EP4292140A1 - Source lumineuse pour la signalisation d'un véhicule automobile - Google Patents

Source lumineuse pour la signalisation d'un véhicule automobile

Info

Publication number
EP4292140A1
EP4292140A1 EP22704764.4A EP22704764A EP4292140A1 EP 4292140 A1 EP4292140 A1 EP 4292140A1 EP 22704764 A EP22704764 A EP 22704764A EP 4292140 A1 EP4292140 A1 EP 4292140A1
Authority
EP
European Patent Office
Prior art keywords
light
light source
substrate
shaping
optics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22704764.4A
Other languages
German (de)
English (en)
Inventor
Antoine De Lamberterie
Alexandre Val
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Vision SAS
Original Assignee
Valeo Vision SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision SAS filed Critical Valeo Vision SAS
Publication of EP4292140A1 publication Critical patent/EP4292140A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/30Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by reflectors
    • F21S43/31Optical layout thereof
    • F21S43/315Optical layout thereof using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/19Attachment of light sources or lamp holders
    • F21S43/195Details of lamp holders, terminals or connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/26Refractors, transparent cover plates, light guides or filters not provided in groups F21S43/235 - F21S43/255
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/30Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by reflectors
    • F21S43/31Optical layout thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/30Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by reflectors
    • F21S43/33Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by reflectors characterised by their material, surface treatment or coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/40Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the combination of reflectors and refractors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • a light source of a matrix arrangement of motor vehicle light module light sources comprising:
  • a substrate comprising an upper face, a lower face opposite the upper face, and an electronic circuit
  • At least one electroluminescent element mounted on the upper face of the substrate, comprising a light-emitting part
  • connection contacts connected to the electronic circuit, the electronic circuit being adapted to power the at least one light-emitting element
  • the light-emitting part of at least one electroluminescent element having a surface area of less than 40,000 pm 2 ,
  • shaping optics comprising an optical element attached to the upper face of the substrate and/or to the light-emitting part of the at least one light-emitting element.
  • matrix arrangement of light sources is meant an arrangement of light sources having a mesh, that is to say an arrangement of several light sources, repeated at least once, preferably at least three times.
  • the mesh can be constituted by light sources arranged on the corners of a parallelogram.
  • the light sources of the matrix arrangement are identical, but it is possible to have a restricted number of types of light sources, for example less than 5, for example 2.
  • An optical system for shaping light rays is understood to mean an optical system comprising at least one optical element deflecting light rays coming from at least one light-emitting element so as to shape them.
  • An electronic circuit is understood to mean any arrangement of tracks whether or not comprising electronic components making it possible to supply the at least one light-emitting element.
  • conforming is meant the fact either of facilitating the extraction of the light rays, or of concentrating the light rays.
  • the term “facilitate the extraction of light rays” means letting through the luminous flux which would be blocked by internal reflection in the absence of optical dedicated conformation of light rays.
  • “Concentrating the light rays” means the fact of modifying the distribution of a beam coming from the at least one electroluminescent element so as to increase an intensity in a main direction and/or to reduce the intensity in distant directions. of the main management.
  • the optics for shaping the light rays coming from the at least one light-emitting element comprises at least one optical element attached to the upper face of the substrate and/or to the light-emitting element, preferably in a single step.
  • Transfer is understood to mean that said optical element is fixed on the upper face of the substrate and/or on the at least one light-emitting element, preferably glued on said upper face and/or on the at least one light-emitting element.
  • at least one optical element of a matrix of optical elements is attached to the upper face of the substrate, then said light source is singled out, that is to say the substrate is cut out so as to form a plurality of light sources according to the invention.
  • the array of optical elements is a wafer of optical elements and these optical elements are transferred directly onto a wafer comprising other light source elements; in this way, the optics for shaping the light rays can be manufactured in a reduced number of steps for a wafer of light sources.
  • the substrate is cut into a plurality of light sources each comprising a single light-emitting element.
  • the realization of an optics of shaping of the light rays by transfer of an optical element manufactured elsewhere allows to use optical elements resulting from manufacturing processes which would damage the other elements of the light source, in particular processes in which the optical elements are subjected to high heat or to particularly aggressive chemical treatments.
  • the upper face of the substrate is flat, or can at least be locally assimilated to a plane.
  • the optics for shaping the light rays from the light source may comprise a transparent optical element and/or a reflector.
  • the term emitting part of a light-emitting element generally means the part of a light-emitting element which emits the greater part, for example at least 80%, preferably at least 90%, of all the light rays. emitted by at least one electroluminescent element.
  • the surface of this emitting part is typically evaluated as the apparent surface of the light-emitting element mounted on the substrate from an axis normal to the exterior face of the substrate, before the optical optics for shaping the light rays are attached.
  • the at least one light-emitting element is mounted on the substrate, that is to say that it can for example be deposited on electrical contacts on the upper face of the substrate.
  • the at least one light-emitting element is buried in the substrate and only its light-emitting surface emerges from the substrate.
  • the at least one electroluminescent element is buried in the substrate and its light-emitting surface is continuous with the upper surface of the substrate.
  • connection contacts on the underside makes it easy to mount the light source on a support itself provided with connection contacts making it possible to form a matrix arrangement of light sources.
  • the connection contacts of the support and/or of the light source may comprise an alloy deposit (for example SnAg, AuSn, Auln) capable of creating a conductive metallic connection with contacts facing each other, in particular by a thermal process.
  • connection contacts are connected to the electronic circuit and the electronic circuit is adapted to power the at least one light-emitting element, which makes it possible to power the light source entirely through the contacts of the support.
  • the electronic circuit is made up of vias connecting supply tracks of the at least one light-emitting element. In this way, it is possible to mount the light source on the support in a very small number of operations, preferably comprising a single operation requiring manipulation of the light source. Thus, it is possible to efficiently mount a large number of light sources, for example several hundreds, several thousands, several tens or hundreds of thousands, or even several million light sources.
  • a process of the automated mounting type of the pick-and-place type or of the mass transfer type can be used for positioning the light sources on the support.
  • the manufacture of an optic for shaping light rays by transferring an optical element onto the substrate allows mass production of the optics for shaping light rays, in particular by a collective manufacturing process, in particular on wafer, and preferably collective up to the singulation of light sources according to the invention.
  • the collectivization of the production stages then allows both a significant reduction in manufacturing costs and times and the production of millions of sources, which makes it possible to use such sources in signaling modules for motor vehicles.
  • the electronic circuit consists of a simple interconnection network making it possible to connect the at least one light-emitting element to the contacts of the support.
  • the conformation optics of the light rays from at least one electroluminescent element allows the same electroluminescent element to contribute effectively to intensity levels compatible with the aforementioned regulations.
  • the efficiency of this contribution is important because it makes it possible to achieve a greater contribution to a given function for the same number of light sources. It is therefore understood that the invention makes it possible to improve the cost price of a light function produced by a matrix arrangement of light sources.
  • a matrix arrangement of light sources according to the invention makes it possible to perform all of the functions of the rear position light and brake light or direction change indicator. [0022] Since the light ray shaping optics are made directly in contact with the at least one electroluminescent element, losses of light by reflection on an input surface of the light ray shaping optics are avoided.
  • optical shaping of the light rays also extending over the upper face of the substrate, it makes it possible to extend a perceived surface of the at least one electroluminescent element of the light source according to the invention.
  • the invention thus allows better use of the luminous flux of each source and reduces the dispersion of thermal energy accordingly to achieve a given light intensity contribution of a matrix arrangement of light sources according to the invention, so that a signaling device comprising said matrix arrangement and intended to perform a signaling function according to the aforementioned standards can provide an intensity required by said standards. Energy consumption and heat dissipation of a matrix arrangement according to the invention are therefore reduced compared to the state of the art.
  • the substrate supports on its upper face a limited number of light-emitting elements, preferably less than 4, preferably less than 2, preferably only one.
  • a light source substrate is obtained from an initial substrate on which light-emitting elements are mounted, which is subsequently cut into a multitude of light source substrates. In this way, a complexity of the light source is limited and a substrate area necessary for the production of a light source is reduced so that an economic compromise is easily reached.
  • the optics for shaping the light rays comprise a Fresnel lens, for example the added optical element is a Fresnel lens.
  • the light-ray shaping optic includes such a lens, an amount of material necessary for producing the light-ray shaping optic is reduced, and a size of the light sources is reduced.
  • the at least one light-emitting element is a light-emitting diode, or LED (from the Anglo-Saxon abbreviation for Light Emitting Diode).
  • the at least one electroluminescent element emits a light of red color, in particular a red light suitable for carrying out a signaling function, in particular a red satisfying the regulatory conditions of chromaticity for the rear position lights and lights stop, defined in the UNECE No. 7 - Rev.7 standard in force on the date of filing of the application.
  • the emitting part of the at least one light-emitting element has a surface area of less than 2500 ⁇ m 2 , advantageously the surface of the emitting part has dimensions of less than 50 ⁇ m ⁇ 50 ⁇ m.
  • the at least one light-emitting element is an LED, it is then said that it is a light-emitting element of the microled type.
  • the spacing between the centers of two adjacent light sources in the matrix arrangement of light sources is less than 1 mm, preferably less than 500 miti, preferably between 200 miti and 400 miti, preferably comprised between 250 miti and 350 miti.
  • the interstices between the light sources can advantageously be small, for example less than 100 miti, preferably 50 miti, so that the spacing between the light-emitting elements of the light sources is regular.
  • the light sources have a single light emitting element located at the center of the light source, and the centers of the light sources are spaced one spacing apart, and the spacing between the sides of the light sources is greater than a quarter of said spacing pitch, preferably a third of this pitch.
  • the surface of the emitting part of at least one light-emitting element is at least twice, preferably at least three times, preferably at least five times, preferably at least ten times less than the surface of the upper surface of the substrate.
  • a larger area of the upper face of the substrate not only accommodates larger light-ray shaping optics, but also increases the size of the connection contacts so that an economical substrate can be used.
  • the surface of the emitting part of the at least one light-emitting element is at least twice, preferably at least three times lower, preferably at least five times, preferably at least ten times the surface of the exit face of the light-ray shaping optic seen from an axis normal to the substrate, and preferably ten times less than the surface of the exit face of the light-ray shaping optic seen from an axis normal to the substrate.
  • a surface of the electroluminescent element perceived through the optics for shaping the light rays is maximized, which allows better perceived homogeneity of a matrix of light sources according to the invention, as well as better visual comfort, and better use of the luminous flux from the light-emitting element.
  • the shaping optic concentrates the rays emitted by the light source more vertically than horizontally. This can be measured by placing the source, or the light device that contains it, on an intensity measurement bench equipped with a goniometer, in the same orientation as when it is mounted on the motor vehicle.
  • a front-rear axis of the motor vehicle is understood to mean a horizontal axis of the motor vehicle oriented in a preferential direction of advancement of the motor vehicle.
  • the intensity of the light emitted by the light source is less than a predetermined fraction of the maximum intensity of the light coming from the light source in the directions of the vertical reference plane forming a angle of 45° upwards with a horizontal plane and greater than this value below, said third predetermined value being between 20 and 50% of the maximum intensity, preferably between 30 and 40%.
  • this value clearly exceeds the minimums imposed by the aforementioned standards, it makes it possible to use the matrix arrangement of light sources in order to perform a display function for a pedestrian close to the motor vehicle, for example located less than 2 m from the motor vehicle, in bright outdoor light conditions. In this way, an aesthetic function of the module is reinforced for a pedestrian close to the vehicle automobile.
  • a display of a message is thus easily perceptible under conditions of reflection on the outer glass of the luminous device.
  • a light source provided with such light ray shaping optics is very effective for performing an automobile signaling function as defined in the aforementioned standards, in particular much more so than a conventional light source devoid of shaping optics light rays.
  • the optics for shaping the light rays from the at least one light-emitting element form a diopter comparable to a spherical dome whose center is located on the at least one light-emitting element, that is to say that 'it is similar to such dioptre except for manufacturing tolerances.
  • the added optical element comprises said diopter.
  • the optics for shaping the light rays comprises at least one exit surface for the light rays coming from the at least one electroluminescent element, said exit surface having a variable, advantageously variable and continuous radius of curvature.
  • the radius of curvature is advantageously greater on the edges of said optical system and smaller in a central zone of the exit surface, advantageously directed along a front-rear axis of the vehicle.
  • the optics for shaping the light rays is particularly suitable for extracting and concentrating the light rays coming from the at least one light-emitting element.
  • the output face of the light ray shaping optics has an ellipsoidal or cylindrical portion.
  • a spacer is arranged on the substrate to provide a distance between the at least one light-emitting element and the input surface of the optical element.
  • the spacer is produced by an additive process directly on the surface of the substrate; for example, the spacer is a copper track. In this way, the spacer is easily produced on the surface of the substrate.
  • the spacer is also a reflector, in particular a reflector of parabolic shape, which allows a better conformation of the light rays coming from the optical element. In this way, the spacer contributes to shaping the light rays coming from the light-emitting element.
  • the spacer can be attached to the substrate. In this way, more complex spacers can be used.
  • the optical element comprises lugs adapted to ensure a distance between the at least one light-emitting element and the input surface of the optics for shaping the light rays. In this way, the distance between the light-emitting element and the optical element is ensured without the use of additional parts or specific processes.
  • the optical element when an empty space is substantially non-existent between the at least one electroluminescent element and the optical element, the optical element can in this case have a spherical surface so as to best extract the light rays or a elliptical surface allowing them to be concentrated effectively. It is then advantageous for the optics for shaping the light rays also to comprise a reflector adapted to straighten the light rays coming from the light-emitting element forming a small angle with the plane of the upper face of the substrate, for example an angle less than 5 °, preferably 10°, preferably 20°.
  • the optics for shaping the light rays is an optic of the total internal reflection type (also known from the skilled in the art under the Anglo-Saxon abbreviation TIR), that is to say that the optics for shaping the light rays comprises a transparent portion comprising at least one face on which rays from the light-emitting element are reflected totally.
  • TIR optics has the advantage of efficiently concentrating the rays coming from the light-emitting element, including the rays coming from the light-emitting element forming a small angle with the plane of the upper face of the substrate.
  • said TIR reflector is formed by the added optical element.
  • the optical element comprises a plane exit face normal to a direction of maximum intensity, so that the rays deflected by the paraboloid portion of the optics for shaping the light rays have an angle of incidence weak on said exit surface, so as to disadvantage reflection of a ray coming from the light-emitting element towards the substrate, including when said ray has been deflected by total internal reflection by a side face of the added optical element.
  • the optical element comprises optical patterns on a light ray exit face.
  • light patterns are regularly repeated on the output surface of the optical element, in one or more directions.
  • the patterns can be prismatic patterns capable of redirecting light rays in a given direction.
  • dispersive patterns for example patterns with cylindrical portions of revolution also called gadroons, making it possible to disperse the light around an axis parallel to the axes of the cylindrical portions of revolution. This is particularly advantageous for ensuring good visibility of the light source from a wide angular field of vision.
  • the portion of deflection of the light rays by total internal reflection is located so as to capture light rays coming from the at least one electroluminescent element forming with the plane of the upper face of the substrate of the light source an angle less than 30°, preferably less than 10°, preferably less than 5°, the rays then being redirected towards a portion of the exit surface adapted to facilitate the extraction of these rays and their concentration, for example a plane portion of the exit surface, preferably parallel to the upper face of the substrate.
  • Such light ray shaping optics comprising both a convex exit face and a total internal reflection portion has the advantage of effectively concentrating the light and of preventing the light source from emitting stray rays that are problematic for the optical appearance. a matrix of light sources.
  • the surface of the reflector is reflective, preferably metallic.
  • the metal used is copper or aluminum, the deposition of which is particularly economical.
  • this metallization also takes place in a collective process, in particular on wafer.
  • the reflector can then be a truncated parabola, cone, or pyramid.
