EP4289555A1 - Double or single side machining machine and method for operating a double or single side machining machine - Google Patents

Double or single side machining machine and method for operating a double or single side machining machine Download PDF

Info

Publication number
EP4289555A1
EP4289555A1 EP23168535.5A EP23168535A EP4289555A1 EP 4289555 A1 EP4289555 A1 EP 4289555A1 EP 23168535 A EP23168535 A EP 23168535A EP 4289555 A1 EP4289555 A1 EP 4289555A1
Authority
EP
European Patent Office
Prior art keywords
double
processing machine
sided
artificial neural
neural network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP23168535.5A
Other languages
German (de)
French (fr)
Inventor
Sascha Werth
Robert Ravlic
Matthias Mantel
Kevin Rachor
Philipp Mielke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapmaster Wolters GmbH
Original Assignee
Lapmaster Wolters GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapmaster Wolters GmbH filed Critical Lapmaster Wolters GmbH
Publication of EP4289555A1 publication Critical patent/EP4289555A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/015Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B29/00Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents
    • B24B29/02Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents designed for particular workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/10Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/10Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
    • B24B49/105Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means using eddy currents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/14Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the temperature during grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/16Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B51/00Arrangements for automatic control of a series of individual steps in grinding a workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/10Single-purpose machines or devices
    • B24B7/16Single-purpose machines or devices for grinding end-faces, e.g. of gauges, rollers, nuts, piston rings
    • B24B7/17Single-purpose machines or devices for grinding end-faces, e.g. of gauges, rollers, nuts, piston rings for simultaneously grinding opposite and parallel end faces, e.g. double disc grinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/228Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding thin, brittle parts, e.g. semiconductors, wafers

Definitions

  • the invention relates to a double- or single-sided processing machine with a preferably annular first working disk and a preferably annular counter-bearing element, wherein the first working disk and the counter-bearing element can be driven to rotate relative to one another by means of a rotary drive, and a preferably annular one between the first working disk and the counter-bearing element Working gap is formed for double-sided or single-sided processing of flat workpieces, preferably wafers, wherein the double- or single-sided processing machine comprises a plurality of sensors which, during operation of the double- or single-sided processing machine, provide measurement data on machine and/or processing parameters of the double - or single-side processing machine.
  • the invention also relates to a method for operating such a double- or single-side processing machine.
  • flat workpieces such as wafers
  • a preferably annular working gap is arranged between the working disks, in which the flat workpieces, for example wafers, are held during processing.
  • so-called rotor disks are usually arranged in the working gap with recesses in which the workpieces are mounted in a floating manner.
  • the working discs are driven to rotate relative to one another for processing by means of a rotary drive and the rotor discs also rotate in the working gap via usually an external toothing of the rotor discs, which engages in a corresponding toothing of pin rings.
  • the workpieces are conveyed through the working gap along cycloid paths during machining.
  • a polishing agent a so-called slurry
  • work disks also regularly have polishing cloths, so-called polishing pads, on the surfaces delimiting the working gap.
  • the aim of machining is to have the finished workpieces as plane-parallel as possible.
  • the working gap geometry is crucial for this.
  • Out of DE 10 2006 037 490 B4 is a double-side processing machine known with means for generating a global deformation of one of the working disks.
  • the upper working disk can be deformed between a globally concave and a globally convex shape.
  • the concave or convex shape of the working disk only arises over the entire diameter of the working disk.
  • the annular surface of the preferably annular working disk delimiting the working gap remains flat in itself, but opposite ring sections of the annular surface are deformed relative to one another, so that overall a concave or convex shape results.
  • a double-side processing machine is also known with means for generating a local deformation of one of the working disks, in particular between a locally convex and a locally concave shape.
  • the convex or concave shape results in the radial direction between the inner and outer edges of the, for example, annular working disk.
  • the ring sections themselves are concave or convex deformed.
  • the two aforementioned configurations can be combined in a double-side processing machine.
  • a wide variety of working gap geometries can be created. For example, if the polishing cloths are partially worn out or if the temperatures of the components defining the working gap change, it can always be as plane-parallel as possible Processing of the workpieces or a setting of the working gap that is preferred for the workpiece quality, be it parallel or not, can be ensured.
  • the geometry of the working gap has a decisive influence on the shape and flatness of the machined workpiece.
  • the machining result is influenced by a variety of other machine and/or machining parameters, for example the temperature of various components of the machine, the thickness and possible wear of a work surface, such as a polishing cloth, the speed of the work disk rotated relative to one another and/or the counter-bearing element and rotor disks rotatably mounted in the working gap, or for example a load between the first working disk and the counter-bearing element.
  • the process In the subsequent production operation of the double or single-sided processing machine, the process must be monitored using the sensors. Deviations from the specified target values, for example The GBIR or SFQR value of processed wafers can be detected early and, if necessary, corrective intervention can be made in the processing process.
  • the invention is based on the object of providing a double- or single-side processing machine and a method for operating a double- or single-side processing machine with which the production process of the double- or single-side processing machine can be carried out more quickly and reliably Minimization of rejects can be monitored.
  • the invention solves the problem in that a control device is provided which receives the measurement data recorded by the sensors during operation of the double- or single-side processing machine, the control device being an artificial neural network includes, which is designed to create a state vector of the double- or single-side processing machine from the measurement data and to compare this with at least one target state vector.
  • the invention solves the problem in that the artificial neural network is trained by entering a large number of target state vectors leading to an acceptable machining result of flat workpieces.
  • the double or single-side processing machine according to the invention can in particular be a double or single-side polishing machine.
  • the double or single side processing machine can also be a double or single side lapping machine or double or single side grinding machine.
  • the double or single-sided processing machine has a preferably annular first working disk and a preferably annular counter-bearing element.
  • the counter-bearing element can be designed, for example, as a simple weight or pressure cylinder.
  • the counter-bearing element can preferably be a preferably annular second working disk.
  • the first working disk and the counter-bearing element can be driven to rotate relative to one another and a preferably annular working gap for processing flat workpieces, such as wafers, is formed between the first working disk and the counter-bearing element.
  • a polishing coating polishing pad
  • a process medium for example a polishing agent, in particular a polishing liquid (slurry)
  • the work disks can also be provided with temperature control channels through which a temperature control fluid, for example cooling water, is passed during operation to control the temperature of the work disk(s).
  • the double or single-sided processing machine is used in particular for plane-parallel processing of flat workpieces.
  • the workpieces can be held floating in recesses of rotor disks arranged in the working gap in a manner known per se.
  • the first working disk and the counter-bearing element are driven to rotate relative to one another during operation, for example via a corresponding drive shaft and at least one drive motor. It is possible that only one of the first working disk and the counter bearing element is driven in rotation. However, both the first working disk and the counter-bearing element can also be driven in rotation, usually in opposite directions.
  • the rotor disks can also be moved in a rotating manner through the working gap in the course of the relative rotation between the first working disk and the counter bearing element using suitable kinematics, so that workpieces arranged in the recesses of the rotor disks describe cycloid paths in the working gap.
  • the rotor disks can have a toothing on their outer edge, which engages with an associated toothing of pin rings.
  • Such machines form what is known as planetary kinematics.
  • the first working disk and/or the counter bearing element can each be held by a carrier disk.
  • the carrier disks can also be annular or at least have annular carrier sections.
  • sensors in particular suitable measuring devices, record measurement data relating to machine and/or processing parameters of the double- or single-side processing machine during operation of the double- or single-side processing machine.
  • This can in particular be the machine and/or processing parameters mentioned at the beginning.
  • the sensors record the measurement data in particular at certain intervals or continuously.
  • the measurement data characterize the operating and machine parameters of the double or single-sided processing machine and thus the production process.
  • the measurement data recorded by the sensors are also fed, in particular, at certain intervals or continuously to a control device of the double- or single-side processing machine according to the invention.
  • the machine and/or processing parameters can be recorded in real time. This also applies to the transfer of the measurement data to the control device and the processing of the measurement data explained below.
  • the recorded measurement data can also be stored in a data memory and passed on from there to the control device, for example in real time or delayed.
  • the control device comprises an artificial neural network, which creates a state vector of the double- or single-side processing machine from the received measurement data.
  • the state vector is composed of the current measurement data from the sensors or is formed from this current measurement data.
  • the state vector characterizes the double- or single-sided processing machine, and in particular the current production process.
  • the artificial neural network compares this state vector with at least one, preferably a plurality, in particular a group, of target state vectors.
  • the target state vectors are given to the artificial neural network according to the method according to the invention as part of training as state vectors for an acceptable processing result when processing Workpieces in the double or single side processing machine.
  • the target state vectors can be defined with different objectives, for example aimed at certain quality parameters (e.g. GBIR and/or SFQR) and/or production throughput or other parameters.
  • quality parameters e.g. GBIR and/or SFQR
  • production throughput or other parameters.
  • the production process can be intervened by adjusting machine and/or processing parameters.
  • defined tolerances can be specified for the comparison, within which a detected small deviation from the target state vectors is classified as acceptable.
  • the production process can be influenced in such a way that the currently created state vector (again) sufficiently matches at least one target state vector.
  • an artificial neural network can very quickly create a state vector from a large number of measurement data and thus machine and/or processing parameters and can also compare this very quickly with at least one, preferably a large number of target state vectors. This means that an impermissible deviation of the production process from an acceptable process can be detected quickly and reliably, especially if there are no sufficiently trained or experienced personnel available at the production site of the double- or single-side processing machine.
  • the invention takes advantage of the fact that with an optimal production process the measurable Machine and/or processing parameters have a fixed relationship to one another. An artificial neural network that is trained with the machine and/or machining parameters of an optimal process can therefore quickly and reliably detect deviations of the current process from the optimal process.
  • the artificial neural network forms an anomaly detector that identifies an unacceptable deviation (anomaly) in the production process.
  • Process optimization is therefore possible even when starting the production process after an initial setup process much faster and with a significantly smaller number of test production processes. In the best case, only a single test production attempt is required, which does not require any external downstream measurement of the machined workpieces. Monitoring the production process, even during the start of production, is easier and faster and minimizes waste. In particular, the production of workpieces in the double- or single-side processing machine that do not lie within the desired tolerances can be reduced or, at best, completely avoided.
  • the control device can be designed to issue a warning message if the created state vector deviates from the at least one target state vector.
  • the warning message can be issued to an operator of the double- or single-side processing machine, for example via a user interface of the double- or single-side processing machine.
  • the operator receives a warning message that machine and/or processing parameters deviate impermissibly from values acceptable for an optimal production process.
  • the operator can intervene manually in the process, in particular specifically adjusting machine and/or processing parameters, so that the state vector formed from the current measurement data (again) corresponds to at least one target state vector.
  • the warning message can already include an adjustment suggestion for adjusting certain machine and/or processing parameters.
  • This adjustment suggestion can be issued by the control device on the basis of an adjustment rule stored in the control device.
  • Such an adjustment rule can have been created in advance by an operator for the double- or single-side processing machine. The operator can then evaluate the adjustment suggestion and, if necessary, carry it out.
  • the control device can automatically create suggestions for changing machine and/or processing parameters.
  • control device can further comprise a control device which is designed to control the double- or single-side processing machine, in particular machine and/or operating parameters, in the event of a deviation of the created state vector from the at least one target state vector as determined by the comparison Double or single-sided processing machine to be controlled so that the created state vector matches at least one target state vector.
  • control device can in particular control actuators for influencing the machine and/or processing parameters.
  • the control device achieves further automation by independently controlling the double- or single-side processing machine based on the comparison carried out, so that the state vector created from the current measurement data (again) corresponds to at least one of the target state vectors.
  • the control device can be integrated into the control device.
  • the control device can be designed to control the machine and/or operating parameters of the double- or single-side processing machine based on an adaptation rule stored in the control device.
  • the adaptation rule can in particular specify certain control regulations for certain determined deviations of the state vector to the control device.
  • the adaptation rule can, for example, have been created in advance by an operator. On this basis, automated control based on control specifications stored in advance in the form of the adjustment rule is possible, in particular without intervention by an operator.
  • a further artificial neural network can be provided, which is designed to use machine learning to evaluate the measurement data for the machine and / or processing parameters and, based on the evaluation, the double- or single-sided processing machine, in particular machine and /or operating parameters of the double- or single-side processing machine, and/or to create and/or change an adaptation rule stored in a control device.
  • This further artificial neural network can be a further artificial neural network, in addition to the aforementioned first artificial neural network forming the anomaly detector.
  • the further artificial neural network it would also be conceivable for the further artificial neural network to be designed to be integrated with the aforementioned artificial neural network forming the anomaly detector.
  • the control device can be integrated into the further artificial neural network.
  • the additional artificial neural network provided can in particular comprise a so-called learning classifier system (LCS/learning classifier system), i.e. an artificial intelligence system.
  • LCS/learning classifier system i.e. an artificial intelligence system.
  • Such systems are based on defined if-then relationships and can include machine and/or processing parameters of the double- or single-side processing machine Dependency on anomaly values, i.e. deviations between the current state vector and the at least one target state vector detected by the (first) artificial neural network.
  • the LCS creates output data from input data and rules.
  • the control device can also include a memory in which machine and/or machining parameters obtained in the past, including data on workpieces to be machined, are stored.
  • the stored data can be made available to the artificial neural network, in particular the LCS, which takes this data into account when evaluating the measurement data and the resulting control data for the double- or single-side processing machine.
  • the artificial neural network which is preferably designed as an LCS, can then recognize during a production process the probability with which the machining result of the workpieces, for example characteristic values such as GBIR, SFQR, deviate from predetermined target values. On this basis, this artificial neural network can intervene during the production process or at the latest in a subsequent production process by controlling, for example, actuators for certain machine and/or processing parameters in order to avoid any waste.
  • the artificial neural network using machine learning can also improve an adaptation rule initially created by an operator, for example, based on further experience from production processes.
  • the artificial neural network can change an adaptation rule stored in a control device. It would also be conceivable for this adaptation rule to be created by the artificial neural network and then, if necessary, optimized based on further process data.
  • This design makes it possible to automate the production process to the greatest possible extent without the intervention of operators.
  • the sensors include measuring devices for measuring the working gap, in particular the shape and/or width of the working gap, further in particular a distance between the first working disk and the counter-bearing element, and/or for measuring a temperature of the first working disk and/or the counter-bearing element and/or of further machine components of the double- or single-sided processing machine and/or for measuring a temperature and/or a flow rate of a processing means fed into the working gap for processing the workpieces, and/or for measuring a speed of the first working disk and/or the counter-bearing element and/or of rotor disks rotatably mounted in the working gap and/or for measuring a load between the first working disk and the counter bearing element and/or for measuring a speed and/or a torque and/or a temperature of the rotary drive and/or for measuring a pressure and/or a force of means for generating a deformation of the first working disk and/or of the counter-bearing element and/or for
  • the measuring devices mentioned can be present together or in any combination with one another.
  • Processing agents can be, for example, polishing agents, in particular polishing liquids such as slurry.
  • the measuring devices mentioned record machine and processing parameters relevant to the production process, including, for example, environmental data from the double-sided or single-sided processing machine.
  • the double-sided or single-sided processing machine in particular machine and/or operating parameters of the double-sided or single-sided processing machine, are controlled based on a deviation of the created state vector from the at least one target state vector determined by the comparison, this can in particular be controlled of actuators to influence the working gap, in particular the shape and/or width of the Working gap, further in particular a distance between the first working disk and the counter-bearing element, and/or for influencing a temperature of the first working disk and/or the counter-bearing element and/or of further machine components of the double- or single-side processing machine and/or for influencing a temperature and /or a flow rate of a processing agent supplied into the working gap for processing the workpieces, and/or for influencing a speed of the first working disk and/or the counter-bearing element and/or of rotor disks rotatably mounted in the working gap and/or for influencing a load between the first working disk and counter bearing element and/or for influencing a speed and/or a
  • Processing agents can be, for example, polishing agents, in particular polishing liquids such as slurry.
  • the actuators to be controlled therefore influence machine and processing parameters relevant to the production process, including, for example, environmental data of the double- or single-sided processing machine.
  • the counter-bearing element is formed by a preferably annular second working disk, the first and second working disks being arranged coaxially to one another and being able to be driven in rotation relative to one another by the rotary drive, with the working gap between the working disks for double-sided or one-sided processing flat workpieces is formed.
  • the invention also relates to a system comprising at least two double-sided or single-sided processing machines according to the invention, wherein a higher-level artificial neural network is also provided, which is connected to the artificial neural networks of the at least two double-sided or single-sided processing machines, the higher-level artificial neural network Network is designed to, based on data obtained from the artificial neural networks of the at least two double- or single-sided processing machines, at least one artificial neural network of the at least two double- or single-sided processing machines by inputting state vectors leading to an acceptable processing result of flat workpieces to train.
  • a system of at least two, in particular more than two, double- or single-side processing machines according to the invention is provided. Furthermore, a higher-level artificial neural network is provided, which is connected to the artificial neural networks of the at least two double- or single-sided processing machines.
  • the higher-level artificial neural network is designed to train at least one artificial neural network of the at least two double-sided or single-sided processing machines based on the data received from the artificial neural networks of the at least two double-sided or single-sided processing machines.
  • the higher-level artificial neural network therefore forms a higher-level structure into which similar double- or single-side processing machines can be integrated.
  • a system-wide memory can then also be provided, which receives data from all double- or single-side processing machines in the system and also passes this data on to the higher-level artificial neural network.
  • the individual double- or single-side processing machines can be optimized, if necessary, taking into account the data stored in the memory of the system with mutual use of individual data from the double or single-sided processing machines of the system.
  • the aforementioned design allows advantageous effects to be achieved, for example with regard to production planning, fleet management or maintenance prediction (predictive maintenance).
  • the double- or single-side processing machine according to the invention can be designed to carry out the method according to the invention. Accordingly, the method according to the invention can be carried out with the double- or single-side processing machine according to the invention.
  • the artificial neural network is trained by inputting a large number of state vectors leading to an acceptable machining result of flat workpieces.
  • the training can be carried out by an operator carrying out production processes with the double- or single-side processing machine with different machine and/or processing parameters and, depending on the processing result, specifying the respective machine and/or processing parameters to the artificial neural network the production process led to an acceptable processing result.
  • the associated machine and/or processing parameters are stored as a target state vector in the artificial neural network. This initial training usually takes place before regular processing of flat workpieces begins with the double- or single-side processing machine.
  • the artificial neural network trained in this way is also possible for the artificial neural network trained in this way to be further trained during operation of the double- or single-side processing machine by entering further target state vectors leading to an acceptable processing result of flat workpieces. Through this further training in the course Production processes with double or single-sided processing machines result in further optimization of the machine and/or processing parameters.
  • a further artificial neural network can be trained by entering a large number of target state vectors leading to an acceptable processing result of flat workpieces.
  • This additional artificial neural network can be untrained or already (pre-)trained.
  • the further artificial neural network can be a copy of the trained artificial neural network and can be further trained on this basis. This can be useful, for example, if the trained artificial neural network is a generic neural network that is trained for a specific type of double or single-sided processing machine, but has not yet been specialized for a specific double or single-sided processing machine, in particular with regard to the individual processing parameters on site.
  • a possible application is that double-sided or single-sided processing machines are delivered with a trained artificial neural network, with the training taking place on the basis of experiments or laboratory data from a manufacturer of the double-sided or single-sided processing machine and then with the further recent neural network Further specialization takes place on the customer's individual manufacturing process. This requires less understanding of the production process at the installation site of the double or single side processing machine.
  • the double-side processing machine shown only as an example, has an annular upper carrier disk 10 and a likewise annular lower carrier disk 12.
  • a first, annular upper working disk 14 is attached to the upper carrier disk 10 and a second, also annular working disk 16 is attached to the lower carrier disk 12.
  • a likewise annular working gap 18 is formed between the annular working disks 14, 16, in which flat workpieces, for example wafers, are processed on both sides during operation.
  • the double-side processing machine can be, for example, a polishing machine, a lapping machine or a grinding machine.
  • the upper carrier disk 10 and with it the upper working disk 14 and / or the lower carrier disk 12 and with it the lower working disk 16 can be driven in rotation relative to one another by a suitable drive device, comprising, for example, an upper drive shaft and / or a lower drive shaft and at least one drive motor become.
  • the drive device is known per se and is not shown in more detail for reasons of clarity.
  • the workpieces to be machined can be held floating in rotor disks in the working gap 18.
  • Suitable kinematics for example planetary kinematics, can ensure that The rotor disks also rotate through the working gap 18 in the course of the relative rotation of the carrier disks 10, 12 or working disks 14, 16.
  • temperature control channels can be formed, through which a temperature control fluid, for example a temperature control liquid such as water, can be passed during operation. This is also known per se and is not shown in more detail.
  • a temperature control fluid for example a temperature control liquid such as water
  • the double-side processing machine shown also includes known distance measuring devices as sensors.
  • the sensors can, for example, work optically or electromagnetically (e.g. eddy current sensors).
  • three distance measuring devices 20, 22, 24 are provided, which measure the distance between the upper working disk 14 and the lower working disk 16 at three radially spaced positions of the working gap 18, as in Figure 1 illustrated by arrows.
  • the distance measuring device 20 measures the distance between the upper working disk 14 and the lower working disk 16 in the area of the radially outer edge of the working gap 18.
  • the distance measuring device 24 measures the distance between the upper working disk 14 and the lower working disk 16 in the area of the radial inner edge of the working gap 18.
  • the distance measuring device 22 measures the distance between the upper working disk 14 and the lower working disk 16 in the middle of the working gap 18.
  • the distance measuring devices 20, 22, 24 are not shown for reasons of clarity.
  • the measurement data from the distance measuring devices 20, 22, 24 are available at a control device 34.
  • the lower working disk 16 is only attached to the lower carrier disk 12 in the area of its outer edge and in the area of its inner edge, For example, each screwed along a partial circle, as in Figure 1 illustrated at reference numbers 26 and 28. However, between these fastening locations 26 and 28, the lower working disk 16 is not attached to the lower carrier disk 12. Rather, there is an annular pressure volume 30 between these fastening locations 26, 28 between the lower carrier disk 12 and the lower working disk 16.
  • the pressure volume 30 is connected via a dynamic pressure line 32 to a pressure fluid reservoir (not shown in detail in the figures), for example a liquid reservoir, in particular a water reservoir. tied together.
  • a pump and a control valve can be arranged in the dynamic pressure line 32, which can be controlled by the control device 34.
  • a desired pressure can be built up in the pressure volume 30 by fluid introduced into the pressure volume 30, which then acts on the lower working disk 16.
  • the pressure prevailing in the pressure volume 30 can be measured via a pressure measuring device (not shown).
  • the measurement data from the pressure measuring device as a further sensor can also be applied to the control device 34, so that the control device 34 can set a predetermined pressure in the pressure volume 30.
  • the lower working disk 16 can be locally brought into a convex shape by setting a sufficiently high pressure in the pressure volume 30, as in Figure 2 indicated by dashed lines at reference number 36. If you go in the operating state of the Figure 1 , in which the lower working disk 16 has a flat shape, from a pressure po in the pressure volume 30, the in Figure 2 Convex deformation of the lower working disk 16 shown at 36 can be achieved by setting a pressure p 1 >p 0 . On the other hand, by setting a pressure p 2 ⁇ p 0 in the printing volume 30, a local concave deformation of the lower working disk 16 can be achieved, as in Figure 3 illustrated in dashed lines at reference number 38.
  • the lower working disk 16 viewed in the radial direction, has a locally convex shape between its inner edge, in the area of the attachment location 26, and its outer edge, in the area of the attachment location 28 ( Figure 2 ) or a locally concave shape ( Figure 3 ) can accept.
  • means for global deformation of the upper working disk 14 can be provided. These means can be designed as explained above or in the DE 10 2006 037 490 B4 described.
  • the upper carrier disk 10 and with it the upper working disk 14 attached to it are globally deformed, so that a globally concave or globally convex shape of the working surface of the upper working disk 14 results over the entire cross section of the upper working disk 14.
  • the upper working disk 14 can remain flat or can be locally deformed by the pressure volume 30 in the manner explained above.
  • the means for adjusting the shape of the upper working disk 14 can also be controlled by the control device 34.
  • the distance measuring devices 20, 22, 24 form sensors which, during operation of the double-side processing machine, record measurement data on machine and/or processing parameters of the double-side processing machine, in the present case in particular the thickness and geometry of the working gap 18.
  • the double-side processing machine preferably comprises a plurality additional sensors with corresponding additional measuring devices. These can in particular be measuring devices of the type explained above. These measuring devices record further machine and/or processing parameters during operation of the double-side processing machine.
  • the measurement data recorded by the sensors are sent to the control device 34. From these measurement data, the control device 34 creates a state vector of the double-side processing machine by means of an artificial neural network 34 integrated therein and compares this with at least one target state vector, preferably a group of target state vectors, which were assigned to an acceptable production process as part of training .
  • FIG. 4 the double-side processing machine according to the invention is shown at reference number 40.
  • Unprocessed workpieces 42 for example unprocessed wafers
  • finished workpieces 44 in particular processed wafers 44
  • a data memory 46 is provided, to which, for example, measurement data on machine and processing parameters recorded by the sensors are supplied, with this data being made available to an operator 48, as in Figure 4 illustrated at 50.
  • measurement data relating to, for example, the geometry of the machined workpieces are supplied to the data memory 46 as further machine and/or processing parameters, with these data also being supplied to the operator 48, as in Figure 4 illustrated at 52.
  • external environmental data is also available to the data storage, as illustrated at 54.
  • This external environmental data can also be sent to the operator 48.
  • the operator 48 carries out an assessment of the production process underlying the respective data to determine whether the processing result is acceptable.
  • the operator 48 provides this evaluation to the artificial neural network 34 of the control device 34, as in Figure 4 shown at 56.
  • the corresponding state vectors are stored as target state vectors by the artificial neural network 34.
  • Figure 5 shows how the double-side processing machine can be operated on this basis.
  • the process data on the machine and/or processing parameters are fed directly to the artificial neural network 34 of the control device 34, as in Figure 5 illustrated at 58.
  • the artificial neural network 34 creates a state vector from the measurement data obtained for the machine and/or processing parameters and compares it with the stored target state vectors. If an impermissible deviation or non-conformity is detected, the control device 34 issues a corresponding warning message to the operator 48, as in Figure 5 shown at 60.
  • the operator 48 can control the double-side processing machine 40, in particular actuators for influencing machine and / or operating parameters, as in Figure 5 shown at 62 to bring the continuously monitored and created state vector into agreement with at least one target state vector. In this case, the operator 48 decides on the consequences of evaluating the received data.
  • the operator 48 is supported by the control device 34 as an anomaly detector.
  • control device 34 in particular its artificial neural network 34, further comprises a control device 64 connected thereto, as in Figure 6 shown at 66. If the comparison determines a deviation of the created state vector from the at least one target state vector, a control intervention is carried out by the control device 64 on actuators of the double-side processing machine 40, in particular without intervention by the operator 48. This results in an adaptation of the recorded machine and/or processing parameters the double-side processing machine 40 causes as in Figure 6 illustrated at 68. All the associated data can be stored in the data memory 46.
  • the control and regulation device 34, 64 which is designed to be integrated, for example, can control the machine and/or operating parameters of the double-side processing machine 40 on the basis of an adaptation rule stored, for example, in the control device 64.
  • This can, for example, contain specific control instructions created by an operator 48 for certain identified deviations in the machine and/or processing parameters, according to which the open-loop and closed-loop control device 34, 64 controls actuators.
  • Figure 7 is another embodiment of the too Figure 6 the procedure explained.
  • the operator 48 is still involved. This also receives the process data on the recorded machine and processing parameters, as in Figure 7 shown at 70 and also the process data for the machined workpieces, as shown at 52. Finally, the operator 48 also receives the control commands issued by the control device 34, as in Figure 7 shown at 72. On this basis, the operator 48 can monitor the control carried out in each case and, if necessary, adjust the control of the control device 64 in a suitable manner, as in Figure 7 shown at 74.
  • Figure 8 represents a further embodiment of a possible training of artificial neural networks as anomaly detectors. This is based on the control device 34 with an already pre-trained artificial neural network 34, trained for example as above Figure 4 explained. This control device 34 sends any deviations or anomaly data to the operator 48, as in Figure 8 shown at 60 and closed at the top Figure 5 explained. On this basis, the operator 48 can train a further artificial neural network 76 by giving this further artificial neural network 76 (further) target state vectors acceptable during operation of the double-side processing machine 40 Machine and/or processing parameters of the double-side processing machine 40 are supplied, as in Figure 8 shown at 78. The further artificial neural network 76 can be an untrained artificial neural network 76.
  • pre- trained artificial neural network 76 for example a duplicate of the neural network 34 of the control device 34.
  • a specialized training of the further artificial neural network 76 can be trained for the respective individual process parameters of the application of the double-side processing machine 40. It is possible that after this training has been completed, the further artificial neural network 76 replaces the previously trained artificial neural network 34 of the control device 34.
  • FIG. 9 A further embodiment of the invention will be explained, comprising in particular a further artificial neural network 86, designed for machine learning. It can be a Learning Classifier System (LCS), i.e. an artificial intelligence system.
  • LCS Learning Classifier System
  • measurement data from the sensors for machine and/or processing parameters are fed to the data memory 46 on the one hand and to the control device 34 on the other hand, as in Figure 9 shown at 80.
  • Workpiece data in particular measurement data on the geometry of the machined workpieces, are also supplied to both the data memory 46 and the control device 34, as in Figure 9 shown at 82.
  • the control device 34 is also in communication with the data memory 46, as in Figure 9 shown at 84.
  • FIG 9 Another artificial neural network 86 is shown, which is also associated with the control device 34. This further artificial neural network 86 can also be combined with the artificial neural network 34 of the control device 34.
  • This Another artificial neural network 86 is designed for machine learning and in particular forms a learning classifier system (LCS).
  • LCS learning classifier system
  • the measurement data on the geometry of the machined workpieces 44 are also sent to the LCS 86 via 82. If the control device 34, in particular its artificial neural network 34, detects an unacceptable deviation between the currently recorded state vector and the acceptable values of the machine and/or processing parameters stored as target state vectors during operation of the double-side processing machine 40, a corresponding anomaly signal is generated given to the LCS 86, as in Figure 9 shown at 88.
  • the LCS 86 can also have measurement data from the past from the data memory 46 available. On this basis, the LCS 86 can independently make decisions about changing certain process parameters, in particular the control of actuators to influence the recorded machine and/or processing parameters, and control the actuators accordingly, as in Figure 9 shown at 90. In this way, the greatest possible automation and independence can be achieved.
  • Figure 10 is a further embodiment of the in Figure 9 shown variant shown.
  • a system according to the invention with at least two double-side processing machines 40.
  • the system could also include more than two double-side processing machines 40, which in Figure 10 is illustrated by three points.
  • two systems 92i are shown in dashed blocks, each of which corresponds to the design in terms of its design and function Figure 9 can correspond.
  • the systems 92i can also be designed differently, for example designed to achieve different goals, for example optimal wafer quality, maximum output, etc. They are connected to a common data memory 46 via 80, 84.
  • a higher-level artificial neural network 94 is provided, again comprising, for example, an LCS, which can also be connected to an operator 48.
  • the higher-level artificial neural network 94 is also connected to the data memory 46, as shown at 96.
  • the higher-level artificial neural network 96 receives the control commands executed by the LCS 86, as in Figure 10 shown at 98.
  • the higher-level LCS 94 can further optimize or specialize the LCS 86 of the systems 92i based on data from the systems 92i, for example by specifying collective or individual control regulations and / or target state vectors for the individual systems 92i.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Numerical Control (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

