoir cryogénique 120 où il est stocké par exemple à 10 bar et à une température de 3 K (c’est-à-dire -270 °C), et d’autre part de comprimer le gaz obtenu sans utilisation de pièces mécaniques complexes à des pressions de l’ordre de 300 à 800 bar. [56] The compression device 110 makes it possible on the one hand to vaporize the cryogenic liquid coming from the cryogenic tank 120 where it is stored for example at 10 bar and at a temperature of 3 K (that is to say -270 ° C), and on the other hand to compress the gas obtained without the use of complex mechanical parts at pressures of the order of 300 to 800 bar.
[57] A cet effet, comme on peut le voir plus en détails sur la figure 2 qui est une vue en coupe du dispositif 110 de compression, le dispositif 110 de compression est composé principalement de deux chambres 210 formées par une enceinte interne cryogénique 220 et par une enceinte extérieure de pression 230 englobant l’enceinte cryogénique 220. L’enceinte cryogénique 220 et l’enceinte 230 de pression sont de forme globalement cylindrique autour d’un même axe 235 de révolution. [57] To this end, as can be seen in more detail in Figure 2 which is a sectional view of the compression device 110, the compression device 110 is mainly composed of two chambers 210 formed by an internal cryogenic enclosure 220 and by an outer pressure enclosure 230 encompassing the enclosure cryogenic 220. The cryogenic enclosure 220 and the pressure enclosure 230 are generally cylindrical in shape around the same axis 235 of revolution.
[58] L’enceinte cryogénique 220 est destinée à contenir une quantité prédéterminée de liquide cryogénique 225 qui a été transféré du réservoir cryogénique 120 par un conduit 240. Le conduit 240 traverse les parois de l’enceinte 230 de pression et de l’enceinte cryogénique 220, à travers des bouchons 231 et 221 , et débouche dans une partie basse de l’enceinte cryogénique 220 afin de limiter l’évaporation du liquide cryogénique lors de la phase de remplissage. [58] The cryogenic enclosure 220 is intended to contain a predetermined quantity of cryogenic liquid 225 which has been transferred from the cryogenic reservoir 120 through a conduit 240. The conduit 240 passes through the walls of the pressure enclosure 230 and of the enclosure cryogenic 220, through plugs 231 and 221, and opens into a lower part of the cryogenic enclosure 220 in order to limit the evaporation of the cryogenic liquid during the filling phase.
[59] Au cours de cette phase de remplissage, une partie du liquide cryogénique 225 se vaporise dans un premier temps avec un débit important notamment dans une phase de mise en température de l’enceinte cryogénique 220, puis avec un débit plus faible lorsque la température de l’enceinte cryogénique 220 s’est stabilisée. Le débit correspond alors au flux d’énergie EP traversant par conduction l’enceinte cryogénique 220 dont la structure n’est pas optimisée pour stocker sur une longue durée le liquide cryogénique mais configurée uniquement pour contenir le liquide cryogénique 225 pendant sa phase de vaporisation. [59] During this filling phase, part of the cryogenic liquid 225 vaporizes initially with a high flow rate, in particular in a phase of heating up the cryogenic enclosure 220, then with a lower flow rate when the temperature of the cryogenic chamber 220 has stabilized. The flow rate then corresponds to the energy flow E P passing through the cryogenic enclosure 220 by conduction, the structure of which is not optimized to store the cryogenic liquid over a long period of time but configured only to contain the cryogenic liquid 225 during its vaporization phase. .
[60] Le gaz 226 obtenu par vaporisation du liquide cryogénique 225 va avoir tendance à augmenter la pression de l’enceinte cryogénique 220. Afin d’éviter une déformation de l’enceinte cryogénique et permettre une augmentation de la pression au sein du dispositif 110 de compression, le dispositif 110 de compression comprend un dispositif 250 d’équilibrage de la pression entre la chambre 210A à l’intérieur de l’enceinte cryogénique 220 et la chambre 210B comprise entre l’enceinte 230 de pression et l’enceinte cryogénique 220. [60] The gas 226 obtained by vaporization of the cryogenic liquid 225 will tend to increase the pressure of the cryogenic enclosure 220. In order to avoid deformation of the cryogenic enclosure and allow an increase in the pressure within the device 110 compression, the compression device 110 comprises a device 250 for balancing the pressure between the chamber 210A inside the cryogenic enclosure 220 and the chamber 210B between the pressure enclosure 230 and the cryogenic enclosure 220 .
[61] Le dispositif 250 d’équilibrage de la pression comprend une tuyauterie configurée pour transférer du gaz en surpression dans l’enceinte cryogénique 220 dans un espace compris entre l’enceinte 230 de pression et l’enceinte cryogénique 220, à savoir ici dans la chambre 210B dont le volume est égal au volume intérieur de l’enceinte 230 de pression auquel est retranché le volume de l’enceinte cryogénique 220. [61] The pressure equalization device 250 comprises piping configured to transfer gas under overpressure into the cryogenic enclosure 220 in a space between the pressure enclosure 230 and the cryogenic enclosure 220, namely here in the chamber 210B whose volume is equal to the interior volume of the pressure enclosure 230 from which is subtracted the volume of the cryogenic enclosure 220.
[62] Avantageusement, la tuyauterie du dispositif 250 d’équilibrage de la pression comprend un dispositif 270 de réchauffage du gaz provenant de l’enceinte cryogénique 220, à une température prédéterminée supérieure à la température cryogénique. La température prédéterminée peut-être par exemple égale à 250 K (environ -20°C), à la température ambiante, ou à tout autre température comprise entre 250 K et la température ambiante. [62] Advantageously, the piping of the device 250 for balancing the pressure comprises a device 270 for heating the gas coming from the cryogenic enclosure 220, to a predetermined temperature above the cryogenic temperature. The predetermined temperature may for example be equal to 250 K (about -20°C), at room temperature, or at any other temperature between 250 K and room temperature.
[63] Préférentiellement, le dispositif 270 de réchauffage du gaz est un échangeur thermique placé à l’extérieur de l’enceinte 230 de pression, comme illustré sur la figure 2. L’échangeur thermique est configuré afin de permettre de réchauffer le gaz provenant de l’enceinte cryogénique 220 en moyenne à la température prédéterminée. L’échangeur thermique peut être du type gaz/gaz ou gaz/liquide, et est configuré pour résister à des pressions importantes. L’avantage de l’échangeur thermique est d’avoir un impact nul sur le bilan énergétique du fonctionnement du dispositif 110 de compression, le gaz se déplaçant naturellement entre les deux enceintes du dispositif 110 de compression, en traversant l’échangeur thermique. [63] Preferably, the device 270 for heating the gas is a heat exchanger placed outside the pressure enclosure 230, as shown in Figure 2. The heat exchanger is configured to allow the gas coming from of the cryogenic enclosure 220 on average at the predetermined temperature. The heat exchanger can be of the gas/gas or gas/liquid type, and is configured to withstand high pressures. The advantage of the heat exchanger is to have zero impact on the energy balance of the operation of the compression device 110, the gas moving naturally between the two enclosures of the compression device 110, crossing the heat exchanger.