  • a parabolic reflector has the advantage of effectively redirecting the rays in a given direction, for example a direction normal to the exterior face of the substrate.
  • a conical reflector is particularly simple to produce, in particular by laser ablation, and is therefore particularly economical.
  • the optics for shaping the light rays concentrate more light rays around a horizontal plane of the vehicle than around a vertical plane comprising a front-rear axis of the motor vehicle. This can be measured by placing the source, or the light device that contains it, on an intensity measurement bench equipped with a goniometer.
  • the shaping optic is rotationally asymmetrical, that is to say with respect to any normal to the upper face of the substrate.
  • the concentration characteristics of the shaping optics of the light rays are not rotationally invariant around any axis normal to the light-emitting surface of at least one electroluminescent element. or on the upper side of the substrate.
  • this may be optics having different focusing characteristics around a vertical plane and around a horizontal plane.
  • the optics for shaping the light rays to concentrate the rays coming from at least one electroluminescent element more around a horizontal plane of the vehicle than around a vertical axis comprising the front axis. rear of the vehicle. In this way, a regulatory rear position light is easily obtained which can be seen effectively from most positions around the vehicle.
  • an optic for shaping the light rays which is asymmetrical with respect to any horizontal plane, it is possible to obtain a distribution concentrated around a horizontal plane of the motor vehicle, even in the case where the support of the matrix arrangement of light sources is inclined along a horizontal axis with respect to a plane normal to a front-rear axis of the motor vehicle.
  • an arrangement of light sources according to the invention having shaping optics of light rays that are asymmetrical with respect to any horizontal plane, makes it possible in particular to contribute effectively to a distribution compatible with the aforementioned regulations.
  • such an arrangement makes it possible to perform all of the rear position light and brake functions while the support of the matrix arrangement is inclined with respect to a vertical plane normal to a front-rear axis of the vehicle.
  • the optical conformation of light rays is of the refractive and non-reflective type, this which makes it possible to achieve regulatory distribution for lower production costs.
  • the optics for shaping the light rays comprises a refractive part and a reflective part, which allows to achieve regulatory distribution for lower production costs.
  • the shaping optics concentrates the rays around a horizontal plane of the vehicle, and disperses the rays around a vertical plane of the vehicle. In this way, visibility of a matrix arrangement of light sources is maintained for observers as long as they have visual contact with the matrix arrangement.
  • the shaping optic includes a reflector.
  • the transparent part of the optics for shaping the light rays coming from the at least one light-emitting element can be attached directly above the reflector.
  • the rays deflected by the reflectors are not deflected by the transparent part of the optics for shaping the light rays.
  • the light-ray shaping optics have an asymmetrical footprint and the substrate has a square footprint, so that the spacing between the substrates is regular and achieves a seamless appearance of the light source matrix arrangement on the support, in particular as regards the spacing lines between the substrates of the light sources.
  • the light source has an imprint having a short dimension in a first direction and a long dimension in a second direction. This ensures the correct orientation of the light source on the light source support during assembly. Moreover, when the light source is produced in wafer with common processes, this allows a better yield of the wafers.
  • these rays can disturb the appearance of the light device when they are unexpectedly reflected by an element of the light device.
  • a luminous signaling device provided with a luminous device glass separating the matrix arrangement from the exterior of the vehicle, in which the light sources are arranged at a very small distance from a luminous device glass or glued to said glass, even rays having an angle of less than 5° can be reflected towards the interior of the light device by said glass, which can disturb the appearance of the light device.
  • even rays having an angle of less than 10° can be deflected towards the inside of the light device.
  • the reflectors are adapted to ensure a minimum distance between a ray entry surface of the transparent part of the optics for shaping the light rays and the upper face of the at least one light-emitting element.
  • the same part provides reflector and spacer functions, so that the performance of the light source is improved and the cost is reduced.
  • the electronic circuit includes an integrated circuit suitable for powering the elementary light source.
  • the electronic circuit includes an integrated circuit suitable for powering the elementary light source.
  • the at least one light-emitting element is buried in the substrate, so that the distance from the emitting surface of the at least one light-emitting element to an exit diopter of the shaping optics of the light rays coming from of the at least one light-emitting element is increased.
  • a height of the light source is reduced, heat dispersion of the at least one light-emitting element is improved, and production costs are lowered.
  • a move away from the at least one electroluminescent element of the output surface of the optics for shaping the light rays coming from said at least one electroluminescent element makes it possible to improve a light intensity in a direction of maximum intensity of the light emitted by the light source.
  • the at least one light-emitting element is arranged so that its emitting surface is flush with the upper face of the substrate.
  • the network can then comprise one or more layers,
  • the assembly can then be turned over and the temporary holding plate can be removed. In this way, a collective substrate was obtained.
  • Light ray shaping optics can then be associated with light-emitting elements. In this way, the method remains collective until the singulation of light sources according to the invention.
  • the light source comprises a single electroluminescent element.
  • the light source comprises a plurality of light-emitting elements
  • each of the light-emitting elements cooperates with the optics for shaping the light rays.
  • a number of light sources to ensure a given contribution to a signaling function is reduced, a number of light source manufacturing operations (in particular singulation and qualification operations) and a number of components to be mounted on the support to achieve the matrix arrangement is reduced.
  • the manufacturing cost and the complexity of the matrix arrangement is particularly reduced.
  • At least one of the light-emitting elements does not cooperate with a transparent portion of the optics for shaping the light rays so that an imprint of the at least one light-emitting element on the substrate is reduced. It is then possible to add light-emitting elements while maintaining a footprint of the light source, or by increasing it slightly, at least while maintaining a significantly smaller footprint than when all the light-emitting elements have an optical element dedicated to at least a light source.
  • each light-emitting element corresponds to an optical portion for shaping the light rays providing it with a light distribution that is identical or at least similar to that of the other light-emitting elements of the light source.
  • a perception of the light-emitting elements of the light source is homogeneous.
  • the spacing of the light-emitting elements of the matrix arrangement is substantially identical, regardless of whether said light-emitting elements belong to different light sources. In this way, a perception of the light-emitting elements of the entire matrix arrangement is homogeneous.
  • each electroluminescent element corresponds to a portion of the same light ray conformation optics made in one piece and constituting a single part. In this way, a single light ray shaping optic can be manufactured for several light sources.
  • the optics for shaping the light rays consist of a set of separate optical elements and the like. This makes it possible, for example, to group similar light-emitting elements so that a homogeneity of the matrix arrangement is maximized while a number of light sources necessary to be arranged on the support is reduced.
  • the optics for shaping the light rays consist of a set of separate optical elements and having shapes that vary according to the use of the light source.
  • all the light-emitting elements correspond to the same optics for shaping the light rays, preferably made in one piece, and an optic for shaping the light rays made in one piece ensures different light distributions for the light-emitting elements.
  • the same light source makes it possible to have a different light distribution for certain light-emitting elements, in particular when light-emitting elements must take part in different functions.
  • the light source comprises several light-emitting elements arranged in meshes, that is to say that they constitute a subset of the general matrix arrangement.
  • the light-emitting elements are arranged on the light sources so that the light-emitting elements are identically spaced in the matrix arrangement of light sources according to the main directions of this matrix arrangement.
  • the mesh of the matrix arrangement is square, i.e. the light sources are in a matrix arrangement having two main directions which are orthogonal and the light sources are identically spaced along these two directions, the mesh of the light source is square preference.
  • the light source comprises 4 light-emitting elements.
  • the mesh of the matrix arrangement is rectangular, that is to say the light sources are arranged in a two-dimensional matrix extending along two orthogonal directions but the light sources are not not necessarily identically spaced along these two directions
  • the mesh of the light source is preferably rectangular, that is to say it comprises at least 4 light-emitting elements arranged at the corners of a rectangle.
  • such a mesh comprises 4 light-emitting elements.
  • the mesh of the matrix arrangement is a parallelogram, that is to say the light sources are aligned in 2 non-orthogonal directions
  • the mesh of the light source is preferably a parallelogram , that is to say that the light-emitting elements are arranged at the corners of a parallelogram.
  • the parallelogram mesh of the light source is such that the sources are arranged in the same directions as those of the meshes of the matrix arrangement.
  • such a mesh comprises 4 light-emitting elements.
  • the mesh of the matrix arrangement when the mesh of the matrix arrangement is hexagonal, the mesh may be triangular or hexagonal.
  • a light source comprises 3 individual light sources.
  • the electronic circuit of the light source comprises an integrated circuit capable of powering individually, that is to say independently or simultaneously, each of the light-emitting elements according to one or more instructions received by the light source.
  • the electronic circuit of the light source comprises an integrated circuit capable of powering individually, that is to say independently or simultaneously, each of the light-emitting elements according to one or more instructions received by the light source.
  • an active matrix display system can be produced without the support requiring thin film transistor circuits, known to those skilled in the art by the abbreviation TFT, which require for their manufacture the development of masks, this development having a high cost, which must be repeated for each new support form of a matrix arrangement.
  • TFT thin film transistor circuits
  • the signaling devices comprising light sources according to the invention are easily adaptable to the shape constraints of the signaling devices which vary significantly from one vehicle to another, without generating such development costs.
  • the light ray shaping optic includes a color filter, so that the light rays coming from the light-emitting elements are filtered.
  • the filter only lets through rays of wavelength close to that of the rays coming from the at least one light-emitting element.
  • the filter in the case of a rear position light, the filter only lets through red light. In this way a dark aspect of the light source is improved.
  • a protective mineral coating is applied to all the non-conductive faces of the light source, so as to improve resistance to corrosion, in particular in an automobile environment.
  • FIG. 4t represents, schematically and partially, a side view of a light source according to a third embodiment of the invention.
  • FIG. 4c represents, schematically and partially, a side view of a light source according to a variant of a third embodiment of the invention.
  • FIG. 4p represents, schematically and partially, a perspective view of a light source according to a variant of a fourth embodiment of the invention.
  • FIG. 1 a sectional view of a light source 100 according to a first embodiment of the invention, according to a plane orthogonal to the substrate 120.
  • the light source 100 further comprises an optic 140 for shaping the light rays.
  • the optics 140 for shaping the light rays form, above the upper face 122 of the substrate 120, an ellipsoidal interface suitable for concentrating the light rays coming from the au at least one electroluminescent element 130 around an axis normal to the substrate 120.
  • the emitting surface of the electroluminescent element 130 is close to said axis normal to the substrate 120.
  • Spacers secured to the substrate 120 maintain the optics 140 for shaping the light rays at a predefined distance from the substrate 120 so that an empty space separates the light-emitting element 130 from the optics 140 for shaping the light rays.
  • the optics 140 for shaping the light rays is glued to the spacers 141 so as to ensure its fixing.
  • connection contacts 151 connected to the electronic circuit 150, said contacts being here made in the form of pads, that is to say contact pads, the electronic circuit 150 being adapted to power at least one light-emitting element 130.
  • the light source 100 When the light source 100 is assembled on a support forming a light module of a motor vehicle signaling device, it is assembled so that an axis of maximum light intensity is arranged substantially along a front rear axis of the motor vehicle. Light source 100 is further oriented such that the long side of substrate 120 is substantially horizontal. Thus, the light rays coming from the electroluminescent element 130 are more concentrated around a horizontal plane than around a vertical plane. Such a distribution of the light rays is particularly favorable to the realization of a signaling function such as a rear position light, brake light or direction indicator function, according to the aforementioned UNECE standards. [0140] Shown in [Fig. 1p] a perspective view of the light source 100 of [Fig. 1]
  • FIG. 2 Shown in [Fig. 2] a sectional view along a plane orthogonal to the substrate 220 of a light source 200 according to a variant of the first embodiment of the invention.
  • the light source 200 further comprises an optic 240 for shaping the light rays.
  • the optics 240 for shaping the light rays comprises reflectors secured to the substrate 220.
  • Said reflectors have a reflecting face metallized with copper, of straight section. Said reflectors make it possible to prevent rays having an angle with the substrate 220 of less than 20° from being deflected towards the inside of the luminous device by the transparent part of the optics 240 for shaping the light rays.
  • said reflectors are produced by an additive process.
  • the light source 301 of [Fig. 3p] is part of a matrix arrangement of identical light sources of a motor vehicle light module.
  • the light source 301 further comprises an optic 240 for shaping the light rays.
  • the optics 340 for shaping the light rays is a paraboloid-shaped reflector, suitable for reflect light rays coming from the at least one electroluminescent element 330 so as to concentrate them around an axis normal to the substrate 320. Said axis around which the light rays are concentrated is then an axis of maximum intensity.
  • the emitting surface of the at least one light-emitting element 330 is close to said axis.
  • the reflector is glued directly to the upper face 322 of the substrate 320, leaving the emitting surface of the light-emitting element 330 free.
  • the light source 301 is arranged on a support forming a light module of a motor vehicle signaling device, it is arranged so that the axis of maximum intensity is arranged substantially along a front rear axis of the vehicle automobile.
  • FIG. 3c Shown in [Fig. 3c] a sectional view of a light source 300 according to a variant of the second embodiment of the invention.
  • the light source 300 of the variant of [Fig. 3c] differs from that shown in [Fig. 3p] in that it comprises a conical reflector symmetrical about an axis of revolution. Such a reflector is particularly economical to produce.
  • FIG. 4t Shown in [Fig. 4t] a sectional view of a light source 400 according to a third embodiment of the invention.
  • the light source 400 of [Fig. 4t] is part of a matrix arrangement of identical light sources of a motor vehicle light module.
  • the substrate 420 on which is mounted the light-emitting element 430 as well as the light-emitting element 430 are identical to those of [Fig. 1]
  • the light source 400 further comprises an optic 440 for shaping the light rays.
  • the optics 440 for shaping the light rays is an optic of the total internal reflection type, also known to those skilled in the art by the Anglo-Saxon abbreviation TIR, for Total Internal Reflection.
  • the optics 440 for shaping the light rays comprises a transparent portion in right of the light-emitting element 430 and comprising at least one face on which the rays coming from the light-emitting element 430 are totally reflected.
  • the optics 441 for conforming the light rays is glued directly to the light-emitting element 430 using a transparent glue with an optical index similar to that of the optical element, so that the rays coming from the element electroluminescent 430 having a low angle with the plane of the upper face 422 of the substrate 420 are not reflected by an input face. In this way, the loss of light rays is avoided and the efficiency of the optics 441 for shaping the light rays is therefore increased.
  • a side face of the optics 441 for shaping the light rays comprises a paraboloid portion, adapted to concentrate the light rays coming from the at least one electroluminescent element 430 around a direction of maximum intensity of the light. emitted by the light source 400 normal to the substrate 420. A focus of the emitting surface of the at least one electroluminescent element 430 is close to said direction of maximum intensity.
  • the light ray shaping optic 441 has a flat exit surface normal to the preferential emission direction, so that rays deflected by the paraboloid portion of the light ray shaping optic 441 have an angle of low incidence on said exit surface, so as to disadvantage reflection of a ray issuing from the light-emitting element 430 towards the substrate 420, including when said ray has been deflected by total internal reflection by a side face of the added optical element.
  • FIG. 4c Shown in [Fig. 4c] a perspective view of a light source 403 according to a variant of the third embodiment of the invention.
  • the light rays coming from the at least one electroluminescent element 430 are more concentrated around a horizontal plane than around a vertical plane.
  • Such a distribution of the light rays is particularly favorable to the realization of a signaling function such as a rear position light, brake light or direction indicator function, according to the aforementioned UNECE standards.
  • the light sources comprise an electroluminescent element and an optic for shaping the light rays.
  • the shaping optics of the light rays of each of the light sources 501, 502, 503, 50 ... is asymmetrical, so that it is able to concentrate light rays around a direction of maximum intensity parallel to a front-rear axis XX of the motor vehicle, although the support 511 of the matrix arrangement of light sources is inclined in a plane XXZZ comprising the front-rear axis XX and a vertical axis ZZ.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

Source lumineuse (100) d'un arrangement matriciel de sources lumineuses de module lumineux de véhicule automobile, comportant un substrat (120) comprenant une face supérieure (122), une face inférieure (121) opposée à la face supérieure, et un circuit électronique (150), au moins un élément électroluminescent (130) monté sur la face supérieure du substrat, comportant une partie émettrice de lumière, et une optique de conformation des rayons lumineux émis par ledit élément électroluminescent, ladite face inférieure comportant des contacts de connexion (151) reliés au circuit électronique, le circuit électronique étant adapté pour alimenter l'a u moins un élément électroluminescent, la partie émettrice de lumière d'au moins un élément électroluminescent ayant une surface inferieure à 40 000 μm2, ladite optique de conformation comportant un élément optique (140) rapporté sur la face supérieure du substrat et/ou sur la partie émettrice de lumière de l'au moins un élément électroluminescent.

