EP4278402A1 - Redox flow battery - Google Patents

Redox flow battery

Info

Publication number
EP4278402A1
EP4278402A1 EP21798558.9A EP21798558A EP4278402A1 EP 4278402 A1 EP4278402 A1 EP 4278402A1 EP 21798558 A EP21798558 A EP 21798558A EP 4278402 A1 EP4278402 A1 EP 4278402A1
Authority
EP
European Patent Office
Prior art keywords
coating
redox flow
flow battery
electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21798558.9A
Other languages
German (de)
French (fr)
Inventor
Florian Doerrfuss
Jan Martin STUMPF
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102021126138.4A external-priority patent/DE102021126138A1/en
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Publication of EP4278402A1 publication Critical patent/EP4278402A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/886Powder spraying, e.g. wet or dry powder spraying, plasma spraying

Definitions

  • the invention relates to a redox flow battery comprising at least one electrode, the electrode comprising a metallic substrate, a coating being formed at least partially on a surface of the substrate.
  • redox flow batteries are used in a stationary manner, for example as domestic energy storage for single-family houses or entire blocks of flats. Furthermore, redox flow batteries can also be used in power plants for intermediate storage of generated electrical energy.
  • a redox flow battery also known as a redox flow battery, stores electrical energy in chemical compounds in which the reactants are dissolved in a solvent.
  • a redox flow battery stores electrical energy in chemical compounds in which the reactants are dissolved in a solvent.
  • two energy-storing electrolytes circulate in two separate circuits, between which the ion exchange in the cell takes place via an ion-conducting membrane.
  • the energy-storing electrolytes are stored outside the cell in separate tanks.
  • Redox flow batteries are based on the principle that two electrolytes flow through the half-cells of an electrochemical cell, i.e. the battery cell, and change their oxidation state on the surface of the electrodes. The electrons given off or taken up during the half-cell reactions do work via the external circuit.
  • the electrodes may be formed of metal, diamond, or indium tin oxide. The electrodes are either applied to a suitable substrate by means of coating methods such as CVD or PVD, or are produced separately and pressed onto the substrate.
  • Metallic plates that are coated using the PVD process usually do not have a completely dense layer, so that the base material, i.e. the metallic plate, is not completely protected by the layer from an aggressive electrolyte. This reduces the efficiency and service life of the electrode and thus of the entire battery cell.
  • WO 2018/146342 A1 discloses various lignin-based electrolyte compositions for use in redox flow batteries.
  • the publication "A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries", Aaron Hollas et al., Nature energy, Vol. 3, June 2018, pages 508 - 514 describes anolytes for redox flow batteries Based on aqueous "organic” electrolytes or based on aqueous electrolytes with a redox-active organic species. These are becoming increasingly important.
  • the object of the present invention is to provide a redox flow battery comprising at least one electrode with an electrolyte-tight coating.
  • the production costs are to be reduced and the efficiency and service life or operating times are to be increased.
  • the redox flow battery comprises at least one electrode, the electrode comprising a metallic substrate, a coating being formed at least partially on a surface of the substrate.
  • the coating is formed by applying powder material using an aerosol coating process and is therefore designed to be electrolyte-tight.
  • the aerosol coating process also known as the aerosol deposition method, is a dry spray coating process for producing dense layers directly from the powder material.
  • the aerosol consists of the powder material and a carrier gas.
  • the carrier gas can be O2, N2 or He, for example.
  • a process temperature of 100° C. is preferably not exceeded during the aerosol coating process.
  • the process temperature essentially corresponds to the room temperature.
  • the aerosol coating process is not a high-temperature process, but is carried out particularly at room temperature.
  • the substrate is placed in a vacuum chamber during the aerosol coating process whereby the powder material is deposited onto the surface of the substrate via the carrier gas.
  • the powder material is combined with the carrier gas in a powder aerosol manufacturing unit. mixes and in this way the aerosol for the coating process is produced.
  • the powder material is preferably solvent-free for the aerosol coating process.
  • the surface of the substrate can be coated either completely or only partially.
  • a mask can be used, which masks off sections of the surface of the substrate that are not to be coated and thus prevents a coating at these locations.
  • the substrate is made of a steel alloy, a copper-tin alloy, an aluminum alloy or a silver alloy.
  • a low-alloy steel is provided as the substrate. A cost saving can be achieved as a result.
  • the coating is formed at least partially or entirely from copper, tin, titanium, carbon and/or nickel.
  • the material or the composition of the powder material required to form the coating does not require any appreciable corrosion resistance, but good electrical conductivity, ie low electrical resistance, is advantageous. As a result, the efficiency of the electrode can be further increased.
  • the coating is designed as a CuSn6 coating, CuSn8 coating, titanium-carbon coating, tin coating or nickel coating.
  • a coating offers adequate protection against corrosion in the electrolyte. As a result, the efficiency of the electrode can be further increased.
