EP4279569A1 - Concentrated non-aqueous fabric conditioners - Google Patents

Concentrated non-aqueous fabric conditioners Download PDF

Info

Publication number
EP4279569A1
EP4279569A1 EP22174304.0A EP22174304A EP4279569A1 EP 4279569 A1 EP4279569 A1 EP 4279569A1 EP 22174304 A EP22174304 A EP 22174304A EP 4279569 A1 EP4279569 A1 EP 4279569A1
Authority
EP
European Patent Office
Prior art keywords
composition
quaternary ammonium
ester
perfume
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP22174304.0A
Other languages
German (de)
French (fr)
Inventor
Shah Faisal SYED
Dhanalakshmi THIRUMENI
Jayashree Anantharam Vadhyar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever IP Holdings BV
Original Assignee
Unilever IP Holdings BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever IP Holdings BV filed Critical Unilever IP Holdings BV
Priority to EP22174304.0A priority Critical patent/EP4279569A1/en
Publication of EP4279569A1 publication Critical patent/EP4279569A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions
    • C11D3/0015Softening compositions liquid
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2006Monohydric alcohols
    • C11D3/201Monohydric alcohols linear
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2006Monohydric alcohols
    • C11D3/201Monohydric alcohols linear
    • C11D3/2013Monohydric alcohols linear fatty or with at least 8 carbon atoms in the alkyl chain
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2006Monohydric alcohols
    • C11D3/2017Monohydric alcohols branched
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2006Monohydric alcohols
    • C11D3/2017Monohydric alcohols branched
    • C11D3/202Monohydric alcohols branched fatty or with at least 8 carbon atoms in the alkyl chain
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2006Monohydric alcohols
    • C11D3/2024Monohydric alcohols cyclic; polycyclic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2006Monohydric alcohols
    • C11D3/2027Monohydric alcohols unsaturated
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2006Monohydric alcohols
    • C11D3/2027Monohydric alcohols unsaturated
    • C11D3/2031Monohydric alcohols unsaturated fatty or with at least 8 carbon atoms in the alkenyl chain