Description

Description
Titre : Source lumineuse pour la signalisation d’un véhicule automobile
[0001] L’invention concerne le domaine de l’éclairage et de la signalisation lumineuse automobile. Plus précisément, l’invention concerne le domaine des écrans intégrés dans des modules lumineux d’éclairage ou de signalisation lumineuse de véhicules automobiles.
[0002] Il est connu d’intégrer des écrans dans des modules lumineux de véhicules automobiles, par exemple dans des feux arrière. Ces écrans sont par exemple réalisés au moyen de matrices d’un grand nombre de sources lumineuses activables sélectivement, dont les dimensions sont suffisamment réduites pour qu’il soit possible d’afficher sur ces écrans des informations, par exemple sous la forme de message ou de pictogramme, avec une résolution satisfaisante. Ces informations permettent ainsi d’améliorer la signalisation du véhicule automobile, par exemple en contextualisant ou en accompagnant une fonction de signalisation donnée avec un message. Pour des raisons de sécurité, il est toutefois nécessaire que les informations qui y sont affichées soient visibles dans un champ de vue étendu.
[0003] Cependant, les sources lumineuses aux dimensions réduites sont limitées en termes de flux et il est difficile de former, à partir d'un arrangement matriciel de ces sources lumineuses et pour un coût raisonnable, un module apte à former un dispositif de signalisation apte à permettre une bonne visibilité du message de jour et/ou à effectuer une fonction réglementaire, notamment une fonction de feu de position arrière et/ou une fonction STOP et/ou une fonction d’indicateur de changement de direction ayant une distribution lumineuse correspondant au moins aux minima de luminance selon des angles d'observation tels que définis dans les normes UNECE No. 6 - Rev.7 et No. 7 - Rev.7 en vigueur à la date de dépôt.
[0004] On connaît, pour des feux de signalisation comportant un nombre limité de sources lumineuses, des optiques permettant de satisfaire aux exigences réglementaires. Cependant, ces solutions sont complexes à mettre en oeuvre sur un nombre important de sources lumineuses, par exemple plusieurs centaines ou plusieurs milliers, pour chaque module lumineux : la production de masse est difficilement imaginable pour de telles sources lumineuses.
[0005] Un autre problème technique des sources lumineuses de dimensions réduites est le rendement lumineux. En effet, les fonctions réglementaires précitées nécessitent un flux élevé et il est alors nécessaire d'utiliser des arrangements de sources lumineuses ayant des densités importantes de sources par unité d'aire.
Le problème de ces arrangements denses de sources lumineuses est la chaleur émise, qu'il est alors difficile de dissiper.
[0006] Afin de remédier à ces problèmes, il est proposé une source lumineuse d'un arrangement matriciel de sources lumineuses de module lumineux de véhicule automobile, comportant :
- Un substrat comportant une face supérieure, une face inférieure opposée à la face supérieure, et un circuit électronique,
- Au moins un élément électroluminescent monté sur la face supérieure du substrat, comportant une partie émettrice de lumière,
- Une optique de conformation des rayons lumineux émis par ledit élément électroluminescent,
- Ladite face inférieure comportant des contacts de connexion reliés au circuit électronique, le circuit électronique étant adapté pour alimenter l'au moins un élément électroluminescent,
- La partie émettrice de lumière d'au moins un élément électroluminescent ayant une surface inférieure à 40000 pm2,
- Ladite optique de conformation comportant un élément optique rapporté sur la face supérieure du substrat et/ou sur la partie émettrice de lumière de l’au moins un élément électroluminescent.
[0007] On entend par arrangement matriciel de sources lumineuses un arrangement de sources lumineuses présentant une maille, c’est-à-dire un arrangement de plusieurs sources lumineuses, répétée au moins une fois, de préférence au moins trois fois. Par exemple, la maille peut être constituée par des sources lumineuses disposées sur les angles d'un parallélogramme. De préférence, les sources lumineuses de l'arrangement matriciel sont identiques, mais il est possible d'avoir un nombre restreint de types de sources lumineuses, par exemple inférieur à 5, par exemple 2. [0008] On entend par une optique de conformation des rayons lumineux un système optique comportant au moins un élément optique déviant des rayons lumineux issus d'au moins un élément électroluminescent de sorte à les conformer.
[0009] On entend par un circuit électronique tout agencement de pistes comportant ou non des composants électroniques permettant d’alimenter l'au moins un élément électroluminescent.
[0010] On entend par conformer le fait soit de faciliter l'extraction des rayons lumineux, soit de concentrer les rayons lumineux. Dans le cas présent d'un élément optique déposée directement sur un élément électroluminescent, on entend par “faciliter l’extraction des rayons lumineux” le fait de laisser passer le flux lumineux qui serait bloqué par réflexion interne en l'absence d’optique de conformation dédiée des rayons lumineux. On entend par “concentrer les rayons lumineux” le fait de modifier la distribution d’un faisceau issu de l'au moins un élément électroluminescent de sorte à augmenter une intensité selon une direction principale et/ou de réduire l’intensité dans des directions éloignées de la direction principale.
[0011] L'optique de conformation des rayons lumineux issus de l'au moins un élément électroluminescent comporte au moins un élément optique rapporté sur la face supérieure du substrat et/ou sur l'élément électroluminescent, de préférence en une seule étape. On entend par report que ledit élément optique est fixé sur la face supérieure du substrat et/ou sur l'au moins un élément électroluminescent, de préférence collé sur ladite face supérieure et/ou sur l'au moins un élément électroluminescent. De préférence, au moins un élément optique d'une matrice d’éléments optiques est rapportée sur la face supérieure du substrat, puis ladite source lumineuse est singulée, c'est-à-dire que le substrat est découpé de sorte à former une pluralité de sources lumineuses selon l'invention. De préférence, la matrice d'éléments optiques est un wafer d'éléments optiques et ces éléments optiques sont reportés directement sur un wafer comportant d'autres éléments de sources lumineuses ; de la sorte, les optiques de conformation des rayons lumineux peuvent être fabriqué en un nombre réduit d'étapes pour un wafer de sources lumineuses. Dans un exemple particulier, le substrat est découpé en une pluralité de sources lumineuses comportant chacune un seul élément électroluminescent. La réalisation d'une optique de conformation des rayons lumineux par report d'un élément optique fabriqué par ailleurs permet d'utiliser des éléments optiques issus de procédés de fabrication qui détérioreraient les autres éléments de la source lumineuse, notamment des procédés dans lesquels les éléments optiques sont soumis à une chaleur élevée ou à des traitements chimiques particulièrement agressifs. [0012] La face supérieure du substrat est plane, ou peut au moins être localement assimilée à un plan.
[0013] L'optique de conformation des rayons lumineux issus de la source lumineuse peut comprendre un élément optique transparent et/ou un réflecteur.
[0014] On entend en général par partie émettrice d’un élément électroluminescent la partie d’un élément électroluminescent qui émet la plus grande partie, par exemple au moins 80%, de préférence au moins 90%, de l'ensemble des rayons lumineux émis par au moins un élément électroluminescent. La surface de cette partie émettrice est typiquement évaluée comme la surface apparente de l'élément électroluminescent monté sur le substrat depuis un axe normal à la face extérieure du substrat, avant que soit rapportée l'optique de conformation des rayons lumineux.
[0015] L’au moins un élément électroluminescent est monté sur le substrat, c'est-à- dire qu’elle peut être par exemple être déposée sur des contacts électriques de la face supérieure du substrat. Dans un autre exemple, l’au moins un élément électroluminescent est enterré dans le substrat et seule sa surface émettrice de lumière émerge du substrat. Dans un autre exemple, l’au moins un élément électroluminescent est enterré dans le substrat et sa surface émettrice de lumière est continue avec la face supérieure du substrat.
[0016] La présence de contacts de connexion sur la face inférieure permet de monter aisément la source lumineuse sur un support lui-même muni de contacts de connexion permettant de former un arrangement matriciel de sources lumineuses. Par exemple, les contacts de connexion du support et/ou de la source lumineuse peuvent comporter un dépôt d’alliage (par exemple SnAg, AuSn, Auln) apte à créer une liaison métallique conductrice avec des contacts en vis-à-vis, notamment par un procédé thermique.
[0017] Les contacts de connexions sont reliés au circuit électronique et le circuit électronique est adapté pour alimenter l’au moins un élément électroluminescent, ce qui permet d'alimenter la source lumineuse entièrement à travers les contacts du support. Par exemple, le circuit électronique est constitué de vias reliant des pistes d’alimentation de l'au moins un élément électroluminescent. De la sorte, il est possible de monter la source lumineuse sur le support en un nombre très réduit d'opérations, comprenant de préférence une seule opération nécessitant de manipuler la source lumineuse. Ainsi, il est possible de monter efficacement un grand nombre de sources lumineuses, par exemple plusieurs centaines, plusieurs milliers, plusieurs dizaines ou centaines de milliers, voire plusieurs millions de sources lumineuses. Selon la quantité de sources lumineuses à monter sur le support, on peut utiliser pour le positionnement des sources lumineuses sur le support un procédé de type de montage automatisé de type pick-and-place ou de type mass transfer.
[0018] La fabrication d'une optique de conformation des rayons lumineux par report d'un élément optique sur le substrat permet une fabrication de masse des optiques de conformation des rayons lumineux, notamment par un procédé de fabrication collectif, notamment sur wafer, et de préférence collectif jusqu'à la singulation de sources lumineuses selon l’invention. La collectivisation des étapes de production permet alors à la fois une réduction importante des coûts et des durées de fabrication et une production de millions de sources, ce qui rend possible l’utilisation de telles sources dans des modules de signalisation pour véhicule automobile.
[0019] Dans un exemple, le circuit électronique consiste en un simple réseau d’interconnexion permettant de relier l'au moins un élément électroluminescent aux contacts du support.
[0020] L'optique de conformation des rayons lumineux issus d'au moins un élément électroluminescent permet à un même élément électroluminescent de contribuer efficacement à des niveaux d’intensité compatibles de la réglementation précitée. L'efficacité de cette contribution est importante car elle permet de réaliser une plus grande contribution à une fonction donnée pour un même nombre de sources lumineuses. On comprend donc que l'invention permet d'améliorer un coût de revient d'une fonction lumineuse réalisée par un arrangement matriciel de sources lumineuses.
[0021] Dans un exemple de réalisation, un arrangement matriciel de sources lumineuses selon l'invention permet d'accomplir l'intégralité des fonctions feu de position arrière et stop ou indicateur de changement de direction. [0022] L'optique de conformation des rayons lumineux étant réalisée directement en contact avec l'au moins un élément électroluminescent, des pertes de lumière par réflexion sur une surface d'entrée de l'optique de conformation des rayons lumineux sont évitées.
[0023] L'optique de conformation des rayons lumineux s'étendant également sur la face supérieure du substrat, elle permet d'étendre une surface perçue de l'au moins un élément électroluminescent de la source lumineuse selon l'invention.
[0024] L'invention permet ainsi une meilleure utilisation du flux lumineux de chaque source et réduit d'autant la dispersion d'énergie thermique pour atteindre une contribution d'intensité lumineuse donnée d'un arrangement matriciel de sources lumineuses selon l'invention, de sorte qu'un dispositif de signalisation comportant ledit arrangement matriciel et destiné à effectuer une fonction de signalisation selon les normes précitées puisse fournir une intensité requise par lesdites normes. Une consommation d'énergie et une dissipation de chaleur d'un arrangement matriciel selon l'invention sont donc réduites par rapport à l'état de la technique.
[0025] Avantageusement, le substrat supporte sur sa face supérieure un nombre restreint d’éléments électroluminescents, de préférence inférieur à 4, de préférence inférieur à 2, de préférence un seul. De préférence, un tel substrat de source lumineuse est obtenu à partir d’un substrat initial sur lequel sont montés des éléments électroluminescents, qui est par la suite découpé en une multitude de substrats de de sources lumineuses. De la sorte, une complexité de la source lumineuse est limitée et une surface de substrat nécessaire à la production d'une source lumineuse est réduite de sorte qu'un compromis économique est aisément atteint.
[0026] Avantageusement, l'optique de conformation des rayons lumineux comporte une lentille de Fresnel, par exemple l'élément optique rapporté est une lentille de Fresnel. Lorsque l'optique de conformation des rayons lumineux comporte une telle lentille, une quantité de matière nécessaire pour la production de l'optique de conformation des rayons lumineux est réduite, et une dimension des sources lumineuses est réduite.
[0027] Avantageusement, l’au moins un élément électroluminescent est une diode électroluminescente, ou LED (de l'abréviation anglo-saxonne pour Light Emitting Diode). [0028] Avantageusement, l’au moins un élément électroluminescent émet une lumière de couleur rouge, en particulier une lumière rouge adaptée pour effectuer une fonction de signalisation, en particulier un rouge satisfaisant aux conditions réglementaires de chromaticité pour les feux de position arrière et feux stop, définies dans la norme UNECE No. 7 - Rev.7 en vigueur à la date de dépôt de la demande.
[0029] Avantageusement, la source lumineuse comprend un élément électroluminescent émettant une lumière de couleur ambre, en particulier une lumière adaptée pour effectuer une fonction de signalisation, en particulier une lumière de couleur ambre satisfaisant aux conditions réglementaires de chromaticité pour les indicateurs de changement de direction, définies dans la norme UNECE No. 6 - Rev.7 en vigueur à la date de dépôt de la demande. Dans un exemple, la source lumineuse comprend un ou des éléments électroluminescents émettant ladite lumière de couleur ambre à l’exclusion d'autres couleurs.
[0030] Avantageusement, la source lumineuse comprend un élément électroluminescent émettant une lumière de couleur turquoise ou magenta apte à effectuer une signalisation d’un véhicule automobile disposant d’un mode de conduite autonome.
[0031] Avantageusement la partie émettrice de l’au moins un élément électroluminescent a une surface inférieure à 40000 pm2, avantageusement la surface de la partie émettrice a des dimensions inférieures à 200 pm x 200 pm. Lorsque au moins un élément électroluminescent est une LED, on dit alors qu’il s'agit d'un élément électroluminescent de type miniled.
[0032] De préférence, la partie émettrice de l’au moins un élément électroluminescent a une surface inférieure à 2500 pm2, avantageusement la surface de la partie émettrice a des dimensions inférieures à 50 pm x 50 pm. Lorsque l’au moins un élément électroluminescent est une LED, on dit alors qu'il s'agit d'un élément électroluminescent de type microled.
[0033] Avantageusement, l’au moins un élément électroluminescent est une LED singulée ne comportant pas d’autres LEDs épitaxialement crûes sur une même base. De la sorte, les éléments électroluminescents peuvent être individuellement validés, de préférence avant d’être montés sur le substrat, de sorte à éviter de produire des sources lumineuses comportant des éléments non fonctionnels. Ainsi, un rendement de la fabrication de la source lumineuse est amélioré et un coût de revient est diminué.
[0034] Avantageusement, l'espacement entre les centres de deux sources lumineuses adjacentes dans l'arrangement matriciel de sources lumineuses est inférieur à 1 mm, de préférence inférieur à 500 miti, de préférence compris entre 200 miti et 400 miti, de préférence compris entre 250 miti et 350 miti. Les interstices entre les sources lumineuses peuvent avantageusement être petits, par exemple inférieurs à 100 miti, de préférence 50 miti, de sorte que l'espacement entre les éléments électroluminescents des sources lumineuses est régulier. Dans un mode de réalisation préféré, les sources lumineuses comportent un seul élément électroluminescent située au centre de la source lumineuse, et les centres des sources lumineuses sont espacées d’un pas d’espacement, et l’espacement entre les côtés des sources lumineuses est supérieur au quart dudit pas d’espacement, de préférence au tiers de ce pas. Un tel agencement permet d’éviter des problèmes de fabrication et de tenir compte des marges d'assemblage et d'implantation d'autres éléments sur le support de sources lumineuses.