  • the coating is formed with a layer thickness of at least 5 nm to at most 500 nm.
  • the layer thickness is preferably at least 50 nm to at most 250 nm.
  • the layer thickness can be determined by means of light microscopic methods. In particular, ground samples can be taken and etched for this purpose in order to determine the layer thickness.
  • a layer thickness in the aforementioned range offers adequate protection against corrosion in the electrolyte. As a result, the efficiency of the electrode can be further increased. Due to the small possible thickness of the electrode, small redox flow batteries can be produced which also have a low production price. For example, more than 10, in particular more than 50, electrically connected redox flow cells are used to form a redox flow battery.
  • Electrochemical Stability pH range: 1 -14
  • DHPS 7,8-dihydroxyphenazine-2-sulfonic acid
  • Electrolyte combinations with aqueous electrolytes with a redox-active organic and/or metallic species on the anolyte side are preferably used here to form a redox flow battery. Further measures improving the invention are presented in more detail below together with the description of preferred exemplary embodiments of the invention with reference to the figures. Show it
  • FIG. 1 shows a schematic block diagram of a method for producing an electrode for a redox flow battery
  • FIG. 2 shows a highly simplified representation of a device for carrying out the aerosol coating process
  • FIG. 3 shows a greatly simplified representation of a formed electrode of a redox flow battery
  • FIG. 4 shows a three-dimensional representation of an electrode
  • FIG. 5 shows a redox flow battery
  • FIG. 1 a method for producing an electrode 1 of a redox flow battery is visualized according to a block diagram. A section of the electrode 1 is shown in greatly simplified form in FIG.
  • a metallic substrate 2 and a powder material 3 are provided in a first method step 100 .
  • the substrate 2 consists of a steel alloy that has no appreciable corrosion resistance, but has good electrical conductivity, ie a low electrical resistance.
  • the powdered material 3 essentially consists of the elements copper and tin, with the powdered material 3 being produced by powdering a copper-tin alloy. Small amounts of impurities and other alloying elements can therefore be contained in the powder material 3, although these are not further considered in the present case.
  • a coating 4 is formed from the powder material 3 on a surface of the substrate 2 by means of an aerosol coating method in order to produce the electrode 1.
  • FIG. 2 shows a device 5 for carrying out the aerosol coating process in a greatly simplified manner.
  • the substrate 2 is placed on a holding element 7 within a vacuum chamber 6 .
  • the aerosol coating process is carried out at room temperature, whereby a process temperature of approx. 50°C is not exceeded.
  • the device 5 comprises a gas reservoir 8 for providing a carrier gas for the aerosol coating process, a control device 9 for controlling at least one flow rate of the carrier gas, a powder aerosol production unit 10 for mixing the carrier gas with the powder material 3 and a vacuum pump 11 for creating a negative pressure in of the vacuum chamber 6.
  • the gas reservoir s, control device 9, powder aerosol production unit 10 and vacuum chamber 6 are connected to one another via fluid-carrying connecting lines 12.
  • the carrier gas is mixed with the powder material 3, the powder material 3 being present without solvent.
  • a nozzle 13 which deposits the aerosol, ie the carrier gas/powder material mixture, from the powder aerosol production unit 10 onto the substrate 2 in the vacuum chamber 6 .
  • the powder material 3 is thus deposited via the carrier gas onto the surface of the substrate 2 and forms a dense and firmly adhering coating 4 there, as shown in an enlarged view in FIG.
  • FIG. 3 shows a greatly simplified and enlarged sectional representation of a section of the electrode 1 formed.
  • the coating 4 has a layer thickness of approximately 50 nm, for example, and is designed to protect the substrate 2 from corrosion in an electrolyte, in particular an organic electrolyte, and thus to increase the efficiency and service life of the battery cell.
  • FIG. 4 shows an electrode 1 in a three-dimensional view, comprising a metallic substrate 2 in the form of a metal sheet made of an aluminum alloy, which has the coating 4 .
  • a metallic substrate 2 in the form of a metal sheet made of an aluminum alloy, which has the coating 4 .
  • the substrate 2 there is a three-dimensional structure for the formation of a flow field 20 with flow guide structures, so that the surface of the electrode 1 is enlarged in this area, which in an electrolyte (anolyte or catholyte) flows against a redox flow battery (compare FIG. 5).
  • FIG. 5 schematically shows a redox flow battery 14 with a single redox flow cell.
  • the redox flow cell comprises two components in the form of electrodes 1a, 1b, a first reaction space 16a and a second reaction space 16b, each reaction space 16a, 16b being in contact with one of the electrodes 1a, 1b.
  • the reaction spaces 16a, 16b are separated from one another by the ion exchange membrane 15.
  • a liquid anolyte 17a is pumped from a tank 19a via a pump 18a into the first reaction chamber 16a and passed between the electrode 1a and the ion exchange membrane 15.
  • a liquid catholyte 17b is pumped from a tank 19b via a pump 18b into the second reaction chamber 16b and passed between the electrode 1b and the ion exchange membrane 15.
  • An ion exchange takes place across the ion exchange membrane 15, electrical energy being released due to the redox reaction at the electrodes 1a, 1b.
  • Aqueous organic electrolytes are used here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