[64] L’échangeur thermique peut être constitué par exemple d’ailettes en saillie autour de la tuyauterie ou d’une forme plus complexe apte à résister à la pression tel qu’un échangeur à tubes. [64] The heat exchanger can consist, for example, of projecting fins around the piping or of a more complex shape capable of withstanding the pressure, such as a tube exchanger.
[65] Alternativement ou en complément, le dispositif 270 de réchauffage du gaz peut être une résistance chauffante. [65] Alternatively or in addition, the device 270 for heating the gas can be a resistance heater.
[66] La tuyauterie du dispositif 250 d’équilibrage de la pression comprend un conduit 251 d’extraction du gaz en surpression, traversant l’enceinte de pression 230 et l’enceinte cryogénique 220 en direction d’une entrée du dispositif 270 de réchauffage du gaz. [66] The piping of the device 250 for balancing the pressure comprises a pipe 251 for extracting gas under overpressure, passing through the pressure enclosure 230 and the cryogenic enclosure 220 towards an inlet of the device 270 for heating some gas.
[67] La tuyauterie du dispositif 250 d’équilibrage de la pression comprend également un conduit 252 d’équilibrage permettant de renvoyer le gaz extrait de l’enceinte cryogénique 220 dans la chambre 210B. A cet effet, le conduit 252 d’équilibrage est relié à une sortie du dispositif 270 de réchauffage du gaz, traverse l’enceinte de pression 230 et débouche entre l’enceinte de pression 230 et l’enceinte cryogénique 220. [67] The piping of the pressure equalization device 250 also includes an equalization conduit 252 allowing the gas extracted from the cryogenic enclosure 220 to be returned to the chamber 210B. For this purpose, the balancing conduit 252 is connected to an outlet of the gas heating device 270, passes through the pressure enclosure 230 and emerges between the pressure enclosure 230 and the cryogenic enclosure 220.
[68] La chambre 210B stocke ainsi du gaz sous pression à une température de l’ordre de 250 K alors que la chambre 210A stocke du fluide à une température cryogénique. [68] Chamber 210B thus stores gas under pressure at a temperature of around 250 K, while chamber 210A stores fluid at a cryogenic temperature.
[69] Le flux de vaporisation du liquide cryogénique dans l’enceinte cryogénique 220 correspond au minimum au flux d’énergie thermique EP traversant les parois. Le flux de vaporisation peut être augmenté par un apport énergétique effectué par exemple grâce à un dispositif 280 de chauffage inséré à l’intérieur de l’enceinte cryogénique 220. Cet apport énergétique qui peut être varié automatiquement ou manuellement par un opérateur permet d’ajuster le flux de vaporisation du liquide cryogénique. [69] The flow of vaporization of the cryogenic liquid in the cryogenic enclosure 220 corresponds at least to the flow of thermal energy E P passing through the walls. The vaporization flow can be increased by an energy supply made for example by means of a heating device 280 inserted inside the cryogenic enclosure 220. This energy supply which can be varied automatically or manually by an operator makes it possible to adjust the flow of vaporization of the cryogenic liquid.
[70] Le dispositif 280 de chauffage peut être par exemple composé d’une résistance électrique et/ou d’un conduit de circulation d’un fluide caloporteur. [70] The heating device 280 may for example be composed of an electrical resistor and/or a conduit for the circulation of a heat transfer fluid.
[71] L’enceinte 230 de pression est essentiellement formée dans un matériau métallique, permettant ainsi une configuration de l’enceinte pour résister à une pression interne maximale de l’ordre de 800 bar. [71] The pressure enclosure 230 is essentially formed in a metallic material, thus allowing a configuration of the enclosure to withstand a maximum internal pressure of the order of 800 bar.
[72] L’enceinte cryogénique 220 est quant à elle essentiellement formée, dans le présent exemple non limitatif de l’invention, dans un matériau solide isolant résistant aux températures cryogéniques. Avantageusement, le matériau solide isolant utilisé pour l’enceinte cryogénique 220 est inerte au fluide contenu. [72] The cryogenic enclosure 220 is essentially formed, in this non-limiting example of the invention, in a solid insulating material resistant to cryogenic temperatures. Advantageously, the solid insulating material used for the cryogenic enclosure 220 is inert to the fluid contained.
[73] Ici, le matériau solide isolant utilisé est du polychlorotrifluoroéthylène (PTCFE), conférant de bonnes propriétés mécaniques en termes d’isolation et de résistance des matériaux aux températures cryogéniques. [73] Here, the solid insulating material used is polychlorotrifluoroethylene (PTCFE), conferring good mechanical properties in terms of insulation and resistance of the materials to cryogenic temperatures.
[74] Toutefois, il convient de souligner que l’enceinte cryogénique 220 formée dans un tel matériau isolant a tendance à se dégrader lorsque la pression interne est supérieure à 5 ou 10 bar par rapport à la pression extérieure. Son rôle principal est alors d’offrir un contenant adapté au stockage provisoire du liquide cryogénique provenant du réservoir cryogénique 120, pendant la phase de compression isochore du gaz issu de la vaporisation du liquide cryogénique, tout en minimisant les pertes thermiques afin d’ajuster au mieux la quantité de gaz produit par vaporisation du liquide cryogénique. [74] However, it should be noted that the cryogenic enclosure 220 formed in such an insulating material tends to deteriorate when the internal pressure is greater than 5 or 10 bar compared to the external pressure. Its main role is then to provide a container suitable for the temporary storage of the cryogenic liquid coming from the cryogenic tank 120, during the phase of isochoric compression of the gas resulting from the vaporization of the cryogenic liquid, while minimizing the thermal losses in order to adjust to the better the quantity of gas produced by vaporization of the cryogenic liquid.
[75] Lorsque la pression cible est atteinte dans le dispositif 110 de compression, une vanne 290 est ouverte afin de transférer du gaz sous pression dans le réservoir 130 de stockage. [75] When the target pressure is reached in the compression device 110, a valve 290 is opened in order to transfer pressurized gas into the storage tank 130.
[76] Avantageusement, une vanne 295 de vidange du dispositif 110 de compression peut être comprise dans le circuit afin de baisser la pression interne du dispositif 110 de compression à une valeur inférieure à la pression du réservoir cryogénique 120, préalablement à un nouveau remplissage de l’enceinte cryogénique 220 du dispositif 110 de compression avec du liquide cryogénique provenant du réservoir cryogénique 120. [76] Advantageously, a valve 295 for emptying the device 110 of compression can be included in the circuit in order to lower the internal pressure of the device 110 of compression to a value lower than the pressure of the cryogenic tank 120, prior to a new filling of the cryogenic enclosure 220 of the compression device 110 with cryogenic liquid coming from the cryogenic tank 120.