Die Erfindung betrifft eine Doppel- oder Einseiten-Bearbeitungsmaschine mit einer vorzugsweise ringförmigen ersten Arbeitsscheibe und einem vorzugsweise ringförmigen Gegenlagerelement, wobei die erste Arbeitsscheibe und das Gegenlagerelement mittels eines Drehantriebs relativ zueinander drehend antreibbar sind, und wobei zwischen der ersten Arbeitsscheibe und dem Gegenlagerelement ein vorzugsweise ringförmiger Arbeitsspalt zum doppelseitigen oder einseitigen Bearbeiten flacher Werkstücke, vorzugsweise Wafer, gebildet ist, wobei die Doppel- oder Einseiten-Bearbeitungsmaschine eine Mehrzahl von Sensoren umfasst, die während des Betriebs der Doppel- oder Einseiten-Bearbeitungsmaschine Messdaten zu Maschinen- und/oder Bearbeitungsparametern der Doppel- oder Einseiten-Bearbeitungsmaschine erfassen, wobei eine Steuereinrichtung vorgesehen ist, die im Betrieb der Doppel- oder Einseiten-Bearbeitungsmaschine die durch die Sensoren erfassten Messdaten erhält, wobei die Steuereinrichtung ein künstliches neuronales Netz umfasst, das dazu ausgebildet ist, aus den Messdaten einen Zustandsvektor der Doppel- oder Einseiten-Bearbeitungsmaschine zu erstellen und diesen mit mindestens einem Soll-Zustandsvektor zu vergleichen. Die Erfindung betrifft außerdem ein Verfahren zum Betreiben einer Doppel- oder Einseiten-Bearbeitungsmaschine.The invention relates to a double- or single-sided processing machine with a preferably annular first working disk and a preferably annular counter-bearing element, wherein the first working disk and the counter-bearing element can be driven to rotate relative to one another by means of a rotary drive, and a preferably annular one between the first working disk and the counter-bearing element Working gap is formed for double-sided or single-sided processing of flat workpieces, preferably wafers, wherein the double- or single-sided processing machine comprises a plurality of sensors which, during operation of the double- or single-sided processing machine, provide measurement data on machine and/or processing parameters of the double - or single-side processing machine, a control device being provided which receives the measurement data recorded by the sensors during operation of the double- or single-side processing machine, the control device comprising an artificial neural network which is designed to generate a state vector from the measurement data of the double or single side processing machine and compare it with at least one target state vector. The invention also relates to a method for operating a double- or single-side processing machine.

Description

Die Erfindung betrifft eine Doppel- oder Einseiten-Bearbeitungsmaschine mit einer vorzugsweise ringförmigen ersten Arbeitsscheibe und einem vorzugsweise ringförmigen Gegenlagerelement, wobei die erste Arbeitsscheibe und das Gegenlagerelement mittels eines Drehantriebs relativ zueinander drehend antreibbar sind, und wobei zwischen der ersten Arbeitsscheibe und dem Gegenlagerelement ein vorzugsweise ringförmiger Arbeitsspalt zum doppelseitigen oder einseitigen Bearbeiten flacher Werkstücke, vorzugsweise Wafer, gebildet ist, wobei die Doppel- oder Einseiten-Bearbeitungsmaschine eine Mehrzahl von Sensoren umfasst, die während des Betriebs der Doppel- oder Einseiten-Bearbeitungsmaschine Messdaten zu Maschinen- und/oder Bearbeitungsparametern der Doppel- oder Einseiten-Bearbeitungsmaschine erfassen. Die Erfindung betrifft außerdem ein Verfahren zum Betreiben einer solchen Doppel- oder Einseiten-Bearbeitungsmaschine.The invention relates to a double- or single-sided processing machine with a preferably annular first working disk and a preferably annular counter-bearing element, wherein the first working disk and the counter-bearing element can be driven to rotate relative to one another by means of a rotary drive, and a preferably annular one between the first working disk and the counter-bearing element Working gap is formed for double-sided or single-sided processing of flat workpieces, preferably wafers, wherein the double- or single-sided processing machine comprises a plurality of sensors which, during operation of the double- or single-sided processing machine, provide measurement data on machine and/or processing parameters of the double - or single-side processing machine. The invention also relates to a method for operating such a double- or single-side processing machine.

Beispielsweise in Doppelseiten-Poliermaschinen werden zwischen vorzugsweise ringförmigen Arbeitsscheiben flache Werkstücke, wie Wafer, poliert. Zwischen den Arbeitsscheiben ist ein vorzugsweise ringförmiger Arbeitsspalt angeordnet, in dem die flachen Werkstücke, zum Beispiel Wafer, während der Bearbeitung gehalten sind. Dazu sind in dem Arbeitsspalt üblicherweise sogenannte Läuferscheiben angeordnet mit Ausnehmungen, in denen die Werkstücke schwimmend gelagert sind. Die Arbeitsscheiben werden zur Bearbeitung mittels eines Drehantriebs relativ zueinander drehend angetrieben und die Läuferscheiben drehen sich über üblicherweise eine Außenverzahnung der Läuferscheiben, die in eine entsprechende Verzahnung von Stiftkränzen eingreift, ebenfalls in dem Arbeitsspalt. Dadurch werden die Werkstücke während der Bearbeitung entlang zykloider Bahnen durch den Arbeitsspalt gefördert. Beim Doppelseitenpolieren wird darüber hinaus ein Poliermittel, eine sogenannte Slurry, in den Arbeitsspalt gegeben, die für die abrasive Bearbeitung sorgt. Die Arbeitsscheiben weisen bei Doppelseiten-Poliermaschinen darüber hinaus auf ihren den Arbeitsspalt begrenzenden Oberflächen regelmäßig Poliertücher, sogenannte Polierpads, auf.For example, in double-side polishing machines, flat workpieces, such as wafers, are polished between preferably ring-shaped work disks. A preferably annular working gap is arranged between the working disks, in which the flat workpieces, for example wafers, are held during processing. For this purpose, so-called rotor disks are usually arranged in the working gap with recesses in which the workpieces are mounted in a floating manner. The working discs are driven to rotate relative to one another for processing by means of a rotary drive and the rotor discs also rotate in the working gap via usually an external toothing of the rotor discs, which engages in a corresponding toothing of pin rings. As a result, the workpieces are conveyed through the working gap along cycloid paths during machining. During double-side polishing, a polishing agent, a so-called slurry, is added to the working gap, which ensures the abrasive processing. The In double-sided polishing machines, work disks also regularly have polishing cloths, so-called polishing pads, on the surfaces delimiting the working gap.