Definitions

  • the present invention is in the field of fabric conditioners, particularly providing concentrated non-aqueous fabric conditioner formulations.
  • Fabric conditioners traditionally comprises quaternary ammonium compounds and more recently ester-linked quaternary ammonium compounds have dominated markets due to their biodegradability.
  • fabric conditioner compositions particularly aqueous compositions, as the concentration of ester linked quaternary ammonium compounds increases so does the viscosity of the composition. At high concentrations, the products can become too thick to use or solidifies.
  • non-aqueous concentrated liquid fabric conditioner composition comprising;
  • the invention further relates to a method of producing a non-aqueous concentrated fabric conditioner composition wherein the ester linked quaternary ammonium compound and solvent comprising aliphatic alcohol comprising 3 to 9 carbons are heated together, to a temperature above 45°C.
  • compositions described herein comprise an ester-linked quaternary ammonium compound.
  • the fabric conditioners of the present invention comprise more than 10 wt. % ester-linked quaternary ammonium compound, preferably more than 15 wt. % ester-linked quaternary ammonium compound, more preferably more than 25 wt. % ester-linked quaternary ammonium compound, most preferably more than 35 wt.% ester-linked quaternary ammonium compound, by weight of the composition.
  • the fabric conditioners of the present invention comprise less than 85 wt. % ester-linked quaternary ammonium compound, more preferably less than 80 wt.
  • the fabric conditioners comprise 10 to 85 wt. % ester-linked quaternary ammonium compound, preferably 15 to 80 wt.% ester-linked quaternary ammonium compound, more preferably 25 to 70 wt.% ester-linked quaternary ammonium compound and most preferably 35 to 70 wt. % ester-linked quaternary ammonium compound by weight of the composition.
  • Particularly preferred ranges may be 30 to 60 wt.% ester-linked quaternary ammonium compound and 50 to 80 wt.% ester-linked quaternary ammonium compound.
  • the ester-linked quaternary ammonium compound preferably comprises at least one chain derived from fatty acids, more preferably at least two chains derived from a fatty acids.
  • fatty acids are defined as aliphatic monocarboxylic acids having a chain of 4 to 28 carbons.
  • Fatty acids may be derived from various sources such as tallow or plant sources.
  • the fatty acid chains are derived from plants.
  • the fatty acid chains of the ester-linked quaternary ammonium compound comprise from 10 to 50 wt. % of saturated C18 chains and from 5 to 40 wt. % of monounsaturated C18 chains by weight of total fatty acid chains.
  • the fatty acid chains of the ester-linked quaternary ammonium compound comprise from 20 to 40 wt. %, preferably from 25 to 35 wt. % of saturated C18 chains and from 10 to 35 wt. %, preferably from 15 to 30 wt. % of monounsaturated C18 chains, by weight of total fatty acid chains.
  • Particularly preferred materials are the ester-linked triethanolamine (TEA) quaternary ammonium compounds comprising a mixture of mono-, di- and tri-ester linked components.
  • TAA ester-linked triethanolamine
  • TEA-based fabric softening compounds comprise a mixture of mono, di- and tri ester forms of the compound where the di-ester linked component comprises no more than 70 wt.% of the fabric softening compound, preferably no more than 60 wt.% e.g. no more than 55%, or even no more that 45% of the fabric softening compound and at least 10 wt.% of the monoester linked component.
  • a first group of ester-linked quaternary ammonium compounds suitable for use in the present invention is represented by formula (I): wherein each R is independently selected from a C5 to C35 alkyl or alkenyl group; R1 represents a C1 to C4 alkyl, C2 to C4 alkenyl or a C1 to C4 hydroxyalkyl group; T may be either O-CO. (i.e. an ester group bound to R via its carbon atom), or may alternatively be CO-O (i.e.
  • Suitable actives include soft quaternary ammonium actives such as Stepantex VT90, Rewoquat WE18 (ex-Evonik) and Tetranyl L1/90N, Tetranyl L190 SP and Tetranyl L190 S (all ex-Kao).
  • TEA ester quats actives rich in the di-esters of triethanolammonium methylsulfate, otherwise referred to as "TEA ester quats".
  • a second group of ester-linked quaternary ammonium compounds suitable for use in the invention is represented by formula (II): wherein each R1 group is independently selected from C1 to C4 alkyl, hydroxyalkyl or C2 to C4 alkenyl groups; and wherein each R2 group is independently selected from C8 to C28 alkyl or alkenyl groups; and wherein n, T, and X- are as defined above.
  • Preferred materials of this second group include 1,2 bis[tallowoyloxy]-3- trimethylammonium propane chloride, 1,2 bis[hardened tallowoyloxy]-3- trimethylammonium propane chloride, 1,2-bis[oleoyloxy]-3-trimethylammonium propane chloride, and 1,2 bis[stearoyloxy]-3-trimethylammonium propane chloride.
  • Such materials are described in US 4, 137,180 (Lever Brothers).
  • these materials also comprise an amount of the corresponding monoester.
  • a third group of ester-linked quaternary ammonium compounds suitable for use in the invention is represented by formula (III): wherein each R1 group is independently selected from C1 to C4 alkyl, or C2 to C4 alkenyl groups; and wherein each R2 group is independently selected from C8 to C28 alkyl or alkenyl groups; and n, T, and X- are as defined above.
  • Preferred materials of this third group include bis(2-tallowoyloxyethyl)dimethyl ammonium chloride, partially hardened and hardened versions thereof.