[77] La figure 3 est une vue synoptique d’un exemple de mise en œuvre d’un procédé 300 de fabrication du dispositif 110 de compression selon l’invention. La figure 4 illustre sous la forme schématique l’avancée de la fabrication du dispositif 110 de compression. [77] Figure 3 is a block view of an example of implementation of a method 300 of manufacturing the device 110 of compression according to the invention. The figure 4 illustrates in schematic form the progress of the manufacture of the device 110 of compression.
[78] Le procédé 300 de fabrication comprend une première étape 310 de façonnage de l’enceinte de pression 230 sous une forme globale d’un cylindre 400 longiligne fermé à une extrémité 410, l’autre extrémité ouverte 420 étant laissée droite dans un premier temps pour permettre l’insertion de l’enceinte cryogénique 220 au cours d’une deuxième 320 du procédé 300 de fabrication, comme illustré par la sous- figure a) de la figure 4. Le façonnage de la première étape 310 peut être effectué par exemple par une technique classique de chaudronnerie à partir d’un tuyau ou d’un disque déformé par une presse. [78] The manufacturing process 300 includes a first step 310 of shaping the pressure vessel 230 into the overall shape of a slender cylinder 400 closed at one end 410, the other open end 420 being left straight in a first time to allow the insertion of the cryogenic enclosure 220 during a second 320 of the manufacturing process 300, as illustrated by sub-figure a) of FIG. 4. The shaping of the first step 310 can be carried out by example by a classic boilermaking technique from a pipe or a disc deformed by a press.
[79] Afin de maintenir et protéger l’enceinte cryogénique 220, un matériau de protection 430 est inséré sous une forme liquide dans la chambre 210B entre l’enceinte de pression 230 et l’enceinte cryogénique 220 au cours d’une troisième étape 330 de fabrication, comme illustré par la sous-figure b) de la figure 4. Le matériau de protection qui est par exemple un mélange de résine et d’un matériau granulaire tel que du sable, va se durcir après son insertion dans la chambre 210B. [79] In order to maintain and protect the cryogenic enclosure 220, a protective material 430 is inserted in a liquid form into the chamber 210B between the pressure enclosure 230 and the cryogenic enclosure 220 during a third step 330 of manufacture, as illustrated by sub-figure b) of figure 4. The protective material which is for example a mixture of resin and of a granular material such as sand, will harden after its insertion in the chamber 210B .
[80] A cet effet, le matériau de protection peut avoir été préalablement chauffé pour le fluidifier permettant ainsi son insertion dans la chambre 210B. Lors de son refroidissement, le matériau de protection va se durcir en épousant la forme de la chambre 210B. [80] For this purpose, the protective material may have been previously heated to thin it, thus allowing its insertion into the chamber 210B. As it cools, the protective material will harden, taking on the shape of the chamber 210B.
[81] Comme illustré par la sous-figure c) de la figure 4, un façonnage d’un rétrécissement 440 de l’extrémité ouverte 420 de l’enceinte de pression 230 est ensuite effectuée lors de la quatrième étape 340 du procédé 300 de fabrication, après que le matériau de protection ait durci. [81] As illustrated by subfigure c) of Figure 4, a shaping of a constriction 440 of the open end 420 of the pressure vessel 230 is then carried out during the fourth step 340 of the method 300 of manufacturing, after the protective material has hardened.
[82] Ce façonnage peut être effectué par déformation de l’extrémité ouverte 420, par exemple par une technique de forgeage, ou par solidarisation d’une pièce complémentaire de forme adéquate. La solidarisation de la pièce complémentaire peut s’effectuer par brasage ou par soudage. [82] This shaping can be done by deforming the open end 420, for example by a forging technique, or by securing a complementary piece of suitable shape. The joining of the complementary part can be done by brazing or welding.
[83] Dans les deux cas, l’enceinte de pression 230 est chauffée localement à une température suffisamment élevée pour être susceptible d’endommager irréversiblement l’enceinte cryogénique 220. Toutefois, l’insertion préalable du matériau de protection au cours de l’étape 330 permet de minimiser la montée en température de l’enceinte cryogénique 220 lors de l’étape 340 de façonnage du rétrécissement de l’extrémité ouverte de l’enceinte sous pression 230. [84] Il convient de souligner que l’épaisseur du tuyau utilisé pour façonner l’enceinte de pression 230 correspond généralement à celui défini par le type « schedule 160 » afin que le ratio entre l’épaisseur et le diamètre soit suffisamment grand pour résister aux contraintes mécaniques due à la pression nominale de 700 à 800 bar. Afin de pouvoir utiliser des tuyaux de plus faible épaisseur, comme par exemple de « schedule 80 » qui est plus adapté pour l’opération de forgeage, un renforcement par adjonction d’une couche extérieure 460 en matériau composite peut être envisagé lors d’une étape optionnelle 345. Comme illustré en sous-figure e) de la figure 4, la couche extérieure 460 en matériau composite peut par exemple être réalisée par enroulement d’au moins une bande 465 de fibre de carbone enduite de résine. [83] In both cases, the pressure vessel 230 is locally heated to a temperature high enough to be likely to irreversibly damage the cryogenic vessel 220. However, the prior insertion of the protective material during the step 330 makes it possible to minimize the rise in temperature of the cryogenic enclosure 220 during the step 340 of shaping the narrowing of the open end of the enclosure under pressure 230. [84] It should be noted that the thickness of the pipe used to shape the pressure vessel 230 generally corresponds to that defined by the "schedule 160" type so that the ratio between the thickness and the diameter is large enough to resist mechanical stresses due to the nominal pressure of 700 to 800 bar. In order to be able to use thinner pipes, such as "schedule 80" for example, which is more suitable for the forging operation, reinforcement by adding an outer layer 460 of composite material can be considered during a optional step 345. As illustrated in sub-figure e) of figure 4, the outer layer 460 of composite material can for example be produced by winding at least one strip 465 of carbon fiber coated with resin.
[85] En complément ou alternativement au matériau de protection, un matériau réfléchissant tel qu’un écran peut être introduit avant l’étape 340 de façonnage, afin de protéger l’enceinte cryogénique 220 de la radiation thermique induite lors de l’étape de façonnage. [85] In addition to or alternatively to the protective material, a reflective material such as a screen can be introduced before the shaping step 340, in order to protect the cryogenic enclosure 220 from the thermal radiation induced during the shaping step. shaping.