The invention relates to a redox flow battery (14) comprising at least one electrode (1, 1a, 1b), wherein the electrode (1, 1a, 1b) comprises a metallic substrate (2), wherein a coating (4) is formed at least partially on a surface of the substrate (2), wherein the coating (4) is formed by application of powder material (3) by means of an aerosol coating method.

Description

Redox-Flussbatterie Redox flow battery
Die Erfindung betrifft eine Redox-Flussbatterie umfassend mindestens eine Elektrode, wobei die Elektrode ein metallisches Substrat umfasst, wobei zumindest teilweise an einer Oberfläche des Substrates eine Beschichtung ausgebildet. The invention relates to a redox flow battery comprising at least one electrode, the electrode comprising a metallic substrate, a coating being formed at least partially on a surface of the substrate.
In der Regel werden Redox-Flussbatterien stationär eingesetzt, beispielsweise als Hausenergiespeicher für Einfamilienhäuser oder ganzen Wohnblocks. Ferner können Redox-Flussbatterien auch in Kraftwerken zur Zwischenspeicherung von erzeugter elektrischer Energie eingesetzt werden. As a rule, redox flow batteries are used in a stationary manner, for example as domestic energy storage for single-family houses or entire blocks of flats. Furthermore, redox flow batteries can also be used in power plants for intermediate storage of generated electrical energy.
Eine Redox-Flussbatterie, auch Redox-Flow-Batterie genannt, speichert elektrische Energie in chemischen Verbindungen, indem die Reaktionspartner in einem Lösungsmittel in gelöster Form vorliegen. Wie beispielsweise aus der WO 2010/094657 A1 hervorgeht, zirkulieren zwei energiespeichernde Elektrolyte in zwei getrennten Kreisläufen, zwischen denen der lonenaustausch in der Zelle über eine ionenleitende Membran erfolgt. Die energiespeichernden Elektrolyte werden außerhalb der Zelle in getrennten Tanks gelagert. Redox-Flussbatterien basieren auf dem Prinzip, dass zwei Elektrolyte durch die Halbzellen einer elektrochemischen Zelle, also der Batteriezelle, strömen und dabei auf der Oberfläche der Elektroden ihre Oxidationsstufe ändern. Die bei den Halbzellreaktionen abgegebenen bzw. aufgenommenen Elektronen verrichten über den externen Stromkreis Arbeit. Die Elektroden können aus einem Metall, aus Diamant oder aus einem Indium-Zinn-Oxid ausgebildet sein. Die Elektroden werden entweder mittels Beschichtungsverfahren, wie CVD oder PVD, auf ein geeignetes Substrat aufgebracht oder gesondert hergestellt und mit dem Substrat verpresst. A redox flow battery, also known as a redox flow battery, stores electrical energy in chemical compounds in which the reactants are dissolved in a solvent. As can be seen, for example, from WO 2010/094657 A1, two energy-storing electrolytes circulate in two separate circuits, between which the ion exchange in the cell takes place via an ion-conducting membrane. The energy-storing electrolytes are stored outside the cell in separate tanks. Redox flow batteries are based on the principle that two electrolytes flow through the half-cells of an electrochemical cell, i.e. the battery cell, and change their oxidation state on the surface of the electrodes. The electrons given off or taken up during the half-cell reactions do work via the external circuit. The electrodes may be formed of metal, diamond, or indium tin oxide. The electrodes are either applied to a suitable substrate by means of coating methods such as CVD or PVD, or are produced separately and pressed onto the substrate.
Metallische Platten, die mit PVD-Verfahren beschichtet werden, weisen in der Regel keine vollständig dichte Schicht auf, sodass das Grundmaterial, also die metallische Platte, nicht vollständig durch die Schicht vor einem aggressiven Elektrolyt geschützt wird. Dies verringert die Effizienz und Lebensdauer der Elektrode und somit auch der gesamten Batteriezelle. Metallic plates that are coated using the PVD process usually do not have a completely dense layer, so that the base material, i.e. the metallic plate, is not completely protected by the layer from an aggressive electrolyte. This reduces the efficiency and service life of the electrode and thus of the entire battery cell.
Die WO 2018/146342 A1 offenbart verschiedene Elektrolyt-Zusammensetzungen auf Lignin-Basis zur Verwendung für Redox-Flow-Batterien. Die Veröffentlichung „A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries“, Aaron Hollas et al., Nature energy, Vol. 3, Juni 2018, Seiten 508 - 514, beschreibt Anolyte für Redox-Flow-Batterien auf Basis wässriger „organischer“ Elektrolyte beziehungsweise auf Basis wässriger Elektrolyte mit einer redox-aktiven organischen Spezies. Diese gewinnen zunehmend an Bedeutung. WO 2018/146342 A1 discloses various lignin-based electrolyte compositions for use in redox flow batteries. The publication "A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries", Aaron Hollas et al., Nature energy, Vol. 3, June 2018, pages 508 - 514 describes anolytes for redox flow batteries Based on aqueous "organic" electrolytes or based on aqueous electrolytes with a redox-active organic species. These are becoming increasingly important.