  • a fourth group of ester-linked quaternary ammonium compounds suitable for use in the invention are represented by formula:
  • R1 and R2 are independently selected from C10 to C22 alkyl or alkenyl groups, preferably C14 to C20 alkyl or alkenyl groups.
  • X- is as defined above.
  • the iodine value of the ester-linked quaternary ammonium compound fabric conditioning material is preferably from 0 to 80, more preferably from 0 to 60, and most preferably from 0 to 45.
  • the iodine value may be chosen as appropriate.
  • Essentially saturated material having an iodine value of from 0 to 5, preferably from 0 to 1 may be used in the compositions of the invention. Such materials are known as "hardened" quaternary ammonium compounds.
  • a further preferred range of iodine values is from 20 to 60, preferably 25 to 50, more preferably from 30 to 45.
  • a material of this type is a "soft" triethanolamine quaternary ammonium compound, preferably triethanolamine di-alkylester methylsulfate. Such ester-linked triethanolamine quaternary ammonium compounds comprise unsaturated fatty chains.
  • the iodine value represents the mean iodine value of the parent fatty acyl compounds or fatty acids of all of the quaternary ammonium materials present.
  • the iodine value represents the mean iodine value of the parent acyl compounds of fatty acids of all of the quaternary ammonium materials present.
  • Iodine value refers to, the fatty acid used to produce the ester-linked quaternary ammonium compound, the measurement of the degree of unsaturation present in a material by a method of nmr spectroscopy as described in Anal. Chem., 34, 1136 (1962 ) Johnson and Shoolery.
  • compositions of the present invention comprise a solvent.
  • the solvent comprises aliphatic alcohol comprising 3 to 9 carbons. By this is meant that 3 to 9 carbons are present in the alcohol molecule.
  • the aliphatic alcohol comprises 4 to 6 carbons, most preferably 5 to 6, i.e. pentanol or hexanol.
  • the alcohol is not a cyclic alcohol.
  • the alcohol comprises one alcohol (OH) group.
  • the composition comprises 5 to 80 wt. % of the solvent described herein. More preferably 10 to 65 wt. % solvent and most preferably 15 to 50 wt. % solvent by weight of the composition.
  • compositions as described herein preferably comprise perfume.
  • the compositions preferably comprise 0.1 to 30 wt. % perfume, i.e. free perfume and/or perfume microcapsules.
  • free perfumes and perfume microcapsules provide the consumer with perfume hits at different points during the laundry process. It is particularly preferred that the compositions of the present invention comprise a combination of both free perfume and perfume microcapsules.
  • compositions of the present invention comprise 0.5 to 30 wt.% perfume materials, more preferably 1 to 20 wt.% perfume materials, most preferably 1 to 15 wt. % perfume materials.
  • Useful perfume components may include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press ; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostr and; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA ). These substances are well known to the person skilled in the art of perfuming, flavouring, and/or aromatizing consumer products.
  • compositions of the present invention preferably comprise 0.5 to 20 wt.% free perfume, more preferably 0.5 to 12 wt. % free perfume.
  • Particularly preferred perfume components are blooming perfume components and substantive perfume components.
  • Blooming perfume components are defined by a boiling point less than 250°C and a LogP or greater than 2.5.
  • Substantive perfume components are defined by a boiling point greater than 250°C and a LogP greater than 2.5. Boiling point is measured at standard pressure (760 mm Hg).
  • a perfume composition will comprise a mixture of blooming and substantive perfume components.
  • the perfume composition may comprise other perfume components.
  • perfume components it is commonplace for a plurality of perfume components to be present in a free oil perfume composition.
  • compositions for use in the present invention it is envisaged that there will be three or more, preferably four or more, more preferably five or more, most preferably six or more different perfume components.
  • An upper limit of 300 perfume components may be applied.
  • compositions of the present invention preferably comprise 0.5 to 20 wt.% perfume microcapsules, more preferably 0.5 to 12 wt. % perfume microcapsules.
  • the weight of microcapsules is of the material as supplied.
  • suitable encapsulating materials may comprise, but are not limited to; aminoplasts, proteins, polyurethanes, polyacrylates, polymethacrylates, polysaccharides, polyamides, polyolefins, gums, silicones, lipids, modified cellulose, polyphosphate, polystyrene, polyesters or combinations thereof.
  • Particularly preferred materials are aminoplast microcapsules, such as melamine formaldehyde or urea formaldehyde microcapsules.
  • Perfume microcapsules of the present invention can be friable microcapsules and/or moisture activated microcapsules.
  • friable it is meant that the perfume microcapsule will rupture when a force is exerted.
  • moisture activated it is meant that the perfume is released in the presence of water.
  • the compositions of the present invention preferably comprise friable microcapsules. Moisture activated microcapsules may additionally be present. Examples of a microcapsules which can be friable include aminoplast microcapsules.
  • Perfume components contained in a microcapsule may comprise odiferous materials and/or pro-fragrance materials.