[86] Le matériau de protection 430 est ensuite dissout et extrait du dispositif 110 de compression au cours d’une cinquième étape 350 du procédé 300 de fabrication. [86] The protective material 430 is then dissolved and extracted from the compression device 110 during a fifth step 350 of the manufacturing process 300.
[87] Le dispositif 110 de compression est finalisé par la fermeture de l’enceinte sous pression 230 de manière étanche au cours d’une sixième étape 360 du procédé 300 de fabrication, comme illustré en sous-figure d) de la figure 4. [87] The compression device 110 is finalized by closing the pressure vessel 230 in a sealed manner during a sixth step 360 of the manufacturing process 300, as illustrated in sub-figure d) of Figure 4.
[88] Préférentiellement, un bouchon 450 de forme tronconique permettant de fermer l’enceinte de pression, est inséré avant l’étape 340 de façonnage du rétrécissement 440 au cours d’une étape optionnelle 325 du procédé 300 de fabrication, par exemple juste après l’insertion de l’enceinte cryogénique 220. Le bouchon 450 est fileté de manière complémentaire à un filetage du rétrécissement 440 de l’extrémité ouverte 420, préalablement réalisé. [88] Preferably, a plug 450 of frustoconical shape making it possible to close the pressure enclosure, is inserted before the step 340 of shaping the constriction 440 during an optional step 325 of the manufacturing process 300, for example just after the insertion of the cryogenic chamber 220. The stopper 450 is threaded in a manner complementary to a thread of the constriction 440 of the open end 420, previously made.
[89] Alternativement, un bouchon de forme cylindrique est inséré dans le rétrécissement 440 et solidarisé au rétrécissement par une technique de soudage ou de brasage. Dans ce cas, le matériau de protection 430 est avantageusement conservé, les étapes 350 et 360 du procédé de fabrication pouvant être interverties. [89] Alternatively, a cylindrical plug is inserted into the constriction 440 and secured to the constriction by a welding or brazing technique. In this case, the protective material 430 is advantageously retained, the steps 350 and 360 of the manufacturing process possibly being reversed.
[90] Il convient en effet de souligner que dans les deux cas les bouchons présentent des trous débouchant, préférentiellement filetés afin de laisser passer les différents conduits 240, 251 et 252, à travers des presse-étoupes préalablement installés. Le matériau de protection 430 peut ainsi être extrait de la chambre 210B par le trou débouchant prévu pour le conduit 252 d’équilibrage. [90] It should indeed be emphasized that in both cases the plugs have through holes, preferably threaded in order to allow the various conduits 240, 251 and 252 to pass through cable glands previously installed. The protective material 430 can thus be extracted from the chamber 210B through the through hole provided for the duct 252 for balancing.
[91] L’enceinte cryogénique 220 est maintenu en position à l’intérieur de l’enceinte de pression 230 par l’intermédiaire des presse-étoupes serrant de manière étanche les conduits 240 et 251 lors de leur traversée des bouchons 221 et 450 de chaque enceinte. [91] The cryogenic enclosure 220 is held in position inside the pressure enclosure 230 by means of cable glands tightly clamping the conduits 240 and 251 when they pass through the plugs 221 and 450 of each enclosure.
[92] La figure 5 présente une vue synoptique d’un mode de mise en œuvre d’un procédé 500 de compression du fluide stocké sous la forme de liquide cryogénique dans le réservoir cryogénique 120. [92] Figure 5 presents a block view of an implementation mode of a method 500 for compressing the fluid stored in the form of cryogenic liquid in the cryogenic tank 120.
[93] Le procédé 500 de compression comprend une première étape 510 de remplissage de l’enceinte cryogénique 220 du dispositif de compression 110 avec du liquide cryogénique par l’intermédiaire du conduit 240 d’introduction. [93] The compression method 500 includes a first step 510 of filling the cryogenic enclosure 220 of the compression device 110 with cryogenic liquid via the conduit 240 for introduction.
[94] Le conduit 240 d’introduction entre le réservoir cryogénique 120 et le dispositif de compression 110 est ensuite fermé par l’intermédiaire de l’actionnement d’une vanne 296 au cours d’une deuxième étape 520 du procédé 500 de compression. [94] The introduction conduit 240 between the cryogenic tank 120 and the compression device 110 is then closed through the actuation of a valve 296 during a second step 520 of the compression process 500.
[95] Le liquide cryogénique se vaporise à l’intérieur de l’enceinte cryogénique au cours d’une troisième étape 530 du procédé 500 de compression. Cette vaporisation peut être augmentée par l’ajout d’un apport énergétique par l’intermédiaire du dispositif 280 de chauffage qui de manière préférentielle plonge dans le liquide cryogénique. [95] The cryogenic liquid vaporizes inside the cryogenic enclosure during a third stage 530 of the compression process 500. This vaporization can be increased by adding an energy supply via the heating device 280 which preferentially immerses in the cryogenic liquid.
[96] Le gaz en surpression au-dessus du liquide cryogénique dans l’enceinte cryogénique 220 est ensuite extrait de l’enceinte cryogénique 220 par l’intermédiaire du conduit 251 d’extraction au cours d’une quatrième étape 540 du procédé 500 de compression. [96] The pressurized gas above the cryogenic liquid in the cryogenic enclosure 220 is then extracted from the cryogenic enclosure 220 via the extraction conduit 251 during a fourth step 540 of the process 500 of compression.
[97] Le gaz extrait est réchauffé à une température proche ou supérieure à 250 K (environ -20 °C) au cours d’une cinquième étape 550 avant d’être réinjecté dans l’enceinte de pression 230, plus précisément dans la chambre 210B comprise entre l’enceinte de pression 230 et l’enceinte cryogénique 220, au cours d’une sixième étape 560 du procédé 500 de compression. [97] The extracted gas is reheated to a temperature close to or greater than 250 K (approximately -20°C) during a fifth stage 550 before being reinjected into the pressure enclosure 230, more precisely into the chamber 210B between the pressure enclosure 230 and the cryogenic enclosure 220, during a sixth step 560 of the compression method 500.
[98] La réinjection du gaz contribue à l’augmentation de la pression au sein du dispositif 110 de compression, la compression étant effectuée de manière isochore. [98] The reinjection of the gas contributes to the increase of the pressure within the device 110 of compression, the compression being carried out in an isochoric manner.
[99] Il convient de souligner que l’extraction du gaz en surpression et la réinjection du gaz dans l’enceinte de pression 230 s’effectue de manière naturelle et en continu, la pression du gaz cherchant à s’équilibrer au sein du dispositif 110 de compression. Plus précisément, un rééquilibrage naturel de la pression est effectué en continu entre les deux chambres 210 du dispositif 110 de compression, ce rééquilibrage entraînant un transfert de gaz qui est réchauffé avant réinjection. [99] It should be emphasized that the extraction of the overpressure gas and the reinjection of the gas into the pressure enclosure 230 takes place naturally and continuously, the gas pressure seeking to balance itself within the device 110 of compression. More specifically, a natural rebalancing of the pressure is carried out continuously between the two chambers 210 of the compression device 110, this rebalancing resulting in a transfer of gas which is reheated before reinjection.