Die Aufgabe der vorliegenden Erfindung besteht darin, eine Redox-Flussbatterie umfassend mindestens eine Elektrode mit einer Elektrolyt-dichten Beschichtung bereitzustellen. Insbesondere sollen die Herstellungskosten gesenkt und die Effizienz sowie Lebensdauer bzw. Betriebszeiten erhöht werden. The object of the present invention is to provide a redox flow battery comprising at least one electrode with an electrolyte-tight coating. In particular, the production costs are to be reduced and the efficiency and service life or operating times are to be increased.
Diese Aufgabe wird durch eine Redox-Flussbatterie mit den Merkmalen des Anspruchs 1 gelöst. Bevorzugte oder vorteilhafte Ausführungsformen der Erfindung ergeben sich aus den Unteransprüchen der nachfolgenden Beschreibung sowie den beigefügten Figuren. This object is achieved by a redox flow battery having the features of claim 1. Preferred or advantageous embodiments of the invention result from the subclaims of the following description and the attached figures.
Die Redox-Flussbatterie umfasst mindestens eine Elektrode, wobei die Elektrode ein metallisches Substrat umfasst, wobei zumindest teilweise an einer Oberfläche des Substrates eine Beschichtung ausgebildet ist. Die Beschichtung ist durch einen Auftrag von Pulvermaterial mittels eines Aerosolbeschichtungsverfahrens gebildet und daher Elektrolyt-dicht ausgebildet. The redox flow battery comprises at least one electrode, the electrode comprising a metallic substrate, a coating being formed at least partially on a surface of the substrate. The coating is formed by applying powder material using an aerosol coating process and is therefore designed to be electrolyte-tight.
Das Aerosolbeschichtungsverfahren, auch Aerosol Deposition Method genannt, ist ein Trockensprühbeschichtungsverfahren zur Herstellung von dichten Schichten direkt aus dem Pulvermaterial. Das Aerosol besteht aus dem Pulvermaterial und einem Trägergas. Das Trägergas kann beispielswiese O2, N2 oder He sein. Vorzugsweise wird während des Aerosolbeschichtungsverfahrens eine Prozesstemperatur von 100°C nicht überschritten. Beispielsweise stimmt die Prozesstemperatur im Wesentlichen mit der Raumtemperatur überein. Mit anderen Worten ist das Aerosolbeschichtungsverfahren kein Hochtemperaturverfahren, sondern wird insbesondere bei Raumtemperatur ausgeführt. Insbesondere wird das Substrat während des Aerosolbeschichtungsverfahrens in einer Vakuumkammer angeordnet, wobei das Pulvermaterial über das Trägergas auf die Oberfläche des Substrates abgeschieden wird. Beispielsweise wird das Pulvermaterial mit dem Trägergas in einer Pulveraerosolherstellungseinheit ver- mischt und derart das Aerosol für das Beschichtungsverfahren hergestellt. Bevorzugt liegt das Pulvermaterial lösungsmittelfrei für das Aerosolbeschichtungsverfahren vor. The aerosol coating process, also known as the aerosol deposition method, is a dry spray coating process for producing dense layers directly from the powder material. The aerosol consists of the powder material and a carrier gas. The carrier gas can be O2, N2 or He, for example. A process temperature of 100° C. is preferably not exceeded during the aerosol coating process. For example, the process temperature essentially corresponds to the room temperature. In other words, the aerosol coating process is not a high-temperature process, but is carried out particularly at room temperature. In particular, the substrate is placed in a vacuum chamber during the aerosol coating process whereby the powder material is deposited onto the surface of the substrate via the carrier gas. For example, the powder material is combined with the carrier gas in a powder aerosol manufacturing unit. mixes and in this way the aerosol for the coating process is produced. The powder material is preferably solvent-free for the aerosol coating process.
Beispielsweise kann die Oberfläche des Substrates entweder vollständig oder nur teilweise beschichtet sein. Für eine nicht vollständige Beschichtung der Oberfläche des Substrates kann eine Maskierung verwendet werden, die nicht zu beschichtende Abschnitte der Oberfläche des Substrates abklebt und so eine Beschichtung an diesen Stellen verhindert. For example, the surface of the substrate can be coated either completely or only partially. For an incomplete coating of the surface of the substrate, a mask can be used, which masks off sections of the surface of the substrate that are not to be coated and thus prevents a coating at these locations.
Gemäß einer bevorzugten Ausführungsform der Erfindung ist das Substrat aus einer Stahllegierung, einer Kupfer-Zinn-Legierung, einer Aluminiumlegierung oder einer Silberlegierung ausgebildet. Beispielsweise wird ein niedriglegierter Stahl als Substrat bereitgestellt. Dadurch kann eine Kosteneinsparung erzielt werden. According to a preferred embodiment of the invention, the substrate is made of a steel alloy, a copper-tin alloy, an aluminum alloy or a silver alloy. For example, a low-alloy steel is provided as the substrate. A cost saving can be achieved as a result.
Gemäß einer bevorzugten Ausführungsform der Erfindung ist die Beschichtung zumindest teilweise oder vollständig aus Kupfer, Zinn, Titan, Kohlenstoff und/oder Nickel ausgebildet. Der Werkstoff bzw. die Zusammensetzung des zur Bildung der Beschichtung benötigten Pulvermaterials benötigt keine nennenswerte Korrosionsbeständigkeit, vorteilhaft ist jedoch eine gute elektrische Leitfähigkeit, also ein niedriger elektrischer Widerstand. Dadurch kann die Effizienz der Elektrode weiter erhöht werden. According to a preferred embodiment of the invention, the coating is formed at least partially or entirely from copper, tin, titanium, carbon and/or nickel. The material or the composition of the powder material required to form the coating does not require any appreciable corrosion resistance, but good electrical conductivity, ie low electrical resistance, is advantageous. As a result, the efficiency of the electrode can be further increased.