  • Particularly preferred perfume components contained in a microcapsule are blooming perfume components and substantive perfume components. Blooming perfume components are defined by a boiling point less than 250°C and a LogP greater than 2.5.
  • the encapsulated perfume compositions comprise at least 20 wt.% blooming perfume ingredients, more preferably at least 30 wt.% and most preferably at least 40 wt.% blooming perfume ingredients.
  • Substantive perfume components are defined by a boiling point greater than 250°C and a LogP greater than 2.5.
  • the encapsulated perfume compositions comprise at least 10 wt.% substantive perfume ingredients, more preferably at least 20 wt.% and most preferably at least 30 wt.% substantive perfume ingredients. Boiling point is measured at standard pressure (760 mm Hg).
  • a perfume composition will comprise a mixture of blooming and substantive perfume components.
  • the perfume composition may comprise other perfume components.
  • perfume components it is commonplace for a plurality of perfume components to be present in a microcapsule.
  • compositions for use in the present invention it is envisaged that there will be three or more, preferably four or more, more preferably five or more, most preferably six or more different perfume components in a microcapsule.
  • An upper limit of 300 perfume components may be applied.
  • the microcapsules may comprise perfume components and a carrier for the perfume ingredients, such as zeolites or cyclodextrins.
  • compositions for use as described herein may comprise other ingredients of fabric conditioner liquids as will be known to the person skilled in the art.
  • antifoams e.g. bactericides
  • anti-viral agents e.g. bactericides
  • pH buffering agents perfume carriers
  • hydrotropes e.g. bactericides
  • antiredeposition agents e.g. bactericides
  • soil-release agents e.g. bactericides
  • polyelectrolytes electrolytes
  • anti-shrinking agents electrolytes
  • anti-wrinkle agents anti-oxidants
  • dyes e.g. bactericides
  • anti-corrosion agents e.g. bactericides
  • the products of the invention may contain pearlisers and/or opacifiers.
  • a preferred sequestrant is HEDP, an abbreviation for Etidronic acid or 1-hydroxyethane 1,1-diphosphonic acid.
  • compositions are non-aqueous, however some water may be present. Preferably less than 20 wt.% water, more preferably less than 10 wt. % water and most preferably, less than 5 wt. % water by weight of the compostion.
  • compositions described herein are preferably an isotropic liquid.
  • an isotropic liquid there are no visible particles and no light scattering.
  • An isotropic liquid can be identified by turbidity.
  • Turbidity can be measured using Turbidimeters such as the Turbiquant 1500 T ex. Merck.
  • the compositions have a turbidity measurement of less than 2, more preferably less than 1.5, most preferably less than 1.3 NTU (Nephelometric Turbidity Units).
  • compositions described herein are preferably used in the rinse stage of the laundry process. They may be used in their concentrated form and dosed into the laundry process.
  • the composition may be dosed into the laundry process using a measuring cap, a pipet, a dropper or any other suitable dosing means.
  • the composition is dosed into the rinse stage of the laundry process.
  • the concentrated compositions described herein may be used in unit dose capsules or in a dilute at home product.
  • composition described herein may be packaged as a unit dose in polymeric film soluble in water.
  • a dilute at home product If used in a dilute at home product, this means that the composition is sold to the consumer in a concentrated format (as described herein) and the consumer dilutes the product at home.
  • the dilution is with water.
  • the consumer may pour the concentrated product (as described herein) into a container of water to make a more diluted product. Dilution occurs before the laundry process, in other word before the product is dosed into the washing machine or container in which the consumer is doing their laundry. Dilution allows the consumer to follow their regular dosing habits.
  • the consumer is instructed to dilute using a dilution ratio of non-aqueous concentrated liquid fabric conditioner composition to water of 1:2 to 1:20, more preferably 1:3 to 1:12.
  • the consumer may preferably be instructed the shake before use. This is particularly preferred if perfume microcapsules are present in the composition.
  • Diluting with water prior to being added to the laundry process means that before adding the product to the washing machine or the vessel used for hand washing. i.e. the consumer dilutes the product and then adds it to the drum or drawer of a washing machine of the vessel used for hand washing.
  • compositions described herein are preferably manufactured by melting the ester linked quaternary ammonium compound in the presence of the solvent defined herein.
  • the ester linked quaternary ammonium compound and solvent are preferably heated to a temperature above 45°C, more preferably above 50°C and most preferably about 55°C.
  • Any perfume ingredients or other ingredients present in the final composition may be added at any stage; before heating, or while at the raised temperature, or after the composition has cooled down.
  • compositions were prepared by co-melting the ester linked quaternary ammonium compound and aliphatic alcohol together at 65°C. The same turns isotropic after heating. The formulation is then cooled to room temperature. After 1 day at room temperature an observation of the composition is made.