[100] Lorsque la pression cible est atteinte, une partie du gaz en surpression est dérivé en ouvrant la vanne 290 lors d’une septième étape 570 du procédé 500 de compression, afin de remplir le réservoir 130 de stockage de gaz en vue de son utilisation. [100] When the target pressure is reached, a portion of the overpressure gas is diverted by opening the valve 290 during a seventh step 570 of the compression process 500, in order to fill the gas storage tank 130 for its use.
[101] Il convient de souligner que la dérivation peut être avantageusement effectuée dans le circuit du dispositif 250 d’équilibrage après que le gaz ait traversé le dispositif 270 de réchauffage. Alternativement, le gaz est dérivé en amont du dispositif 270 de réchauffage. Dans ce cas, un dispositif annexe de réchauffage est préférentiellement installé sur le conduit reliant la dérivation du dispositif 250 d’équilibrage au réservoir 130 de stockage. [101] It should be noted that the bypass can advantageously be carried out in the circuit of the balancing device 250 after the gas has passed through the heating device 270. Alternatively, the gas is diverted upstream of the heating device 270. In this case, an auxiliary heating device is preferably installed on the pipe connecting the bypass of the balancing device 250 to the storage tank 130.
[102] Le procédé 500 peut également comprendre une étape 580 de vidange d’une partie du gaz du dispositif 110 de compression, afin de baisser la pression interne du dispositif 110 de compression à une valeur inférieure à la pression du réservoir cryogénique 120. Le procédé 500 peut alors recommencer. [102] The method 500 may also include a step 580 of emptying part of the gas from the compression device 110, in order to lower the internal pressure of the compression device 110 to a value lower than the pressure of the cryogenic reservoir 120. The process 500 can then begin again.
[103] Dans le présent exemple non limitatif de l’invention, le réservoir cryogénique 120 présente un volume de l’ordre de 3000 à 10000 litres. Le volume de l’enceinte cryogénique 220 est quant à lui de l’ordre de 100 à 300 litres. Le volume de la chambre 210B est généralement entre deux et cinq fois plus grand, préférentiellement trois fois plus grand, que celui de l’enceinte cryogénique 220 afin d’offrir un ratio de compression important. Il convient en effet de souligner que la masse volumique du gaz est généralement mille fois plus faible que celle du liquide, la vaporisation du liquide dans un volume donné entraîne par conséquent une augmentation naturelle de la pression, qui est ici permise grâce d’une part à la présence de l’enceinte de pression 230 et d’autre part grâce au circuit d’équilibrage permettant de transférer le gaz entre les deux chambres 210 du dispositif 110 de compression tout en le réchauffant pour éviter une dégradation de la résistance mécanique de l’enceinte de pression 230. [103] In this non-limiting example of the invention, the cryogenic tank 120 has a volume of the order of 3000 to 10000 liters. The volume of the cryogenic enclosure 220 is for its part of the order of 100 to 300 liters. The volume of chamber 210B is generally between two and five times larger, preferably three times larger, than that of cryogenic enclosure 220 in order to provide a high compression ratio. It should indeed be emphasized that the density of the gas is generally a thousand times lower than that of the liquid, the vaporization of the liquid in a given volume consequently leads to a natural increase in the pressure, which is allowed here thanks on the one hand to the presence of the pressure enclosure 230 and on the other hand thanks to the balancing circuit making it possible to transfer the gas between the two chambers 210 of the device 110 of compression while heating it to avoid a degradation of the mechanical resistance of the pressure enclosure 230.
[104] Le volume du réservoir 130 de stockage est généralement trois fois plus grand que celui de la chambre 210B, composé par exemple de trois sous-réservoirs de même volume que celui de la chambre 210B. Ces trois sous-réservoirs peuvent être dans des sous-circuits différents afin de pouvoir être rempli ou vidés individuellement. Autre exemple de mode de réalisation [104] The volume of the storage tank 130 is generally three times greater than that of the chamber 210B, composed for example of three sub-tanks of the same volume as that of the chamber 210B. These three sub-tanks can be in different sub-circuits so that they can be filled or emptied individually. Another example embodiment
[105] La figure 6 illustre un autre exemple de dispositif 600 de compression selon l’invention qui a été réalisé selon un procédé de fabrication alternatif 700 présenté sous la forme synoptique en figure 7. [105] Figure 6 illustrates another example of a compression device 600 according to the invention which was produced according to an alternative manufacturing method 700 presented in the block diagram in Figure 7.
[106] Le dispositif 600 de compression diffère du dispositif 100 de compression du précédent exemple de mode de réalisation par le fait que l’enceinte de pression 630 est composée d’un squelette métallique 631 de forme globalement cylindrique, remplaçant le tuyau utilisé au cours du procédé 300 de fabrication, comme illustré sur la sous-figure a) de la figure 6. La structure métallique 631 est enveloppée par une couche extérieure 632 en matériau composite maintenant la pression, comme illustré sous la sous-figure b) de la figure 6. [106] The compression device 600 differs from the compression device 100 of the previous exemplary embodiment in that the pressure vessel 630 is composed of a metal skeleton 631 of generally cylindrical shape, replacing the pipe used during of the manufacturing process 300, as shown in subfigure a) of Figure 6. The metallic structure 631 is enveloped by an outer layer 632 of composite material maintaining the pressure, as shown in subfigure b) of Figure 6.
[107] L’enceinte cryogénique 620 du dispositif 600 de compression peut avantageusement comprendre une pluralité de jambes 621 permettant de maintenir l’enceinte cryogénique 620 lors de l’élaboration du dispositif 600 de compression. [107] The cryogenic enclosure 620 of the compression device 600 can advantageously comprise a plurality of legs 621 making it possible to hold the cryogenic enclosure 620 during the development of the compression device 600.
[108] Le procédé 700 de fabrication comprend ainsi une première étape 710 d’élaboration du squelette métallique 631 entourant l’enceinte cryogénique 620 qui peut être positionnée en amont ou insérée lorsque le squelette métallique 631 est élaboré. [108] The manufacturing process 700 thus comprises a first step 710 of producing the metal skeleton 631 surrounding the cryogenic enclosure 620 which can be positioned upstream or inserted when the metal skeleton 631 is produced.