Ziel der Bearbeitung ist eine möglichst planparallele Form der fertig bearbeiteten Werkstücke. Hierzu ist die Arbeitsspaltgeometrie von entscheidender Bedeutung. Aus DE 10 2006 037 490 B4 ist eine Doppelseiten-Bearbeitungsmaschine bekannt mit Mitteln zum Erzeugen einer globalen Verformung einer der Arbeitsscheiben. Insbesondere kann die obere Arbeitsscheibe zwischen einer global konkaven und einer global konvexen Form verformt werden. Die konkave oder konvexe Form der Arbeitsscheibe ergibt sich bei einer solchen globalen Verformung in radialer Richtung gesehen erst über den gesamten Durchmesser der Arbeitsscheibe. Die den Arbeitsspalt begrenzende Ringfläche der vorzugweise ringförmigen Arbeitsscheibe bleibt dabei in sich eben, gegenüberliegende Ringabschnitte der Ringfläche sind jedoch zueinander verformt, so dass sich insgesamt eine konkave oder konvexe Form ergibt.The aim of machining is to have the finished workpieces as plane-parallel as possible. The working gap geometry is crucial for this. Out of DE 10 2006 037 490 B4 is a double-side processing machine known with means for generating a global deformation of one of the working disks. In particular, the upper working disk can be deformed between a globally concave and a globally convex shape. With such a global deformation in the radial direction, the concave or convex shape of the working disk only arises over the entire diameter of the working disk. The annular surface of the preferably annular working disk delimiting the working gap remains flat in itself, but opposite ring sections of the annular surface are deformed relative to one another, so that overall a concave or convex shape results.

Aus DE 10 2016 102 223 A1 ist weiterhin eine Doppelseiten-Bearbeitungsmaschine bekannt mit Mitteln zum Erzeugen einer lokalen Verformung einer der Arbeitsscheiben, insbesondere zwischen einer lokal konvexen und einer lokal konkaven Form. Bei einer solchen lokalen Verformung ergibt sich die konvexe bzw. konkave Form in radialer Richtung zwischen dem inneren und äußeren Rand der beispielsweise ringförmigen Arbeitsscheibe. Anders als bei einer globalen Verformung sind bei einer lokalen Verformung also die Ringabschnitte selbst konkav oder konvex verformt.Out of DE 10 2016 102 223 A1 A double-side processing machine is also known with means for generating a local deformation of one of the working disks, in particular between a locally convex and a locally concave shape. With such a local deformation, the convex or concave shape results in the radial direction between the inner and outer edges of the, for example, annular working disk. In contrast to a global deformation, with a local deformation the ring sections themselves are concave or convex deformed.

Die beiden vorgenannten Ausgestaltungen können in einer Doppelseiten-Bearbeitungsmaschine kombiniert werden. Auf diese Weise können unterschiedlichste Arbeitsspaltgeometrien erzeugt werden. So kann beispielsweise bei teilweisem Verschleiß der Poliertücher oder bei sich ändernden Temperaturen der den Arbeitsspalt definierenden Komponenten jederzeit eine möglichst planparallele Bearbeitung der Werkstücke bzw. eine für die Werkstückqualität bevorzugte Einstellung des Arbeitsspalts, sei diese parallel oder nicht, sichergestellt werden.The two aforementioned configurations can be combined in a double-side processing machine. In this way, a wide variety of working gap geometries can be created. For example, if the polishing cloths are partially worn out or if the temperatures of the components defining the working gap change, it can always be as plane-parallel as possible Processing of the workpieces or a setting of the working gap that is preferred for the workpiece quality, be it parallel or not, can be ensured.

Die Geometrie des Arbeitsspalts hat entscheidenden Einfluss auf die Form und die Ebenheit des bearbeiteten Werkstücks. Neben der Geometrie des Arbeitsspalts beeinflussen das Bearbeitungsergebnis eine Vielzahl weiterer Maschinen- und/oder Bearbeitungsparameter, zum Beispiel die Temperatur unterschiedlichster Komponenten der Maschine, die Dicke und ein möglicher Verschleiß eines Arbeitsbelags, wie eines Poliertuchs, die Drehzahl der relativ zueinander gedrehten Arbeitsscheibe und/oder des Gegenlagerelements sowie von in dem Arbeitsspalt drehend gelagerten Läuferscheiben, oder beispielsweise eine Auflast zwischen der ersten Arbeitsscheibe und dem Gegenlagerelement.The geometry of the working gap has a decisive influence on the shape and flatness of the machined workpiece. In addition to the geometry of the working gap, the machining result is influenced by a variety of other machine and/or machining parameters, for example the temperature of various components of the machine, the thickness and possible wear of a work surface, such as a polishing cloth, the speed of the work disk rotated relative to one another and/or the counter-bearing element and rotor disks rotatably mounted in the working gap, or for example a load between the first working disk and the counter-bearing element.

Es ist bekannt, derartige Maschinen- und/oder Bearbeitungsparameter während des Betriebs der Doppel- oder Einseiten-Bearbeitungsmaschine mittels Sensoren zu überwachen. Auch ist es bekannt als weitere Bearbeitungsparameter die Form und Dicke der in dem Arbeitsspalt bearbeiteten flachen Werkstücke, zum Beispiel Wafer, mittels entsprechender Sensoren zu erfassen. Aus der Vielzahl dieser Maschinen- und Bearbeitungsparameter muss für den Betrieb der Doppel- oder Einseiten-Bearbeitungsmaschine ein geeignetes Parameterfenster gefunden werden, zunächst im Rahmen des Einrichtens der Doppel- oder Einseiten-Bearbeitungsmaschine vor Beginn der Bearbeitung der flachen Werkstücke. Dabei muss die Doppel- oder Einseiten-Bearbeitungsmaschine auch auf die am jeweiligen Einsatzort vorherrschenden Randbedingungen, zum Beispiel Art der Arbeitsbeläge, wie Poliertücher, gegebenenfalls eines Poliermittels und weiterer Parametervorgaben eines Betreibers eingestellt werden. Im anschließenden Produktionsbetrieb der Doppel- oder Einseiten-Bearbeitungsmaschine muss der Prozess mittels der Sensoren überwacht werden. Dabei sollen Abweichungen von den vorgegebenen Zielwerten, zum Beispiel dem GBIR- oder SFQR-Wert bearbeiteter Wafer, frühzeitig erkannt werden und gegebenenfalls korrigierend in den Bearbeitungsprozess eingegriffen werden.It is known to monitor such machine and/or processing parameters during operation of the double- or single-side processing machine using sensors. It is also known, as further processing parameters, to detect the shape and thickness of the flat workpieces, for example wafers, processed in the working gap using appropriate sensors. From the large number of these machine and processing parameters, a suitable parameter window must be found for operating the double or single-side processing machine, initially as part of setting up the double or single-side processing machine before starting to process the flat workpieces. The double or single-sided processing machine must also be adjusted to the boundary conditions prevailing at the respective location, for example the type of work surface, such as polishing cloths, if necessary a polishing agent and other parameter specifications of an operator. In the subsequent production operation of the double or single-sided processing machine, the process must be monitored using the sensors. Deviations from the specified target values, for example The GBIR or SFQR value of processed wafers can be detected early and, if necessary, corrective intervention can be made in the processing process.

Nicht zuletzt aufgrund einer großen Zahl unterschiedlicher Bearbeitungsprozesse müssen die Messergebnisse der Sensoren durch fachkundiges Personal interpretiert werden, um die richtigen Schlüsse für die Anpassung des Produktionsbetriebs zu treffen. Derart fachkundiges Personal steht nicht am Einsatzort jeder Doppel- oder Einseiten-Bearbeitungsmaschine zur Verfügung. Dies kann zu nachteiligen Auswirkungen auf den Produktionsprozess führen. Darüber hinaus erfolgt oftmals nur eine Anpassung des Produktionsbetriebs mit erheblicher Zeitverzögerung nach Auftreten etwaiger schädlicher Parameterabweichungen. Ein Grund hierfür ist, dass es auch für fachkundiges Personal aufgrund der Vielzahl von Maschinen- und Bearbeitungsparametern, die Einfluss auf den Produktionsprozess nehmen, schwierig ist, frühzeitig eine relevante Abweichung der gemessenen Parameter zu erkennen. Häufig geschieht dies erst nach Vermessen fertig hergestellter bearbeiteter Werkstücke. Wird dann eine unerwünschte Abweichung im Produktionsprozess festgestellt, entsteht in der Zwischenzeit eine erhebliche Menge an Ausschuss.Not least due to a large number of different machining processes, the measurement results from the sensors must be interpreted by expert personnel in order to reach the right conclusions for adapting production operations. Such expert personnel are not available at the site of every double or single-sided processing machine. This can lead to adverse effects on the production process. In addition, production operations are often only adjusted with a considerable time delay after any harmful parameter deviations occur. One reason for this is that, due to the large number of machine and processing parameters that influence the production process, it is difficult, even for expert personnel, to recognize a relevant deviation in the measured parameters at an early stage. This often only happens after the finished, machined workpieces have been measured. If an undesirable deviation is then discovered in the production process, a significant amount of rejects will arise in the meantime.

Ausgehend von dem erläuterten Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Doppel- oder Einseiten-Bearbeitungsmaschine sowie ein Verfahren zum Betreiben einer Doppel- oder Einseiten-Bearbeitungsmaschine bereitzustellen, mit denen der Produktionsprozess der Doppel- oder Einseiten-Bearbeitungsmaschine schneller und zuverlässiger unter Minimierung von Ausschuss überwacht werden kann.Based on the explained prior art, the invention is based on the object of providing a double- or single-side processing machine and a method for operating a double- or single-side processing machine with which the production process of the double- or single-side processing machine can be carried out more quickly and reliably Minimization of rejects can be monitored.

Die Erfindung löst die Aufgabe durch die unabhängigen Ansprüche 1 und 9. Vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen, der Beschreibung und den Figuren.The invention solves the problem through the independent claims 1 and 9. Advantageous refinements can be found in the dependent claims, the description and the figures.

Für eine Doppel- oder Einseiten-Bearbeitungsmaschine der eingangs genannten Art löst die Erfindung die Aufgabe dadurch, dass eine Steuereinrichtung vorgesehen ist, die im Betrieb der Doppel- oder Einseiten-Bearbeitungsmaschine die durch die Sensoren erfassten Messdaten erhält, wobei die Steuereinrichtung ein künstliches neuronales Netz umfasst, das dazu ausgebildet ist, aus den Messdaten einen Zustandsvektor der Doppel- oder Einseiten-Bearbeitungsmaschine zu erstellen und diesen mit mindestens einem Soll-Zustandsvektor zu vergleichen.For a double- or single-side processing machine of the type mentioned, the invention solves the problem in that a control device is provided which receives the measurement data recorded by the sensors during operation of the double- or single-side processing machine, the control device being an artificial neural network includes, which is designed to create a state vector of the double- or single-side processing machine from the measurement data and to compare this with at least one target state vector.

Für ein Verfahren der eingangs genannten Art löst die Erfindung die Aufgabe dadurch, dass das künstliche neuronale Netz durch Eingabe einer Vielzahl von zu einem akzeptablen Bearbeitungsergebnis von flachen Werkstücken führenden Soll-Zustandsvektoren trainiert wird.For a method of the type mentioned at the outset, the invention solves the problem in that the artificial neural network is trained by entering a large number of target state vectors leading to an acceptable machining result of flat workpieces.

Bei der erfindungsgemäßen Doppel- oder Einseiten-Bearbeitungsmaschine kann es sich insbesondere um eine Doppel- oder Einseiten-Poliermaschine handeln. Es kann sich bei der Doppel- oder Einseiten-Bearbeitungsmaschine aber auch um eine Doppel- oder Einseiten-Läppmaschine oder Doppel- oder Einseiten-Schleifmaschine handeln. Die Doppel- oder Einseiten-Bearbeitungsmaschine weist eine vorzugweise ringförmige erste Arbeitsscheibe und ein vorzugsweise ringförmiges Gegenlagerelement auf. Bei einer Einseiten-Bearbeitungsmaschine kann das Gegenlagerelement zum Beispiel als einfaches Gewicht oder Druckzylinder ausgestaltet sein. Bei dem Gegenlagerelement kann es sich bevorzugt um eine vorzugweise ringförmige zweite Arbeitsscheibe handeln. Die erste Arbeitsscheibe und das Gegenlagerelement sind relativ zueinander drehend antreibbar und zwischen der ersten Arbeitsscheibe und dem Gegenlagerelement ist ein vorzugsweise ringförmiger Arbeitsspalt zum Bearbeiten flacher Werkstücke, wie Wafer, gebildet. Insbesondere wenn es sich um eine Doppel- oder Einseiten-Poliermaschine handelt, kann zumindest die erste Arbeitsscheibe, vorzugweise auch das Gegenlagerelement bzw. die zweite Arbeitsscheibe, einen Polierbelag (Polierpad) auf ihrer den Arbeitsspalt begrenzenden Oberfläche(n) aufweisen. Während der Bearbeitung kann darüber hinaus in an sich bekannter Weise ein Prozessmedium, zum Beispiel ein Poliermittel, insbesondere eine Polierflüssigkeit (Slurry), in den Arbeitsspalt gegeben werden. Auch können die Arbeitsscheiben mit Temperierkanälen versehen sein, durch die im Betrieb eine Temperierflüssigkeit, zum Beispiel Kühlwasser, zum Temperieren der Arbeitsscheibe(n) geleitet wird.The double or single-side processing machine according to the invention can in particular be a double or single-side polishing machine. The double or single side processing machine can also be a double or single side lapping machine or double or single side grinding machine. The double or single-sided processing machine has a preferably annular first working disk and a preferably annular counter-bearing element. In the case of a single-sided processing machine, the counter-bearing element can be designed, for example, as a simple weight or pressure cylinder. The counter-bearing element can preferably be a preferably annular second working disk. The first working disk and the counter-bearing element can be driven to rotate relative to one another and a preferably annular working gap for processing flat workpieces, such as wafers, is formed between the first working disk and the counter-bearing element. In particular if it is a double or single-sided polishing machine, at least the first working disk, preferably also the counter-bearing element or the second working disk, can have a polishing coating (polishing pad) on its surface(s) delimiting the working gap. exhibit. During processing, a process medium, for example a polishing agent, in particular a polishing liquid (slurry), can also be added to the working gap in a manner known per se. The work disks can also be provided with temperature control channels through which a temperature control fluid, for example cooling water, is passed during operation to control the temperature of the work disk(s).

Die Doppel- oder Einseiten-Bearbeitungsmaschine dient insbesondere zum planparallelen Bearbeiten flacher Werkstücke. Die Werkstücke können zur Bearbeitung in an sich bekannter Weise in Ausnehmungen von in dem Arbeitsspalt angeordneten Läuferscheiben schwimmend aufgenommen werden. Die erste Arbeitsscheibe und das Gegenlagerelement werden im Betrieb relativ zueinander drehend angetrieben, beispielsweise über eine entsprechende Antriebswelle und mindestens einen Antriebsmotor. Es ist möglich, dass nur eines von erster Arbeitsscheibe und Gegenlagerelement drehend angetrieben wird. Es können aber auch sowohl die erste Arbeitsscheibe als auch das Gegenlagerelement drehend angetrieben werden, dann in der Regel gegenläufig. Beispielsweise bei einer Doppelseiten-Bearbeitungsmaschine können durch eine geeignete Kinematik die Läuferscheiben im Zuge der Relativdrehung zwischen erster Arbeitsscheibe und Gegenlagerelement ebenfalls drehend durch den Arbeitsspalt bewegt werden, so dass in den Ausnehmungen der Läuferscheiben angeordnete Werkstücke zykloide Bahnen in dem Arbeitsspalt beschreiben. Beispielsweise können die Läuferscheiben an ihrem äußeren Rand eine Verzahnung aufweisen, die in eine zugeordnete Verzahnung von Stiftkränzen eingreift. Derartige Maschinen- bilden eine sogenannte Planetenkinematik.The double or single-sided processing machine is used in particular for plane-parallel processing of flat workpieces. For machining, the workpieces can be held floating in recesses of rotor disks arranged in the working gap in a manner known per se. The first working disk and the counter-bearing element are driven to rotate relative to one another during operation, for example via a corresponding drive shaft and at least one drive motor. It is possible that only one of the first working disk and the counter bearing element is driven in rotation. However, both the first working disk and the counter-bearing element can also be driven in rotation, usually in opposite directions. For example, in a double-side processing machine, the rotor disks can also be moved in a rotating manner through the working gap in the course of the relative rotation between the first working disk and the counter bearing element using suitable kinematics, so that workpieces arranged in the recesses of the rotor disks describe cycloid paths in the working gap. For example, the rotor disks can have a toothing on their outer edge, which engages with an associated toothing of pin rings. Such machines form what is known as planetary kinematics.

Die erste Arbeitsscheibe und/oder das Gegenlagerelement können jeweils von einer Trägerscheibe gehalten werden. Wie die erste Arbeitsscheibe und das Gegenlagerelement können auch die Trägerscheiben ringförmig ausgebildet sein oder zumindest ringförmige Trägerabschnitte besitzen.The first working disk and/or the counter bearing element can each be held by a carrier disk. Like the first working disk and the counter-bearing element, the carrier disks can also be annular or at least have annular carrier sections.

In an sich bekannter Weise erfassen erfindungsgemäß Sensoren, insbesondere geeignete Messeinrichtungen, während des Betriebs der Doppel- oder Einseiten-Bearbeitungsmaschine Messdaten zu Maschinen- und/oder Bearbeitungsparametern der Doppel- oder Einseiten-Bearbeitungsmaschine. Es kann sich dabei insbesondere um die eingangs genannten Maschinen- und/oder Bearbeitungsparameter handeln. Die Sensoren erfassen die Messdaten dabei insbesondere in bestimmten Abständen oder kontinuierlich. Die Messdaten charakterisieren die Betriebs- und Maschinenparameter der Doppel- oder Einseiten-Bearbeitungsmaschine und damit den Produktionsprozess. Die durch die Sensoren erfassten Messdaten werden insbesondere ebenfalls in bestimmten Abständen oder kontinuierlich einer Steuereinrichtung der erfindungsgemäßen Doppel- oder Einseiten-Bearbeitungsmaschine zugeleitet. Das Erfassen der Maschinen- und/oder Bearbeitungsparameter kann in Echtzeit erfolgen. Dies gilt auch für die Weitergabe der Messdaten an die Steuereinrichtung und die nachfolgend erläuterte Verarbeitung der Messdaten. Die erfassten Messdaten können auch in einem Datenspeicher gespeichert werden und aus diesem an die Steuereinrichtung weitergegeben werden, zum Beispiel in Echtzeit oder verzögert.In a manner known per se, according to the invention, sensors, in particular suitable measuring devices, record measurement data relating to machine and/or processing parameters of the double- or single-side processing machine during operation of the double- or single-side processing machine. This can in particular be the machine and/or processing parameters mentioned at the beginning. The sensors record the measurement data in particular at certain intervals or continuously. The measurement data characterize the operating and machine parameters of the double or single-sided processing machine and thus the production process. The measurement data recorded by the sensors are also fed, in particular, at certain intervals or continuously to a control device of the double- or single-side processing machine according to the invention. The machine and/or processing parameters can be recorded in real time. This also applies to the transfer of the measurement data to the control device and the processing of the measurement data explained below. The recorded measurement data can also be stored in a data memory and passed on from there to the control device, for example in real time or delayed.