Abstract

A non-aqueous concentrated liquid fabric conditioner composition, the composition comprising; a) 10 to 85 wt.% ester linked quaternary ammonium compound; b) solvent comprising aliphatic alcohol comprising 3 to 9 carbons; and c) less than 20 wt.% water.

Description

    Field of the Invention
  • The present invention is in the field of fabric conditioners, particularly providing concentrated non-aqueous fabric conditioner formulations.
  • Background of the Invention
  • There is a trend for consumer products to be increasingly concentrated. Concentration enables the use of less packaging and fewer chemicals. Smaller bottles or bottles containing more doses also provide convenience for the consumer.
  • In the field of fabric conditioners, concentration is a difficult problem to address. Fabric conditioners traditionally comprises quaternary ammonium compounds and more recently ester-linked quaternary ammonium compounds have dominated markets due to their biodegradability. However, in fabric conditioner compositions, particularly aqueous compositions, as the concentration of ester linked quaternary ammonium compounds increases so does the viscosity of the composition. At high concentrations, the products can become too thick to use or solidifies.
  • There is an ongoing need for fabric conditioner compositions which can be formulated as concentrated products.
  • Summary of the Invention
  • It has been found that using a short chain aliphatic alcohol in concentrated fabric conditioners provides stable, liquid compositions.
  • Accordingly in one aspect of the present invention is provided a non-aqueous concentrated liquid fabric conditioner composition, the composition comprising;
    1. a) 10 to 85 wt.% ester linked quaternary ammonium compound;
    2. b) Solvent comprising aliphatic alcohol comprising 3 to 9 carbons; and
    3. c) Less than 20 wt.% water.
  • The invention further relates to a method of producing a non-aqueous concentrated fabric conditioner composition wherein the ester linked quaternary ammonium compound and solvent comprising aliphatic alcohol comprising 3 to 9 carbons are heated together, to a temperature above 45°C.
  • Detailed Description of the Invention
  • These and other aspects, features and advantages will become apparent to those of ordinary skill in the art from a reading of the following detailed description and the appended claims. For the avoidance of doubt, any feature of one aspect of the present invention may be utilised in any other aspect of the invention. The word "comprising" is intended to mean "including" but not necessarily "consisting of" or "composed of." In other words, the listed steps or options need not be exhaustive. It is noted that the examples given in the description below are intended to clarify the invention and are not intended to limit the invention to those examples per se. Similarly, all percentages are weight/weight percentages unless otherwise indicated. Except in the operating and comparative examples, or where otherwise explicitly indicated, all numbers in this description indicating amounts of material or conditions of reaction, physical properties of materials and/or use are to be understood as modified by the word "about". Numerical ranges expressed in the format "from x to y" are understood to include x and y. When for a specific feature multiple preferred ranges are described in the format "from x to y", it is understood that all ranges combining the different endpoints are also contemplated.
  • Fabric Softening Active
  • The compositions described herein comprise an ester-linked quaternary ammonium compound. The fabric conditioners of the present invention comprise more than 10 wt. % ester-linked quaternary ammonium compound, preferably more than 15 wt. % ester-linked quaternary ammonium compound, more preferably more than 25 wt. % ester-linked quaternary ammonium compound, most preferably more than 35 wt.% ester-linked quaternary ammonium compound, by weight of the composition. Preferably the fabric conditioners of the present invention comprise less than 85 wt. % ester-linked quaternary ammonium compound, more preferably less than 80 wt. % ester-linked quaternary ammonium compound, most preferably less than 70 wt. % ester-linked quaternary ammonium compound by weight of the composition. Suitably the fabric conditioners comprise 10 to 85 wt. % ester-linked quaternary ammonium compound, preferably 15 to 80 wt.% ester-linked quaternary ammonium compound, more preferably 25 to 70 wt.% ester-linked quaternary ammonium compound and most preferably 35 to 70 wt. % ester-linked quaternary ammonium compound by weight of the composition. Particularly preferred ranges may be 30 to 60 wt.% ester-linked quaternary ammonium compound and 50 to 80 wt.% ester-linked quaternary ammonium compound.
  • The ester-linked quaternary ammonium compound preferably comprises at least one chain derived from fatty acids, more preferably at least two chains derived from a fatty acids. Generally fatty acids are defined as aliphatic monocarboxylic acids having a chain of 4 to 28 carbons. Fatty acids may be derived from various sources such as tallow or plant sources. Preferably the fatty acid chains are derived from plants. Preferably the fatty acid chains of the ester-linked quaternary ammonium compound comprise from 10 to 50 wt. % of saturated C18 chains and from 5 to 40 wt. % of monounsaturated C18 chains by weight of total fatty acid chains. In a further preferred embodiment, the fatty acid chains of the ester-linked quaternary ammonium compound comprise from 20 to 40 wt. %, preferably from 25 to 35 wt. % of saturated C18 chains and from 10 to 35 wt. %, preferably from 15 to 30 wt. % of monounsaturated C18 chains, by weight of total fatty acid chains.
  • Particularly preferred materials are the ester-linked triethanolamine (TEA) quaternary ammonium compounds comprising a mixture of mono-, di- and tri-ester linked components.
  • Typically, TEA-based fabric softening compounds comprise a mixture of mono, di- and tri ester forms of the compound where the di-ester linked component comprises no more than 70 wt.% of the fabric softening compound, preferably no more than 60 wt.% e.g. no more than 55%, or even no more that 45% of the fabric softening compound and at least 10 wt.% of the monoester linked component.
  • A first group of ester-linked quaternary ammonium compounds suitable for use in the present invention is represented by formula (I):
    Figure imgb0001
    wherein each R is independently selected from a C5 to C35 alkyl or alkenyl group; R1 represents a C1 to C4 alkyl, C2 to C4 alkenyl or a C1 to C4 hydroxyalkyl group; T may be either O-CO. (i.e. an ester group bound to R via its carbon atom), or may alternatively be CO-O (i.e. an ester group bound to R via its oxygen atom); n is a number selected from 1 to 4; m is a number selected from 1, 2, or 3; and X- is an anionic counter-ion, such as a halide or alkyl sulphate, e.g. chloride or methylsulfate. Di-esters variants of formula I (i.e. m = 2) are preferred and typically have mono- and tri-ester analogues associated with them. Such materials are particularly suitable for use in the present invention.
  • Suitable actives include soft quaternary ammonium actives such as Stepantex VT90, Rewoquat WE18 (ex-Evonik) and Tetranyl L1/90N, Tetranyl L190 SP and Tetranyl L190 S (all ex-Kao).
  • Also suitable are actives rich in the di-esters of triethanolammonium methylsulfate, otherwise referred to as "TEA ester quats".