[109] Le squelette 631 de l’enceinte de pression 630 est ensuite enveloppée par au moins une bande de fibre de carbone enduite de résine afin de former la couche extérieure 632. L’épaisseur de la couche extérieure 632 est configurée pour résister aux contraintes mécaniques dues à la pression nominale de 700 à 800 bars. Il convient de souligner que tout autre type de matériau composite, répondant aux contraintes mécaniques, peut être envisagé par l’homme du métier. [109] The skeleton 631 of the pressure vessel 630 is then wrapped by at least one strip of resin coated carbon fiber to form the outer layer 632. The thickness of the outer layer 632 is configured to resist the stresses mechanical due to the nominal pressure of 700 to 800 bar. It should be emphasized that any other type of composite material, responding to mechanical stresses, can be envisaged by those skilled in the art.
[110] L’enceinte de pression 630 peut ensuite être fermée par le bouchon 650, au cours d’une troisième étape 730, de manière similaire au procédé 300 de fabrication, le bouchon 650 ayant été préalablement inséré à l’intérieur du squelette 631. [110] The pressure enclosure 630 can then be closed by the plug 650, during a third step 730, similar to the manufacturing process 300, the plug 650 having been previously inserted inside the skeleton 631 .
[111] Les autres éléments du précédent mode de réalisation sont identiques. [111] The other elements of the previous embodiment are identical.

Claims

Revendications Claims
1. Dispositif (110 ; 600) de compression d’un fluide, tel que du dihydrogène, du dioxygène, du diazote ou de l’argon, caractérisé en ce qu’il comprend : 1. Device (110; 600) for compressing a fluid, such as dihydrogen, dioxygen, dinitrogen or argon, characterized in that it comprises:
• une enceinte cryogénique (220 ; 620), apte à contenir le fluide sous forme liquide à une température cryogénique, et du fluide sous forme de gaz provenant d’une vaporisation du liquide dans l’enceinte cryogénique ; • a cryogenic enclosure (220; 620), capable of containing the fluid in liquid form at a cryogenic temperature, and fluid in the form of gas resulting from vaporization of the liquid in the cryogenic enclosure;
• une enceinte de pression (230 ; 630) englobant l’enceinte cryogénique, configurée pour résister à une pression interne ; • a pressure enclosure (230; 630) encompassing the cryogenic enclosure, configured to resist an internal pressure;
• un dispositif (250) d’équilibrage de la pression entre l’intérieur de l’enceinte cryogénique et l’intérieur de l’enceinte de pression, le dispositif d’équilibrage comprenant une tuyauterie configurée pour transférer du gaz en surpression dans l’enceinte cryogénique dans un espace compris entre l’enceinte de pression et l’enceinte cryogénique, la tuyauterie comprenant un dispositif (270) de réchauffage du gaz en surpression provenant de l’enceinte cryogénique, à une température prédéterminée supérieure à la température cryogénique. • a device (250) for balancing the pressure between the interior of the cryogenic enclosure and the interior of the pressure enclosure, the balancing device comprising a pipe configured to transfer gas under overpressure into the cryogenic enclosure in a space between the pressure enclosure and the cryogenic enclosure, the piping comprising a device (270) for heating the pressurized gas coming from the cryogenic enclosure, to a predetermined temperature above the cryogenic temperature.
2. Dispositif de compression selon la revendication 1 , dans lequel le dispositif de réchauffage du gaz est un échangeur thermique placé à l’extérieur de l’enceinte de pression. 2. Compression device according to claim 1, in which the gas heating device is a heat exchanger placed outside the pressure vessel.
3. Dispositif de compression selon l’une quelconque des revendications 1 à 2, comprenant un conduit (240) d’introduction dans l’enceinte cryogénique du fluide sous forme liquide, le conduit traversant les parois de l’enceinte de pression et de l’enceinte cryogénique, et dans lequel la tuyauterie du dispositif d’équilibrage comprend : 3. Compression device according to any one of claims 1 to 2, comprising a duct (240) for introducing fluid in liquid form into the cryogenic enclosure, the duct passing through the walls of the pressure enclosure and the cryogenic enclosure, and in which the piping of the balancing device comprises:
• un conduit (251) d’extraction du gaz en surpression, traversant l’enceinte de pression et l’enceinte cryogénique en direction d’une entrée du dispositif de réchauffage ; • a duct (251) for extracting overpressure gas, passing through the pressure enclosure and the cryogenic enclosure in the direction of an inlet of the heating device;
• un conduit (252) d’équilibrage, traversant l’enceinte de pression et débouchant entre l’enceinte de pression et l’enceinte cryogénique, le conduit d’équilibrage étant relié à une sortie du dispositif de réchauffage. • a balancing conduit (252), passing through the pressure enclosure and emerging between the pressure enclosure and the cryogenic enclosure, the balancing conduit being connected to an outlet of the heating device.
4. Dispositif de compression selon l’une quelconque des revendications 1 à 3, comprenant également un dispositif (280) de chauffage à l’intérieur de l’enceinte cryogénique configuré pour vaporiser le fluide sous forme liquide avec un flux d’énergie prédéterminé. 4. Compression device according to any one of claims 1 to 3, also comprising a heating device (280) inside the cryogenic enclosure configured to vaporize the fluid in liquid form with a predetermined energy flow.
5. Dispositif de compression selon la revendication 4, dans lequel le dispositif de chauffage comprend une résistance électrique et/ou un conduit de circulation d’un fluide caloporteur. 5. Compression device according to claim 4, in which the heating device comprises an electrical resistor and/or a conduit for the circulation of a heat transfer fluid.
6. Dispositif de compression selon l’une quelconque des revendications 1 à 5, dans lequel l’enceinte de pression et l’enceinte cryogénique sont de forme globalement cylindrique autour d’un même axe de révolution. 6. Compression device according to any one of claims 1 to 5, wherein the pressure chamber and the cryogenic chamber are generally cylindrical in shape around the same axis of revolution.
7. Dispositif de compression selon l’une quelconque des revendications 1 à 6, dans lequel l’enceinte de pression est essentiellement formée dans un matériau métallique, et configurée pour résister à une pression interne maximale comprise entre 100 et 800 bar. 7. Compression device according to any one of claims 1 to 6, in which the pressure enclosure is essentially formed from a metallic material, and configured to withstand a maximum internal pressure of between 100 and 800 bar.
8. Dispositif de compression selon l’une quelconque des revendications 1 à 7, dans lequel l’enceinte cryogénique comprend une couche d’un matériau solide isolant résistant aux températures cryogéniques et au fluide. 8. Compression device according to any one of claims 1 to 7, in which the cryogenic enclosure comprises a layer of a solid insulating material resistant to cryogenic temperatures and to the fluid.
9. Dispositif de compression selon la revendication 8, dans lequel le matériau solide isolant est du polychlorotrifluoroéthylène (PTCFE). 9. Compression device according to claim 8, in which the solid insulating material is polychlorotrifluoroethylene (PTCFE).