[0035] Avantageusement, la surface de la partie émettrice d’au moins un élément électroluminescent est au moins deux fois, de préférence au moins trois fois, de préférence au moins cinq fois, de préférence au moins dix fois inférieure à la surface de la face supérieure du substrat. Une plus grande surface de la face supérieure du substrat permet non seulement d'accueillir une optique de conformation des rayons lumineux de taille supérieure, mais aussi d'augmenter la taille des contacts de connexion de sorte qu'un substrat économique peut être utilisé.
[0036] Avantageusement, la surface de la partie émettrice de l’au moins un élément électroluminescent est au moins deux fois, de préférence au moins trois fois inférieure, de préférence au moins cinq fois, de préférence au moins dix fois à la surface de la face de sortie de l’optique de conformation des rayons lumineux vue depuis un axe normal au substrat, et de préférence dix fois inférieure à la surface de la face de sortie de l’optique de conformation des rayons lumineux vue depuis un axe normal au substrat. De la sorte, une surface de l'élément électroluminescent perçue à travers l'optique de conformation des rayons lumineux est maximisée, ce qui permet une meilleure homogénéité perçue d'une matrice de sources lumineuses selon l'invention, ainsi qu'un meilleur confort visuel, et une meilleure utilisation du flux lumineux issu de l'élément électroluminescent.
[0037] Lorsque la source lumineuse est montée dans un module sur le véhicule, l'optique de conformation concentre les rayons émis par la source lumineuse davantage verticalement qu’horizontalement. Ceci est mesurable en plaçant la source, ou le dispositif lumineux qui la contient, sur un banc de mesure d’intensité muni d’un goniomètre, dans la même orientation que lorsqu’elle est montée sur le véhicule automobile.
[0038] On définit un plan d’assiette de référence de l’intensité maximum et un plan de référence vertical d’intensité maximum. Ledit plan d’assiette de déférence est un plan comprenant la direction d’intensité maximum de la source lumineuse et un axe transversal du véhicule. Le plan vertical de référence est un plan vertical comprenant la direction d’intensité maximum.
[0039] On entend par un axe avant-arrière du véhicule automobile un axe horizontal du véhicule automobile orienté dans une direction préférentielle d'avancement du véhicule automobile.
[0040] On entend par un axe transversal du véhicule automobile un axe horizontal du véhicule automobile orienté perpendiculairement à un axe avant-arrière du véhicule automobile.
[0041] Lorsque l’on mesure l’intensité lumineuse de la source lumineuse allumée dans le plan d’assiette de référence, la valeur d’intensité mesurée à un angle donné autour du plan vertical est supérieure à la valeur mesurée lorsque l’on mesure l’intensité lumineuse de la source lumineuse allumée dans le plan vertical de référence à un angle autour du plan horizontal correspondant audit angle donné.
[0042] Le plan de référence d’assiette forme avec un plan horizontal du véhicule automobile un angle de moins de 10°, de préférence moins de 5°, de préférence moins de 2°. De préférence, ledit plan d’assiette de référence est horizontal.
[0043] De préférence, lorsque l’on mesure l’intensité dans le plan vertical de référence, elle est supérieure à une première valeur prédéterminée dans les directions au-dessus de l’horizontale faisant un angle supérieur à un premier angle donné avec le plan horizontal du véhicule, et inférieure à la première valeur prédéterminée dans les directions au-dessus de l’horizontale formant un angle inférieur au premier angle donné avec le plan horizontal du véhicule, le premier angle donné étant compris entre 10° et 45°, la première valeur prédéterminée étant comprise entre 20 et 50% de l’intensité maximale.
[0044] De préférence, lorsque l’on mesure l’intensité dans le plan vertical de référence, elle est supérieure à une deuxième valeur prédéterminée dans les directions au-dessous de l’horizontale faisant un angle inférieur à un deuxième angle donné avec le plan horizontal du véhicule, et inférieure à la deuxième valeur prédéterminée dans les directions au-dessous de l’horizontale formant un angle supérieur à la deuxième valeur prédéterminée avec le plan horizontal du véhicule, le deuxième angle donné étant compris entre 5° et 30°, la deuxième valeur prédéterminée étant comprise entre 10 et 40% de l’intensité maximale. Un observateur extérieur suffisamment proche du véhicule automobile lorsqu'il est en fonctionnement, par exemple un piéton, a typiquement un point de vue dans un plan élevé par rapport à un dispositif de signalisation du véhicule automobile, typiquement au-dessus du plan d'enveloppe supérieur. Ainsi, lorsque le dispositif de signalisation du véhicule automobile comporte un module lumineux comprenant une matrice de sources lumineuses selon l'invention, l’intensité perçue par le piéton est limitée et il n'est pas ébloui par le dispositif de signalisation. Le piéton peut donc confortablement percevoir un motif ou un message affiché par le module lumineux. Une fonction esthétique et/ou de communication accomplie par le motif est donc facilitée.
[0045] Dans un mode de réalisation préféré, l’intensité de la lumière émise par la source lumineuse est inférieure à une fraction prédéterminée de l’intensité maximum de la lumière issue de la source lumineuse dans les directions du plan vertical de référence formant un angle de 45° vers le haut avec un plan horizontal et supérieure à cette valeur en dessous, ladite troisième valeur prédéterminée étant comprise entre 20 et 50% de l’intensité maximale, de préférence entre 30 et 40%. Bien que cette valeur dépasse nettement les minimums imposés par les normes précitées, elle permet d’utiliser l'arrangement matriciel de sources lumineuses afin de réaliser une fonction d’affichage pour un piéton proche du véhicule automobile, par exemple situé à moins de 2m du véhicule automobile, dans des conditions de lumière extérieure intense. De la sorte, une fonction esthétique du module est renforcée pour un piéton proche du véhicule automobile. De plus, un affichage d’un message est ainsi aisément perceptible dans des conditions de réflexion sur la glace extérieure du dispositif lumineux.
[0046] On comprend que des intensités plus élevées , par exemple quand la troisième valeur prédéterminée étant comprise entre 30 et 40% de l’intensité maximum, permettent d’atteindre cet effet tout en maintenant une certaine efficacité, et en tenant compte des cas où des procédés de fabrication des optiques de conformation des rayons lumineux ne permettent pas de garantir une précision importante. La plage plus large de répartition des intensités permet alors de garantir des marges correspondant à des tolérances sur la précision des optiques. De la sorte, des optiques moins précises permettent tout de même d’atteindre les minimums définis par les normes précitées tout en affichant un message suffisamment lumineux pour un piéton proche du véhicule automobile. Une source lumineuse munie d’une telle optique de conformation des rayons lumineux est très efficace pour la réalisation d’une fonction de signalisation automobile telle que définie dans les normes précitées, notamment bien plus qu’une source lumineuse conventionnelle dépourvue d’optique de conformation des rayons lumineux.
[0047] De préférence, dans le même mode de réalisation, le deuxième angle donné est compris entre 5° et 20°, de préférence entre 10 et 15°, et la deuxième valeur prédéterminée est comprise entre 10 et 20% de l’intensité maximale.. De la sorte, il est évité de fournir une intensité élevée en direction du sol, cette intensité ne contribuant pas à une fonction de signalisation telle que définie dans les normes précitées, ni à une fonction d’éclairage puisque les piétons ont un point de vue situé au-dessus du dispositif lumineux.
[0048] Alternativement, l’optique de conformation des rayons lumineux issus de l’au moins un élément électroluminescent forme un dioptre assimilable à un dôme sphérique dont le centre est situé sur l'au moins un élément électroluminescent, c’est à dire qu’elle est similaire à un tel dioptre aux tolérances de fabrication près. Par exemple, l'élément optique rapporté comporte ledit dioptre. Une telle optique de conformation des rayons lumineux permet une extraction optimale des rayons lumineux issus dudit au moins un élément électroluminescent.
[0049] Avantageusement, l'optique de conformation des rayons lumineux est une optique convergente dont au moins une surface de sortie des rayons lumineux possède une section ellipsoïdale ou ovale, de préférence non circulaire, une section de la surface de sortie étant ici définie par l’intersection de la surface par un plan qui contient un axe avant arrière du véhicule automobile. Par exemple, l'élément optique rapporté comporte ladite surface de sortie des rayons lumineux possédant une section ellipsoïdale ou ovale.
[0050] Avantageusement, l'optique de conformation des rayons lumineux comporte au moins une surface de sortie des rayons lumineux issus de l'au moins un élément électroluminescent, ladite surface de sortie ayant un rayon de courbure variable, avantageusement variable et continu. Dans ce cas, le rayon de courbure est avantageusement plus grand sur les bords de ladite optique et plus petit dans une zone centrale de la surface de sortie, avantageusement dirigée dans un axe avant-arrière du véhicule. De la sorte, l’optique de conformation des rayons lumineux est particulièrement adaptée à l’extraction et à la concentration des rayons lumineux issus de l’au moins un élément électroluminescent. De préférence, la face de sortie l’optique de conformation des rayons lumineux a une portion ellipsoïdale ou cylindrique. Lorsqu'une face de sortie de l'optique a une portion ellipsoïdale et que cette portion ellipsoïdale a un foyer situé au niveau de l'au moins un élément électroluminescent, elle permet de conformer avec une efficacité accrue les rayons lumineux issus dudit élément électroluminescent ; en particulier, lorsque l'optique n'est pas symétrique de révolution, elle peut concentrer les rayons lumineux autour d'un pan donné, en particulier un plan horizontal, davantage qu'autour d'un autre plan. Dans ce cas, l'efficacité de la concentration des rayons est supérieure lorsque le profil d'une section en coupe de l'ellipsoïde est une ellipse dont le foyer est situé sensiblement sur la' élément électroluminescent. Lorsque ladite surface de sortie a une portion cylindrique, elle permet de concentrer la lumière issue de l'élément électroluminescent autour d'un plan donné, de préférence un plan horizontal.
[0051] Alternativement, l'élément optique rapporté comporte une lentille dite de Fresnel convergente. Une telle lentille a une épaisseur et un poids réduits.
[0052] Avantageusement, l'élément optique comporte au moins une surface d’entrée des rayons lumineux issus de l’au moins un élément électroluminescent, et l'élément optique est fixé sur le substrat de sorte à laisser un espace vide, soit une lame d'air, entre l’au moins un élément électroluminescent et la face d’entrée de ladite optique de conformation des rayons lumineux. De préférence, l'élément optique est collé sur le substrat. Lorsque l'élément optique présente une face d'entrée séparée de l'élément électroluminescent par une lame d'air, une dissipation thermique de la chaleur d'un élément électroluminescent associé à l'élément optique est améliorée de sorte que la chaleur dudit élément électroluminescent n'endommage pas l'élément optique associé, et la face d'entrée a alors également un rôle optique de concertation des rayons lumineux. Cette face d'entrée est de préférence plane, de sorte que l'élément optique est plus aisé à obtenir, notamment par moulage, ou dans le cas où le procédé de fabrication de l'élément optique comprend une étape d'affinage permettant d'en réduire une épaisseur de verre sans en modifier les propriétés optiques [0053] La distance entre la surface émettrice de l'élément électroluminescent et une surface d'entrée de l'élément optique joue un rôle déterminant dans la précision de la conformation des rayons lumineux issus de l'élément électroluminescent.
[0054] Avantageusement, un espaceur est arrangé sur le substrat pour assurer une distance entre l’au moins un élément électroluminescent et la surface d’entrée de l'élément optique. De préférence, l’espaceur est réalisé par un procédé additif directement sur la surface du substrat ; par exemple, l’espaceur est une piste de cuivre. De la sorte, l'espaceur est aisément réalisé sur la surface du substrat. De préférence, l’espaceur est également un réflecteur, en particulier un réflecteur de forme parabolique, ce qui permet une meilleure conformation des rayons lumineux issus de l'élément optique. De la sorte, l'espaceur contribue à conformer les rayons lumineux issus de l'élément électroluminescent. Alternativement, l’espaceur peut être rapporté sur le substrat. De la sorte, des espaceurs plus complexes peuvent être utilisés. Alternativement, l'élément optique comporte des pattes adaptées pour assurer une distance entre l’au moins un élément électroluminescent et la surface d’entrée l’optique de conformation des rayons lumineux. De la sorte, la distance entre l'élément électroluminescent et l'élément optique est assurée sans usage de pièces supplémentaires ou de procédés spécifiques.
[0055] Alternativement, l'élément optique est collé directement sur l’au moins un élément électroluminescent de sorte qu’un espace vide est sensiblement inexistant entre l'au moins un élément électroluminescent et l'élément optique. Cela permet de favoriser l'extraction des rayons lumineux issus de l'élément électroluminescent, notamment lorsque l'indice de réfraction du milieu optique en contact avec l'élément électroluminescent est élevé, notamment lorsque cet indice de réfraction est supérieur à 1 ,2, de préférence supérieur à 1 ,4, de préférence supérieur à 1 ,5.
[0056] Avantageusement, lorsqu’un espace vide est sensiblement inexistant entre l'au moins un élément électroluminescent et l'élément optique, l'élément optique peut dans ce cas avoir une surface sphérique de sorte à extraire au mieux les rayons lumineux ou une surface elliptique permettant de les concentrer efficacement. Il est alors avantageux que l'optique de conformation des rayons lumineux comporte également un réflecteur adapté pour redresser des rayons lumineux issus de l'élément électroluminescent formant un angle faible avec le plan de la face supérieure du substrat, par exemple un angle inférieur à 5°, de préférence 10°, de préférence 20°.
[0057] Alternativement, lorsqu’un espace vide est sensiblement inexistant entre l'au moins un élément électroluminescent et l'élément optique, l’optique de conformation des rayons lumineux est une optique de type à réflexion interne totale (aussi connue de l’homme du métier sous l’abréviation anglo-saxonne TIR), c'est-à-dire que l’optique de conformation des rayons lumineux comprend une portion transparente comportant au moins une face sur laquelle des rayons issus de l’élément électroluminescent se réfléchissent totalement. Une telle optique TIR a pour avantage de concentrer efficacement les rayons issus de l'élément électroluminescent, y compris les rayons issus de l'élément électroluminescent formant un angle faible avec le plan de la face supérieure du substrat. Avantageusement, ledit réflecteur TIR est formé par l'élément optique rapporté.
[0058] Avantageusement, la colle est transparente pour au moins les longueurs d'ondes de la lumière émise par l'élément électroluminescent. [0059] Avantageusement, la colle est de type à durcissement thermique, ce qui permet un assemblage très économique ; alternativement, la colle est de type à durcissement par irradiation, en particulier par irradiation UV. De la sorte, il est possible de réaliser une mise en position précise d'un élément optique sur la face supérieure du substrat. [0060] De préférence, un élément optique de type à réflexion interne totale a une section parabolique; en particulier, au moins une face de l’optique de conformation des rayons lumineux permettant la réflexion interne des rayons lumineux issus de l’au moins un élément électroluminescent est parabolique, de préférence une surface latérale de l'élément optique est une portion de paraboloïde.
[0061] De préférence, l'élément optique comporte une face de sortie plane normale à une direction d'intensité maximale, de sorte que des rayons déviés par la portion paraboloïde de l’optique de conformation des rayons lumineux ont un angle d'incidence faible sur ladite surface de sortie, de sorte à défavoriser une réflexion d'un rayon issu de l'élément électroluminescent vers le substrat, y compris lorsque ledit rayon a été dévié par réflexion interne totale par une face latérale de l'élément optique rapporté. [0062] De préférence, l'élément optique comporte des motifs optiques sur une face de sortie des rayons lumineux. De préférence des motifs lumineux sont régulièrement répétés sur la surface de sortie de l'élément optique, selon une ou plusieurs directions. Dans un exemple, les motifs peuvent être des motifs prismatiques aptes à rediriger des rayons lumineux dans une direction donnée. Cela est particulièrement avantageux pour assurer une orientation selon un axe avant arrière du véhicule d'une direction d'intensité maximale de la source lumineuse, en particulier lorsque le support de l'arrangement matriciel de sources lumineuses n'est pas perpendiculaire à l'axe avant-arrière du véhicule. Dans un autre exemple, des motifs dispersifs, par exemple des motifs à portions cylindriques de révolution aussi appelés godrons, permettant de disperser la lumière autour d'un axe parallèle aux axes des portions cylindriques de révolution. Cela est particulièrement avantageux pour assurer une bonne visibilité de la source lumineuse depuis un champ de vision angulaire large.