Gemäß einer bevorzugten Ausführungsform der Erfindung ist die Beschichtung als CuSn6-Beschichtung, CuSn8-Beschichtung, Titan-Kohlenstoff-Beschichtung, Zinn- Beschichtung oder Nickel-Beschichtung ausgebildet. Eine solche Beschichtung bietet hinreichenden Korrosionsschutz im Elektrolyten. Dadurch kann die Effizienz der Elektrode weiter erhöht werden. According to a preferred embodiment of the invention, the coating is designed as a CuSn6 coating, CuSn8 coating, titanium-carbon coating, tin coating or nickel coating. Such a coating offers adequate protection against corrosion in the electrolyte. As a result, the efficiency of the electrode can be further increased.
Insbesondere ist die Beschichtung mit einer Schichtdicke von mindestens 5 nm bis höchstens 500 nm ausgebildet. Bevorzugt beträgt die Schichtdicke mindestens 50 nm bis höchstens 250 nm. Die Schichtdicke kann mittels lichtmikroskopischer Verfahren bestimmt werden. Insbesondere können dafür Schliffproben entnommen und geätzt werden, um die Schichtdicke zu bestimmen. Eine Schichtdicke in dem zuvor genannten Bereich bietet einen hinreichenden Korrosionsschutz im Elektrolyten. Dadurch kann die Effizienz der Elektrode weiter erhöht werden. Es können aufgrund der geringen möglichen Dicke der Elektrode kleinbauende Redox-Flussbatterien hergestellt werden, die zudem einen geringen Herstellungspreis aufweisen. So werden zur Ausbildung einer Redox-Flussbatterie bevorzugt mehr als 10, insbesondere mehr als 50 Redox-Flusszellen elektrisch miteinander verschaltet eingesetzt. In particular, the coating is formed with a layer thickness of at least 5 nm to at most 500 nm. The layer thickness is preferably at least 50 nm to at most 250 nm. The layer thickness can be determined by means of light microscopic methods. In particular, ground samples can be taken and etched for this purpose in order to determine the layer thickness. A layer thickness in the aforementioned range offers adequate protection against corrosion in the electrolyte. As a result, the efficiency of the electrode can be further increased. Due to the small possible thickness of the electrode, small redox flow batteries can be produced which also have a low production price. For example, more than 10, in particular more than 50, electrically connected redox flow cells are used to form a redox flow battery.
Die Anforderungen an die Elektrode einer Redox-Flussbatterie lassen sich wie folgt zusammenfassen: The requirements for the electrode of a redox flow battery can be summarized as follows:
Elektrochemische Stabilität: pH-Bereich: 1 -14 Electrochemical Stability: pH range: 1 -14
Potentialbereich: -1 V NHE bis +3 V NHE (Kurzzeit: -2 V NHE bis +3 V NHE) Laufzeit: > 500 h Potential range: -1 V NHE to +3 V NHE (short-term: -2 V NHE to +3 V NHE) Running time: > 500 h
Grenzflächenwiderstand: Interfacial Resistance:
< 100 mOhm cm2 (bei 100 N/cm2 Kontaktdruck) < 100 mOhm cm 2 (at 100 N/cm 2 contact pressure)
Dies soll insbesondere auch bei einem Einsatz wässriger organischer Elektrolyte gegeben sein. This should also be the case, in particular, when using aqueous organic electrolytes.
Als ein für eine Redox-Flussbatterie geeigneter Anolyt wird hier beispielhaft genannt: 1.4 M 7,8-Dihydroxyphenazin-2-sulfonsäure (kurz: DHPS) gelöst in 1 molarer Natronlauge The following is mentioned here as an example of an anolyte suitable for a redox flow battery: 1.4 M 7,8-dihydroxyphenazine-2-sulfonic acid (abbreviated: DHPS) dissolved in 1 molar sodium hydroxide solution
Als ein für eine Redox-Flussbatterie geeigneter Katholyt wird hier beispielhaft genannt: The following is an example of a catholyte suitable for a redox flow battery:
0.31 M Kaliumhexacyanoferrat(ll) und 0.31 M Kaliumhexacyanoferrat(lll) gelöst in 2 molarer Natronlauge. 0.31 M potassium hexacyanoferrate(II) and 0.31 M potassium hexacyanoferrate(III) dissolved in 2 molar sodium hydroxide solution.
Es werden hier bevorzugt Elektrolyt-Kombinationen mit wässrigen Elektrolyten mit einer redox-aktiven organischen und/oder metallischen Spezies auf der Anolyt-Seite zur Bildung einer Redox-Flussbatterie verwendet. Weitere die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung bevorzugter Ausführungsbeispiele der Erfindung anhand der Figuren näher dargestellt. Es zeigen Electrolyte combinations with aqueous electrolytes with a redox-active organic and/or metallic species on the anolyte side are preferably used here to form a redox flow battery. Further measures improving the invention are presented in more detail below together with the description of preferred exemplary embodiments of the invention with reference to the figures. Show it
Figur 1 ein schematisches Blockschaltbild eines Verfahrens zur Herstellung einer Elektrode für eine Redox-Flussbatterie, FIG. 1 shows a schematic block diagram of a method for producing an electrode for a redox flow battery,
Figur 2 eine stark vereinfachte Darstellung einer Vorrichtung zur Durchführung des Aerosolbeschichtungsverfahrens, FIG. 2 shows a highly simplified representation of a device for carrying out the aerosol coating process,