  • Commercial examples include Praepagen TQL (ex-Clariant), and Tetranyl AHT-1 (ex-Kao), (both di-[hardened tallow ester] of triethanolammonium methylsulfate), AT-1 (di-[tallow ester] of triethanolammonium methylsulfate), and L5/90 (di-[palm ester] of triethanolammonium methylsulfate), (both ex-Kao), and Rewoquat WE15 (a di-ester of triethanolammonium methylsulfate having fatty acyl residues deriving from C10-C20 and C16-C18 unsaturated fatty acids) (ex-Evonik).
  • A second group of ester-linked quaternary ammonium compounds suitable for use in the invention is represented by formula (II):
    Figure imgb0002
    wherein each R1 group is independently selected from C1 to C4 alkyl, hydroxyalkyl or C2 to C4 alkenyl groups; and wherein each R2 group is independently selected from C8 to C28 alkyl or alkenyl groups; and wherein n, T, and X- are as defined above.
  • Preferred materials of this second group include 1,2 bis[tallowoyloxy]-3- trimethylammonium propane chloride, 1,2 bis[hardened tallowoyloxy]-3- trimethylammonium propane chloride, 1,2-bis[oleoyloxy]-3-trimethylammonium propane chloride, and 1,2 bis[stearoyloxy]-3-trimethylammonium propane chloride. Such materials are described in US 4, 137,180 (Lever Brothers). Preferably, these materials also comprise an amount of the corresponding monoester.
  • A third group of ester-linked quaternary ammonium compounds suitable for use in the invention is represented by formula (III):
    Figure imgb0003
    wherein each R1 group is independently selected from C1 to C4 alkyl, or C2 to C4 alkenyl groups; and wherein each R2 group is independently selected from C8 to C28 alkyl or alkenyl groups; and n, T, and X- are as defined above. Preferred materials of this third group include bis(2-tallowoyloxyethyl)dimethyl ammonium chloride, partially hardened and hardened versions thereof.
  • A particular example of the third group of ester-linked quaternary ammonium compounds is represented the by the formula:
    Figure imgb0004
  • A fourth group of ester-linked quaternary ammonium compounds suitable for use in the invention are represented by formula:
    Figure imgb0005
  • R1 and R2 are independently selected from C10 to C22 alkyl or alkenyl groups, preferably C14 to C20 alkyl or alkenyl groups. X- is as defined above.
  • The iodine value of the ester-linked quaternary ammonium compound fabric conditioning material is preferably from 0 to 80, more preferably from 0 to 60, and most preferably from 0 to 45. The iodine value may be chosen as appropriate. Essentially saturated material having an iodine value of from 0 to 5, preferably from 0 to 1 may be used in the compositions of the invention. Such materials are known as "hardened" quaternary ammonium compounds.
  • A further preferred range of iodine values is from 20 to 60, preferably 25 to 50, more preferably from 30 to 45. A material of this type is a "soft" triethanolamine quaternary ammonium compound, preferably triethanolamine di-alkylester methylsulfate. Such ester-linked triethanolamine quaternary ammonium compounds comprise unsaturated fatty chains.
  • If there is a mixture of ester-linked quaternary ammonium compound materials present in the composition, the iodine value, referred to above, represents the mean iodine value of the parent fatty acyl compounds or fatty acids of all of the quaternary ammonium materials present. Likewise, if there is any saturated ester-linked quaternary ammonium compound materials present in the composition, the iodine value represents the mean iodine value of the parent acyl compounds of fatty acids of all of the quaternary ammonium materials present.
  • Iodine value as used in the context of the present invention refers to, the fatty acid used to produce the ester-linked quaternary ammonium compound, the measurement of the degree of unsaturation present in a material by a method of nmr spectroscopy as described in Anal. Chem., 34, 1136 (1962) Johnson and Shoolery.
  • Solvent
  • The compositions of the present invention comprise a solvent. The solvent comprises aliphatic alcohol comprising 3 to 9 carbons. By this is meant that 3 to 9 carbons are present in the alcohol molecule. Preferably the aliphatic alcohol comprises 4 to 6 carbons, most preferably 5 to 6, i.e. pentanol or hexanol.
  • Preferably the alcohol is not a cyclic alcohol. Preferably the alcohol comprises one alcohol (OH) group.
  • Preferably the composition comprises 5 to 80 wt. % of the solvent described herein. More preferably 10 to 65 wt. % solvent and most preferably 15 to 50 wt. % solvent by weight of the composition.
  • Other solvents may be present in addition to the solvents described herein.
  • Perfume
  • The compositions as described herein preferably comprise perfume. Where present, the compositions preferably comprise 0.1 to 30 wt. % perfume, i.e. free perfume and/or perfume microcapsules. As is known in the art, free perfumes and perfume microcapsules provide the consumer with perfume hits at different points during the laundry process. It is particularly preferred that the compositions of the present invention comprise a combination of both free perfume and perfume microcapsules.
  • Preferably the compositions of the present invention comprise 0.5 to 30 wt.% perfume materials, more preferably 1 to 20 wt.% perfume materials, most preferably 1 to 15 wt. % perfume materials.
  • Useful perfume components may include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostrand; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA). These substances are well known to the person skilled in the art of perfuming, flavouring, and/or aromatizing consumer products.
  • The compositions of the present invention preferably comprise 0.5 to 20 wt.% free perfume, more preferably 0.5 to 12 wt. % free perfume.
  • Particularly preferred perfume components are blooming perfume components and substantive perfume components. Blooming perfume components are defined by a boiling point less than 250°C and a LogP or greater than 2.5. Substantive perfume components are defined by a boiling point greater than 250°C and a LogP greater than 2.5. Boiling point is measured at standard pressure (760 mm Hg). Preferably a perfume composition will comprise a mixture of blooming and substantive perfume components. The perfume composition may comprise other perfume components.
  • It is commonplace for a plurality of perfume components to be present in a free oil perfume composition. In the compositions for use in the present invention it is envisaged that there will be three or more, preferably four or more, more preferably five or more, most preferably six or more different perfume components. An upper limit of 300 perfume components may be applied.
  • The compositions of the present invention preferably comprise 0.5 to 20 wt.% perfume microcapsules, more preferably 0.5 to 12 wt. % perfume microcapsules. The weight of microcapsules is of the material as supplied.
  • When perfume components are encapsulated, suitable encapsulating materials, may comprise, but are not limited to; aminoplasts, proteins, polyurethanes, polyacrylates, polymethacrylates, polysaccharides, polyamides, polyolefins, gums, silicones, lipids, modified cellulose, polyphosphate, polystyrene, polyesters or combinations thereof. Particularly preferred materials are aminoplast microcapsules, such as melamine formaldehyde or urea formaldehyde microcapsules.