[0063] Alternativement, l'élément optique comporte une face de sortie au moins en partie convexe, de préférence une face de sortie ayant un rayon de courbure continu, par exemple une portion d'ellipsoïde, et est collé directement sur l’au moins un élément électroluminescent de sorte qu’un espace vide est sensiblement inexistant entre l'au moins un élément électroluminescent et l’optique de conformation des rayons lumineux. [0064] Optionnellement, un tel élément optique à face de sortie convexe et collé sans espace sur l'élément électroluminescent peut comporter ou non une portion de déviation des rayons lumineux par réflexion totale interne. Dans ce cas, la portion de déviation des rayons lumineux par réflexion totale interne est située de sorte à capter des rayons lumineux issus de l'au moins un élément électroluminescent formant avec le plan de la face supérieure du substrat de la source lumineuse un angle inférieur à 30°, de préférence inférieur à 10°, de préférence inférieur à 5°, les rayons étant alors redirigés vers une portion de la surface de sortie adaptée pour faciliter l’extraction de ces rayons et leur concentration, par exemple une portion plane de la surface de sortie, de préférence parallèle à la face supérieure du substrat. Une telle optique de conformation des rayons lumineux comportant à la fois une face de sortie convexe et une portion de réflexion interne totale a pour avantage de concentrer efficacement la lumière et d'éviter que la source lumineuse émette des rayons parasites problématiques pour l’aspect d'une matrice de sources lumineuses.
[0065] Alternativement, l'élément optique rapporté est un réflecteur, de préférence un réflecteur parabolique ou un réflecteur conique ou pyramidal. L’utilisation d’un réflecteur rapporté est particulièrement efficace en termes de coûts de revient. En particulier, les réflecteurs peuvent être réalisés par ablation de matière dans une plaque, par exemple par laser. Cette plaque peut alors aisément être rapportée par un procédé collectif sur plusieurs sources lumineuses, de préférence non singulées et regroupées dans un wafer, puis singulées une fois effectué l’assemblage de la plaque comportant les réflecteurs.
[0066] Avantageusement la surface du réflecteur est réfléchissante, de préférence métallisée. De préférence, le métal utilisé est du cuivre ou de l'aluminium, dont le dépôt est particulièrement économique. De préférence, cette métallisation a également lieu dans un procédé collectif, notamment sur wafer.
[0067] On comprend que le réflecteur peut alors être un tronc de parabole, de cône, ou de pyramide. Un réflecteur parabolique a l’avantage de rediriger efficacement les rayons dans une direction donnée, par exemple une direction normale à la face extérieure du substrat. Un réflecteur conique est particulièrement simple à réaliser, notamment par ablation laser, et est donc particulièrement économique.
[0068] Avantageusement, l'élément optique comporte des moyens de mise en position coopérant avec la face supérieure du substrat. En particulier, la face supérieure du substrat peut comporter des reliefs, par exemple des excroissances formées par un procédé additif. Lesdits moyens de mise en position permettent d'assurer un bon positionnement de l'élément optique, par exemple par un procédé de mise en place par vision, ou encore par un positionnement mécanique de logements de l'élément optique sur des plots, par exemple des plots cylindriques, coniques ou pyramidaux. Alternativement, l'élément optique comporte des plots cylindriques, coniques ou pyramidaux coopérant avec des logements prévus dans la face supérieure du substrat.
[0069] Avantageusement, l'optique de conformation des rayons lumineux concentre davantage des rayons lumineux autour d'un plan horizontal du véhicule, qu'autour d'un plan vertical comprenant un axe avant-arrière du véhicule automobile. Cela est mesurable en plaçant la source, ou le dispositif lumineux qui la contient, sur un banc de mesure d’intensité muni d’un goniomètre.
[0070] Avantageusement, l'optique de conformation est asymétrique en rotation, c’est-à-dire par rapport à toute normale à la face supérieure du substrat.
[0071] Avantageusement, l'optique de conformation est asymétrique par rapport à tout plan vertical du véhicule et/ou asymétrique par rapport à tout plan horizontal du véhicule. On comprend qu'une asymétrie de l'optique de conformation est strictement équivalente à des caractéristiques de concentration des rayons lumineux asymétrique.
[0072] Dans le cas de l'asymétrie de rotation, les caractéristiques de concentration de l'optique de conformation des rayons lumineux ne sont pas invariantes en rotation autour de tout axe normal à la surface émettrice de lumière d'au moins un élément électroluminescent ou à la face supérieure du substrat. Par exemple, cela peut être des optiques ayant des caractéristiques de concentration différentes autour d'un plan vertical et autour d'un plan horizontal. Il est par exemple particulièrement avantageux que l'optique de conformation des rayons lumineux concentre davantage les rayons issus d'au moins un élément électroluminescent autour d'un plan horizontal du véhicule, qu'autour d'un axe vertical comprenant l'axe avant-arrière du véhicule. De la sorte, on obtient aisément un feu de position arrière réglementaire qui puisse être vu efficacement depuis la plupart des positions autour du véhicule.
[0073] Dans l'exemple d'une optique de conformation des rayons lumineux asymétrique par rapport à tout plan horizontal, il est possible d'obtenir une distribution concentrée autour d'un plan horizontal du véhicule automobile, même dans le cas où le support de l'arrangement matriciel de sources lumineuses est incliné selon un axe horizontal par rapport à un plan normal à un axe avant- arrière du véhicule automobile. Lorsque le support de l'arrangement matriciel est ainsi incliné, un arrangement de sources lumineuses selon l'invention, ayant des optiques de conformation des rayons lumineux asymétriques par rapport à tout plan horizontal, permet en particulier de contribuer efficacement à une distribution compatible de la réglementation précitée. Dans un exemple particulier, un tel arrangement permet d'accomplir l'intégralité des fonctions feu de position arrière et stop alors que le support de l'arrangement matriciel est incliné par rapport à un plan vertical normal à un axe avant-arrière du véhicule.
[0074] Dans l'exemple d'une optique de conformation des rayons lumineux asymétrique par rapport à tout plan vertical du véhicule automobile, il est possible d'obtenir une distribution concentrée autour d'un plan horizontal du véhicule automobile, même dans le cas où le support de l'arrangement matriciel de sources lumineuses est incliné selon un axe vertical par rapport à un plan normal à un axe avant-arrière du véhicule automobile. Lorsque le support de l'arrangement matriciel est ainsi incliné, un arrangement de sources lumineuses selon l'invention, ayant des optiques de conformation des rayons lumineux asymétriques par rapport à un plan vertical, permet en particulier de contribuer efficacement à une distribution compatible de la réglementation précitée. Dans un exemple particulier, un tel arrangement permet d'accomplir l'intégralité des fonctions feu de position arrière et stop alors que le support de l'arrangement matriciel est incliné par rapport à un plan vertical comprenant à un axe avant- arrière du véhicule.
[0075] De la sorte, lorsque l'optique de conformation des rayons lumineux présente une asymétrie en rotation par rapport à toute normale à la face supérieure du substrat et/ou par rapport à tout plan vertical du véhicule et/ou par rapport à tout plan horizontal du véhicule, et que les rayons issus de l'au moins un élément électroluminescent sont concentrés autour d'un plan horizontal, il est possible d'adapter la source lumineuse de sorte qu'un arrangement matriciel de sources lumineuses permet d'effectuer ou de contribuer efficacement à une fonction de signalisation d'un véhicule automobile, en particulier un feu de position arrière, et ce même si le support de sources lumineuses n'est pas perpendiculaire à un axe avant arrière du véhicule automobile.
[0076] Avantageusement, dans l'exemple d'une optique de conformation des rayons lumineux asymétrique et lorsque l’angle d’inclinaison du support de l’arrangement matriciel de sources lumineuses par rapport à un plan est inférieur à 20°, l’optique de conformation des rayons lumineux est de type réfractive et non réflective, ce qui permet d’atteindre la distribution réglementaire pour des coûts de production moindres. Avantageusement, lorsque l’angle d’inclinaison du support de l’arrangement matriciel de sources lumineuses par rapport à un plan est supérieur à 20°, l’optique de conformation des rayons lumineux comporte une partie réfractive et une partie réflective, ce qui permet d’atteindre la distribution réglementaire pour des coûts de production moindres.
[0077] Dans un exemple particulier, l'optique de conformation concentre les rayons autour d'un plan horizontal du véhicule, et disperse les rayons autour d'un plan vertical du véhicule. De la sorte, une visibilité d'un arrangement matriciel de sources lumineuses est conservée pour des observateurs tant qu'ils ont un contact visuel avec l'arrangement matriciel.
[0078] Avantageusement, l'optique de conformation comporte un réflecteur.
Avantageusement, le réflecteur est adapté pour concentrer des rayons lumineux issus d'au moins un élément électroluminescent. Un tel réflecteur permet de concentrer des rayons lumineux issus d'au moins un élément électroluminescent ayant une trajectoire proche de celle du plan de la face supérieure du substrat, par exemple des rayons émis dans un plan formant un angle inférieur à 30°, préférentiellement un angle inférieur à 20° avec le plan de la face supérieure du substrat. De la sorte, l’optique de conformation évite des pertes de lumière dans des directions dans lesquelles il est peu probable qu'elle soit perçue pour un utilisateur extérieur ; de plus, des réflexions parasites sont évitées.
[0079] Avantageusement, le réflecteur a une face inclinée adaptée pour concentrer des rayons issus d'un élément électroluminescent. Une telle face peut par exemple avoir une section droite, parabolique ou elliptique dans un plan perpendiculaire à la face supérieure du substrat. Avantageusement, les réflecteurs sont des prismes à section triangulaire.
[0080] Avantageusement, les réflecteurs sont situés sur le substrat. De préférence, les réflecteurs sont situés à même le substrat. Avantageusement, les réflecteurs sont fabriqués par un procédé comprenant une étape de formation d’un corps de réflecteur, par exemple par un procédé semi additif ou par moulage, et, de préférence, une étape de dépôt d’une couche réfléchissante. De la sorte, la partie transparente de l'optique de conformation des rayons lumineux issus de l'au moins un élément électroluminescent peut être rapportée directement par-dessus le réflecteur. Alternativement les réflecteurs sont fabriqués séparément sous forme d’une pièce à assembler sur le substrat, de préférence par collage ; par exemple, une grille ou un panneau de dimensions identiques, dans une matière organique ou inorganique. De préférence, une couche réfléchissante a été déposée au moins partiellement sur la pièce à assembler. De préférence, la couche réfléchissante comprend une couche métallique, par exemple un dépôt de cuivre, d’aluminium, ou d’or.
[0081] De la sorte, la partie transparente de l'optique de conformation des rayons lumineux issus de l'au moins un élément électroluminescent peut être rapportée directement par-dessus le réflecteur. Dans un exemple de réalisation, les rayons déviés par les réflecteurs ne sont pas déviés par la partie transparente de l'optique de conformation des rayons lumineux.
[0082] Avantageusement, un revêtement antireflet et/ou un revêtement organique et/ou un revêtement inorganique est appliqué sur l'optique de conformation des rayons lumineux et/ou sur des côtés de la source lumineuse. Un revêtement antireflet permet de diminuer des pertes et des parasites lumineux. Un revêtement inorganique a pour effet technique de diminuer une perméabilité de la source lumineuse à des éléments de l'environnement automobile, tels de l'eau et des composés halogénés, notamment soufrés et chlorés. Avantageusement encore, le revêtement antireflet est inorganique et il est déposé sur toute la surface extérieure de la source lumineuse, sauf au moins les contacts de connexion ; de la sorte, on cumule les avantages techniques pour une même opération. Par exemple, le revêtement peut être appliqué par un procédé de type PVD (de l'abréviation pour le terme anglo-saxon Physical Vapor Déposition) ou, dans un autre exemple, par un procédé de dépôt à plasma atmosphérique.
[0083] Avantageusement, le revêtement peut comprendre un élément optique de l'optique de conformation des rayons lumineux, par exemple un élément de lentille ou une colle directement et hermétiquement disposé sur la face émettrice de l'élément électroluminescent. On comprend cependant que tout revêtement appliqué sur un élément électroluminescent ne doit pas être interprété comme un élément optique faisant partie d'une optique de conformation des rayons lumineux.
[0084] Avantageusement, la source lumineuse a une empreinte et/ou des contacts de connexion asymétriques selon tout plan normal au plan de la face supérieure du substrat. On entend par l'empreinte de la source lumineuse une surface occupée sur un support de montage par la source lumineuse et sur laquelle des composants, en particulier d'autres sources lumineuses, ne peuvent pas être montés. De préférence, la forme du substrat, ou la forme de sa face supérieure ou la forme de sa face inférieure, définit l'empreinte de la source lumineuse. De la sorte, l'empreinte et/ou les contacts de connexion de la source forment un détrompeur permettant d'éviter un mauvais assemblage de la source lumineuse sur le support, et de faciliter son positionnement. Cela est particulièrement avantageux lorsque l'optique de conformation des rayons lumineux est elle-même asymétrique. Alternativement, l’optique de conformation des rayons lumineux a une empreinte asymétrique et le substrat a une empreinte carrée, de sorte que l’espacement entre les substrats est régulier et permet d’obtenir une apparence homogène de l'arrangement matriciel de sources lumineuses sur le support, en particulier quant aux lignes d’espacement entre les substrats des sources lumineuses.
[0085] Avantageusement, la source lumineuse a une empreinte présentant une dimension courte dans une première direction et une dimension longue dans une deuxième direction. Cela permet d'assurer la bonne orientation de la source lumineuse sur le support de sources lumineuses lors de l'assemblage. Par ailleurs, lorsque la source lumineuse est produite en wafer avec des procédés en commun, cela permet un meilleur rendement des wafers.
[0086] Dans un premier exemple d'une réalisation particulière de l'invention, l'optique de conformation des rayons lumineux issus de la source lumineuse est constituée d'une partie transparente englobant au moins un élément électroluminescent, dont la surface est assimilable à une portion d’ellipsoïde et forme un dioptre.
Dans cet exemple de réalisation, le dioptre concentre les rayons lumineux issus d'au moins un élément électroluminescent autour d'une direction d'intensité maximale normale à la face supérieure du substrat. Des rayons parallèles à la face supérieure du substrat ou présentant un angle faible avec cette surface (par exemple moins de 20°, de préférence moins de 10°, de préférence moins de 5°) sont cependant peu déviés par le dioptre et ne sont donc pas concentrés par le dioptre. Dans un dispositif lumineux de véhicule automobile, de tels rayons ne contribuent généralement pas à une fonction lumineuse dans la mesure où, pour des rayons présentant un angle inférieur à 20°, ils sont souvent bloqués par des éléments du dispositif lumineux, tels le boîtier ou d’autres éléments décoratifs. Par ailleurs, ces rayons peuvent perturber l’apparence du dispositif lumineux lorsqu’ils sont réfléchis de façon imprévue par un élément du dispositif lumineux. Dans le cas d’un dispositif lumineux de signalisation muni d’une glace de dispositif lumineux séparant l’arrangement matriciel de l’extérieur du véhicule, dans lequel des sources lumineuses sont arrangées à une distance très faible d’une glace de dispositif lumineux ou collées à ladite glace, même des rayons présentant un angle inférieur à 5° peuvent être réfléchis vers l’intérieur du dispositif lumineux par ladite glace, ce qui peut perturber l’apparence du dispositif lumineux. Dans le cas d’une glace galbée, même des rayons ayant un angle inférieur à 10° peuvent être déviés vers l’intérieur du dispositif lumineux.
[0087] Dans un deuxième exemple d'une réalisation particulière de l'invention, l'optique de conformation des rayons lumineux issus de la source lumineuse est constituée d'un réflecteur et d'une partie transparente englobant au moins un élément électroluminescent. La surface d'une première portion de la partie transparente de l'optique de conformation des rayons lumineux est assimilable à une portion d’ellipsoïde. Dans cet exemple de réalisation, le dioptre concentre les rayons lumineux issus de l’au moins un élément électroluminescent autour d'une direction d'intensité maximale normale à la face supérieure du substrat. Des rayons parallèles à la face supérieure du substrat ou présentant un angle faible (par exemple moins de 20°, de préférence moins de 10°, de préférence moins de 5°) sont déviés par les réflecteurs. Par exemple, une première portion forme un premier dioptre ellipsoïdal et une seconde portion, située au moins en partie en regard des réflecteurs, est un plan formant un dioptre plan qui dévie peu la lumière déviée par les réflecteurs. De la sorte, ces rayons ne perturbent pas un aspect de l’arrangement matriciel et contribuent à la réalisation d’une fonction telle qu’une fonction réglementaire par le dispositif lumineux.