Figur 3 eine stark vereinfachte Darstellung einer gebildeten Elektrode einer Re- dox-Flussbatterie, FIG. 3 shows a greatly simplified representation of a formed electrode of a redox flow battery,
Figur 4 eine dreidimensionale Darstellung einer Elektrode, und FIG. 4 shows a three-dimensional representation of an electrode, and
Figur 5 eine Redox-Flussbatterie. FIG. 5 shows a redox flow battery.
Nach Figur 1 ist ein Verfahren zur Herstellung einer Elektrode 1 einer Redox- Flussbatterie gemäß eines Blockschaltbilds visualisiert. Ein Ausschnitt der Elektrode 1 ist in Figur 3 stark vereinfacht dargestellt. According to FIG. 1, a method for producing an electrode 1 of a redox flow battery is visualized according to a block diagram. A section of the electrode 1 is shown in greatly simplified form in FIG.
Gemäß Figur 1 werden in einem ersten Verfahrensschritt 100 ein metallisches Substrat 2 und ein Pulvermaterial 3 bereitgestellt. Beispielsweise besteht das Substrat 2 aus einer Stahllegierung, die keine nennenswerte Korrosionsbeständigkeit, jedoch eine gute elektrische Leitfähigkeit, also einen niedrigen elektrischen Widerstand aufweist. Beispielsweise besteht das Pulvermaterial 3 im Wesentlichen aus den Elementen Kupfer und Zinn, wobei das Pulvermaterial 3 durch Verpulvern einer Kupfer-Zinn- Legierung hergestellt wird. Daher können in dem Pulvermaterial 3 geringe Mengen an Verunreinigungen sowie anderen Legierungselementen enthalten sein, wobei diese vorliegend nicht weiter berücksichtigt werden. In einem zweiten Verfahrensschritt 200 wird mittels eines Aerosolbeschichtungsverfahrens aus dem Pulvermaterial 3 an einer Oberfläche des Substrats 2 eine Beschichtung 4 ausgebildet, um die Elektrode 1 herzustellen. Die Beschichtung 4 ist als CuSn6-Beschichtung ausgebildet. In Figur 2 ist eine Vorrichtung 5 zur Durchführung des Aerosolbeschichtungsverfahrens stark vereinfacht dargestellt. Während des Aerosolbeschichtungsverfahrens ist das Substrat 2 auf einem Halteelemente 7 innerhalb einer Vakuumkammer 6 angeordnet. Das Aerosolbeschichtungsverfahren wird bei Raumtemperatur durchgeführt, wobei eine Prozesstemperatur von ca. 50°C nicht überschritten wird. Die Vorrichtung 5 umfasst neben der Vakuumkammer 6 einen Gasspeicher 8 zur Bereitstellung eines Trägergases für das Aerosolbeschichtungsverfahren, eine Steuereinrichtung 9 zur Steuerung zumindest einer Durchflussrate des Trägergases, eine Pulveraerosolherstellungseinheit 10 zum Vermischen des Trägergases mit dem Pulvermaterial 3 sowie eine Vakuumpumpe 11 zur Ausbildung eines Unterdruckes in der Vakuumkammer 6. Über fluidführende Verbindungsleitungen 12 sind Gasspeicher s, Steuereinrichtung 9, Pulveraerosolherstellungseinheit 10 und Vakuumkammer 6 miteinander verbunden. In der Pulveraerosolherstellungseinheit 10 wird das Trägergas mit dem Pulvermaterial 3 vermischt, wobei das Pulvermaterial 3 lösungsmittelfrei vorliegt. In der Vakuumkammer 6 ist ferner eine Düse 13 angeordnet, die das Aerosol, also das T rägergas- Pulvermaterial-Gemisch aus der Pulveraerosolherstellungseinheit 10 auf das Substrat 2 in der Vakuumkammer 6 abscheidet. Das Pulvermaterial 3 wird somit über das Trägergas auf die Oberfläche des Substrates 2 abgeschieden und bildet dort eine dichte sowie fest haftende Beschichtung 4 aus, wie in Figur 3 vergrößert dargestellt ist. According to FIG. 1, a metallic substrate 2 and a powder material 3 are provided in a first method step 100 . For example, the substrate 2 consists of a steel alloy that has no appreciable corrosion resistance, but has good electrical conductivity, ie a low electrical resistance. For example, the powdered material 3 essentially consists of the elements copper and tin, with the powdered material 3 being produced by powdering a copper-tin alloy. Small amounts of impurities and other alloying elements can therefore be contained in the powder material 3, although these are not further considered in the present case. In a second method step 200, a coating 4 is formed from the powder material 3 on a surface of the substrate 2 by means of an aerosol coating method in order to produce the electrode 1. The coating 4 is designed as a CuSn6 coating. FIG. 2 shows a device 5 for carrying out the aerosol coating process in a greatly simplified manner. During the aerosol coating process, the substrate 2 is placed on a holding element 7 within a vacuum chamber 6 . The aerosol coating process is carried out at room temperature, whereby a process temperature of approx. 50°C is not exceeded. In addition to the vacuum chamber 6, the device 5 comprises a gas reservoir 8 for providing a carrier gas for the aerosol coating process, a control device 9 for controlling at least one flow rate of the carrier gas, a powder aerosol production unit 10 for mixing the carrier gas with the powder material 3 and a vacuum pump 11 for creating a negative pressure in of the vacuum chamber 6. The gas reservoir s, control device 9, powder aerosol production unit 10 and vacuum chamber 6 are connected to one another via fluid-carrying connecting lines 12. In the powder aerosol production unit 10, the carrier gas is mixed with the powder material 3, the powder material 3 being present without solvent. Also arranged in the vacuum chamber 6 is a nozzle 13 which deposits the aerosol, ie the carrier gas/powder material mixture, from the powder aerosol production unit 10 onto the substrate 2 in the vacuum chamber 6 . The powder material 3 is thus deposited via the carrier gas onto the surface of the substrate 2 and forms a dense and firmly adhering coating 4 there, as shown in an enlarged view in FIG.