10. Procédé (300) de fabrication d’un dispositif de compression (110) selon l’une quelconque des revendications 1 à 9, caractérisé en ce qu’il comprend des étapes de : 10. Method (300) for manufacturing a compression device (110) according to any one of claims 1 to 9, characterized in that it comprises steps of:
• façonnage (310) de l’enceinte de pression sous une forme cylindrique fermée à une extrémité ; • shaping (310) the pressure vessel into a cylindrical shape closed at one end;
• insertion (320) de l’enceinte cryogénique à l’intérieur de l’enceinte de pression ; • insertion (320) of the cryogenic enclosure inside the pressure enclosure;
• insertion (330) sous une forme liquide d’un matériau de protection (430) entre l’enceinte de pression et l’enceinte cryogénique, le matériau de protection se durcissant ; • insertion (330) in a liquid form of a protective material (430) between the pressure enclosure and the cryogenic enclosure, the protective material hardening;
• façonnage (340) d’un rétrécissement (440) à l’extrémité ouverte (420) de l’enceinte de pression après durcissement du matériau de protection ; • shaping (340) of a constriction (440) at the open end (420) of the pressure vessel after hardening of the protective material;
• dissolution et extraction du matériau de protection ; • dissolution and extraction of the protective material;
• fermeture de l’enceinte de pression de manière étanche. • closure of the pressure enclosure in a leaktight manner.
11. Procédé de fabrication selon la revendication 10, dans lequel un matériau réfléchissant est introduit avant l’étape de façonnage du rétrécissement afin de protéger l’enceinte cryogénique de la radiation thermique. 11. Manufacturing process according to claim 10, in which a reflective material is introduced before the step of shaping the constriction in order to protect the cryogenic enclosure from thermal radiation.
12. Procédé de fabrication selon l’une quelconque des revendications 10 à 11, dans lequel l’étape de façonnage d’un rétrécissement est effectuée par déformation de l’extrémité ouverte. 12. Manufacturing process according to any one of claims 10 to 11, in which the step of shaping a constriction is carried out by deforming the open end.
13. Procédé de fabrication selon la revendication 12, dans lequel la déformation est effectuée par forgeage. 13. Manufacturing process according to claim 12, in which the deformation is carried out by forging.
14. Procédé de fabrication selon l’une quelconque des revendication 10 à 11, dans lequel l’étape de façonnage d’un rétrécissement est effectuée par solidarisation d’une pièce. 14. Manufacturing process according to any one of claims 10 to 11, in which the step of shaping a constriction is carried out by securing a part.
15. Procédé de fabrication selon l’une quelconque des revendications 10 à 14, comprenant également une étape d’insertion d’un bouchon avant l’étape de façonnage d’un rétrécissement, le bouchon permettant de fermer l’enceinte de pression de manière étanche. 15. Manufacturing process according to any one of claims 10 to 14, also comprising a step of inserting a plug before the step of shaping a constriction, the plug making it possible to close the pressure enclosure in such a way waterproof.
16. Procédé de fabrication selon la revendication 15, comprenant également une étape de filetage du rétrécissement de l’extrémité ouverte de l’enceinte de pression, le filetage étant configuré pour s’assembler avec un filetage du bouchon. 16. Manufacturing process according to claim 15, also comprising a step of threading the constriction of the open end of the pressure vessel, the thread being configured to mate with a thread of the cap.
17. Procédé de fabrication selon l’une quelconque des revendications 10 à 16, comprenant une étape d’adjonction d’une couche extérieure de renfort en matériau composite. 17. Manufacturing process according to any one of claims 10 to 16, comprising a step of adding an outer reinforcing layer of composite material.
18. Procédé de fabrication selon l’une quelconque des revendications 10 à 17, dans lequel le matériau de protection est un mélange d’un matériau granulaire et d’une résine liquide. 18. Manufacturing process according to any one of claims 10 to 17, in which the protective material is a mixture of a granular material and a liquid resin.
19. Procédé (700) de fabrication d’un dispositif de compression (600) selon l’une quelconque des revendications 1 à 9, caractérisé en ce qu’il comprend des étapes de : 19. Method (700) for manufacturing a compression device (600) according to any one of claims 1 to 9, characterized in that it comprises steps of:
• façonnage (710) d’un squelette (631) de l’enceinte de pression sous forme cylindrique ; • shaping (710) of a skeleton (631) of the pressure vessel in cylindrical form;
• insertion de l’enceinte cryogénique à l’intérieur du squelette de l’enceinte de pression ; • insertion of the cryogenic enclosure inside the skeleton of the pressure enclosure;
• enrobage (720) du squelette de l’enceinte de pression par enroulement d’au moins une bande (640) de fibre enduite de résine ; • coating (720) of the skeleton of the pressure vessel by winding at least one strip (640) of fiber coated with resin;
• fermeture (730) de l’enceinte de pression de manière étanche. • closure (730) of the pressure enclosure in a sealed manner.
20. Système (100) de stockage d’un fluide, tel que du dihydrogène, du dioxygène, du diazote ou de l’argon, comprenant : • un réservoir (120) cryogénique stockant le fluide sous forme liquide à une pression inférieure à 10 bar et à une température inférieure à -150°C ; 20. System (100) for storing a fluid, such as dihydrogen, dioxygen, dinitrogen or argon, comprising: • a cryogenic tank (120) storing the fluid in liquid form at a pressure below 10 bar and at a temperature below -150°C;
• un dispositif (110) de compression selon l’une quelconque des revendications 1 à 9, alimenté par le réservoir cryogénique ; • a compression device (110) according to any one of claims 1 to 9, powered by the cryogenic tank;
• un réservoir (130) de stockage d’un gaz sous pression, configuré pour résister à une pression interne maximale comprise entre 100 et 800 bar. • a reservoir (130) for storing a pressurized gas, configured to withstand a maximum internal pressure of between 100 and 800 bar.
21. Procédé (500) de compression d’un fluide stocké sous forme liquide dans un réservoir cryogénique d’un système de stockage selon la revendication 20, comprenant des étapes de : 21. Method (500) for compressing a fluid stored in liquid form in a cryogenic tank of a storage system according to claim 20, comprising the steps of:
• remplissage (510) de l’enceinte cryogénique du dispositif de compression dudit système de stockage avec du fluide sous forme liquide à une température cryogénique ; • filling (510) of the cryogenic enclosure of the compression device of said storage system with fluid in liquid form at a cryogenic temperature;
• fermeture (520) du circuit entre le réservoir cryogénique et le dispositif de compression ; • closure (520) of the circuit between the cryogenic tank and the compression device;
• vaporisation (530) du fluide sous forme liquide en un gaz ; • vaporization (530) of the fluid in liquid form into a gas;
• extraction (540) du gaz en surpression dans l’enceinte cryogénique ; • extraction (540) of the overpressure gas in the cryogenic enclosure;
• réchauffage (550) du gaz extrait à une température supérieure à -20 °C ;• heating (550) of the extracted gas to a temperature above -20°C;
• augmentation (560) de la pression dans le dispositif de compression par réinjection du gaz réchauffé dans un espace entre l’enceinte de pression et l’enceinte cryogénique. • increase (560) of the pressure in the compression device by reinjection of the heated gas into a space between the pressure enclosure and the cryogenic enclosure.