  • Perfume microcapsules of the present invention can be friable microcapsules and/or moisture activated microcapsules. By friable, it is meant that the perfume microcapsule will rupture when a force is exerted. By moisture activated, it is meant that the perfume is released in the presence of water. The compositions of the present invention preferably comprise friable microcapsules. Moisture activated microcapsules may additionally be present. Examples of a microcapsules which can be friable include aminoplast microcapsules.
  • Perfume components contained in a microcapsule may comprise odiferous materials and/or pro-fragrance materials.
  • Particularly preferred perfume components contained in a microcapsule are blooming perfume components and substantive perfume components. Blooming perfume components are defined by a boiling point less than 250°C and a LogP greater than 2.5.
  • Preferably the encapsulated perfume compositions comprise at least 20 wt.% blooming perfume ingredients, more preferably at least 30 wt.% and most preferably at least 40 wt.% blooming perfume ingredients. Substantive perfume components are defined by a boiling point greater than 250°C and a LogP greater than 2.5. Preferably the encapsulated perfume compositions comprise at least 10 wt.% substantive perfume ingredients, more preferably at least 20 wt.% and most preferably at least 30 wt.% substantive perfume ingredients. Boiling point is measured at standard pressure (760 mm Hg). Preferably a perfume composition will comprise a mixture of blooming and substantive perfume components. The perfume composition may comprise other perfume components.
  • It is commonplace for a plurality of perfume components to be present in a microcapsule. In the compositions for use in the present invention it is envisaged that there will be three or more, preferably four or more, more preferably five or more, most preferably six or more different perfume components in a microcapsule. An upper limit of 300 perfume components may be applied.
  • The microcapsules may comprise perfume components and a carrier for the perfume ingredients, such as zeolites or cyclodextrins.
  • Other Ingredients
  • The compositions for use as described herein may comprise other ingredients of fabric conditioner liquids as will be known to the person skilled in the art. Among such materials there may be mentioned: antifoams, insect repellents, shading or hueing dyes, preservatives (e.g. bactericides), anti-viral agents, pH buffering agents, perfume carriers, hydrotropes, antiredeposition agents, soil-release agents, polyelectrolytes, anti-shrinking agents, anti-wrinkle agents, anti-oxidants, dyes, colorants, sunscreens, anti-corrosion agents, drape imparting agents, anti-static agents, sequestrants and ironing aids. The products of the invention may contain pearlisers and/or opacifiers. A preferred sequestrant is HEDP, an abbreviation for Etidronic acid or 1-hydroxyethane 1,1-diphosphonic acid.
  • Form of the Composition
  • The compositions are non-aqueous, however some water may be present. Preferably less than 20 wt.% water, more preferably less than 10 wt. % water and most preferably, less than 5 wt. % water by weight of the compostion.
  • The compositions described herein are preferably an isotropic liquid. In an isotropic liquid, there are no visible particles and no light scattering. An isotropic liquid can be identified by turbidity.
  • Turbidity can be measured using Turbidimeters such as the Turbiquant 1500 T ex. Merck. Preferably the compositions have a turbidity measurement of less than 2, more preferably less than 1.5, most preferably less than 1.3 NTU (Nephelometric Turbidity Units).
  • Use
  • The compositions described herein are preferably used in the rinse stage of the laundry process. They may be used in their concentrated form and dosed into the laundry process. The composition may be dosed into the laundry process using a measuring cap, a pipet, a dropper or any other suitable dosing means. Preferably the composition is dosed into the rinse stage of the laundry process.
  • Preferably the concentrated compositions described herein may be used in unit dose capsules or in a dilute at home product.
  • If used in a unit dose capsule, the composition described herein may be packaged as a unit dose in polymeric film soluble in water.
  • If used in a dilute at home product, this means that the composition is sold to the consumer in a concentrated format (as described herein) and the consumer dilutes the product at home. The dilution is with water. For example, the consumer may pour the concentrated product (as described herein) into a container of water to make a more diluted product. Dilution occurs before the laundry process, in other word before the product is dosed into the washing machine or container in which the consumer is doing their laundry. Dilution allows the consumer to follow their regular dosing habits. If the composition is used in a dilute at home product, preferably the consumer is instructed to dilute using a dilution ratio of non-aqueous concentrated liquid fabric conditioner composition to water of 1:2 to 1:20, more preferably 1:3 to 1:12. The consumer may preferably be instructed the shake before use. This is particularly preferred if perfume microcapsules are present in the composition.
  • Diluting with water prior to being added to the laundry process means that before adding the product to the washing machine or the vessel used for hand washing. i.e. the consumer dilutes the product and then adds it to the drum or drawer of a washing machine of the vessel used for hand washing.
  • Method of Production
  • The compositions described herein are preferably manufactured by melting the ester linked quaternary ammonium compound in the presence of the solvent defined herein. To melt the ester linked quaternary ammonium, the ester linked quaternary ammonium compound and solvent are preferably heated to a temperature above 45°C, more preferably above 50°C and most preferably about 55°C. Any perfume ingredients or other ingredients present in the final composition may be added at any stage; before heating, or while at the raised temperature, or after the composition has cooled down.
  • Examples
  • The following compositions were prepared by co-melting the ester linked quaternary ammonium compound and aliphatic alcohol together at 65°C. The same turns isotropic after heating. The formulation is then cooled to room temperature. After 1 day at room temperature an observation of the composition is made. Table 1: Test compositions and observations
    wt.% inclusion Observation
    A B 1 2 3 4 5 6 7 8 C D
    Ester linked quaternary ammonium compound1 60 60 60 60 60 60 60 60 60 60 60 60
    Methanol 40 - - - - - - - - - - - Solid
    Ethanol - 40 - - - - - - - - - - Turbid liquid
    Isopropyl alcohol - - 40 - - - - - - - - - Crystals & liquid
    1-Butanol - - - 40 - - - - - - - - Isotropic clear liquid
    1-Pentanol - - - - 40 - - - - - - - Isotropic clear liquid
    2-Pentanol - - - - - 40 - - - - - - Isotropic clear liquid
    3-Pentanol - - - - - - 40 - - - - - Isotropic clear liquid
    1-Hexanol - - - - - - - 40 - - - - Isotropic clear liquid
    1-Heptanol - - - - - - - - 40 - - - Clear liquid & crystals
    1-Nonanol - - - - - - - - - 40 - - Clear liquid & crystals
    1-Decanol - - - - - - - - - - 40 - Turbid liquid
    1-Dodecanol - - - - - - - - - - - 40 Solid
  • The results demonstrate that the selection of an aliphatic alcohol, having a specific chain length leads to a clear liquid fabric conditioner composition.