Figur 3 zeigt stark vereinfacht sowie vergrößert eine Schnittdarstellung eines Ausschnitts der gebildeten Elektrode 1. Das als metallisches Substrat 2 ausgebildete Grundmaterial weist die Beschichtung 4 auf, die als CuSn6-Beschichtung ausgebildet ist. Die Beschichtung 4 hat beispielsweise eine Schichtdicke von ca. 50 nm und ist dazu eingerichtet, das Substrat 2 vor Korrosion in einem Elektrolyten, insbesondere organischen Elektrolyten, zu schützen und somit die Effizienz und Lebensdauer der Batteriezelle zu erhöhen. FIG. 3 shows a greatly simplified and enlarged sectional representation of a section of the electrode 1 formed. The coating 4 has a layer thickness of approximately 50 nm, for example, and is designed to protect the substrate 2 from corrosion in an electrolyte, in particular an organic electrolyte, and thus to increase the efficiency and service life of the battery cell.
Figur 4 zeigt eine Elektrode 1 in dreidimensionaler Ansicht umfassend ein metallisches Substrat 2 in Form eines Metallblechs aus einer Aluminiumlegierung, das die Beschichtung 4 aufweist. In dem Substrat 2 ist eine dreidimensionale Strukturierung zur Ausbildung eines Flussfeldes 20 mit Strömungsleitstrukturen vorhanden, so dass eine Vergrößerung der Oberfläche der Elektrode 1 in diesem Bereich resultiert, die in einer Redox-Flussbatterie (vergleiche Figur 5) von einem Elektrolyten (Anolyt oder Ka- tholyt) angeströmt wird. Weiterhin sind in der Elektrode 1 Öffnungen 21 für eine Elektrolyt-Zuleitung zur Zelle und Elektrolyt-Ableitung aus der Zelle vorhanden. Figur 5 zeigt schematisch eine Redox-Flow-Batterie 14 mit einer einzelnen Redox- Flow-Zelle. Die Redox-Flow-Zelle umfasst zwei Bauteile in Form von Elektroden 1a, 1 b, einen ersten Reaktionsraum 16a und einen zweiten Reaktionsraum 16b, wobei jeder Reaktionsraum 16a, 16b in Kontakt mit einer der Elektroden 1a, 1b steht. Die Reaktionsräume 16a, 16b sind durch die lonenaustauschmembran 15 voneinander getrennt. Ein flüssiger Anolyt 17a wird aus einem Tank 19a über eine Pumpe 18a in den ersten Reaktionsraum 16a gepumpt und zwischen der Elektrode 1a und der lonenaustauschmembran 15 hindurchgeführt. Ein flüssiger Katholyt 17b wird aus einem Tank 19b über eine Pumpe 18b in den zweiten Reaktionsraum 16b gepumpt und zwischen der Elektrode 1b und der lonenaustauschmembran 15 hindurchgeführt. Es er- folgt ein lonentausch über die lonenaustauschmembran 15 hinweg, wobei aufgrund der Redox-Reaktion an den Elektroden 1a, 1 b elektrische Energie frei wird. Es werden hier wässrige organische Elektrolyte eingesetzt. FIG. 4 shows an electrode 1 in a three-dimensional view, comprising a metallic substrate 2 in the form of a metal sheet made of an aluminum alloy, which has the coating 4 . In the substrate 2 there is a three-dimensional structure for the formation of a flow field 20 with flow guide structures, so that the surface of the electrode 1 is enlarged in this area, which in an electrolyte (anolyte or catholyte) flows against a redox flow battery (compare FIG. 5). Furthermore, there are openings 21 in the electrode 1 for supplying electrolyte to the cell and draining electrolyte from the cell. FIG. 5 schematically shows a redox flow battery 14 with a single redox flow cell. The redox flow cell comprises two components in the form of electrodes 1a, 1b, a first reaction space 16a and a second reaction space 16b, each reaction space 16a, 16b being in contact with one of the electrodes 1a, 1b. The reaction spaces 16a, 16b are separated from one another by the ion exchange membrane 15. A liquid anolyte 17a is pumped from a tank 19a via a pump 18a into the first reaction chamber 16a and passed between the electrode 1a and the ion exchange membrane 15. A liquid catholyte 17b is pumped from a tank 19b via a pump 18b into the second reaction chamber 16b and passed between the electrode 1b and the ion exchange membrane 15. An ion exchange takes place across the ion exchange membrane 15, electrical energy being released due to the redox reaction at the electrodes 1a, 1b. Aqueous organic electrolytes are used here.
Bezuqszeichenliste Reference character list
1 ,1 a, 1 b Elektrode 1, 1a, 1b electrode
2 Substrat 2 substrate
3 Pulvermaterial 3 powder material
4 Beschichtung 4 coating
5 Vorrichtung 5 device
6 Vakuumkammer 6 vacuum chamber
7 Halteelemente 7 holding elements
8 Gasspeicher 8 gas storage
9 Steuereinrichtung 9 control device
10 Pulveraerosolherstellungseinheit 10 powder aerosol manufacturing unit
11 Vakuumpumpe 11 vacuum pump
12 Verbindungsleitungen 12 connection lines
13 Düse 13 nozzle
14 Redox-Flussbatterie 14 redox flow battery
15 lonenaustauschmembran 15 ion exchange membrane
16a erster Reaktionsraum 16a first reaction space
16b zweiter Reaktionsraum 16b second reaction space
17a Anolyt 17a anolyte
17b Katholyt 17b catholyte
18a, 18b Pumpe 18a, 18b pump
19a, 19b Tank 19a, 19b Tank
20 Flussfeld mit Strömungsleitstrukturen 20 flow field with flow control structures
21 Öffnungen für Elektrolyt-Zuleitung und -Ableitung21 openings for electrolyte supply and drainage
100 erster Verfahrensschritt 100 first step of the process
200 zweiter Verfahrensschritt 200 second process step