22. Procédé de compression selon la revendication 21 , comprenant également une étape (570) de dérivation du gaz en surpression lorsque la pression à l’intérieur du dispositif de compression est supérieure à une valeur prédéterminée, le gaz dérivé étant transféré dans le réservoir de stockage d’un gaz sous pression du système de stockage. 22. Compression method according to claim 21, also comprising a step (570) of diverting the overpressure gas when the pressure inside the compression device is greater than a predetermined value, the diverted gas being transferred into the reservoir of storage of a pressurized gas from the storage system.
23. Procédé de compression selon l’une quelconque des revendications 21 à 22, comprenant également une étape (580) de vidange d’une partie du gaz du dispositif de compression, afin de baisser la pression interne du dispositif de compression à une valeur inférieure à la pression du réservoir cryogénique, préalablement à un nouveau remplissage de l’enceinte cryogénique du dispositif de compression avec du fluide sous forme liquide à une température cryogénique provenant du réservoir cryogénique. 23. Compression method according to any one of claims 21 to 22, also comprising a step (580) of emptying part of the gas from the compression device, in order to lower the internal pressure of the compression device to a lower value to the pressure of the cryogenic tank, prior to a new filling of the cryogenic enclosure of the compression device with fluid in liquid form at a cryogenic temperature coming from the cryogenic tank.
EP22710681.2A 2021-02-22 2022-02-22 Device for compressing a fluid stored in the form of a cryogenic liquid, and associated method of manufacture Pending EP4295045A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2101698A FR3120097B1 (en) 2021-02-22 2021-02-22 Device for compressing a fluid stored in the form of a cryogenic liquid, and associated manufacturing method
PCT/FR2022/050322 WO2022175636A1 (en) 2021-02-22 2022-02-22 Device for compressing a fluid stored in the form of a cryogenic liquid, and associated method of manufacture

Publications (1)

Publication Number Publication Date
EP4295045A1 true EP4295045A1 (en) 2023-12-27

Family

ID=75108610

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22710681.2A Pending EP4295045A1 (en) 2021-02-22 2022-02-22 Device for compressing a fluid stored in the form of a cryogenic liquid, and associated method of manufacture

Country Status (8)

Country Link
US (1) US20240142057A1 (en)
EP (1) EP4295045A1 (en)
JP (1) JP2024506989A (en)
KR (1) KR20240019060A (en)
CN (1) CN117098914A (en)
CA (1) CA3215673A1 (en)
FR (1) FR3120097B1 (en)
WO (1) WO2022175636A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19544593C5 (en) * 1995-11-30 2006-03-09 Air Liquide Deutschland Gmbh Vacuum-insulated cryocontainer
US6430938B1 (en) * 2001-10-18 2002-08-13 Praxair Technology, Inc. Cryogenic vessel system with pulse tube refrigeration
US20140026597A1 (en) * 2010-09-30 2014-01-30 Michael Jay Epstein Fuel storage system
US9752728B2 (en) * 2012-12-20 2017-09-05 General Electric Company Cryogenic tank assembly
FR3033874B1 (en) * 2015-03-20 2018-11-09 Gaztransport Et Technigaz METHOD FOR COOLING A LIQUEFIED GAS
EP3181986A1 (en) * 2015-12-17 2017-06-21 Shell Internationale Research Maatschappij B.V. Mitigating lng boiloff by application of peltier cooling
FR3089600B1 (en) * 2018-12-06 2021-03-19 Air Liquide Cryogenic fluid storage tank

Also Published As

Publication number Publication date
WO2022175636A1 (en) 2022-08-25
FR3120097B1 (en) 2023-02-17
CA3215673A1 (en) 2022-08-25
JP2024506989A (en) 2024-02-15
KR20240019060A (en) 2024-02-14
FR3120097A1 (en) 2022-08-26
US20240142057A1 (en) 2024-05-02
CN117098914A (en) 2023-11-21

Similar Documents

Publication Publication Date Title
EP0629809B1 (en) Pressurised hydrocarbons storage container
EP1931911B1 (en) Method and device for filling a tank with a pressurised gas
WO2011098703A1 (en) Composite tank, and assembly including such a tank and member for receiving and/or dispensing gas
EP0960305A1 (en) Tank for pressurised fluid, in particular for liquefied gas
EP1108946A1 (en) Tank for storage of high pressure gas
EP1199510A1 (en) Device and process for storage of gas under pressure
EP4070007A1 (en) Assembly for storing and dispensing pressurized fluid for a vehicle
EP0968387B1 (en) Method and installation for filling a tank under pressure
EP4295045A1 (en) Device for compressing a fluid stored in the form of a cryogenic liquid, and associated method of manufacture
FR3103875A1 (en) Pressurized fluid storage and distribution set for vehicles
CA2149830C (en) Pa12-carbon lightweight structure for storing pressurized fluids
EP1258669B1 (en) Process for the manufacture of a high pressure storage vessel particularly for a spacecraft and storage vessel thus obtained
WO2015107282A1 (en) Thermal protection system for a cryogenic vessel of a space vehicle
WO2022234206A1 (en) Floating structure comprising a system for supplying a consumer with a fuel prepared from liquefied natural gas or a mixture of methane and an alkane comprising at least two carbon atoms
FR2937707A1 (en) Pressurized gaseous medium e.g. liquid hydrogen, storing method for e.g. gaseous hydrogen truck, involves storing pressurized medium in storage reservoir of storage device at supercritical pressure conditions under pressure of specific bars
FR3030679A1 (en) ULTRA THIN LINER PRESSURIZED GAS TANK
FR3015655A1 (en) DIPHASIC FLUID FILLING METHOD OF A THERMAL CONTROL DEVICE FOR A MOTOR VEHICLE BATTERY MODULE
WO2024094561A1 (en) Method for controlling the internal pressure of a cryogenic tank
WO2024061800A1 (en) Pressurized gas tank for vehicle
WO2022167746A1 (en) Open hydrogen tank
WO2023118374A1 (en) Cryogenic fluid storage unit
CA3160390A1 (en) End fitting for a pressurised fluid reservoir
FR3089594A1 (en) Support for fixing an engine on a cover of a loading and / or unloading tower of a vessel of a ship
BE579773A (en)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230920

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240627