[0088] Avantageusement, une portion de la partie transparente de l'optique de conformation des rayons lumineux est adaptée pour qu'un faisceau de rayons déviés par les réflecteurs soit peu ou pas dévié par la partie transparente de l'optique de conformation des rayons lumineux. De la sorte, l’optique de conformation des rayons lumineux est simplifiée. Par exemple, une première portion forme un premier dioptre convexe et une seconde portion, située au moins en partie en regard des réflecteurs, est un plan formant un dioptre plan qui dévie peu la lumière déviée par les réflecteurs. [0089] Avantageusement, les réflecteurs sont adaptés pour assurer une distance minimum entre une surface d’entrée des rayons de la partie transparente de l’optique de conformation des rayons lumineux et la face supérieure de l’au moins un élément électroluminescent. De la sorte, une même pièce assure des fonctions de réflecteur et d’espaceur, de sorte qu’une performance de la source lumineuse est améliorée et un coût est diminué.
[0090] Avantageusement, le circuit électronique comporte un circuit intégré adapté pour alimenter la source lumineuse élémentaire. De la sorte, il n'est pas nécessaire de prévoir sur le support de sources lumineuses un circuit d'alimentation de la source lumineuse, et une complexité ainsi que des coûts de production dudit support sont limités.
[0091] Avantageusement, le circuit intégré est adapté pour alimenter l’au moins un élément électroluminescent selon une consigne, par exemple un signal de consigne peut être reçu par des connexions de pilotage de la source lumineuse, une alimentation du circuit intégré peut être reçue par d'autres connexions de la source lumineuse, et le circuit intégré alimente l'au moins un élément électroluminescent en fonction de ladite consigne. De la sorte, un support de l'arrangement matriciel de sources lumineuses peut être simplifié et un coût de revient est limité. [0092] Avantageusement, le circuit intégré est un circuit de pilotage, par exemple un circuit élémentaire d'un circuit de pilotage à matrice active de l'arrangement matriciel. De la sorte, une étape de montage d'un tel circuit à matrice active sur le support formant arrangement matriciel est évité. En particulier, il est souvent demandé que les dispositifs de signalisation prennent des formes variées, or la fabrication de supports comprenant des circuits de pilotage des sources lumineuses à matrice active nécessite des investissements élevés pour chaque modèle, ce qui rend chère la réalisation de modèles aux dimensions variées.
[0093] Avantageusement, l’au moins un élément électroluminescent est enterré dans le substrat, de sorte que la distance de la surface émettrice de l'au moins un élément électroluminescent à un dioptre de sortie de l'optique de conformation des rayons lumineux issus de l’au moins un élément électroluminescent est augmentée. Ainsi, une hauteur de la source lumineuse est réduite, une dispersion de la chaleur de l'au moins un élément électroluminescent est améliorée, et les coûts de production sont diminués. De plus, un éloignement de l'au moins un élément électroluminescent de la surface de sortie de l’optique de conformation des rayons lumineux issus dudit au moins un élément électroluminescent permet d’améliorer une intensité lumineuse dans une direction d'intensité maximale de la lumière émise par la source lumineuse.
[0094] Avantageusement, l’au moins un élément électroluminescent est disposé de sorte que sa surface émettrice affleure de la face supérieure du substrat. Cela est avantageusement obtenu par un procédé, de préférence sur wafer, comprenant la constitution d’un substrat collectif selon un procédé comportant les étapes suivantes :
- disposition de l’au moins un éléments électroluminescents sur une surface plane d’un plateau de maintien temporaire,
- optionnellement disposition de circuits intégrés de contrôle sur le plateau de maintien temporaire,
- recouvrement de la surface plane et des éléments électroluminescents par une couche de résine de type diélectrique,
- constitution d’un réseau d’interconnexion dans ladite couche de résine, notamment par ablation laser de parties de la couche de résine, ledit réseau permettant d’alimenter les éléments électroluminescents,
- optionnellement, ajout de couches de résine supplémentaires et de réseaux d’interconnexion supplémentaires ; le réseau pouvant alors comporter une ou plusieurs couches,
- constitution de contacts sur la dernière couche de résine.
[0095] Au terme de ce procédé, le substrat collectif est constitué, l’ensemble peut alors être retourné et le plateau de maintien temporaire peut être retiré. De la sorte, on a obtenu un substrat collectif.
[0096] Des optiques de conformation des rayons lumineux peuvent alors être associées à des éléments électroluminescents. De la sorte, le procédé reste collectif jusqu'à la singulation de sources lumineuses selon l’invention.
[0097] Avantageusement, la source lumineuse comporte un seul élément électroluminescent.
[0098] Alternativement, la source lumineuse comporte une pluralité d’éléments électroluminescents
[0099] Avantageusement, chacun des éléments électroluminescents coopère avec l'optique de conformation des rayons lumineux. De la sorte, un nombre de sources lumineuses pour assurer une contribution donnée à une fonction de signalisation est réduit, un nombre d'opérations de fabrication de sources lumineuses (en particulier des opérations de singulation et de qualification) et un nombre de composants à monter sur le support pour réaliser l'arrangement matriciel est réduit. Ainsi, le coût de fabrication et la complexité de l'arrangement matriciel est particulièrement réduit.
[0100] Alternativement, au moins un des éléments électroluminescents ne coopère pas avec une portion transparente de l'optique de conformation des rayons lumineux de sorte qu'une empreinte de l'au moins un élément électroluminescent sur le substrat est réduit. Il est alors possible d'ajouter des éléments électroluminescents en conservant une empreinte de la source lumineuse, ou en l'augmentant peu, du moins en conservant une empreinte significativement moindre que lorsque tous les éléments électroluminescents ont un élément optique dédié à l'au moins une source lumineuse. Par exemple, au moins un élément électroluminescent est placé dans une zone centrale du substrat et coopère avec une partie transparente de l'optique de conformation des rayons lumineux, et l'élément électroluminescent est placé dans une zone périphérique du substrat et ne coopère pas avec la partie transparente de l'optique de conformation des rayons lumineux, c’est-à-dire que les rayons émis par l'élément électroluminescent dirigés vers l'extérieur du dispositif lumineux de véhicule automobile ne traversent pas la partie transparente.
[0101] Avantageusement, chaque élément électroluminescent correspond à une portion optique de conformation des rayons lumineux lui assurant une distribution lumineuse identique ou au moins similaire à celle des autres éléments électroluminescents de la source lumineuse. De la sorte, une perception des éléments électroluminescents de la source lumineuse est homogène. De préférence, l'espacement des éléments électroluminescents de l'arrangement matriciel est sensiblement identique, peu importe si lesdits éléments électroluminescents appartiennent à des sources lumineuses différentes. De la sorte, une perception des éléments électroluminescents de l'arrangement matriciel entier est homogène.
[0102] Alternativement, tous les éléments électroluminescents correspondent à une même optique de conformation des rayons lumineux, qui assure pour chaque élément électroluminescent une distribution lumineuse identique. Ainsi, chaque élément électroluminescent correspond à une portion de la même optique de conformation des rayons lumineux venue de matière et constituant une pièce unique. De la sorte une seule optique de conformation des rayons lumineux peut être fabriquée pour plusieurs sources lumineuses.
[0103] Alternativement encore, l'optique de conformation des rayons lumineux est constituée d'un ensemble d'éléments optiques séparés et similaires. Cela permet par exemple de grouper des éléments électroluminescents similaires de sorte qu'une homogénéité de l'arrangement matriciel est maximisée tandis qu'un nombre de sources lumineuses nécessaire à arranger sur le support est réduit.
De la sorte, des coûts d'assemblage sont réduits et un réseau de connexion des sources lumineuses est simplifié, ce qui permet d'utiliser un support moins coûteux.
[0104] Alternativement encore, l'optique de conformation des rayons lumineux est constituée d'un ensemble d'éléments optiques séparés et présentant des formes variant selon l'utilisation de la source lumineuse.
[0105] Alternativement encore, tous les éléments électroluminescents correspondent à une même optique de conformation des rayons lumineux, de préférence venue de matière, et une optique de conformation des rayons lumineux venue de matière assure pour les éléments électroluminescents des distributions lumineuses différentes. De la sorte, une même source lumineuse permet d’avoir une distribution lumineuse différente pour certains éléments électroluminescents, notamment lorsque des éléments électroluminescents doivent participer à des fonctions différentes.
[0106] Avantageusement, la source lumineuse comporte plusieurs éléments électroluminescents arrangés en mailles, c’est-à-dire qu'ils constituent un sous- ensemble de l'arrangement matriciel général.
[0107] Avantageusement, les éléments électroluminescents sont disposés sur les sources lumineuses de sorte que les éléments électroluminescents sont identiquement espacés dans l'arrangement matriciel de sources lumineuses selon des directions principales de cet arrangement matriciel. Par exemple, lorsque la maille de l'arrangement matriciel est carrée, c’est-à-dire que les sources lumineuses sont dans un arrangement matriciel ayant deux directions principales qui sont orthogonales et que les sources lumineuses sont identiquement espacées selon ces deux directions, la maille de la source lumineuse est de préférence carrée. De préférence, la source lumineuse comporte 4 éléments électroluminescents.
[0108] Dans un autre exemple, lorsque la maille de l'arrangement matriciel est rectangulaire, c’est-à-dire que les sources lumineuses sont disposées selon une matrice bidimensionnelles s'étendant selon deux direction orthogonales mais que les sources lumineuses ne sont pas nécessairement identiquement espacées selon ces deux directions, la maille de la source lumineuse est de préférence rectangulaire, c’est-à-dire qu'elle comporte au moins 4 éléments électroluminescents disposées aux angles d'un rectangle. De préférence, une telle maille comporte 4 éléments électroluminescents.
[0109] Dans un autre exemple, lorsque la maille de l'arrangement matriciel est rectangulaire, la maille est de préférence linéaire, c’est-à-dire que les éléments électroluminescents sont alignés selon une direction donnée. De préférence, la maille comporte 2 éléments électroluminescents. De préférence, les 2 éléments électroluminescents sont alignés horizontalement. De préférence, chacune de ces éléments électroluminescents a une optique de conformation des rayons lumineux dédiée, qui est de préférence une portion d’ellipsoïde, et une coupe du dioptre de sortie de chacune des optiques de conformation des rayons lumineux est une portion d’ellipse.
[0110] Dans un autre exemple, lorsque la maille de l'arrangement matriciel est un parallélogramme, c’est-à-dire que les sources lumineuses sont alignées selon 2 directions non orthogonales, la maille de la source lumineuse est de préférence un parallélogramme, c’est-à-dire que les éléments électroluminescents sont disposés aux angles d'un parallélogramme. De préférence la maille parallélogramme de la source lumineuse est telle que dont les sources sont disposées selon les mêmes directions que celles des mailles de l'arrangement matriciel. De préférence, une telle maille comporte 4 éléments électroluminescents.
[0111] Dans un autre exemple, lorsque la maille de l'arrangement matriciel est hexagonale, la maille peut être triangulaire ou hexagonale. De préférence, une telle source lumineuse comporte 3 sources lumineuses individuelles.
[0112] Lorsque la source lumineuse comporte plusieurs éléments électroluminescents, il est particulièrement avantageux que le circuit électronique de la source lumineuse comporte un circuit intégré apte à alimenter individuellement, c’est-à-dire indépendamment ou simultanément, chacune des éléments électroluminescents selon une ou plusieurs consignes reçues par la source lumineuse. De la sorte, un nombre de contacts de connexion nécessaire à l'alimentation de la source lumineuse au pilotage des éléments électroluminescents est réduit, un support de l'arrangement matriciel de sources lumineuses est simplifié et un coût d'un module de signalisation de véhicule automobile comportant l'arrangement matriciel de sources lumineuses est réduit. De plus, un coût d'intégration dudit circuit intégré est diminué lorsque ledit circuit intégré permet d'alimenter plusieurs éléments électroluminescents [0113] Avantageusement, un tel circuit intégré est un élément d'un système de contrôle de type à matrice active, de sorte qu'un signal électrique reçu pour un élément électroluminescent donné de la source lumineuse permet une alimentation électrique dudit élément électroluminescent même pendant qu'aucun signal électrique n'est reçu pour l'alimentation électrique dudit élément électroluminescent. Un tel circuit permet d'obtenir un flux lumineux maximum de la source lumineuse même lorsqu'aucun signal électrique pour l'alimentation des éléments électroluminescents n'est reçu. Par exemple, une source lumineuse comportant 4 éléments électroluminescents et un circuit intégré apte à les alimenter individuellement, a un total de contacts de connexion inférieur ou égal à 7, de préférence égal à 6. De la sorte, un support d'un arrangement matriciel de sources lumineuses permettant d'activer individuellement tous les éléments électroluminescents des sources lumineuses y étant arrangées est particulièrement simplifié et son coût est réduit.
[0114] Avantageusement, un tel circuit intégré est apte à recevoir séquentiellement sur une même entrée des signaux électriques concernant plusieurs éléments électroluminescents d'une même source lumineuse et à alimenter lesdits éléments électroluminescents en fonction des informations reçues séquentiellement. Cela permet de réduire encore davantage le nombre de contacts électriques sur la face inférieure du substrat. Par exemple, une source lumineuse comportant 4 éléments électroluminescents et un circuit intégré apte à les alimenter individuellement, a un total de contacts de connexion inférieur ou égal à 4, de préférence égal à 3. De la sorte, un support d'un arrangement matriciel de sources lumineuses permettant d'activer individuellement tous les éléments électroluminescents des sources lumineuses y étant arrangées est particulièrement simplifié et son coût est réduit.
[0115] Lorsque le circuit électronique comprend un circuit intégré, un système d'affichage à matrice active est réalisable sans que le support ne nécessite de circuits à films de transistors fins, connus de l'homme du métier sous l'abréviation TFT, qui nécessitent pour leur fabrication le développement de masques, ce développement ayant un coût élevé, qui doit être répété pour chaque nouvelle forme de support d'un arrangement matriciel. De la sorte, les dispositifs de signalisation comprenant des sources lumineuses selon l'invention sont aisément adaptables aux contraintes de formes des dispositifs de signalisation variant significativement d'un véhicule à l'autre, sans générer de tels coûts de développement.
[0116] Avantageusement, l'optique de conformation des rayons lumineux comporte un filtre coloré, de sorte que des rayons lumineux issus des éléments électroluminescents soient filtrés. De préférence, le filtre ne laisse passer que des rayons de longueur d’onde proche de celle des rayons issus de l’au moins un élément électroluminescent. De préférence, dans le cas d’un feu de position arrière, le filtre ne laisse passer que de la lumière rouge. De la sorte un aspect éteint de la source lumineuse est amélioré.
[0117] Avantageusement, la face supérieure du substrat a un revêtement absorbant les rayons lumineux de sorte à éviter des parasites lumineux. Par exemple, la face supérieure a un revêtement noir mat.
[0118] Avantageusement, un revêtement minéral protecteur est appliqué sur toutes les faces non conductrices de la source lumineuse, de sorte à améliorer une résistance à la corrosion, notamment dans un environnement automobile.
[0119] La présente invention est maintenant décrite à l’aide d’exemples uniquement illustratifs et nullement limitatifs de la portée de l’invention, et à partir des illustrations jointes, dans lesquelles :
[0120] La [Fig. 1] représente, schématiquement et partiellement, une vue en coupe d'une source lumineuse selon un premier mode de réalisation de l’invention ;
[0121] La [Fig. 1p] représente, schématiquement et partiellement, une vue en perspective d'une source lumineuse selon un premier mode de réalisation de l’invention ; [0122] La [Fig. 2] représente, schématiquement et partiellement, une vue en coupe d'une source lumineuse selon une variante du premier mode de réalisation de l’invention;