Zur Verarbeitung der Messdaten umfasst die erfindungsgemäße Steuereinrichtung ein künstliches neuronales Netz, das aus den empfangenen Messdaten einen Zustandsvektor der Doppel- oder Einseiten-Bearbeitungsmaschine erstellt. Der Zustandsvektor setzt sich aus den aktuellen Messdaten der Sensoren zusammen bzw. wird aus diesen aktuellen Messdaten gebildet. Der Zustandsvektor charakterisiert also die Doppel- oder Einseiten-Bearbeitungsmaschine, und insbesondere den aktuellen Produktionsprozess. Diesen Zustandsvektor vergleicht das künstliche neuronale Netz mit mindestens einem, vorzugsweise einer Mehrzahl, insbesondere einer Schar, von Soll-Zustandsvektoren. Die Soll-Zustandsvektoren werden dem künstlichen neuronalen Netz gemäß dem erfindungsgemäßen Verfahren im Rahmen eines Trainings als Zustandsvektoren für ein akzeptables Bearbeitungsergebnis bei der Bearbeitung von Werkstücken in der Doppel- oder Einseiten-Bearbeitungsmaschine vorgegeben. Die Soll-Zustandsvektoren können dabei mit unterschiedlicher Zielsetzung definiert werden, zum Beispiel ausgerichtet auf bestimmte Qualitätsparameter (z.B. GBIR und/oder SFQR) und/oder Produktionsdurchsatz oder auch andere Parameter. Durch den Vergleich des aus den aktuellen Messdaten erstellten Zustandsvektors mit den dem künstlich neuronalen Netz zur Verfügung stehenden Soll-Zustandsvektoren kann dieses ermitteln, ob der aktuelle Zustandsvektor mit einem der als akzeptabel trainierten Soll-Zustandsvektoren übereinstimmt oder nicht. Wird festgestellt, dass der erfasste Zustandsvektor mit keinem der akzeptablen Soll-Zustandsvektoren ausreichend übereinstimmt, können zum Beispiel bei einer relevanten Abweichung von den akzeptablen Soll-Zustandsvektoren Gegenmaßnahmen getroffen werden. Beispielsweise kann durch Anpassung von Maschinen- und/oder Bearbeitungsparametern in den Produktionsprozess eingegriffen werden. Selbstverständlich können für den Vergleich definierte Toleranzen vorgegeben werden, innerhalb derer eine erkannte geringe Abweichung von den Soll-Zustandsvektoren als akzeptabel klassifiziert wird. Durch eine auf Grundlage des Vergleichs erfolgte Anpassung von Maschinen- und/oder Bearbeitungsparametern kann der Produktionsprozess so beeinflusst werden, dass der aktuell erstellte Zustandsvektor (wieder) ausreichend mit mindestens einem Soll-Zustandsvektor übereinstimmt.To process the measurement data, the control device according to the invention comprises an artificial neural network, which creates a state vector of the double- or single-side processing machine from the received measurement data. The state vector is composed of the current measurement data from the sensors or is formed from this current measurement data. The state vector characterizes the double- or single-sided processing machine, and in particular the current production process. The artificial neural network compares this state vector with at least one, preferably a plurality, in particular a group, of target state vectors. The target state vectors are given to the artificial neural network according to the method according to the invention as part of training as state vectors for an acceptable processing result when processing Workpieces in the double or single side processing machine. The target state vectors can be defined with different objectives, for example aimed at certain quality parameters (e.g. GBIR and/or SFQR) and/or production throughput or other parameters. By comparing the state vector created from the current measurement data with the target state vectors available to the artificial neural network, it can determine whether the current state vector matches one of the target state vectors trained as acceptable or not. If it is determined that the recorded state vector does not sufficiently match any of the acceptable target state vectors, countermeasures can be taken, for example, in the event of a relevant deviation from the acceptable target state vectors. For example, the production process can be intervened by adjusting machine and/or processing parameters. Of course, defined tolerances can be specified for the comparison, within which a detected small deviation from the target state vectors is classified as acceptable. By adjusting machine and/or processing parameters based on the comparison, the production process can be influenced in such a way that the currently created state vector (again) sufficiently matches at least one target state vector.

Ein künstliches neuronales Netz kann anders als eine Bedienperson aus einer Vielzahl von Messdaten und damit Maschinen- und/oder Bearbeitungsparametern sehr schnell einen Zustandsvektor erstellen und diesen ebenfalls sehr schnell mit mindestens einem, vorzugsweise einer Vielzahl von Soll-Zustandsvektoren vergleichen. Damit kann eine unzulässige Abweichung des Produktionsprozesses von einem akzeptablen Prozess schnell und zuverlässig erkannt werden, insbesondere auch wenn am Produktionsort der Doppel- oder Einseiten-Bearbeitungsmaschine kein ausreichend geschultes oder erfahrenes Personal zur Verfügung steht. Die Erfindung macht sich dabei zunutze, dass bei einem optimalen Produktionsprozess die messbaren Maschinen- und/oder Bearbeitungsparameter in einem festen Verhältnis zueinander stehen. Ein künstliches neuronales Netz, das mit den Maschinen- und/oder Bearbeitungsparametern eines optimalen Prozesses trainiert ist, kann somit schnell und zuverlässig Abweichungen des aktuellen Prozesses vom optimalen Prozess erkennen. Das künstliche neuronale Netz bildet einen Anomaliedetektor, der eine unzulässige Abweichung (Anomalie) im Produktionsprozess identifiziert. Eine Prozessoptimierung ist somit auch beim Anfahren des Produktionsprozesses nach einem initialen Einrichtvorgang (Setup) wesentlich schneller und mit einer wesentlich geringeren Anzahl an Testproduktionsprozessen möglich. Im besten Fall ist nur ein einziger Testproduktionsversuch erforderlich, der keine externe nachgelagerte Vermessung der bearbeiteten Werkstücke erfordert. Die Überwachung des Produktionsprozesses auch im Zuge des Beginns der Produktion ist damit einfacher und schneller und unter Minimierung von Ausschuss möglich. Insbesondere kann die Produktion von Werkstücken in der Doppel- oder Einseiten-Bearbeitungsmaschine, die nicht innerhalb gewünschter Toleranzen liegen, reduziert oder bestenfalls vollständig vermieden werden.Unlike an operator, an artificial neural network can very quickly create a state vector from a large number of measurement data and thus machine and/or processing parameters and can also compare this very quickly with at least one, preferably a large number of target state vectors. This means that an impermissible deviation of the production process from an acceptable process can be detected quickly and reliably, especially if there are no sufficiently trained or experienced personnel available at the production site of the double- or single-side processing machine. The invention takes advantage of the fact that with an optimal production process the measurable Machine and/or processing parameters have a fixed relationship to one another. An artificial neural network that is trained with the machine and/or machining parameters of an optimal process can therefore quickly and reliably detect deviations of the current process from the optimal process. The artificial neural network forms an anomaly detector that identifies an unacceptable deviation (anomaly) in the production process. Process optimization is therefore possible even when starting the production process after an initial setup process much faster and with a significantly smaller number of test production processes. In the best case, only a single test production attempt is required, which does not require any external downstream measurement of the machined workpieces. Monitoring the production process, even during the start of production, is easier and faster and minimizes waste. In particular, the production of workpieces in the double- or single-side processing machine that do not lie within the desired tolerances can be reduced or, at best, completely avoided.

Nach einer Ausgestaltung kann die Steuereinrichtung dazu ausgebildet sein, bei einer Abweichung des erstellten Zustandsvektors von dem mindestens einen Soll-Zustandsvektor eine Warnmeldung auszugeben. Die Warnmeldung kann für eine Bedienperson der Doppel- oder Einseiten-Bearbeitungsmaschine ausgegeben werden, zum Beispiel über eine Bedienoberfläche der Doppel- oder Einseiten-Bearbeitungsmaschine. Im einfachsten Fall erhält die Bedienperson eine Warnmeldung, dass Maschinen- und/oder Bearbeitungsparameter unzulässig von für einen optimalen Produktionsprozess akzeptablen Werten abweichen. Die Bedienperson kann auf dieser Grundlage manuell in den Prozess eingreifen, insbesondere gezielt Maschinen- und/ oder Bearbeitungsparameter anpassen, so dass der aus den aktuellen Messdaten gebildete Zustandsvektor (wieder) mindestens einem Soll-Zustandsvektor entspricht.According to one embodiment, the control device can be designed to issue a warning message if the created state vector deviates from the at least one target state vector. The warning message can be issued to an operator of the double- or single-side processing machine, for example via a user interface of the double- or single-side processing machine. In the simplest case, the operator receives a warning message that machine and/or processing parameters deviate impermissibly from values acceptable for an optimal production process. On this basis, the operator can intervene manually in the process, in particular specifically adjusting machine and/or processing parameters, so that the state vector formed from the current measurement data (again) corresponds to at least one target state vector.

In einer weiteren Variante kann die Warnmeldung bereits einen Anpassungsvorschlag zur Anpassung bestimmter Maschinen- und/oder Bearbeitungsparameter umfassen. Dieser Anpassungsvorschlag kann durch die Steuereinrichtung auf Grundlage einer in der Steuereinrichtung hinterlegten Anpassungsvorschrift ausgegeben werden. Eine solche Anpassungsvorschrift kann vorab durch eine Bedienperson für die Doppel- oder Einseiten-Bearbeitungsmaschine erstellt worden sein. Die Bedienperson kann den Anpassungsvorschlag dann bewerten und gegebenenfalls ausführen. Durch eine Kombination festgestellter Abweichungswerte zwischen dem Zustandsvektor und dem mindestens einen Soll-Zustandsvektor mit formalisierten Kausalitäten der Maschinen- und/oder Bearbeitungsparameter der Doppel- oder Einseiten-Bearbeitungsmaschine kann die Steuereinrichtung also automatisch Vorschläge zur Änderung von Maschinen- und/oder Bearbeitungsparametern erstellen.In a further variant, the warning message can already include an adjustment suggestion for adjusting certain machine and/or processing parameters. This adjustment suggestion can be issued by the control device on the basis of an adjustment rule stored in the control device. Such an adjustment rule can have been created in advance by an operator for the double- or single-side processing machine. The operator can then evaluate the adjustment suggestion and, if necessary, carry it out. By combining determined deviation values between the state vector and the at least one target state vector with formalized causalities of the machine and/or processing parameters of the double- or single-side processing machine, the control device can automatically create suggestions for changing machine and/or processing parameters.

Nach einer weiteren Ausgestaltung kann die Steuereinrichtung weiterhin eine Regeleinrichtung umfassen, die dazu ausgebildet ist, bei einer durch den Vergleich festgestellten Abweichung des erstellten Zustandsvektors von dem mindestens einen Soll-Zustandsvektor die Doppel- oder Einseiten-Bearbeitungsmaschine, insbesondere Maschinen- und/oder Betriebsparameter der Doppel- oder Einseiten-Bearbeitungsmaschine, so anzusteuern, dass der erstellte Zustandsvektor mit mindestens einem Soll-Zustandsvektor übereinstimmt. Die Regeleinrichtung kann dazu insbesondere Aktoren zum Beeinflussen der Maschinen- und/oder Bearbeitungsparameter ansteuern. Durch die Regeleinrichtung wird eine weitere Automatisierung erreicht, indem diese die Doppel- oder Einseiten-Bearbeitungsmaschine selbständig auf Grundlage des durchgeführten Vergleichs ansteuert, so dass der aus den aktuellen Messdaten erstellte Zustandsvektor (wieder) mindestens einem des oder der Soll-Zustandsvektoren entspricht. Die Regeleinrichtung kann dabei in die Steuereinrichtung integriert sein.According to a further embodiment, the control device can further comprise a control device which is designed to control the double- or single-side processing machine, in particular machine and/or operating parameters, in the event of a deviation of the created state vector from the at least one target state vector as determined by the comparison Double or single-sided processing machine to be controlled so that the created state vector matches at least one target state vector. For this purpose, the control device can in particular control actuators for influencing the machine and/or processing parameters. The control device achieves further automation by independently controlling the double- or single-side processing machine based on the comparison carried out, so that the state vector created from the current measurement data (again) corresponds to at least one of the target state vectors. The control device can be integrated into the control device.

Die Regeleinrichtung kann dazu ausgebildet sein, die Maschinen- und/oder Betriebsparameter der Doppel- oder Einseiten-Bearbeitungsmaschine auf Grundlage einer in der Regeleinrichtung hinterlegten Anpassungsvorschrift anzusteuern. Die Anpassungsvorschrift kann der Regeleinrichtung insbesondere bestimmte Steuervorschriften zu bestimmten ermittelten Abweichungen des Zustandsvektors vorgeben. Wiederum kann die Anpassungsvorschrift zum Beispiel vorab durch eine Bedienperson erstellt worden sein. Auf dieser Grundlage ist eine automatisierte Regelung auf Grundlage von vorab in Form der Anpassungsvorschrift hinterlegten Steuervorgaben möglich, insbesondere ohne Eingriff einer Bedienperson.The control device can be designed to control the machine and/or operating parameters of the double- or single-side processing machine based on an adaptation rule stored in the control device. The adaptation rule can in particular specify certain control regulations for certain determined deviations of the state vector to the control device. Again, the adaptation rule can, for example, have been created in advance by an operator. On this basis, automated control based on control specifications stored in advance in the form of the adjustment rule is possible, in particular without intervention by an operator.

Nach einer weiteren Ausgestaltung kann ein weiteres künstliches neuronales Netz vorgesehen sein, das dazu ausgebildet ist, durch maschinelles Lernen die Messdaten zu den Maschinen- und/oder Bearbeitungsparametern zu bewerten und auf Grundlage der Bewertung die Doppel- oder Einseiten-Bearbeitungsmaschine, insbesondere Maschinen- und/oder Betriebsparameter der Doppel- oder Einseiten-Bearbeitungsmaschine, anzusteuern und/oder eine in einer Regeleinrichtung hinterlegte Anpassungsvorschrift zu erstellen und/oder zu verändern. Dieses weitere künstliche neuronale Netz kann ein weiteres künstliches neuronales Netz sein, zusätzlich zu dem vorgenannten, den Anomaliedetektor bildenden ersten künstlichen neuronalen Netz. Es wäre aber auch denkbar, dass das weitere künstliche neuronale Netz mit dem vorgenannten, den Anomaliedetektor bildenden künstlichen neuronalen Netz integriert ausgebildet ist. Die Regeleinrichtung kann dabei in das weitere künstliche neuronale Netz integriert sein.According to a further embodiment, a further artificial neural network can be provided, which is designed to use machine learning to evaluate the measurement data for the machine and / or processing parameters and, based on the evaluation, the double- or single-sided processing machine, in particular machine and /or operating parameters of the double- or single-side processing machine, and/or to create and/or change an adaptation rule stored in a control device. This further artificial neural network can be a further artificial neural network, in addition to the aforementioned first artificial neural network forming the anomaly detector. However, it would also be conceivable for the further artificial neural network to be designed to be integrated with the aforementioned artificial neural network forming the anomaly detector. The control device can be integrated into the further artificial neural network.

Das vorgesehene weitere künstliche neuronale Netz kann insbesondere ein sogenanntes Learning Classifier System (LCS/Lernendes Klassifikatorsystem) umfassen, also ein System der künstlichen Intelligenz. Solche Systeme basieren auf festgelegten Wenn-Dann-Beziehungen und können Maschinen- und/oder Bearbeitungsparameter der Doppel- oder Einseiten-Bearbeitungsmaschine in Abhängigkeit von Anomaliewerten, also durch das (erste) künstliche neuronale Netz erfassten Abweichungen zwischen dem aktuellen Zustandsvektor und dem mindestens einen Soll-Zustandsvektor ändern. Das LCS erstellt aus Eingabedaten und Regeln Ausgabedaten. Die Steuereinrichtung kann auch einen Speicher umfassen, in dem in der Vergangenheit gewonnene Maschinen- und/oder Bearbeitungsparameter einschließlich Daten zu bearbeitenden Werkstücken, gespeichert sind. Die gespeicherten Daten können dem künstlichen neuronalen Netz, insbesondere dem LCS zur Verfügung gestellt werden, das diese Daten bei der Bewertung der Messdaten und den daraus resultierenden Steuerdaten für die Doppel- oder Einseiten-Bearbeitungsmaschine berücksichtigt. Das vorzugsweise als LCS ausgebildete künstliche neuronale Netz kann dann bereits während eines Produktionsprozesses erkennen, mit welcher Wahrscheinlichkeit das Bearbeitungsergebnis der Werkstücke, beispielsweise charakteristische Werte wie GBIR, SFQR, von vorgegebenen Zielwerten abweichen. Auf dieser Grundlage kann dieses künstliche neuronale Netz bereits während des Produktionsprozesses oder spätestens in einem Folgeproduktionsprozess durch Ansteuern von zum Beispiel Aktoren für bestimmte Maschinen- und/oder Bearbeitungsparameter eingreifen, um etwaigen Ausschuss zu vermeiden. Durch das künstliche neuronale Netz unter Nutzung von maschinellem Lernen kann auch eine beispielsweise zunächst von einer Bedienperson erstellte Anpassungsvorschrift anhand weiterer Erfahrungen aus Produktionsprozessen verbessert werden. Dazu kann das künstliche neuronale Netz eine in einer Regeleinrichtung hinterlegte Anpassungsvorschrift verändern. Auch denkbar wäre es, dass diese Anpassungsvorschrift durch das künstliche neuronale Netz erstellt wird und dann gegebenenfalls anhand weiterer Prozessdaten optimiert wird. Durch die vorgenannte Ausgestaltung ist eine weitestgehende Automatisierung des Produktionsprozesses ohne erforderlichen Eingriff von Bedienpersonen möglich.The additional artificial neural network provided can in particular comprise a so-called learning classifier system (LCS/learning classifier system), i.e. an artificial intelligence system. Such systems are based on defined if-then relationships and can include machine and/or processing parameters of the double- or single-side processing machine Dependency on anomaly values, i.e. deviations between the current state vector and the at least one target state vector detected by the (first) artificial neural network. The LCS creates output data from input data and rules. The control device can also include a memory in which machine and/or machining parameters obtained in the past, including data on workpieces to be machined, are stored. The stored data can be made available to the artificial neural network, in particular the LCS, which takes this data into account when evaluating the measurement data and the resulting control data for the double- or single-side processing machine. The artificial neural network, which is preferably designed as an LCS, can then recognize during a production process the probability with which the machining result of the workpieces, for example characteristic values such as GBIR, SFQR, deviate from predetermined target values. On this basis, this artificial neural network can intervene during the production process or at the latest in a subsequent production process by controlling, for example, actuators for certain machine and/or processing parameters in order to avoid any waste. The artificial neural network using machine learning can also improve an adaptation rule initially created by an operator, for example, based on further experience from production processes. For this purpose, the artificial neural network can change an adaptation rule stored in a control device. It would also be conceivable for this adaptation rule to be created by the artificial neural network and then, if necessary, optimized based on further process data. The aforementioned design makes it possible to automate the production process to the greatest possible extent without the intervention of operators.