Claims

Patentansprüche patent claims
1. Redox-Flussbatterie (14) umfassend mindestens eine Elektrode (1 , 1a, 1 b), wobei die Elektrode (1 , 1a, 1 b) ein metallisches Substrat (2) umfasst, wobei zumindest teilweise an einer Oberfläche des Substrates (2) eine Beschichtung (4) ausgebildet ist, dadurch gekennzeichnet, dass die Beschichtung (4) durch einen Auftrag von Pulvermaterial (3) mittels eines Aerosolbeschichtungsverfahrens gebildet ist. 1. Redox flow battery (14) comprising at least one electrode (1, 1a, 1b), wherein the electrode (1, 1a, 1b) comprises a metallic substrate (2), wherein at least partially on a surface of the substrate (2 ) a coating (4) is formed, characterized in that the coating (4) is formed by an application of powder material (3) by means of an aerosol coating process.
2. Redox-Flussbatterie (14) nach Anspruch 1 , dadurch gekennzeichnet, dass das Substrat (2) aus einer Stahllegierung, einer Kupfer-Zinn-Legierung, einer Aluminiumlegierung oder einer Silberlegierung ausgebildet ist. 2. Redox flow battery (14) according to claim 1, characterized in that the substrate (2) is made of a steel alloy, a copper-tin alloy, an aluminum alloy or a silver alloy.
3. Redox-Flussbatterie (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Beschichtung (4) zumindest teilweise oder vollständig aus Kupfer, Zinn, Titan, Kohlenstoff und/oder Nickel ausgebildet ist. 3. redox flow battery (14) according to any one of the preceding claims, characterized in that the coating (4) is formed at least partially or completely from copper, tin, titanium, carbon and / or nickel.
4. Redox-Flussbatterie (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Beschichtung (4) als CuSn6-Beschichtung, CuSn8-Beschichtung, Titan-Kohlenstoff-Beschichtung, Zinn-Beschichtung oder Nickel-Beschichtung ausgebildet ist. 4. redox flow battery (14) according to any one of the preceding claims, characterized in that the coating (4) is designed as a CuSn6 coating, CuSn8 coating, titanium-carbon coating, tin coating or nickel coating.
5. Redox-Flussbatterie (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Beschichtung (4) mit einer Schichtdicke von mindestens 5 nm bis höchstens 500 nm ausgebildet ist. 5. redox flow battery (14) according to any one of the preceding claims, characterized in that the coating (4) is formed with a layer thickness of at least 5 nm to at most 500 nm.
6. Redox-Flussbatterie (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass diese mindestens einen wässrigen Elektrolyten mit einer redox-aktiven organischen und/oder metallischen Spezies aufweist. 6. redox flow battery (14) according to any one of the preceding claims, characterized in that it has at least one aqueous electrolyte with a redox-active organic and / or metallic species.
7. Redox-Flussbatterie (14) nach Anspruch 6, dadurch gekennzeichnet, dass ein wässriger Elektrolyt mit einer redox-aktiven organischen und/oder metallischen Spezies auf einer Anolyt-Seite vorhanden ist. 7. redox flow battery (14) according to claim 6, characterized in that an aqueous electrolyte is present with a redox-active organic and/or metallic species on an anolyte side.
8. Redox-Flussbatterie (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zu deren Bildung mehr als 10, vorzugsweise mehr als 50 Redox-Flusszellen elektrisch miteinander verschaltet sind. 8. Redox flow battery (14) according to one of the preceding claims, characterized in that more than 10, preferably more than 50 redox flow cells are electrically interconnected to form it.
EP21798558.9A 2021-01-13 2021-10-11 Redox flow battery Pending EP4278402A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102021100504 2021-01-13
DE102021126138.4A DE102021126138A1 (en) 2021-01-13 2021-10-08 Redox flow battery
PCT/DE2021/100818 WO2022152341A1 (en) 2021-01-13 2021-10-11 Redox flow battery

Publications (1)

Publication Number Publication Date
EP4278402A1 true EP4278402A1 (en) 2023-11-22

Family

ID=78401986

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21798558.9A Pending EP4278402A1 (en) 2021-01-13 2021-10-11 Redox flow battery

Country Status (2)

Country Link
EP (1) EP4278402A1 (en)
WO (1) WO2022152341A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140009A (en) * 2004-11-11 2006-06-01 Mitsubishi Heavy Ind Ltd Metal separator for solid polyelectrolyte fuel cell and its manufacturing method
DE102009009357B4 (en) 2009-02-18 2011-03-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Redox flow battery for storing electrical energy in ionic liquids
DE102014109321A1 (en) * 2014-07-03 2016-01-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for producing a bipolar plate, bipolar plate for an electrochemical cell and electrochemical cell
US11450854B2 (en) * 2017-02-13 2022-09-20 Cmblu Energy Ag Redox flow battery electrolytes

Also Published As

Publication number Publication date
WO2022152341A1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
DE112006000345B4 (en) Fuel cell with conductive hydrophilic flow field plate and its use
DE112006000613B4 (en) Metal oxide based hydrophilic coatings for bipolar plates for PEM fuel cells and process for their preparation
DE102007026339B4 (en) Fuel cell with a flow field plate, method for producing such a flow field plate and use of the aforementioned fuel cell
DE102007037246B4 (en) METHOD FOR RECYCLING A COATED BIPOLAR PLATE OF STAINLESS STEEL
DE102004050921A1 (en) Electrochemical cell useful in fuel cell technology has an electrode and an electrically conductive contact element which has an electrically conductive coating
DE102016209742A1 (en) Roll-to-roll manufacturing of a high performance fuel cell electrode with core-shell catalyst using seeded electrodes
DE102016221395A1 (en) Bipolar plate and porous transport layer for an electrolyzer
DE102008055808A1 (en) Hydrophilic treatment of bipolar plates for stable fuel cell stack operation at low power
EP4370728A1 (en) Electrolysis cell for polymer electrolyte membrane electrolysis and coating
WO2022105960A1 (en) Component for an electrochemical cell, redox flow cell, fuel cell, and electrolyser
DE112007000607B4 (en) Fuel cell separator and method of manufacturing a fuel cell separator
EP4014271B1 (en) Electrode unit and redox-flow cell
EP3456866A1 (en) Interconnector, method for the preparation of an interconnector and its use
EP4278402A1 (en) Redox flow battery
DE102021126138A1 (en) Redox flow battery
EP4248506A1 (en) Component of a redox flow cell, redox flow cell, and redox flow battery
DE19720688C1 (en) Fuel cell electrode- solid electrolyte unit manufacture
DE112007000572T5 (en) Process for the preparation of a separator and separator
DE102017115053A1 (en) COATED ALUMINUM BIPOLAR PLATE FOR FUEL CELL APPLICATIONS
DE102021126534B4 (en) Electrode plate for an electrochemical cell, redox flow cell and redox flow battery
DE102020130693A1 (en) Component for an electrochemical cell, as well as a redox flow cell, fuel cell and electrolyser
DE102024105383A1 (en) Component for an electrochemical cell, as well as redox flow cell, fuel cell and electrolyzer
WO2024183856A1 (en) Component for an electrochemical cell, redox flow cell, fuel cell, and electrolyser
DE2424126A1 (en) BIPOLAR ELECTRODES
DE102022110114A1 (en) Redox flow cell

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)