[0123] La [Fig. 3p] représente, schématiquement et partiellement, une vue en coupe d'une source lumineuse selon un deuxième mode de réalisation de l’invention ;
[0124] La [Fig. 3c] représente, schématiquement et partiellement, une vue en coupe d'une source lumineuse selon un deuxième mode de réalisation de l’invention ;
[0125] La [Fig. 4t] représente, schématiquement et partiellement, une vue de côté d’une source lumineuse selon un troisième mode de réalisation de l’invention;
[0126] La [Fig. 4I] représente, schématiquement et partiellement, une vue de côté d’une source lumineuse selon un troisième mode de réalisation de l’invention;
[0127] La [Fig. 4c] représente, schématiquement et partiellement, une vue de côté d’une source lumineuse selon une variante d’un troisième mode de réalisation de l’invention;
[0128] La [Fig. 4p] représente, schématiquement et partiellement, une vue en perspective d'une source lumineuse selon une variante d’un quatrième mode de réalisation de l’invention ;
[0129] La [Fig. 5V] représente, schématiquement et partiellement, une vue en coupe d'un support d'un arrangement matriciel de sources lumineuses selon un cinquième mode de réalisation de l’invention ;
[0130] La [Fig. 5H] représente, schématiquement et partiellement, une vue en coupe d'un support d'un arrangement matriciel de sources lumineuses selon un cinquième mode de réalisation de l’invention ;
[0131 ] Dans la description qui suit, les éléments identiques, par structure ou par fonction, apparaissant sur différentes figures conservent, sauf précision contraire, les mêmes références.
[0132] On a représenté en [Fig. 1] une vue en coupe d'une source lumineuse 100 selon un premier mode de réalisation de l’invention, selon un plan orthogonal au substrat 120.
[0133] La source lumineuse 100 de la [Fig. 1] fait partie d'un arrangement matriciel de sources lumineuses identiques d'un module lumineux de véhicule automobile.
[0134] La source lumineuse 100 comporte un substrat 120 doté d'une face supérieure 122, d'une face inférieure 121 opposée à la face supérieure 122, et d'un circuit électronique 150. [0135] Le substrat 120 définit l'empreinte de la source lumineuse 100. Ici, le substrat 120, et donc la source lumineuse 100, ont une empreinte carrée, de 200 pm de côté.
[0136] La source lumineuse 100 comporte un élément électroluminescent 130 de type microled monté sur la face supérieure 122 du substrat 120, comportant une partie émettrice de lumière, ladite partie émettrice ayant une surface de 900 pm2 vue depuis un axe normal à la face supérieure 122 du substrat 120.
[0137] La source lumineuse 100 comporte de plus une optique 140 de conformation des rayons lumineux. Dans le mode de réalisation de la [Fig.1 ], l'optique 140 de conformation des rayons lumineux forme, au-dessus de la face supérieure 122 du substrat 120, un dioptre ellipsoïdal adapté pour concentrer des rayons lumineux issus de l'au moins un élément électroluminescent 130 autour d'un axe normal au substrat 120. La surface émettrice de l'élément électroluminescent 130 est proche dudit axe normal au substrat 120. Des espaceurs solidarisés au substrat 120 maintiennent l’optique 140 de conformation des rayons lumineux à une distance prédéfinie du substrat 120 de sorte qu’un espace vide sépare l’élément électroluminescent 130 de l’optique 140 de conformation des rayons lumineux. L’optique 140 de conformation des rayons lumineux est collée aux espaceurs 141 de sorte à assurer sa fixation.
[0138] De plus, la face inférieure 121 comporte des contacts de connexion 151 reliés au circuit électronique 150, lesdits contacts étant ici réalisés sous forme de pads, c’est-à-dire des pastilles de contact, le circuit électronique 150 étant adapté pour alimenter au moins un élément électroluminescent 130.
[0139] Lorsque la source lumineuse 100 est assemblée sur un support formant un module lumineux d'un dispositif de signalisation de véhicule automobile, elle est assemblée de sorte qu'un axe d'intensité lumineuse maximale est disposé sensiblement selon un axe avant arrière du véhicule automobile. La source lumineuse 100 est de plus orientée de sorte que le côté long du substrat 120 est sensiblement horizontal. Ainsi, les rayons lumineux issus de l'élément électroluminescent 130 sont davantage concentrés autour d'un plan horizontal qu'autour d'un plan vertical. Une telle distribution des rayons lumineux est particulièrement favorable à la réalisation d'une fonction de signalisation telle une fonction de feu de position arrière, de feu stop, ou d’indicateur de direction, selon les normes UNECE précitées. [0140] On a représenté en [Fig. 1p] une vue en perspective de la source lumineuse 100 de la [Fig. 1]
[0141] On a représenté en [Fig. 2] une vue en coupe selon un plan orthogonal au substrat 220 d'une source lumineuse 200 selon une variante du premier mode de réalisation de l’invention.
[0142] Le substrat 220 sur lequel est monté l'élément électroluminescent 230 ainsi que l’élément électroluminescent 230 sont identiques à ceux de la [Fig. 1]
[0143] La source lumineuse 200 comporte de plus une optique 240 de conformation des rayons lumineux. Dans le mode de réalisation de la [Fig.2], l'optique 240 de conformation des rayons lumineux comporte des réflecteurs solidarisés au substrat 220. Lesdits réflecteurs ont une face réfléchissante métallisée avec du cuivre, de section droite. Lesdits réflecteurs permettent d’éviter que des rayons présentant un angle avec le substrat 220 inférieur à 20° soient déviés vers l’intérieur du dispositif lumineux par la partie transparente de l’optique 240 de conformation des rayons lumineux. Dans le cas particulier de la [Fig.2], lesdits réflecteurs sont réalisés par un procédé additif.
[0144] L’optique 240 de conformation des rayons lumineux forme de plus, au-dessus de la face supérieure 222 du substrat 220, un élément optique rapporté, comportant une face d’entrée plane parallèle à une face supérieure 222 du substrat 220 et une face de sortie comportant une portion formant un dioptre ellipsoïdal 242 adapté pour concentrer des rayons lumineux issus de l'au moins un élément électroluminescent 230 autour d'une direction d'intensité maximale normale au substrat 220. La surface émettrice de l'élément électroluminescent 230 est traversée par ladite direction d'intensité maximale normale. La face de sortie comporte également un dioptre plan 241 parallèle à la face supérieure 222 du substrat 220, situé sur une région en droit des réflecteurs 245, de sorte que la lumière issue de l’élément électroluminescent 230 et réfléchie sur les réflecteurs est peu déviée ou n'est pas déviée par le dioptre ellipsoïdal de l’optique 240 de conformation des rayons lumineux.
[0145] Les réflecteurs 245 ont également un rôle d’espaceurs, et contribuent à maintenir la partie transparente de l’optique 240 de conformation des rayons lumineux à une distance prédéfinie du substrat 220 de sorte qu’un espace vide sépare l’élément électroluminescent 230 de l’optique 240 de conformation des rayons lumineux. La partie transparente de l’optique 240 de conformation des rayons lumineux est collée aux réflecteurs.
[0146] On a représenté en [Fig. 3p] une vue en coupe d'une source lumineuse 301 selon un deuxième mode de réalisation de l’invention.
[0147] La source lumineuse 301 de la [Fig. 3p] fait partie d'un arrangement matriciel de sources lumineuses identiques d'un module lumineux de véhicule automobile.
[0148] La source lumineuse 301 comporte un substrat 320 doté d'une face supérieure 322, d'une face inférieure opposée à la face supérieure 322, et d'un circuit électronique.
[0149] La source lumineuse 301 comporte un élément électroluminescent 330 de type micro led monté sur la face supérieure 322 du substrat 320, comportant une partie émettrice de lumière, ladite partie émettrice ayant une surface de 2 000 pm2 vue depuis un axe normal à la face extérieure du substrat 320.
[0150] La source lumineuse 301 comporte de plus une optique 240 de conformation des rayons lumineux. Dans le mode de réalisation de la [Fig.3p], il n’y a pas de partie transparente en droit de l’élément électroluminescent 330, et l'optique 340 de conformation des rayons lumineux est un réflecteur de forme paraboloïde, adapté pour réfléchir des rayons lumineux issus de l'au moins un élément électroluminescent 330 de sorte à les concentrer autour d'un axe normal au substrat 320. Ledit axe autour duquel sont concentrés les rayons lumineux est alors un axe d'intensité maximale. La surface émettrice de l'au moins un élément électroluminescent 330 est proche dudit axe. Le réflecteur est directement collé sur la face supérieure 322 du substrat 320, laissant libre la surface émettrice de l’élément électroluminescent 330.
[0151 ] Lorsque la source lumineuse 301 est arrangée sur un support formant un module lumineux d'un dispositif de signalisation de véhicule automobile, elle est arrangée de sorte que l'axe d'intensité maximale est disposé sensiblement selon un axe avant arrière du véhicule automobile.
[0152] On a représenté en [Fig. 3c] une vue en coupe d'une source lumineuse 300 selon une variante du deuxième mode de réalisation de l’invention.
[0153] La source lumineuse 300 de la variante de la [Fig. 3c] diffère de celle exposée dans la [Fig. 3p] en ce qu'elle comporte un réflecteur conique symétrique autour d'un axe de révolution. Un tel réflecteur est particulièrement économique à réaliser. [0154] On a représenté en [Fig. 4t] une vue en coupe d'une source lumineuse 400 selon un troisième mode de réalisation de l’invention.
[0155] La source lumineuse 400 de la [Fig. 4t] fait partie d'un arrangement matriciel de sources lumineuses identiques d'un module lumineux de véhicule automobile.
[0156] Le substrat 420 sur lequel est monté l'élément électroluminescent 430 ainsi que l’élément électroluminescent 430 sont identiques à ceux de la [Fig. 1]
[0157] La source lumineuse 400 comporte de plus une optique 440 de conformation des rayons lumineux. Dans le mode de réalisation de la [Fig. 4t], l'optique 440 de conformation des rayons lumineux est une optique de type à réflexion totale interne, aussi connue de l’homme du métier sous l’abréviation anglo-saxonne TIR, pour Total Internai Reflection. L’optique 440 de conformation des rayons lumineux comprend une portion transparente en droit de l’élément électroluminescent 430 et comportant au moins une face sur laquelle des rayons issus de l’élément électroluminescent 430 se réfléchissent totalement. L’optique 441 de conformation des rayons lumineux est collée directement sur l’élément électroluminescent 430 à l'aide d'une colle transparente d'indice optique similaire à celui de l'élément optique, de sorte que des rayons issus de l’élément électroluminescent 430 présentant un angle faible avec le plan de la face supérieure 422 du substrat 420 ne soient pas réfléchis par une face d’entrée. De la sorte, on évite la perte de rayons lumineux et on augmente par conséquent une efficacité de l’optique 441 de conformation des rayons lumineux.
[0158] Une face latérale de l’optique 441 de conformation des rayons lumineux comporte une portion de paraboloïde, adaptée pour concentrer des rayons lumineux issus de l'au moins un élément électroluminescent 430 autour d'une direction d'intensité maximale de la lumière émise par la source lumineuse 400 normale au substrat 420. Un foyer de la surface émettrice de l'au moins un élément électroluminescent 430 est proche de ladite direction d'intensité maximale.
[0159] L’optique 441 de conformation des rayons lumineux a une surface de sortie plane normale à la direction d'émission préférentielle, de sorte que des rayons déviés par la portion paraboloïde de l’optique 441 de conformation des rayons lumineux ont un angle d'incidence faible sur ladite surface de sortie, de sorte à défavoriser une réflexion d'un rayon issu de l'élément électroluminescent 430 vers le substrat 420, y compris lorsque ledit rayon a été dévié par réflexion interne totale par une face latérale de l'élément optique rapporté.
[0160] On a représenté en [Fig. 4I] une vue en perspective d'une source lumineuse
401 selon une variante du troisième mode de réalisation de l’invention.
[0161] Dans cette variante, tous les aspects sont similaires à ceux du mode de réalisation de la [Fig. 4t]. La variante exposée en [Fig. 4I] diffère du mode de réalisation de la [Fig. 4t] en ce que l'élément optique rapporté comporte des pattes coopérant avec le substrat 420 pour assurer un positionnement relatif de l'élément optique rapporté et de l'élément électroluminescent 430. De la sorte, une mise en position de l'élément optique rapporté est facilitée.
[0162] On a représenté en [Fig. 4c] une vue en perspective d'une source lumineuse 403 selon une variante du troisième mode de réalisation de l’invention.
[0163] Dans cette variante, tous les aspects sont similaires à ceux du mode de réalisation de la [Fig. 4I] hormis la surface de sortie, qui n’est pas plane mais qui comporte une série d’optiques sous forme de portions cylindriques de révolution juxtaposées 443, les axes desdites portions cylindriques 443 étant orientés selon un axe sensiblement vertical, de sorte que les rayons atteignant la surface de sortie sont dispersés dans un plan horizontal. Cela permet d’assurer que la lumière issue du module de signalisation sont visibles pour tout observateur ayant un contact visuel avec le module lumineux.
[0164] On a représenté en [Fig. 4p] une vue en perspective d'une source lumineuse
402 selon le troisième mode de réalisation de l’invention.
[0165] Dans cette variante, tous les aspects sont similaires à ceux du mode de réalisation de la [Fig. 4I] hormis la surface de sortie, qui n’est pas plane mais qui comporte une série d’optiques sous forme de portions de prismes juxtaposés 442, des faces desdits prismes 442 étant orientées selon un axe perpendiculaire à une direction préférentielle pour l’intensité de la lumière issue de la source lumineuse 402, de sorte que les rayons atteignant la surface de sortie sont redirigés dans cette direction. Cela permet d’assurer que la lumière issue du module de signalisation soit émise dans une direction préférentielle correspondant aux normes précitées, en particulier une direction correspondant à un axe avant arrière du véhicule, dans le cas où la normale à un plan du support de la source lumineuse 402 n’est pas dirigée vers la direction avant-arrière. [0166] Lorsque la source lumineuse 402 montrée en [Fig. 4p] est assemblée sur un support formant un module lumineux d'un dispositif de signalisation de véhicule automobile, elle est assemblée de sorte que l'axe d'intensité maximale de la source lumineuse 402 est disposé sensiblement selon un axe avant arrière du véhicule automobile. La source lumineuse 402 est de plus orientée de sorte que le côté long du substrat 420 est sensiblement horizontal. Ainsi, les rayons lumineux issus de l'au moins un élément électroluminescent 430 sont davantage concentrés autour d'un plan horizontal qu'autour d'un plan vertical. Une telle distribution des rayons lumineux est particulièrement favorable à la réalisation d'une fonction de signalisation telle une fonction de feu de position arrière, de feu stop, ou d’indicateur de direction, selon les normes UNECE précitées.
[0167] On a représenté en [Fig. 5V] une vue partielle d'un arrangement matriciel de sources lumineuses selon un point de vue en coupe dans un plan XXZZ d'un support de sources lumineuses d'un module lumineux.
[0168] Les sources lumineuses 501 , 502, 503, 50... comportent chacune un substrat doté d'une face supérieure, d'une face inférieure opposée à la face supérieure, d'un circuit électronique et de contact électriques situés sur la face inférieure du substrat. Le substrat a une empreinte rectangulaire, avec un grand côté et un petit côté.
[0169] Les sources lumineuses comportent un élément électroluminescent et une optique de conformation des rayons lumineux. Dans le mode de réalisation de la [Fig. 5V], l'optique de conformation des rayons lumineux de chacune des sources lumineuses 501 , 502, 503, 50... est asymétrique, de sorte qu'elle est apte à concentrer des rayons lumineux autour d'une direction d'intensité maximale parallèle à un axe avant-arrière XX du véhicule automobile, bien que le support 511 de l'arrangement matriciel de sources lumineuses est incliné dans un plan XXZZ comprenant l'axe avant-arrière XX et un axe vertical ZZ.
[0170] On a représenté en [Fig. 5H] une vue d'un arrangement matriciel de sources lumineuses selon un point de vue en coupe dans un plan XXYY d'un support de sources lumineuses d'un module lumineux, similaires en tout point à celles de la [Fig. 5V] sauf en ce que l'optique de conformation des rayons lumineux est asymétrique, de sorte qu'elle est apte à concentrer des rayons lumineux autour d'une direction d'intensité maximale parallèle à un axe avant-arrière XX du véhicule automobile, bien que le support 512 de l'arrangement matriciel de sources lumineuses est incliné dans un plan XXZZ comprenant l'axe avant-arrière XX et un axe vertical ZZ.
[0171] L’invention ne saurait se limiter aux modes de réalisation spécifiquement donnés dans ce document à titre d’exemples non limitatifs, et s’étend en particulier à tous moyens équivalents et à toute combinaison techniquement opérante de ces moyens. Ainsi, les caractéristiques, les variantes et les différentes formes de réalisation de l'invention peuvent être associées les unes avec les autres, selon diverses combinaisons, dans la mesure où elles ne sont pas incompatibles ou exclusives les unes des autres [0172] Par exemple, on pourra imaginer sans peine une optique de conformation des rayons lumineux, dont la surface extérieure forme un dioptre, comportant des réflecteurs.