Nach einer weiteren Ausgestaltung kann vorgesehen sein, dass die Sensoren Messeinrichtungen umfassen zum Messen des Arbeitsspalts, insbesondere der Form und/oder Weite des Arbeitsspalts, weiter insbesondere eines Abstands zwischen der ersten Arbeitsscheibe und dem Gegenlagerelement, und/oder zum Messen einer Temperatur der ersten Arbeitsscheibe und/oder des Gegenlagerelements und/oder von weiteren Maschinenkomponenten der Doppel- oder Einseiten-Bearbeitungsmaschine und/oder zum Messen einer Temperatur und/oder einer Durchflussmenge eines zur Bearbeitung der Werkstücke in den Arbeitsspalt zugeführten Bearbeitungsmittels, und/oder zum Messen einer Drehzahl der ersten Arbeitsscheibe und/oder des Gegenlagerelements und/oder von in dem Arbeitsspalt drehend gelagerten Läuferscheiben und/oder zum Messen einer Auflast zwischen erster Arbeitsscheibe und Gegenlagerelement und/oder zum Messen einer Drehzahl und/oder eines Drehmoments und/oder einer Temperatur des Drehantriebs und/oder zum Messen eines Drucks und/oder einer Kraft von Mitteln zum Erzeugen einer Verformung der ersten Arbeitsscheibe und/oder des Gegenlagerelements und/oder zum Messen der Dicke eines Arbeitsbelags der ersten Arbeitsscheibe und/oder des Gegenlagerelements und/oder zum Messen der Dicke und/oder Form von in der Doppel- oder Einseiten-Bearbeitungsmaschine bearbeiteten Werkstücken. Die genannten Messeinrichtungen können gemeinsam oder in beliebigen Kombinationen miteinander vorliegen. Bearbeitungsmittel können zum Beispiel Poliermittel, insbesondere Polierflüssigkeiten, wie Slurry, sein. Die genannten Messeinrichtungen erfassen für den Produktionsprozess relevante Maschinen- und Bearbeitungsparameter, einschließlich zum Beispiel Umgebungsdaten, der Doppel- oder Einseiten-Bearbeitungsmaschine.According to a further embodiment, it can be provided that the sensors include measuring devices for measuring the working gap, in particular the shape and/or width of the working gap, further in particular a distance between the first working disk and the counter-bearing element, and/or for measuring a temperature of the first working disk and/or the counter-bearing element and/or of further machine components of the double- or single-sided processing machine and/or for measuring a temperature and/or a flow rate of a processing means fed into the working gap for processing the workpieces, and/or for measuring a speed of the first working disk and/or the counter-bearing element and/or of rotor disks rotatably mounted in the working gap and/or for measuring a load between the first working disk and the counter bearing element and/or for measuring a speed and/or a torque and/or a temperature of the rotary drive and/or for measuring a pressure and/or a force of means for generating a deformation of the first working disk and/or of the counter-bearing element and/or for measuring the thickness of a working surface of the first work disk and/or of the counter-bearing element and/or for measuring the thickness and/or shape of workpieces processed in the double- or single-side processing machine. The measuring devices mentioned can be present together or in any combination with one another. Processing agents can be, for example, polishing agents, in particular polishing liquids such as slurry. The measuring devices mentioned record machine and processing parameters relevant to the production process, including, for example, environmental data from the double-sided or single-sided processing machine.

Sofern auf Grundlage einer durch den Vergleich festgestellten Abweichung des erstellten Zustandsvektors von dem mindestens einen Soll-Zustandsvektor die Doppel- oder Einseiten-Bearbeitungsmaschine, insbesondere Maschinen- und/oder Betriebsparameter der Doppel- oder Einseiten-Bearbeitungsmaschine, angesteuert werden, kann dies insbesondere das Ansteuern von Aktoren umfassen zum Beeinflussen des Arbeitsspalts, insbesondere der Form und/oder Weite des Arbeitsspalts, weiter insbesondere eines Abstands zwischen der ersten Arbeitsscheibe und dem Gegenlagerelement, und/oder zum Beeinflussen einer Temperatur der ersten Arbeitsscheibe und/oder des Gegenlagerelements und/oder von weiteren Maschinenkomponenten der Doppel- oder Einseiten-Bearbeitungsmaschine und/oder zum Beeinflussen einer Temperatur und/oder einer Durchflussmenge eines zur Bearbeitung der Werkstücke in den Arbeitsspalt zugeführten Bearbeitungsmittels, und/oder zum Beeinflussen einer Drehzahl der ersten Arbeitsscheibe und/oder des Gegenlagerelements und/oder von in dem Arbeitsspalt drehend gelagerten Läuferscheiben und/oder zum Beeinflussen einer Auflast zwischen erster Arbeitsscheibe und Gegenlagerelement und/oder zum Beeinflussen einer Drehzahl und/oder eines Drehmoments und/oder einer Temperatur des Drehantriebs und/oder zum Beeinflussen eines Drucks und/oder einer Kraft von Mitteln zum Erzeugen einer Verformung der ersten Arbeitsscheibe und/oder des Gegenlagerelements und/oder zum Beeinflussen der Dicke eines Arbeitsbelags der ersten Arbeitsscheibe und/oder des Gegenlagerelements und/oder zum Beeinflussen der Dicke und/oder Form von in der Doppel- oder Einseiten-Bearbeitungsmaschine bearbeiteten Werkstücken. Die genannten Beeinflussungen bzw. Ansteuerungen der Aktoren können gemeinsam oder in beliebigen Kombinationen miteinander erfolgen. Bearbeitungsmittel können zum Beispiel Poliermittel, insbesondere Polierflüssigkeiten, wie Slurry, sein. Die anzusteuernden Aktoren beeinflussen also für den Produktionsprozess relevante Maschinen- und Bearbeitungsparameter, einschließlich zum Beispiel Umgebungsdaten, der Doppel- oder Einseiten-Bearbeitungsmaschine.If the double-sided or single-sided processing machine, in particular machine and/or operating parameters of the double-sided or single-sided processing machine, are controlled based on a deviation of the created state vector from the at least one target state vector determined by the comparison, this can in particular be controlled of actuators to influence the working gap, in particular the shape and/or width of the Working gap, further in particular a distance between the first working disk and the counter-bearing element, and/or for influencing a temperature of the first working disk and/or the counter-bearing element and/or of further machine components of the double- or single-side processing machine and/or for influencing a temperature and /or a flow rate of a processing agent supplied into the working gap for processing the workpieces, and/or for influencing a speed of the first working disk and/or the counter-bearing element and/or of rotor disks rotatably mounted in the working gap and/or for influencing a load between the first working disk and counter bearing element and/or for influencing a speed and/or a torque and/or a temperature of the rotary drive and/or for influencing a pressure and/or a force of means for generating a deformation of the first working disk and/or the counter bearing element and/or for influencing the thickness of a working surface of the first working disk and/or the counter-bearing element and/or for influencing the thickness and/or shape of workpieces processed in the double- or single-sided processing machine. The mentioned influences or controls of the actuators can take place together or in any combination with one another. Processing agents can be, for example, polishing agents, in particular polishing liquids such as slurry. The actuators to be controlled therefore influence machine and processing parameters relevant to the production process, including, for example, environmental data of the double- or single-sided processing machine.

Nach einer weiteren Ausgestaltung kann vorgesehen sein, dass das Gegenlagerelement durch eine vorzugsweise ringförmige zweite Arbeitsscheibe gebildet ist, wobei die erste und zweite Arbeitsscheibe koaxial zueinander angeordnet und durch den Drehantrieb relativ zueinander drehend antreibbar sind, wobei zwischen den Arbeitsscheiben der Arbeitsspalt zum doppelseitigen oder einseitigen Bearbeiten flacher Werkstücke gebildet ist.According to a further embodiment, it can be provided that the counter-bearing element is formed by a preferably annular second working disk, the first and second working disks being arranged coaxially to one another and being able to be driven in rotation relative to one another by the rotary drive, with the working gap between the working disks for double-sided or one-sided processing flat workpieces is formed.

Die Erfindung betrifft auch ein System umfassend mindestens zwei erfindungsgemäße Doppel- oder Einseiten-Bearbeitungsmaschinen, wobei weiterhin ein übergeordnetes künstliches neuronales Netz vorgesehen ist, das mit den künstlichen neuronalen Netzen der mindestens zwei Doppel- oder Einseiten-Bearbeitungsmaschinen verbunden ist, wobei das übergeordnete künstliche neuronale Netz dazu ausgebildet ist, auf Grundlage von von den künstlichen neuronalen Netzen der mindestens zwei Doppel- oder Einseiten-Bearbeitungsmaschinen erhaltenen Daten mindestens ein künstliches neuronales Netz der mindestens zwei Doppel- oder Einseiten-Bearbeitungsmaschinen durch Eingabe von zu einem akzeptablen Bearbeitungsergebnis von flachen Werkstücken führenden Zustandsvektoren zu trainieren.The invention also relates to a system comprising at least two double-sided or single-sided processing machines according to the invention, wherein a higher-level artificial neural network is also provided, which is connected to the artificial neural networks of the at least two double-sided or single-sided processing machines, the higher-level artificial neural network Network is designed to, based on data obtained from the artificial neural networks of the at least two double- or single-sided processing machines, at least one artificial neural network of the at least two double- or single-sided processing machines by inputting state vectors leading to an acceptable processing result of flat workpieces to train.

Bei dieser Ausgestaltung ist ein System aus mindestens zwei, insbesondere mehr als zwei erfindungsgemäßen Doppel- oder Einseiten-Bearbeitungsmaschinen vorgesehen. Weiterhin ist ein übergeordnetes künstliches neuronales Netz vorgesehen, das mit den künstlichen neuronalen Netzen der mindestens zwei Doppel- oder Einseiten-Bearbeitungsmaschinen verbunden ist. Das übergeordnete künstliche neuronale Netz ist dazu ausgebildet, auf Grundlage der von den künstlichen neuronalen Netzen der mindestens zwei Doppel- oder Einseiten-Bearbeitungsmaschinen erhaltenen Daten mindestens ein künstliches neuronales Netz der mindestens zwei Doppel- oder Einseiten-Bearbeitungsmaschinen zu trainieren. Das übergeordnete künstliche neuronale Netz bildet also eine übergeordnete Struktur, in die ähnliche Doppel- oder Einseiten-Bearbeitungsmaschinen eingebunden sein können. Es kann dann weiterhin ein anlagenübergreifender Speicher vorgesehen sein, der Daten sämtlicher Doppel- oder Einseiten-Bearbeitungsmaschinen des Systems erhält und diese Daten auch an das übergeordnete künstliche neuronale Netz gibt. Auf diese Weise kann gegebenenfalls unter Berücksichtigung der in dem Speicher hinterlegten Daten eine Optimierung der einzelnen Doppel- oder Einseiten-Bearbeitungsmaschinen des Systems unter gegenseitiger Nutzung individueller Daten der Doppel- oder Einseiten-Bearbeitungsmaschinen des Systems erfolgen. Durch die vorgenannte Ausgestaltung lassen sich vorteilhafte Effekte realisieren zum Beispiel in Hinblick auf Produktionsplanung, Flottenmanagement oder Wartungsvorhersage (Predicitive Maintenance).In this embodiment, a system of at least two, in particular more than two, double- or single-side processing machines according to the invention is provided. Furthermore, a higher-level artificial neural network is provided, which is connected to the artificial neural networks of the at least two double- or single-sided processing machines. The higher-level artificial neural network is designed to train at least one artificial neural network of the at least two double-sided or single-sided processing machines based on the data received from the artificial neural networks of the at least two double-sided or single-sided processing machines. The higher-level artificial neural network therefore forms a higher-level structure into which similar double- or single-side processing machines can be integrated. A system-wide memory can then also be provided, which receives data from all double- or single-side processing machines in the system and also passes this data on to the higher-level artificial neural network. In this way, the individual double- or single-side processing machines can be optimized, if necessary, taking into account the data stored in the memory of the system with mutual use of individual data from the double or single-sided processing machines of the system. The aforementioned design allows advantageous effects to be achieved, for example with regard to production planning, fleet management or maintenance prediction (predictive maintenance).

Die erfindungsgemäße Doppel- oder Einseiten-Bearbeitungsmaschine kann zum Durchführen des erfindungsgemäßen Verfahrens ausgebildet sein. Entsprechend kann das erfindungsgemäße Verfahren mit der erfindungsgemäßen Doppel- oder Einseiten-Bearbeitungsmaschine ausgeführt werden.The double- or single-side processing machine according to the invention can be designed to carry out the method according to the invention. Accordingly, the method according to the invention can be carried out with the double- or single-side processing machine according to the invention.

Wie bereits erläutert, wird bei dem erfindungsgemäßen Verfahren das künstliche neuronale Netz durch Eingabe einer Vielzahl von zu einem akzeptablen Bearbeitungsergebnis von flachen Werkstücken führenden Zustandsvektoren trainiert. Das Training kann erfolgen, indem durch eine Bedienperson Produktionsprozesse mit der Doppel- oder Einseiten-Bearbeitungsmaschine mit unterschiedlichen Maschinen- und/oder Bearbeitungsparametern durchgeführt werden und abhängig von dem Bearbeitungsergebnis dem künstlichen neuronalen Netz zu den jeweiligen Maschinen- und/oder Bearbeitungsparametern vorgegeben wird, ob der Produktionsprozess zu einem akzeptablen Bearbeitungsergebnis geführt hat. In diesem Fall werden die zugehörigen Maschinen- und/oder Bearbeitungsparameter als ein Soll-Zustandsvektor in dem künstlichen neuronalen Netz hinterlegt. Dieses Starttraining erfolgt in der Regel vor Beginn der regulären Bearbeitung von flachen Werkstücken mit der Doppel- oder Einseiten-Bearbeitungsmaschine.As already explained, in the method according to the invention, the artificial neural network is trained by inputting a large number of state vectors leading to an acceptable machining result of flat workpieces. The training can be carried out by an operator carrying out production processes with the double- or single-side processing machine with different machine and/or processing parameters and, depending on the processing result, specifying the respective machine and/or processing parameters to the artificial neural network the production process led to an acceptable processing result. In this case, the associated machine and/or processing parameters are stored as a target state vector in the artificial neural network. This initial training usually takes place before regular processing of flat workpieces begins with the double- or single-side processing machine.

Es ist weiterhin möglich, dass das auf diese Weise trainierte künstliche neuronale Netz im Betrieb der Doppel- oder Einseiten-Bearbeitungsmaschine durch Eingabe weiterer zu einem akzeptablen Bearbeitungsergebnis von flachen Werkstücken führenden Soll-Zustandsvektoren weiter trainiert wird. Durch dieses weitere Training im Zuge von Produktionsprozessen mit der Doppel- oder Einseiten-Bearbeitungsmaschine erfolgt eine weitergehende Optimierung der Maschinen- und/oder Bearbeitungsparameter.It is also possible for the artificial neural network trained in this way to be further trained during operation of the double- or single-side processing machine by entering further target state vectors leading to an acceptable processing result of flat workpieces. Through this further training in the course Production processes with double or single-sided processing machines result in further optimization of the machine and/or processing parameters.

Gemäß einer weiteren Ausgestaltung kann im Betrieb der Doppel- oder Einseiten-Bearbeitungsmaschine mit dem trainierten künstlichen neuronalen Netz ein weiteres künstliches neuronales Netz durch Eingabe einer Vielzahl von zu einem akzeptablen Bearbeitungsergebnis von flachen Werkstücken führenden Soll-Zustandsvektoren trainiert werden. Dieses weitere künstliche neuronale Netz kann untrainiert sein oder bereits (vor-)trainiert. Beispielsweise kann das weitere künstliche neuronale Netz eine Kopie des trainierten künstlichen neuronalen Netzes sein und auf dieser Grundlage weiter trainiert werden. Dies kann zum Beispiel nützlich sein, wenn das trainierte künstliche neuronale Netz ein generisches neuronales Netz ist, das auf einen bestimmten Typ einer Doppel- oder Einseiten-Bearbeitungsmaschine trainiert ist, aber noch nicht auf eine spezielle Doppel- oder Einseiten-Bearbeitungsmaschine spezialisiert wurde, insbesondere hinsichtlich der jeweils individuellen Bearbeitungsparameter vor Ort. Hierdurch kann eine spezialisierte Version des trainierten künstlichen neuronalen Netzes generiert werden, die das trainierte künstliche neuronale Netz letztendlich ablösen kann. Ein möglicher Anwendungsfall ist, dass Doppel- oder Einseiten-Bearbeitungsmaschinen mit einem trainierten künstlichen neuronalen Netz ausgeliefert werden, wobei das Training auf Basis von Versuchen bzw. Labordaten eines Herstellers der Doppel- oder Einseiten-Bearbeitungsmaschine erfolgt und dann mit dem weiteren kürzlichen neuronalen Netz eine weitere Spezialisierung auf den individuellen Fertigungsprozess des Kunden erfolgt. Dies erfordert ein geringeres Verständnis des Produktionsprozesses am Installationsort der Doppel- oder Einseiten-Bearbeitungsmaschine.According to a further embodiment, during operation of the double- or single-sided processing machine with the trained artificial neural network, a further artificial neural network can be trained by entering a large number of target state vectors leading to an acceptable processing result of flat workpieces. This additional artificial neural network can be untrained or already (pre-)trained. For example, the further artificial neural network can be a copy of the trained artificial neural network and can be further trained on this basis. This can be useful, for example, if the trained artificial neural network is a generic neural network that is trained for a specific type of double or single-sided processing machine, but has not yet been specialized for a specific double or single-sided processing machine, in particular with regard to the individual processing parameters on site. This allows a specialized version of the trained artificial neural network to be generated, which can ultimately replace the trained artificial neural network. A possible application is that double-sided or single-sided processing machines are delivered with a trained artificial neural network, with the training taking place on the basis of experiments or laboratory data from a manufacturer of the double-sided or single-sided processing machine and then with the further recent neural network Further specialization takes place on the customer's individual manufacturing process. This requires less understanding of the production process at the installation site of the double or single side processing machine.