Claims (12)

  1. A non-aqueous concentrated liquid fabric conditioner composition, the composition comprising;
    a) 10 to 85 wt.% ester linked quaternary ammonium compound;
    b) Solvent comprising aliphatic alcohol comprising 3 to 9 carbons; and
    c) Less than 20 wt.% water.
  2. A composition according to claim 1, wherein the composition comprises 5 to 80 wt. % of the solvent (b).
  3. A composition according to any preceding claim, wherein the solvent comprises alcohols comprising 4 to 6 carbons.
  4. A composition according to any preceding claim, wherein the solvent is not cyclic.
  5. A composition according to any preceding claim, wherein the composition further comprises perfume oil.
  6. A method according to any preceding claim, wherein the composition further comprises 0.5 to 20 wt.% perfume microcapsules.
  7. A composition according to any proceeding claim, wherein the composition is isotropic.
  8. A composition according to any proceeding claim, wherein the composition has a turbidity measurement of less than 2 NTU.
  9. A composition according to any preceding claim wherein the composition is packaged as a unit dose in a polymeric film soluble in water.
  10. A method of producing a non-aqueous concentrated fabric conditioner composition wherein the ester linked quaternary ammonium compound and solvent comprising aliphatic alcohol comprising 3 to 9 carbons are heated together, to a temperature above 45°C.
  11. A method of using a composition according to claims 1 to 9, wherein the composition is diluted with water, prior to being added to the laundry process.
  12. A method according to claim 11, wherein the composition is diluted with water with a dilution ratio of non-aqueous concentrated liquid fabric conditioner composition to water of 1:2 to 1:20.
EP22174304.0A 2022-05-19 2022-05-19 Concentrated non-aqueous fabric conditioners Withdrawn EP4279569A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22174304.0A EP4279569A1 (en) 2022-05-19 2022-05-19 Concentrated non-aqueous fabric conditioners

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP22174304.0A EP4279569A1 (en) 2022-05-19 2022-05-19 Concentrated non-aqueous fabric conditioners

Publications (1)

Publication Number Publication Date
EP4279569A1 true EP4279569A1 (en) 2023-11-22

Family

ID=81749033

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22174304.0A Withdrawn EP4279569A1 (en) 2022-05-19 2022-05-19 Concentrated non-aqueous fabric conditioners

Country Status (1)

Country Link
EP (1) EP4279569A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137180A (en) 1976-07-02 1979-01-30 Lever Brothers Company Fabric treatment materials
US6369025B1 (en) * 1995-07-11 2002-04-09 The Procter & Gamble Company Concentrated, water dispersible, stable, fabric softening compositions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137180A (en) 1976-07-02 1979-01-30 Lever Brothers Company Fabric treatment materials
US6369025B1 (en) * 1995-07-11 2002-04-09 The Procter & Gamble Company Concentrated, water dispersible, stable, fabric softening compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOHNSONSHOOLERY, ANAL. CHEM., vol. 34, 1962, pages 1136

Similar Documents

Publication Publication Date Title
EP3894529B1 (en) Fabric conditioner compositions
DE69728298T2 (en) QUARTENDER FATTY ACID TRIETHANOLAMINE ESTERSALZE AND ITS USE AS SOFTWARE OF FABRIC
EP2561057B1 (en) Improvements relating to fabric conditioners
EP2310480B1 (en) Improvements relating to fabric conditioners
ES2398622T3 (en) Improvements related to tissue conditioners
WO2009150017A1 (en) Improvements relating to fabric conditioners
EP4279569A1 (en) Concentrated non-aqueous fabric conditioners
EP4244321A1 (en) Concentrated non-aqueous fabric conditioners
US20230407206A1 (en) Fabric conditioner
CA2459362C (en) Fabric conditioning compositions comprising an ester-linked quarternary ammonium compound
WO2023222325A1 (en) Concentrated fabric conditioner
WO2023222322A1 (en) Concentrated fabric conditioner
WO2023222323A1 (en) Concentrated fabric conditioners
WO2023099499A1 (en) Fabric conditioning method
EP4157983B1 (en) Fabric softener composition
CA2492320C (en) Fabric conditioning compositions
WO2023170124A1 (en) Concentrated fabric conditioner
WO2023170120A1 (en) Concentrated fabric conditioner
CZ299081B6 (en) Fabric conditioning composition
WO2022148655A1 (en) Fabric conditioner composition
EP4026887A1 (en) Fabric conditioner composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20231211