Claims

Revendications
[Revendication 1 ] Source lumineuse (100, 200, 300, 301 , 400, 401 , 402, 403) d'un arrangement matriciel de sources lumineuses de module lumineux de signalisation de véhicule automobile, comportant :
- Un substrat (120, 220, 320, 420) comportant une face supérieure (122, 222, 322, 422), une face inférieure (121 , 221 , 321 , 421 ) opposée à la face supérieure (122, 222, 322, 422), et un circuit électronique (150, 250, 350,
450),
- Au moins un élément électroluminescent (130, 230, 330, 430) monté sur la face supérieure (122, 222, 322, 422) du substrat (120, 220, 320, 420), comportant une partie émettrice de lumière,
- Une optique de conformation des rayons émis par l’au moins un élément électroluminescent (130, 230, 330, 430),
- Ladite face inférieure (121 , 221 , 321 , 421 ) comportant des contacts de connexion (151 , 251 , 351 , 451 ) reliés au circuit électronique (150, 250, 350, 450), le circuit électronique (150, 250, 350, 450) étant adapté pour alimenter l'au moins un élément électroluminescent (130, 230, 330, 430),
- La partie émettrice de lumière dudit au moins un élément électroluminescent (130, 230, 330, 430) ayant une surface inférieure à 40000 pm2,
- Ladite optique étant comportant un élément optique (140, 240, 340, 341 , 441 ) rapporté sur la face supérieure (122, 222, 322, 422) du substrat (120, 220,
320, 420) et/ou sur la partie émettrice de lumière de l’au moins un élément électroluminescent (130, 230, 330, 430). caractérisée en ce qu'un élément optique de l'optique de conformation des rayons lumineux est un réflecteur de type à réflexion intérieure totale.
[Revendication 2] Source lumineuse selon l’une quelconque des revendications précédentes, caractérisée en ce que la surface de la partie émettrice de l'au moins un élément électroluminescent (130, 230, 330, 430) est au moins deux fois inférieure à la surface de la face supérieure (122, 222, 322, 422) du substrat (120, 220, 320, 420) et/ou la surface de la partie émettrice de l'au moins un élément électroluminescent (130, 230, 330, 430) est au moins deux fois inférieure à la surface de la surface utile de sortie de l'optique de conformation des rayons lumineux issus de l’élément électroluminescent (130, 230, 330, 430).
[Revendication 3] Source lumineuse selon l’une quelconque des revendications précédentes, caractérisée en ce que l'élément optique (140, 240, 340, 341, 441) comporte une portion ayant une surface de sortie dont une section dans un plan parallèle à la face supérieure (122, 222, 322, 422) du substrat (120, 220, 320, 420) est ovale ou elliptique.
[Revendication 4] Source lumineuse selon l’une quelconque des revendications précédentes, caractérisée en ce que l'optique de conformation des rayons émis par l'élément électroluminescent (130, 230, 330, 430) concentre davantage lesdits rayons verticalement qu’horizontalement, lorsque la source lumineuse est montée dans un module lumineux de signalisation monté sur un véhicule automobile.
[Revendication 5] Source lumineuse selon l'une quelconque des revendications précédentes, caractérisée en ce que l'optique de conformation des rayons lumineux émis par l'élément électroluminescent (130, 230, 330, 430) est asymétrique, lorsque la source lumineuse est montée dans un module lumineux de signalisation monté sur un véhicule automobile.
[Revendication 6] Source lumineuse selon l’une quelconque des revendications précédentes, caractérisée en ce que l'optique de conformation des rayons lumineux comporte un élément optique transparent disposé de sorte qu'un espace vide est présent entre l'élément optique transparent et l'élément électroluminescent.
[Revendication 7] Source lumineuse selon l’une quelconque des revendications précédentes, caractérisée en ce que l'élément optique rapporté est un élément optique transparent et est disposé de sorte qu'un espace vide est sensiblement inexistant entre l'élément optique transparent et l'élément électroluminescent, l'optique de conformation des rayons lumineux comportant un matériau d'indice optique supérieur à 1 ,2 en contact direct avec l'élément électroluminescent.
[Revendication 8] Source lumineuse selon l’une quelconque des revendications précédentes, caractérisée en ce que le réflecteur est rapporté sur la face supérieure et qu'un profil du réflecteur dans un plan perpendiculaire à la face supérieure (122, 222, 322, 422) du substrat (120, 220, 320, 420) est parabolique.
[Revendication 9] Source lumineuse selon l'une des revendications 10 ou 11 , caractérisée en ce que le réflecteur à réflexion intérieure totale comporte une surface de sortie plane.
[Revendication 10] Source lumineuse selon l'une des revendications 10 ou 11 , caractérisée en ce que le réflecteur à réflexion intérieure totale comporte une surface de sortie comportant des motifs optiques aptes à rediriger ou à disperser les rayons lumineux issus de l'élément électroluminescent.
[Revendication 11] Source lumineuse selon l’une quelconque des revendications précédentes, caractérisée en ce qu'un revêtement antireflet et/ou un revêtement minéral est appliqué sur l'optique de conformation et/ou sur des côtés de la source lumineuse.
[Revendication 12] Source lumineuse selon l’une quelconque des revendications précédentes, caractérisée en ce que la source lumineuse a une empreinte et/ou des contacts de connexion (151 , 251 , 351 , 451 ) asymétriques selon au moins plan normal à un plan du substrat (120, 220, 320, 420) passant par son centre.
[Revendication 13] Source lumineuse selon l'une quelconque des revendications précédentes, caractérisée en ce que le circuit électronique (150, 250, 350, 450) du substrat (120, 220, 320, 420) comporte un circuit intégré adapté pour alimenter l’au moins un élément électroluminescent (130, 230, 330, 430).
[Revendication 14] Source lumineuse selon l'une des revendications précédentes, caractérisée en ce qu'elle comporte une pluralité de éléments électroluminescents, correspondant chacune à un élément optique de l'optique de conformation des rayons lumineux.
[Revendication 15] Dispositif de signalisation contribuant à et/ou réalisant une fonction réglementaire de feu de position arrière et/ou de feu stop et/ou d'indicateur de changement de direction, caractérisé en ce qu'il comporte un support d'un arrangement matriciel de sources lumineuses selon l'une quelconque des revendications précédentes, formant un module lumineux.
[Revendication 16] Procédé de fabrication d'une source lumineuse selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend :
- Une étape de constitution d'un substrat commun d’éléments électroluminescents comprenant une pluralité d'éléments électroluminescents comportant une face supérieure sur laquelle sont montés les éléments électroluminescents et une face inférieure (121 , 221 , 321 , 421 ) comportant des contacts de connexion et des circuits électroniques permettant de connecter les éléments électroluminescents, de sorte que les éléments électroluminescents peuvent être alimentées par la face inférieure (121 , 221 , 321 , 421 ) du substrat commun, - Une étape de report d'optiques de conformation des rayons lumineux des éléments électroluminescents par positionnement et assemblage d'un arrangement matriciel d’éléments optiques de sorte à assembler lesdits éléments optiques en droit d’éléments électroluminescents montés sur le substrat commun, - Une étape de singulation du substrat commun aboutissant à l'obtention d'une pluralité de sources lumineuses selon l'une des revendications précédentes.
EP22704764.4A 2021-02-09 2022-02-09 Source lumineuse pour la signalisation d'un véhicule automobile Pending EP4292140A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2101236A FR3119663B1 (fr) 2021-02-09 2021-02-09 Source lumineuse pour la signalisation d’un véhicule automobile
PCT/EP2022/053177 WO2022171705A1 (fr) 2021-02-09 2022-02-09 Source lumineuse pour la signalisation d'un véhicule automobile

Publications (1)

Publication Number Publication Date
EP4292140A1 true EP4292140A1 (fr) 2023-12-20

Family

ID=76034704

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22704764.4A Pending EP4292140A1 (fr) 2021-02-09 2022-02-09 Source lumineuse pour la signalisation d'un véhicule automobile

Country Status (5)

Country Link
US (1) US20240044472A1 (fr)
EP (1) EP4292140A1 (fr)
CN (1) CN116868356A (fr)
FR (1) FR3119663B1 (fr)
WO (1) WO2022171705A1 (fr)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006047233A1 (de) * 2006-10-04 2008-04-10 Osram Opto Semiconductors Gmbh Optisches Element für eine Leuchtdiode, Leuchtdiode, LED-Anordnung und Verfahren zur Herstellung einer LED-Anordnung
US8564004B2 (en) * 2011-11-29 2013-10-22 Cree, Inc. Complex primary optics with intermediate elements
US9484504B2 (en) * 2013-05-14 2016-11-01 Apple Inc. Micro LED with wavelength conversion layer
US9657903B2 (en) * 2013-08-20 2017-05-23 Nthdegree Technologies Worldwide Inc. Geometrical light extraction structures for printed LEDs
US9977152B2 (en) * 2016-02-24 2018-05-22 Hong Kong Beida Jade Bird Display Limited Display panels with integrated micro lens array
US10132478B2 (en) * 2016-03-06 2018-11-20 Svv Technology Innovations, Inc. Flexible solid-state illumination devices
US20180182939A1 (en) * 2016-12-22 2018-06-28 Rayvio Corporation Package for an ultraviolet emitting device
DE102018203497A1 (de) * 2018-03-08 2019-09-12 Osram Gmbh Scheinwerfer und verfahren zum herstellen eines scheinwerfers
FR3097981B1 (fr) * 2019-06-28 2021-07-02 Valeo Vision Dispositif lumineux pour véhicule automobile

Also Published As

Publication number Publication date
FR3119663A1 (fr) 2022-08-12
FR3119663B1 (fr) 2023-05-19
US20240044472A1 (en) 2024-02-08
WO2022171705A1 (fr) 2022-08-18
CN116868356A (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
FR3065784B1 (fr) Module lumineux avec optique d'imagerie optimisee pour un modulateur spatial pixellise, destine a un vehicule automobile
FR3039880B1 (fr) Dispositif d’eclairage et/ou de signalisation pour vehicule automobile
EP3093557A1 (fr) Module d'éclairage bifonction code-route pour véhicule automobile
FR3048788A1 (fr) Projecteur d'image par ecran avec source lumineuse a batonnets electroluminescents
EP3775675A1 (fr) Dispositif lumineux à matrice monolithique de véhicule automobile pour écriture au sol
EP3254019A1 (fr) Module lumineux d'un véhicule compatible au trafic gauche et au trafic droit
FR3065785A1 (fr) Lentille de projection pour projecteur de vehicule automobile
EP3024697A1 (fr) Système d'éclairage, notamment pour un organe d'éclairage de véhicule automobile, a carte a circuit imprime inclinée par rapport a la direction d'éclairage
WO2021063979A1 (fr) Système optique
WO2020064964A1 (fr) Système optique de projection et module lumineux pour véhicule
FR3065818A1 (fr) Module lumineux pour un vehicule automobile configure pour projeter un faisceau lumineux formant une image pixelisee
EP4292140A1 (fr) Source lumineuse pour la signalisation d'un véhicule automobile
WO2022171708A1 (fr) Source lumineuse pour la signalisation d'un véhicule automobile
WO2022171703A1 (fr) Source lumineuse pour la signalisation d'un véhicule automobile
FR3119664A1 (fr) Source lumineuse pour la signalisation d’un véhicule automobile
WO2021074257A1 (fr) Système optique
WO2017025444A1 (fr) Dispositif d'eclairage et/ou de signalisation pour vehicule automobile
WO2023094332A1 (fr) Dispositif optique de projection à trois lentilles
EP4069552A1 (fr) Dispositif optique
EP3214661B1 (fr) Source de lumiere a semi-conducteurs pour l'emission et la reception de faisceaux lumineux, et systeme lumineux comportant une telle source
EP4078674A1 (fr) Ensemble lumineux pour dispositif d'eclairage et/ou de signalisation pour vehicule automobile
WO2018007382A1 (fr) Dispositif lumineux projettant une image a partir d'une surface rayonnante de forme differente
WO2020053190A1 (fr) Système lumineux pour véhicule
FR3041068A1 (fr) Dispositif d'eclairage et/ou de signalisation pour vehicule automobile

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)