Ausführungsbeispiele der Erfindung werden nachfolgend anhand von Figuren näher erläutert. Es zeigen schematisch:

Figur 1
einen Teil einer erfindungsgemäßen Doppel- oder Einseiten-Bearbeitungsmaschine in einer Schnittansicht in einem ersten Betriebszustand,
Figur 2
die Ansicht aus Figur 1 in einem zweiten Betriebszustand,
Figur 3
die Ansicht aus Figur 1 in einem dritten Betriebszustand,
Figur 4
eine schematische Darstellung der Funktion der erfindungsgemäßen Doppelseiten-Bearbeitungsmaschine nach einem ersten Ausführungsbeispiel,
Figur 5
eine schematische Darstellung der Funktion der erfindungsgemäßen Doppelseiten-Bearbeitungsmaschine nach einem weiteren Ausführungsbeispiel,
Figur 6
eine schematische Darstellung der Funktion der erfindungsgemäßen Doppelseiten-Bearbeitungsmaschine nach einem weiteren Ausführungsbeispiel,
Figur 7
eine schematische Darstellung der Funktion der erfindungsgemäßen Doppelseiten-Bearbeitungsmaschine nach einem weiteren Ausführungsbeispiel,
Figur 8
eine schematische Darstellung der Funktion der erfindungsgemäßen Doppelseiten-Bearbeitungsmaschine nach einem weiteren Ausführungsbeispiel,
Figur 9
eine schematische Darstellung der Funktion der erfindungsgemäßen Doppelseiten-Bearbeitungsmaschine nach einem weiteren Ausführungsbeispiel, und
Figur 10
ein erfindungsgemäßes System in einer schematischen Darstellung.
Exemplary embodiments of the invention are explained in more detail below with reference to figures. It shows schematically:
Figure 1
a part of a double- or single-side processing machine according to the invention in a sectional view in a first operating state,
Figure 2
the view Figure 1 in a second operating state,
Figure 3
the view Figure 1 in a third operating state,
Figure 4
a schematic representation of the function of the double-side processing machine according to the invention according to a first exemplary embodiment,
Figure 5
a schematic representation of the function of the double-side processing machine according to the invention according to a further exemplary embodiment,
Figure 6
a schematic representation of the function of the double-side processing machine according to the invention according to a further exemplary embodiment,
Figure 7
a schematic representation of the function of the double-side processing machine according to the invention according to a further exemplary embodiment,
Figure 8
a schematic representation of the function of the double-side processing machine according to the invention according to a further exemplary embodiment,
Figure 9
a schematic representation of the function of the double-side processing machine according to the invention according to a further exemplary embodiment, and
Figure 10
a system according to the invention in a schematic representation.

Soweit nichts anderes angegeben ist, bezeichnen in den Figuren gleiche Bezugszeichen gleiche Gegenstände.Unless otherwise stated, the same reference numbers designate the same objects in the figures.

Die in den Figuren 1 bis 3 lediglich beispielhaft dargestellte Doppelseiten-Bearbeitungsmaschine weist eine ringförmige obere Trägerscheibe 10 und eine ebenfalls ringförmige untere Trägerscheibe 12 auf. An der oberen Trägerscheibe 10 ist eine erste, ringförmige obere Arbeitsscheibe 14 befestigt und an der unteren Trägerscheibe 12 ist eine zweite, ebenfalls ringförmige Arbeitsscheibe 16 befestigt. Zwischen den ringförmigen Arbeitsscheiben 14, 16 ist ein ebenfalls ringförmiger Arbeitsspalt 18 gebildet, in dem im Betrieb flache Werkstücke, beispielsweise Wafer, beidseitig bearbeitet werden. Bei der Doppelseiten-Bearbeitungsmaschine kann es sich beispielsweise um eine Poliermaschine, eine Läppmaschine oder eine Schleifmaschine handeln.The ones in the Figures 1 to 3 The double-side processing machine, shown only as an example, has an annular upper carrier disk 10 and a likewise annular lower carrier disk 12. A first, annular upper working disk 14 is attached to the upper carrier disk 10 and a second, also annular working disk 16 is attached to the lower carrier disk 12. A likewise annular working gap 18 is formed between the annular working disks 14, 16, in which flat workpieces, for example wafers, are processed on both sides during operation. The double-side processing machine can be, for example, a polishing machine, a lapping machine or a grinding machine.

Die obere Trägerscheibe 10 und mit ihr die obere Arbeitsscheibe 14 und/oder die unter Trägerscheibe 12 und mit ihr die untere Arbeitsscheibe 16 können durch eine geeignete Antriebseinrichtung, umfassend beispielsweise eine obere Antriebswelle und/oder eine untere Antriebswelle sowie mindestens einen Antriebsmotor relativ zueinander drehend angetrieben werden. Die Antriebseinrichtung ist an sich bekannt und aus Gründen der Übersichtlichkeit nicht näher dargestellt. In ebenfalls an sich bekannter Weise können die zu bearbeitenden Werkstücke schwimmend in Läuferscheiben in dem Arbeitsspalt 18 gehalten werden. Durch eine geeignete Kinematik, beispielsweise eine Planentenkinematik, kann sichergestellt werden, dass sich die Läuferscheiben im Zuge der Relativdrehung der Trägerscheiben 10, 12 bzw. Arbeitsscheiben 14, 16 ebenfalls durch den Arbeitsspalt 18 drehen. In der oberen Arbeitsscheibe 14 oder der oberen Trägerscheibe 10 und ggf. auch der unteren Arbeitsscheibe 16 oder der unteren Trägerscheibe 12 können Temperierkanäle ausgebildet sein, durch die im Betrieb ein Temperierfluid, beispielsweise eine Temperierflüssigkeit wie Wasser, geleitet werden kann. Dies ist ebenfalls an sich bekannt und nicht näher dargestellt.The upper carrier disk 10 and with it the upper working disk 14 and / or the lower carrier disk 12 and with it the lower working disk 16 can be driven in rotation relative to one another by a suitable drive device, comprising, for example, an upper drive shaft and / or a lower drive shaft and at least one drive motor become. The drive device is known per se and is not shown in more detail for reasons of clarity. In a manner also known per se, the workpieces to be machined can be held floating in rotor disks in the working gap 18. Suitable kinematics, for example planetary kinematics, can ensure that The rotor disks also rotate through the working gap 18 in the course of the relative rotation of the carrier disks 10, 12 or working disks 14, 16. In the upper working disk 14 or the upper carrier disk 10 and possibly also the lower working disk 16 or the lower carrier disk 12, temperature control channels can be formed, through which a temperature control fluid, for example a temperature control liquid such as water, can be passed during operation. This is also known per se and is not shown in more detail.

Die in den Figuren 1 bis 3 gezeigte Doppelseiten-Bearbeitungsmaschine umfasst darüber hinaus an sich ebenfalls bekannte Abstandsmesseinrichtungen als Sensoren. Die Sensoren können beispielsweise optisch oder elektromagnetisch (z.B. Wirbelstromsensoren) arbeiten. In dem dargestellten Beispiel sind beispielsweise drei Abstandsmesseinrichtungen 20, 22, 24 vorgesehen, die an drei radial beabstandeten Positionen des Arbeitsspalts 18 den Abstand zwischen der oberen Arbeitsscheibe 14 und der unteren Arbeitsscheibe 16 messen, wie in Figur 1 durch Pfeile veranschaulicht. Wie zu erkennen, misst die Abstandsmesseinrichtung 20 den Abstand zwischen der oberen Arbeitsscheibe 14 und der unteren Arbeitsscheibe 16 im Bereich des radial äußeren Rands des Arbeitsspalts 18. Die Abstandsmesseinrichtung 24 misst den Abstand zwischen der oberen Arbeitsscheibe 14 und der unteren Arbeitsscheibe 16 im Bereich des radial inneren Rands des Arbeitsspalts 18. Die Abstandsmesseinrichtung 22 misst den Abstand zwischen der oberen Arbeitsscheibe 14 und der unteren Arbeitsscheibe 16 in der Mitte des Arbeitsspalts 18.The ones in the Figures 1 to 3 The double-side processing machine shown also includes known distance measuring devices as sensors. The sensors can, for example, work optically or electromagnetically (e.g. eddy current sensors). In the example shown, for example, three distance measuring devices 20, 22, 24 are provided, which measure the distance between the upper working disk 14 and the lower working disk 16 at three radially spaced positions of the working gap 18, as in Figure 1 illustrated by arrows. As can be seen, the distance measuring device 20 measures the distance between the upper working disk 14 and the lower working disk 16 in the area of the radially outer edge of the working gap 18. The distance measuring device 24 measures the distance between the upper working disk 14 and the lower working disk 16 in the area of the radial inner edge of the working gap 18. The distance measuring device 22 measures the distance between the upper working disk 14 and the lower working disk 16 in the middle of the working gap 18.

In den Figuren 2 und 3 sind die Abstandsmesseinrichtungen 20, 22, 24 aus Gründen der Übersichtlichkeit nicht dargestellt. Die Messdaten der Abstandsmesseinrichtungen 20, 22, 24 liegen an einer Steuereinrichtung 34 an.In the Figures 2 and 3 the distance measuring devices 20, 22, 24 are not shown for reasons of clarity. The measurement data from the distance measuring devices 20, 22, 24 are available at a control device 34.

Die untere Arbeitsscheibe 16 ist vorliegend nur im Bereich ihres äußeren Randes und im Bereich ihres inneren Randes an der unteren Trägerscheibe 12 befestigt, beispielsweise jeweils entlang eines Teilkreises verschraubt, wie in Figur 1 bei den Bezugszeichen 26 und 28 veranschaulicht. Zwischen diesen Befestigungsorten 26 und 28 ist die untere Arbeitsscheibe 16 dagegen nicht an der unteren Trägerscheibe 12 befestigt. Vielmehr befindet sich zwischen diesen Befestigungsorten 26, 28 zwischen der unteren Trägerscheibe 12 und der unteren Arbeitsscheibe 16 ein ringförmiges Druckvolumen 30. Das Druckvolumen 30 ist über eine Staudruckleitung 32 mit einem in den Figuren nicht näher dargestellten Druckfluidreservoir, beispielsweise einem Flüssigkeitsreservoir, insbesondere einem Wasserreservoir, verbunden. In der Staudruckleitung 32 können eine Pumpe und ein Steuerventil angeordnet sein, die von der Steuereinrichtung 34 angesteuert werden können. Auf diese Weise kann durch in das Druckvolumen 30 eingeleitetes Fluid ein gewünschter Druck in dem Druckvolumen 30 aufgebaut werden, der dann auf die untere Arbeitsscheibe 16 wirkt. Über eine nicht näher dargestellte Druckmesseinrichtung kann der in dem Druckvolumen 30 herrschende Druck gemessen werden. Die Messdaten der Druckmesseinrichtung als weiterer Sensor können ebenfalls an der Steuereinrichtung 34 anliegen, so dass die Steuereinrichtung 34 einen vorgegebenen Druck in dem Druckvolumen 30 einstellen kann.In the present case, the lower working disk 16 is only attached to the lower carrier disk 12 in the area of its outer edge and in the area of its inner edge, For example, each screwed along a partial circle, as in Figure 1 illustrated at reference numbers 26 and 28. However, between these fastening locations 26 and 28, the lower working disk 16 is not attached to the lower carrier disk 12. Rather, there is an annular pressure volume 30 between these fastening locations 26, 28 between the lower carrier disk 12 and the lower working disk 16. The pressure volume 30 is connected via a dynamic pressure line 32 to a pressure fluid reservoir (not shown in detail in the figures), for example a liquid reservoir, in particular a water reservoir. tied together. A pump and a control valve can be arranged in the dynamic pressure line 32, which can be controlled by the control device 34. In this way, a desired pressure can be built up in the pressure volume 30 by fluid introduced into the pressure volume 30, which then acts on the lower working disk 16. The pressure prevailing in the pressure volume 30 can be measured via a pressure measuring device (not shown). The measurement data from the pressure measuring device as a further sensor can also be applied to the control device 34, so that the control device 34 can set a predetermined pressure in the pressure volume 30.

Aufgrund ihrer Bewegungsfreiheit zwischen den Befestigungsorten 26, 28 kann die untere Arbeitsscheibe 16 durch Einstellen eines ausreichend hohen Drucks in dem Druckvolumen 30 lokal in eine konvexe Form gebracht werden, wie in Figur 2 gestrichelt bei dem Bezugszeichen 36 angedeutet. Geht man in dem Betriebszustand der Figur 1, in dem die untere Arbeitsscheibe 16 eine plane Form besitzt, von einem Druck po in dem Druckvolumen 30 aus, so kann die in Figur 2 bei 36 gezeigte konvexe Verformung der unteren Arbeitsscheibe 16 erreicht werden, indem ein Druck p1>p0 eingestellt wird. Andererseits kann durch Einstellen eines Ducks p2<p0 in dem Druckvolumen 30 eine lokale konkave Verformung der unteren Arbeitsscheibe 16 erreicht werden., wie in Figur 3 bei dem Bezugszeichen 38 gestrichelt veranschaulicht.Due to its freedom of movement between the fastening locations 26, 28, the lower working disk 16 can be locally brought into a convex shape by setting a sufficiently high pressure in the pressure volume 30, as in Figure 2 indicated by dashed lines at reference number 36. If you go in the operating state of the Figure 1 , in which the lower working disk 16 has a flat shape, from a pressure po in the pressure volume 30, the in Figure 2 Convex deformation of the lower working disk 16 shown at 36 can be achieved by setting a pressure p 1 >p 0 . On the other hand, by setting a pressure p 2 <p 0 in the printing volume 30, a local concave deformation of the lower working disk 16 can be achieved, as in Figure 3 illustrated in dashed lines at reference number 38.

Erkennbar ist dabei, dass die untere Arbeitsscheibe 16 in radialer Richtung gesehen zwischen ihrem inneren Rand, im Bereich des Befestigungsorts 26, und ihrem äußeren Rand, im Bereich des Befestigungsorts 28, eine lokal konvexe Form (Figur 2) bzw. eine lokal konkave Form (Figur 3) annehmen kann.It can be seen that the lower working disk 16, viewed in the radial direction, has a locally convex shape between its inner edge, in the area of the attachment location 26, and its outer edge, in the area of the attachment location 28 ( Figure 2 ) or a locally concave shape ( Figure 3 ) can accept.

Zusätzlich zu dieser lokalen radialen Verformung der unteren Arbeitsscheibe 16 können Mittel zur globalen Verformung der oberen Arbeitsscheibe 14 vorgesehen sein. Diese Mittel können ausgestaltet sein, wie oben erläutert, bzw. in der DE 10 2006 037 490 B4 beschrieben. Dabei wird die obere Trägerscheibe 10 und mit ihr die an dieser befestigte obere Arbeitsscheibe 14 global verformt, so dass sich über den gesamten Querschnitt der oberen Arbeitsscheibe 14 eine global konkave oder global konvexe Form der Arbeitsfläche der oberen Arbeitsscheibe 14 ergibt. Zwischen ihrem radial inneren Rand und ihrem radial äußeren Rand kann die obere Arbeitsscheibe 14 dagegen plan bleiben oder in der oben erläuterten Weise durch das Druckvolumen 30 lokal verformt werden. Auch die Mittel zum Verstellen der Form der oberen Arbeitsscheibe 14 können durch die Steuereinrichtung 34 angesteuert werden.In addition to this local radial deformation of the lower working disk 16, means for global deformation of the upper working disk 14 can be provided. These means can be designed as explained above or in the DE 10 2006 037 490 B4 described. In this case, the upper carrier disk 10 and with it the upper working disk 14 attached to it are globally deformed, so that a globally concave or globally convex shape of the working surface of the upper working disk 14 results over the entire cross section of the upper working disk 14. However, between its radially inner edge and its radially outer edge, the upper working disk 14 can remain flat or can be locally deformed by the pressure volume 30 in the manner explained above. The means for adjusting the shape of the upper working disk 14 can also be controlled by the control device 34.

Die Abstandsmesseinrichtungen 20, 22, 24 bilden Sensoren, die während des Betriebs der Doppelseiten-Bearbeitungsmaschine Messdaten zu Maschinen- und/oder Bearbeitungsparametern der Doppelseiten-Bearbeitungsmaschine erfassen, vorliegend insbesondere die Dicke und Geometrie des Arbeitsspalts 18. Vorzugsweise umfasst die Doppelseiten-Bearbeitungsmaschine eine Mehrzahl weiterer Sensoren mit entsprechenden weiteren Messeinrichtungen. Dabei kann es sich insbesondere um Messeinrichtungen der oben erläuterten Art handeln. Diese Messeinrichtungen erfassen während des Betriebs der Doppelseiten-Bearbeitungsmaschine weitere Maschinen- und/oder Bearbeitungsparameter.The distance measuring devices 20, 22, 24 form sensors which, during operation of the double-side processing machine, record measurement data on machine and/or processing parameters of the double-side processing machine, in the present case in particular the thickness and geometry of the working gap 18. The double-side processing machine preferably comprises a plurality additional sensors with corresponding additional measuring devices. These can in particular be measuring devices of the type explained above. These measuring devices record further machine and/or processing parameters during operation of the double-side processing machine.

Die durch die Sensoren erfassten Messdaten werden der Steuereinrichtung 34 zugeleitet. Aus diesen Messdaten erstellt die Steuereinrichtung 34 mittels eines in diese integrierten künstlichen neuronalen Netzes 34 einen Zustandsvektor der Doppelseiten-Bearbeitungsmaschine und vergleicht diesen mit mindestens einem Soll-Zustandsvektor, vorzugsweise einer Schar von Soll-Zustandsvektoren, die im Rahmen eines Trainings einem akzeptablen Produktionsprozess zugeordnet wurden.The measurement data recorded by the sensors are sent to the control device 34. From these measurement data, the control device 34 creates a state vector of the double-side processing machine by means of an artificial neural network 34 integrated therein and compares this with at least one target state vector, preferably a group of target state vectors, which were assigned to an acceptable production process as part of training .

Anhand von Figur 4 soll das Training des künstlichen neuronalen Netzes 34 näher erläutert werden. In Figur 4 ist die erfindungsgemäße Doppelseiten-Bearbeitungsmaschine bei dem Bezugszeichen 40 gezeigt. Ihr werden unbearbeitete Werkstücke 42, beispielsweise unbearbeitete Wafer, zur Bearbeitung zugeführt und durch die Doppelseiten-Bearbeitungsmaschine 40 werden fertig bearbeitete Werkstücke 44 insbesondere bearbeitete Wafer 44 ausgegeben. Dabei ist ein Datenspeicher 46 vorgesehen, dem beispielsweise durch die Sensoren erfasste Messdaten zu Maschinen- und Bearbeitungsparametern zugeführt werden, wobei diese Daten einer Bedienperson 48 zur Verfügung gestellt werden, wie in Figur 4 bei 50 veranschaulicht. Weiterhin werden dem Datenspeicher 46 als weitere Maschinen- und/oder Bearbeitungsparameter Messdaten zu beispielsweise der Geometrie der bearbeiteten Werkstücke zugeleitet, wobei auch diese Daten der Bedienperson 48 zugeleitet werden, wie in Figur 4 bei 52 veranschaulicht. Schließlich stehen dem Datenspeicher auch externe Umgebungsdaten zur Verfügung, wie bei 54 veranschaulicht. Auch diese externen Umgebungsdaten können der Bedienperson 48 zugeleitet werden. Die Bedienperson 48 führt auf dieser Grundlage eine Bewertung des den jeweiligen Daten zugrundeliegenden Produktionsprozesses dahingehend durch, ob das Bearbeitungsergebnis akzeptabel ist. Diese Bewertung stellt die Bedienperson 48 dem künstlichen neuronalen Netz 34 der Steuereinrichtung 34 zur Verfügung, wie in Figur 4 bei 56 dargestellt. Die entsprechenden Zustandsvektoren werden durch das künstliche neuronale Netz 34 als Soll-Zustandsvektoren abgelegt.Based on Figure 4 The training of the artificial neural network 34 will be explained in more detail. In Figure 4 the double-side processing machine according to the invention is shown at reference number 40. Unprocessed workpieces 42, for example unprocessed wafers, are fed to it for processing and finished workpieces 44, in particular processed wafers 44, are output by the double-side processing machine 40. A data memory 46 is provided, to which, for example, measurement data on machine and processing parameters recorded by the sensors are supplied, with this data being made available to an operator 48, as in Figure 4 illustrated at 50. Furthermore, measurement data relating to, for example, the geometry of the machined workpieces are supplied to the data memory 46 as further machine and/or processing parameters, with these data also being supplied to the operator 48, as in Figure 4 illustrated at 52. Finally, external environmental data is also available to the data storage, as illustrated at 54. This external environmental data can also be sent to the operator 48. On this basis, the operator 48 carries out an assessment of the production process underlying the respective data to determine whether the processing result is acceptable. The operator 48 provides this evaluation to the artificial neural network 34 of the control device 34, as in Figure 4 shown at 56. The corresponding state vectors are stored as target state vectors by the artificial neural network 34.

In Figur 5 ist dargestellt, wie auf dieser Grundlage der Betrieb der Doppelseiten-Bearbeitungsmaschine erfolgen kann. In diesem Fall werden die Prozessdaten zu den Maschinen- und/oder Bearbeitungsparametern direkt dem künstlichen neuronalen Netz 34 der Steuereinrichtung 34 zugeführt, wie in Figur 5 bei 58 veranschaulicht. Durch das künstliche neuronale Netz 34 wird aus den erhaltenen Messdaten zu den Maschinen- und/oder Bearbeitungsparametern ein Zustandsvektor erstellt und dieser mit den hinterlegten Soll-Zustandsvektoren verglichen. Wird hierbei eine unzulässige Abweichung bzw. Nichtübereinstimmung festgestellt, gibt die Steuereinrichtung 34 eine entsprechende Warnmeldung an die Bedienperson 48, wie in Figur 5 bei 60 dargestellt. Auf dieser Grundlage und gegebenenfalls unter Berücksichtigung der über 52 zur Verfügung gestellten Messdaten der bearbeiteten Werkstücke 44 kann die Bedienperson 48 die Doppelseiten-Bearbeitungsmaschine 40, insbesondere Aktoren zum Beeinflussen von Maschinen- und/oder Betriebsparametern ansteuern, wie in Figur 5 bei 62 gezeigt, um den laufend überwachten und erstellten Zustandsvektor mit mindestens einem Soll-Zustandsvektor in Übereinstimmung zu bringen. In diesem Fall entscheidet die Bedienperson 48 also über die Konsequenzen aus der Bewertung der empfangenen Daten. Die Bedienperson 48 wird hierbei durch die Steuereinrichtung 34 als Anomaliedetektor unterstützt.In Figure 5 shows how the double-side processing machine can be operated on this basis. In this case, the process data on the machine and/or processing parameters are fed directly to the artificial neural network 34 of the control device 34, as in Figure 5 illustrated at 58. The artificial neural network 34 creates a state vector from the measurement data obtained for the machine and/or processing parameters and compares it with the stored target state vectors. If an impermissible deviation or non-conformity is detected, the control device 34 issues a corresponding warning message to the operator 48, as in Figure 5 shown at 60. On this basis and, if necessary, taking into account the measurement data of the processed workpieces 44 provided via 52, the operator 48 can control the double-side processing machine 40, in particular actuators for influencing machine and / or operating parameters, as in Figure 5 shown at 62 to bring the continuously monitored and created state vector into agreement with at least one target state vector. In this case, the operator 48 decides on the consequences of evaluating the received data. The operator 48 is supported by the control device 34 as an anomaly detector.

In Figur 6 ist eine weiter automatisierte Variante der in Figur 5 dargestellten Vorgehensweise dargestellt. Bei dieser Ausgestaltung umfasst die Steuereinrichtung 34, insbesondere ihr künstliches neuronales Netz 34, weiterhin eine mit dieser verbundene Regeleinrichtung 64, , wie in Figur 6 bei 66 dargestellt. Bei einer durch den Vergleich festgestellten Abweichung des erstellten Zustandsvektors von dem mindestens einen Soll-Zustandsvektor erfolgt insbesondere ohne Eingriff der Bedienperson 48 ein Regeleingriff durch die Regeleinrichtung 64 auf Aktoren der Doppelseiten-Bearbeitungsmaschine 40. Dadurch wird eine Anpassung der erfassten Maschinen- und/oder Bearbeitungsparameter der Doppelseiten-Bearbeitungsmaschine 40 bewirkt, wie in Figur 6 bei 68 veranschaulicht. Sämtliche der zugehörigen Daten können in dem Datenspeicher 46 abgelegt werden. Die zum Beispiel integriert ausgebildete Steuer- und Regeleinrichtung 34, 64 kann die Maschinen- und/oder Betriebsparameter der Doppelseiten-Bearbeitungsmaschine 40 auf Grundlage einer zum Beispiel in der Regeleinrichtung 64 hinterlegten Anpassungsvorschrift ansteuern. Diese kann zum Beispiel durch eine Bedienperson 48 erstellte bestimmte Steueranweisungen für bestimmte festgestellte Abweichungen der Maschinen- und/oder Bearbeitungsparameter enthalten, nach denen die Steuer- und Regeleinrichtung 34, 64 Aktoren ansteuert.In Figure 6 is a further automated variant of the in Figure 5 procedure shown. In this embodiment, the control device 34, in particular its artificial neural network 34, further comprises a control device 64 connected thereto, as in Figure 6 shown at 66. If the comparison determines a deviation of the created state vector from the at least one target state vector, a control intervention is carried out by the control device 64 on actuators of the double-side processing machine 40, in particular without intervention by the operator 48. This results in an adaptation of the recorded machine and/or processing parameters the double-side processing machine 40 causes as in Figure 6 illustrated at 68. All the associated data can be stored in the data memory 46. The control and regulation device 34, 64, which is designed to be integrated, for example, can control the machine and/or operating parameters of the double-side processing machine 40 on the basis of an adaptation rule stored, for example, in the control device 64. This can, for example, contain specific control instructions created by an operator 48 for certain identified deviations in the machine and/or processing parameters, according to which the open-loop and closed-loop control device 34, 64 controls actuators.

In Figur 7 ist eine weitere Ausgestaltung der zu Figur 6 erläuterten Vorgehensweise dargestellt. Bei dieser Ausgestaltung ist weiterhin die Bedienperson 48 eingebunden. Diese erhält ebenfalls die Prozessdaten zu den erfassten Maschinen- und Bearbeitungsparameter, wie in Figur 7 bei 70 dargestellt und außerdem die Prozessdaten zu den bearbeiteten Werkstücken, wie bei 52 dargestellt. Schließlich erhält die Bedienperson 48 auch die von der Steuereinrichtung 34 vorgenommenen Steuerbefehle, wie in Figur 7 bei 72 dargestellt. Auf dieser Grundlage kann durch die Bedienperson 48 eine Überwachung der jeweils durchgeführten Regelung erfolgen und gegebenenfalls die Regelung der Regeleinrichtung 64 in geeigneter Weise angepasst werden, wie in Figur 7 bei 74 dargestellt.In Figure 7 is another embodiment of the too Figure 6 the procedure explained. In this embodiment, the operator 48 is still involved. This also receives the process data on the recorded machine and processing parameters, as in Figure 7 shown at 70 and also the process data for the machined workpieces, as shown at 52. Finally, the operator 48 also receives the control commands issued by the control device 34, as in Figure 7 shown at 72. On this basis, the operator 48 can monitor the control carried out in each case and, if necessary, adjust the control of the control device 64 in a suitable manner, as in Figure 7 shown at 74.

Figur 8 stellt eine weitere Ausgestaltung eines möglichen Trainings von künstlichen neuronalen Netzen als Anomaliedetektoren dar. Dabei wird ausgegangen von der Steuereinrichtung 34 mit einem bereits vortrainierten künstlichen neuronalen Netz 34, trainiert beispielsweise wie oben zu Figur 4 erläutert. Diese Steuereinrichtung 34 gibt etwaige Abweichungen bzw. Anomaliedaten an die Bedienperson 48, wie in Figur 8 bei 60 gezeigt und oben zu Figur 5 erläutert. Auf dieser Grundlage kann die Bedienperson 48 ein weiteres künstliches neuronales Netz 76 trainieren, indem diesem weiteren künstlichen neuronalen Netz 76 im Betrieb der Doppelseiten-Bearbeitungsmaschine 40 (weitere) Soll-Zustandsvektoren zu akzeptablen Maschinen- und/oder Bearbeitungsparametern der Doppelseiten-Bearbeitungsmaschine 40 zugeleitet werden, wie in Figur 8 bei 78 dargestellt. Das weitere künstliche neuronale Netz 76 kann ein untrainiertes künstliches neuronales Netz 76 sein. Es kann sich aber auch um ein bereits (vor-) trainiertes künstliches neuronales Netz 76 handeln, beispielsweise ein Duplikat des neuronalen Netzes 34 der Steuereinrichtung 34. Auf dieser Grundlage kann auf Grundlage des zum Beispiel für den generischen Typ der Doppelseiten-Bearbeitungsmaschine 40 (vor-) trainierten künstlichen neuronalen Netzes 34 der Steuereinrichtung 34 im beginnenden Produktionsbetrieb ein spezialisiertes Training des weiteren künstlichen neuronalen Netzes 76 für die jeweiligen individuellen Prozessparameter des Anwendungsfalls der Doppelseiten-Bearbeitungsmaschine 40 trainiert werden. Es ist dabei möglich, dass nach Abschluss dieses Trainings das weitere künstliche neuronale Netz 76 das zuvor trainierte künstliche neuronale Netz 34 der Steuereinrichtung 34 ersetzt. Figure 8 represents a further embodiment of a possible training of artificial neural networks as anomaly detectors. This is based on the control device 34 with an already pre-trained artificial neural network 34, trained for example as above Figure 4 explained. This control device 34 sends any deviations or anomaly data to the operator 48, as in Figure 8 shown at 60 and closed at the top Figure 5 explained. On this basis, the operator 48 can train a further artificial neural network 76 by giving this further artificial neural network 76 (further) target state vectors acceptable during operation of the double-side processing machine 40 Machine and/or processing parameters of the double-side processing machine 40 are supplied, as in Figure 8 shown at 78. The further artificial neural network 76 can be an untrained artificial neural network 76. However, it can also be an already (pre-) trained artificial neural network 76, for example a duplicate of the neural network 34 of the control device 34. On this basis, for example for the generic type of the double-side processing machine 40 (before -) trained artificial neural network 34 of the control device 34 in the beginning of production operation, a specialized training of the further artificial neural network 76 can be trained for the respective individual process parameters of the application of the double-side processing machine 40. It is possible that after this training has been completed, the further artificial neural network 76 replaces the previously trained artificial neural network 34 of the control device 34.

Anhand der Figuren 9 und 10 soll eine weitere Ausgestaltung der Erfindung erläutert werden, umfassend insbesondere ein weiteres künstliches neuronales Netz 86, ausgebildet zum maschinellen Lernen. Es kann sich um ein Learning Classifier System (LCS) handeln, also um ein System der künstlichen Intelligenz. Bei der in Figur 9 gezeigten Ausgestaltung werden Messdaten der Sensoren zu Maschinen- und/oder Bearbeitungsparametern einerseits dem Datenspeicher 46 und andererseits der Steuereinrichtung 34 zugeführt, wie in Figur 9 bei 80 gezeigt. Werkstückdaten, insbesondere Messdaten zur Geometrie der bearbeiteten Werkstücke, werden ebenfalls sowohl dem Datenspeicher 46 als auch der Steuereinrichtung 34 zugeführt, wie in Figur 9 bei 82 dargestellt. Die Steuereinrichtung 34 steht außerdem im Austausch mit dem Datenspeicher 46, wie in Figur 9 bei 84 gezeigt. In Figur 9 ist ein weiteres künstliches neuronales Netz 86 gezeigt, das ebenfalls der Steuereinrichtung 34 zugehörig ist. Dieses weitere künstliche neuronale Netz 86 kann auch mit dem künstlichen neuronalen Netz 34 der Steuereinrichtung 34 kombiniert sein. Dieses weitere künstliche neuronale Netz 86 ist zum maschinellen Lernen ausgebildet und bildet insbesondere ein Learning Classifier System (LCS).Based on Figures 9 and 10 A further embodiment of the invention will be explained, comprising in particular a further artificial neural network 86, designed for machine learning. It can be a Learning Classifier System (LCS), i.e. an artificial intelligence system. At the in Figure 9 In the embodiment shown, measurement data from the sensors for machine and/or processing parameters are fed to the data memory 46 on the one hand and to the control device 34 on the other hand, as in Figure 9 shown at 80. Workpiece data, in particular measurement data on the geometry of the machined workpieces, are also supplied to both the data memory 46 and the control device 34, as in Figure 9 shown at 82. The control device 34 is also in communication with the data memory 46, as in Figure 9 shown at 84. In Figure 9 Another artificial neural network 86 is shown, which is also associated with the control device 34. This further artificial neural network 86 can also be combined with the artificial neural network 34 of the control device 34. This Another artificial neural network 86 is designed for machine learning and in particular forms a learning classifier system (LCS).

Dem LCS 86 werden über 82 ebenfalls die Messdaten zur Geometrie der bearbeiteten Werkstücke 44 zugeleitet. Wird durch die Steuereinrichtung 34, insbesondere ihr künstliches neuronales Netz 34, im Betrieb der Doppelseiten-Bearbeitungsmaschine 40 eine unzulässige Abweichung zwischen dem aktuell erfassten Zustandsvektor und den als Soll-Zustandsvektoren hinterlegten akzeptablen Werten der Maschinen- und/oder Bearbeitungsparameter festgestellt, wird ein entsprechendes Anomaliesignal an das LCS 86 gegeben, wie in Figur 9 bei 88 dargestellt. Dem LCS 86 können dabei auch Messdaten aus der Vergangenheit aus dem Datenspeicher 46 zur Verfügung stehen. Auf dieser Grundlage kann das LCS 86 selbstständig Entscheidungen über die Veränderung bestimmter Prozessparameter, insbesondere das Ansteuern von Aktoren zum Beeinflussen der erfassten Maschinen- und/oder Bearbeitungsparameter treffen und die Aktoren entsprechend ansteuern, wie in Figur 9 bei 90 gezeigt. Auf diese Weise kann eine weitestgehende Automatisierung und Selbstständigkeit erreicht werden.The measurement data on the geometry of the machined workpieces 44 are also sent to the LCS 86 via 82. If the control device 34, in particular its artificial neural network 34, detects an unacceptable deviation between the currently recorded state vector and the acceptable values of the machine and/or processing parameters stored as target state vectors during operation of the double-side processing machine 40, a corresponding anomaly signal is generated given to the LCS 86, as in Figure 9 shown at 88. The LCS 86 can also have measurement data from the past from the data memory 46 available. On this basis, the LCS 86 can independently make decisions about changing certain process parameters, in particular the control of actuators to influence the recorded machine and/or processing parameters, and control the actuators accordingly, as in Figure 9 shown at 90. In this way, the greatest possible automation and independence can be achieved.

In Figur 10 ist eine weitere Ausgestaltung der in Figur 9 gezeigten Variante dargestellt. Insbesondere zeigt Figur 10 ein erfindungsgemäßes System mit mindestens zwei Doppelseiten-Bearbeitungsmaschinen 40. Selbstverständlich könnte das System auch mehr als zwei Doppelseiten-Bearbeitungsmaschinen 40 umfassen, was in Figur 10 durch drei Punkte veranschaulicht ist. In Figur 10 sind zur Veranschaulichung in gestrichelten Blöcken zwei Anlagen 92i dargestellt, die hinsichtlich ihrer Ausgestaltung und Funktion jeweils der Ausgestaltung nach Figur 9 entsprechen können. Die Anlagen 92i können dabei auch unterschiedlich ausgestaltet sein, zum Beispiel zum Erreichen unterschiedlicher Ziele ausgebildet sein, zum Beispiel optimale Waferqualität, maximaler Output etc. Sie stehen über 80, 84 mit einem gemeinsamen Datenspeicher 46 in Verbindung. Außerdem ist bei dem in Figur 10 dargestellten System ein übergeordnetes künstliches neuronales Netz 94, umfassend beispielsweise wiederum ein LCS, vorgesehen, das außerdem mit einer Bedienperson 48 in Verbindung stehen kann. Das übergeordnete künstliche neuronale Netz 94 steht ebenfalls mit dem Datenspeicher 46 in Verbindung, wie bei 96 gezeigt. Außerdem erhält das übergeordnete künstliche neuronale Netz 96 die durch die LCS 86 jeweils ausgeführten Steuerbefehle, wie in Figur 10 bei 98 dargestellt. Auf dieser Grundlage kann das übergeordnete LCS 94 basierend auf Daten der Anlagen 92i die LCS 86 der Anlagen 92i weiter optimieren oder spezialisieren, beispielsweise durch Vorgabe von kollektiven oder individuellen Steuervorschriften und/oder Soll-Zustandsvektoren für die einzelnen Anlagen 92i.In Figure 10 is a further embodiment of the in Figure 9 shown variant shown. In particular shows Figure 10 a system according to the invention with at least two double-side processing machines 40. Of course, the system could also include more than two double-side processing machines 40, which in Figure 10 is illustrated by three points. In Figure 10 For purposes of illustration, two systems 92i are shown in dashed blocks, each of which corresponds to the design in terms of its design and function Figure 9 can correspond. The systems 92i can also be designed differently, for example designed to achieve different goals, for example optimal wafer quality, maximum output, etc. They are connected to a common data memory 46 via 80, 84. In addition, the in figure 10 In the system shown, a higher-level artificial neural network 94 is provided, again comprising, for example, an LCS, which can also be connected to an operator 48. The higher-level artificial neural network 94 is also connected to the data memory 46, as shown at 96. In addition, the higher-level artificial neural network 96 receives the control commands executed by the LCS 86, as in Figure 10 shown at 98. On this basis, the higher-level LCS 94 can further optimize or specialize the LCS 86 of the systems 92i based on data from the systems 92i, for example by specifying collective or individual control regulations and / or target state vectors for the individual systems 92i.

BezugszeichenlisteReference symbol list

1010
obere Trägerscheibeupper carrier disk
1212
untere Trägerscheibelower carrier disk
1414
oberen Arbeitsscheibeupper working disc
1616
unteren Arbeitsscheibelower work disk
1616
GegenlagerelementCounter bearing element
1818
Arbeitsspaltworking gap
20, 22, 2420, 22, 24
Abstandsmesseinrichtung, SensorenDistance measuring device, sensors
2626
BefestigungsortMounting location
2828
BefestigungsortMounting location
3030
DruckvolumenPrint volume
3232
StaudruckleitungBack pressure line
3434
Steuereinrichtung, künstliches neuronales NetzControl device, artificial neural network
36, 38, 5036, 38, 50
PfeilArrow
52, 54, 5652, 54, 56
PfeilArrow
58,60, 6258,60, 62
PfeilArrow
66, 68, 7066, 68, 70
PfeilArrow
72, 74, 7872, 74, 78
PfeilArrow
80, 82, 8480, 82, 84
PfeilArrow
88, 90, 9688, 90, 96
PfeilArrow
9898
PfeilArrow
4040
Doppelseiten-BearbeitungsmaschineDouble side processing machine
4242
unbearbeitete Werkstückeunprocessed workpieces
4444
bearbeitete Werkstückeprocessed workpieces
4646
DatenspeicherData storage
4848
BedienpersonOperator
6464
RegeleinrichtungControl device
76, 86, 9476, 86, 94
künstliches neuronales Netzartificial neural network
92i92i
AnlagenInvestments

Claims (14)

Doppel- oder Einseiten-Bearbeitungsmaschine mit einer vorzugsweise ringförmigen ersten Arbeitsscheibe (14) und einem vorzugsweise ringförmigen Gegenlagerelement (16), wobei die erste Arbeitsscheibe (14) und das Gegenlagerelement (16) mittels eines Drehantriebs relativ zueinander drehend antreibbar sind, und wobei zwischen der ersten Arbeitsscheibe (14) und dem Gegenlagerelement (16) ein vorzugsweise ringförmiger Arbeitsspalt (18) zum doppelseitigen oder einseitigen Bearbeiten flacher Werkstücke (42, 44), vorzugsweise Wafer, gebildet ist, wobei die Doppel- oder Einseiten-Bearbeitungsmaschine eine Mehrzahl von Sensoren (20, 22, 24) umfasst, die während des Betriebs der Doppel- oder Einseiten-Bearbeitungsmaschine Messdaten zu Maschinen- und/oder Bearbeitungsparametern der Doppel- oder Einseiten-Bearbeitungsmaschine erfassen, dadurch gekennzeichnet, dass eine Steuereinrichtung (34) vorgesehen ist, die im Betrieb der Doppel- oder Einseiten-Bearbeitungsmaschine die durch die Sensoren (20, 22, 24) erfassten Messdaten erhält, wobei die Steuereinrichtung (34) ein künstliches neuronales Netz (34) umfasst, das dazu ausgebildet ist, aus den Messdaten einen Zustandsvektor der Doppel- oder Einseiten-Bearbeitungsmaschine zu erstellen und diesen mit mindestens einem Soll-Zustandsvektor zu vergleichen.Double or single-sided processing machine with a preferably annular first working disk (14) and a preferably annular counter-bearing element (16), wherein the first working disk (14) and the counter-bearing element (16) can be driven in rotation relative to one another by means of a rotary drive, and between the The first working disk (14) and the counter bearing element (16) form a preferably annular working gap (18) for double-sided or single-sided processing of flat workpieces (42, 44), preferably wafers, the double- or single-sided processing machine having a plurality of sensors ( 20, 22, 24), which record measurement data on machine and/or processing parameters of the double- or single-side processing machine during operation of the double- or single-side processing machine, characterized in that a control device (34) is provided which is in Operation of the double or single side processing machine receives the measurement data recorded by the sensors (20, 22, 24), the control device (34) comprising an artificial neural network (34) which is designed to generate a state vector of the double from the measurement data - or single-side processing machine and compare it with at least one target state vector. Doppel- oder Einseiten-Bearbeitungsmaschine nach Anspruch 1, dadurch gekennzeichnet, dass die Steuereinrichtung (34) dazu ausgebildet ist, bei einer Abweichung des erstellten Zustandsvektors von dem mindestens einen Soll-Zustandsvektor eine Warnmeldung auszugeben.Double or single-side processing machine according to claim 1, characterized in that the control device (34) is designed to issue a warning message if the created state vector deviates from the at least one target state vector. Doppel- oder Einseiten-Bearbeitungsmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinrichtung (34) weiterhin eine Regeleinrichtung (64) umfasst, die dazu ausgebildet ist, bei einer durch den Vergleich festgestellten Abweichung des erstellten Zustandsvektors von dem mindestens einen Soll-Zustandsvektor die Doppel- oder Einseiten-Bearbeitungsmaschine, insbesondere Maschinen- und/oder Betriebsparameter der Doppel- oder Einseiten-Bearbeitungsmaschine, so anzusteuern, dass der erstellte Zustandsvektor mit mindestens einem Soll-Zustandsvektor übereinstimmt.Double-sided or single-sided processing machine according to one of the preceding claims, characterized in that the control device (34) further comprises a control device (64) which is designed to operate at one through the Comparison determined deviation of the created state vector from the at least one target state vector to control the double or single-side processing machine, in particular machine and / or operating parameters of the double or single-side processing machine, so that the created state vector matches at least one target state vector . Doppel- oder Einseiten-Bearbeitungsmaschine nach Anspruch 3, dadurch gekennzeichnet, dass die Regeleinrichtung (64) in die Steuereinrichtung (34) integriert ist.Double or single-side processing machine according to claim 3, characterized in that the control device (64) is integrated into the control device (34). Doppel- oder Einseiten-Bearbeitungsmaschine nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass die Regeleinrichtung (64) dazu ausgebildet ist, die Maschinen- und/oder Betriebsparameter der Doppel- oder Einseiten-Bearbeitungsmaschine auf Grundlage einer in der Regeleinrichtung (64) hinterlegten Anpassungsvorschrift anzusteuern.Double- or single-side processing machine according to one of claims 3 or 4, characterized in that the control device (64) is designed to control the machine and/or operating parameters of the double- or single-side processing machine on the basis of a value in the control device (64). the stored adjustment rule. Doppel- oder Einseiten-Bearbeitungsmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein weiteres künstliches neuronales Netz (86) vorgesehen ist, das dazu ausgebildet ist, durch maschinelles Lernen die Messdaten zu den Maschinen- und/oder Bearbeitungsparametern zu bewerten und auf Grundlage der Bewertung die Doppel- oder Einseiten-Bearbeitungsmaschine, insbesondere Maschinen- und/oder Betriebsparameter der Doppel- oder Einseiten-Bearbeitungsmaschine, anzusteuern und/oder eine in einer Regeleinrichtung (64) hinterlegte Anpassungsvorschrift zu erstellen und/oder zu verändern.Double-sided or single-sided processing machine according to one of the preceding claims, characterized in that a further artificial neural network (86) is provided, which is designed to use machine learning to evaluate the measurement data on the machine and/or processing parameters and based on this the evaluation, to control the double or single-side processing machine, in particular machine and/or operating parameters of the double or single-side processing machine, and/or to create and/or change an adaptation rule stored in a control device (64). Doppel- oder Einseiten-Bearbeitungsmaschine nach Anspruch 6, dadurch gekennzeichnet, dass die Regeleinrichtung (64) in das weitere künstliche neuronale Netz (86) integriert ist.Double or single-side processing machine according to claim 6, characterized in that the control device (64) is integrated into the further artificial neural network (86). Doppel- oder Einseiten-Bearbeitungsmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sensoren (20, 22, 24) Messeinrichtungen (20, 22, 24) umfassen zum Messen des Arbeitsspalts (18), insbesondere eines Abstands zwischen der ersten Arbeitsscheibe (14) und dem Gegenlagerelement (16), und/oder zum Messen einer Temperatur der ersten Arbeitsscheibe (14) und/oder des Gegenlagerelements (16) und/oder von weiteren Maschinenkomponenten der Doppel- oder Einseiten-Bearbeitungsmaschine und/oder zum Messen einer Temperatur und/oder einer Durchflussmenge eines zur Bearbeitung der Werkstücke (42, 44) in den Arbeitsspalt (18) zugeführten Bearbeitungsmittels, und/oder zum Messen einer Drehzahl der ersten Arbeitsscheibe (14) und/oder des Gegenlagerelements (16) und/oder von in dem Arbeitsspalt (18) drehend gelagerten Läuferscheiben und/oder zum Messen einer Auflast zwischen erster Arbeitsscheibe (14) und Gegenlagerelement (16) und/oder zum Messen einer Drehzahl und/oder eines Drehmoments und/oder einer Temperatur des Drehantriebs und/oder zum Messen eines Drucks und/oder einer Kraft von Mitteln zum Erzeugen einer Verformung der ersten Arbeitsscheibe (14) und/oder des Gegenlagerelements (16) und/oder zum Messen der Dicke eines Arbeitsbelags der ersten Arbeitsscheibe (14) und/oder des Gegenlagerelements (16) und/oder zum Messen der Dicke und/oder Form von in der Doppel- oder Einseiten-Bearbeitungsmaschine bearbeiteten Werkstücken (44).Double or single-sided processing machine according to one of the preceding claims, characterized in that the sensors (20, 22, 24) comprise measuring devices (20, 22, 24) for measuring the working gap (18), in particular a distance between the first working disk ( 14) and the counter-bearing element (16), and/or for measuring a temperature of the first working disk (14) and/or the counter-bearing element (16) and/or of further machine components of the double- or single-side processing machine and/or for measuring a temperature and/or a flow rate of a processing agent supplied into the working gap (18) for processing the workpieces (42, 44), and/or for measuring a speed of the first working disk (14) and/or of the counter bearing element (16) and/or of in rotor disks rotatably mounted in the working gap (18) and/or for measuring a load between the first working disk (14) and counter bearing element (16) and/or for measuring a speed and/or a torque and/or a temperature of the rotary drive and/or for measuring a pressure and/or a force of means for generating a deformation of the first working disk (14) and/or the counter-bearing element (16) and/or for measuring the thickness of a working surface of the first working disk (14) and/or the counter-bearing element (16) and/or for measuring the thickness and/or shape of workpieces (44) processed in the double- or single-side processing machine. Doppel- oder Einseiten-Bearbeitungsmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gegenlagerelement (16) durch eine vorzugsweise ringförmige zweite Arbeitsscheibe (16) gebildet ist, wobei die erste und zweite Arbeitsscheibe (14, 16) koaxial zueinander angeordnet und durch den Drehantrieb relativ zueinander drehend antreibbar sind, wobei zwischen den Arbeitsscheiben (14, 16) der Arbeitsspalt (18) zum doppelseitigen oder einseitigen Bearbeiten flacher Werkstücke (42, 44) gebildet ist.Double or single-sided processing machine according to one of the preceding claims, characterized in that the counter-bearing element (16) is formed by a preferably annular second working disk (16), the first and second working disks (14, 16) being arranged coaxially to one another and through the Rotary drive can be driven to rotate relative to one another, the working gap (18) being formed between the working disks (14, 16) for double-sided or one-sided machining of flat workpieces (42, 44). Doppel- oder Einseiten-Bearbeitungsmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie zum Durchführen des Verfahrens nach einem der Ansprüche 12 bis 14 ausgebildet ist.Double or single-side processing machine according to one of the preceding claims, characterized in that it is designed to carry out the method according to one of claims 12 to 14. System umfassend mindestens zwei Doppel- oder Einseiten-Bearbeitungsmaschinen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass weiterhin ein übergeordnetes künstliches neuronales Netz (94) vorgesehen ist, das mit den künstlichen neuronalen Netzen (34, 86) der mindestens zwei Doppel- oder Einseiten-Bearbeitungsmaschinen verbunden ist, wobei das übergeordnete künstliche neuronale Netz (94) dazu ausgebildet ist, auf Grundlage von von den künstlichen neuronalen Netzen (34, 86) der mindestens zwei Doppel- oder Einseiten-Bearbeitungsmaschinen erhaltenen Daten mindestens ein künstliches neuronales Netz (34, 86) der mindestens zwei Doppel- oder Einseiten-Bearbeitungsmaschinen durch Eingabe von zu einem akzeptablen Bearbeitungsergebnis von flachen Werkstücken (42, 44) führenden Zustandsvektoren zu trainieren.System comprising at least two double- or single-page processing machines according to one of the preceding claims, characterized in that a higher-level artificial neural network (94) is further provided, which is connected to the artificial neural networks (34, 86) of the at least two double- or single-pages -Processing machines is connected, the higher-level artificial neural network (94) being designed to generate at least one artificial neural network (34, 86) to train the at least two double- or single-sided processing machines by entering state vectors leading to an acceptable processing result of flat workpieces (42, 44). Verfahren zum Betreiben einer Doppel- oder Einseiten-Bearbeitungsmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das künstliche neuronale Netz (34) durch Eingabe einer Vielzahl von zu einem akzeptablen Bearbeitungsergebnis von flachen Werkstücken (42, 44) führenden Soll-Zustandsvektoren trainiert wird.Method for operating a double- or single-sided processing machine according to one of the preceding claims, characterized in that the artificial neural network (34) is trained by inputting a plurality of target state vectors leading to an acceptable processing result of flat workpieces (42, 44). . Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass das trainierte künstliche neuronale Netz (34) im Betrieb der Doppel- oder Einseiten-Bearbeitungsmaschine durch Eingabe weiterer zu einem akzeptablen Bearbeitungsergebnis von flachen Werkstücken (42, 44) führenden Soll-Zustandsvektoren weiter trainiert wird.Method according to claim 12, characterized in that the trained artificial neural network (34) is further trained during operation of the double- or single-sided processing machine by entering further target state vectors leading to an acceptable processing result of flat workpieces (42, 44). Verfahren nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, dass im Betrieb der Doppel- oder Einseiten-Bearbeitungsmaschine mit dem trainierten künstlichen neuronalen Netz (34) ein weiteres künstliches neuronales Netz (76) durch Eingabe einer Vielzahl von zu einem akzeptablen Bearbeitungsergebnis von flachen Werkstücken (42, 44) führenden Soll-Zustandsvektoren trainiert wird.Method according to one of claims 12 or 13, characterized in that during operation of the double- or single-side processing machine with the trained artificial neural network (34), a further artificial neural network (76) is created by entering a plurality of flat Workpieces (42, 44) leading target state vectors is trained.
EP23168535.5A 2022-05-12 2023-04-18 Double or single side machining machine and method for operating a double or single side machining machine Pending EP4289555A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102022111923.8A DE102022111923A1 (en) 2022-05-12 2022-05-12 Double or single-side processing machine and method for operating a double or single-side processing machine

Publications (1)

Publication Number Publication Date
EP4289555A1 true EP4289555A1 (en) 2023-12-13

Family

ID=86053688

Family Applications (1)

Application Number Title Priority Date Filing Date
EP23168535.5A Pending EP4289555A1 (en) 2022-05-12 2023-04-18 Double or single side machining machine and method for operating a double or single side machining machine

Country Status (6)

Country Link
US (1) US20230364738A1 (en)
EP (1) EP4289555A1 (en)
JP (1) JP2023168254A (en)
KR (1) KR20230159278A (en)
CN (1) CN117047654A (en)
DE (1) DE102022111923A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006037490B4 (en) 2006-08-10 2011-04-07 Peter Wolters Gmbh Double-sided processing machine
DE102016102223A1 (en) 2016-02-09 2017-08-10 Lapmaster Wolters Gmbh Double or single side processing machine and method of operating a double or single side processing machine
US20220072679A1 (en) * 2018-12-28 2022-03-10 Ebara Corporation Pad-temperature regulating apparatus, method of regulating pad-temperature, polishing apparatus, and polishing system
EP3974108A1 (en) * 2020-09-28 2022-03-30 Lapmaster Wolters GmbH Double or single-side machining machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4308246C2 (en) 1993-03-16 1998-06-10 Guntram Dipl Ing Hoerdemann Method and device for monitoring and controlling machine tools
EP3825794A1 (en) 2019-11-21 2021-05-26 pro-micron GmbH Method for monitoring and / or predicting machining processes and / or machining results
DE102020112146A1 (en) 2020-05-05 2021-11-11 Integrated Dynamics Engineering Gesellschaft mit beschränkter Haftung Method for processing substrates, in particular wafers, masks or flat panel displays, with a machine in the semiconductor industry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006037490B4 (en) 2006-08-10 2011-04-07 Peter Wolters Gmbh Double-sided processing machine
DE102016102223A1 (en) 2016-02-09 2017-08-10 Lapmaster Wolters Gmbh Double or single side processing machine and method of operating a double or single side processing machine
US20220072679A1 (en) * 2018-12-28 2022-03-10 Ebara Corporation Pad-temperature regulating apparatus, method of regulating pad-temperature, polishing apparatus, and polishing system
EP3974108A1 (en) * 2020-09-28 2022-03-30 Lapmaster Wolters GmbH Double or single-side machining machine

Also Published As

Publication number Publication date
US20230364738A1 (en) 2023-11-16
DE102022111923A1 (en) 2023-11-16
JP2023168254A (en) 2023-11-24
CN117047654A (en) 2023-11-14
KR20230159278A (en) 2023-11-21

Similar Documents

Publication Publication Date Title
DE102016010064B4 (en) Numerical control with machining condition adjustment function to reduce the occurrence of chatter or tool wear / breakage
DE60127465T2 (en) ABRASIVE CURRENT PROCESSING DEVICE AND METHOD
DE4008510A1 (en) CONTROL UNIT WITH OPTIMAL DECISION MAKERS
DE102016121744A1 (en) Anomaly analysis system and analyzer
DE102007041240A1 (en) Method for improving a diagnostic function of a field device
DE102013207013A1 (en) Double-sided surface grinding and double-sided surface grinder
DE102007035283A1 (en) Method for setting a state of a rolling stock, in particular a Vorbands
DE102016102223A1 (en) Double or single side processing machine and method of operating a double or single side processing machine
EP1137512B1 (en) Grinding process control method and computer-aided control for wide grinding machines
CH718264B1 (en) Process and device for monitoring the condition of a machine tool.
EP4289555A1 (en) Double or single side machining machine and method for operating a double or single side machining machine
DE19881041B4 (en) Method for controlling and presetting a steelworks or parts of a steelworks
WO2018192798A1 (en) Optimization of the modelling of process models
DE202016004501U1 (en) Circuit arrangement and device for supplying coolant to cutting tools
EP3820646A1 (en) Honing method and machine tool for contour honing
EP1312445A1 (en) Method, apparatus and software for grinding and at the same time dressing the grinding tool
EP0522487A1 (en) Process and device for controlling the thickness profile during manufacture of blown films
WO2021073996A1 (en) Method for a model-based determination of model parameters
EP1507182A1 (en) Method for determining wear in extrusion machines
EP4045982A1 (en) Monitoring method for monitoring at least one part of a production process of a film extrusion system
DE4029311A1 (en) Monitoring and regulating type pressures - using on-board compressor and processor to adjust pressures of driverless motor vehicle
DE202020100888U1 (en) Device for condition monitoring of hydraulic presses
DE102020114835B4 (en) Method for monitoring a high-pressure roller press
EP4275842A1 (en) Method for setting up a double or single side processing machine and double or single side processing machine
DE10106527A1 (en) Method for operating a rolling mill and control system for a rolling mill

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR