EP4277762A1 - Improved method for manufacturing a part by additive manufacturing - Google Patents

Improved method for manufacturing a part by additive manufacturing

Info

Publication number
EP4277762A1
EP4277762A1 EP22702757.0A EP22702757A EP4277762A1 EP 4277762 A1 EP4277762 A1 EP 4277762A1 EP 22702757 A EP22702757 A EP 22702757A EP 4277762 A1 EP4277762 A1 EP 4277762A1
Authority
EP
European Patent Office
Prior art keywords
central axis
manufacturing
workpiece
plane
digital model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22702757.0A
Other languages
German (de)
French (fr)
Inventor
Mickaël VOIRON
Thomas GRICOURT
Nicolas OVAERE
Matthieu VIAL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran SA
Original Assignee
Safran SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran SA filed Critical Safran SA
Publication of EP4277762A1 publication Critical patent/EP4277762A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/40Structures for supporting workpieces or articles during manufacture and removed afterwards
    • B22F10/47Structures for supporting workpieces or articles during manufacture and removed afterwards characterised by structural features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • This presentation concerns a process for manufacturing parts by additive manufacturing, making it possible in particular to improve the surface condition of the parts obtained.
  • Such an additive manufacturing process is particularly suitable for manufacturing complex parts, intended in particular for the aeronautical field.
  • a classic example of additive manufacturing is manufacturing by melting or sintering powder particles using a high-energy beam.
  • high energy beams we can mention in particular the laser beam and the electron beam.
  • SLM Selective Laser Melting
  • LBM Laser Beam Melting
  • a spreading tool 120 for example a roller, or a scraper
  • a first layer 110a of powder of a material on a construction plate 121 (it can it may be a plate alone or surmounted by a solid support, part of another part or a support grid used to facilitate the construction of certain parts).
  • This powder is decanted from a feed tray 122 during a forward movement of the roller 120 then it is scraped, and possibly slightly compacted, during one (or more) return movement(s) of the roller 120.
  • the powder is made up of particles 1 1 1.
  • the excess powder is collected in a recycling bin 123 located adjacent to the build bin 124 in which the build plate 121 moves vertically.
  • a generator 130 of laser beam 131 is also used, and a control system 132 capable of directing this beam 131 onto any region of the build plate 121 so as to scan any region of a layer. of powder previously deposited.
  • the shaping of the laser beam 131 and the variation of its diameter on the focal plane are done respectively by means of a beam expander or focusing system 133 and a "Beam Expander" 134, the whole constituting the system optical.
  • this first layer 110a of powder is brought, by scanning with a laser beam 131, to a temperature above the melting temperature of this powder.
  • This type of additive manufacturing process can use any high-energy beam instead of the laser beam 131, and in particular an electron beam, as long as this beam is sufficiently energetic to melt the powder particles and part of the material on which the particles sit.
  • This scanning of the beam is carried out for example by a galvanometric head forming part of a control system 132.
  • this control system comprises at least one adjustable mirror 135 on which the laser beam 131 is reflected before reaching a layer of powder, each point of the surface of which is always located at the same height with respect to the focusing lens, contained in the focusing system 134, the angular position of this mirror being controlled by a galvanometric head so that the beam laser scans at least a region of the first layer of powder, and thus follows a pre-established part profile.
  • the galvanometric head is ordered according to the information contained in the base of data from the computer tool used for the computer-aided design and manufacture of the part to be manufactured.
  • the powder particles 1 1 1 of this region of the first layer 100a are melted and form a first element 112a in one piece, integral with the construction plate 121.
  • the build plate 121 is lowered by a height corresponding to the thickness of the first layer of powder 110a (20 to 100 ⁇ m and in general from 30 to 50 ⁇ m).
  • a second layer 110b of powder is then deposited on the first layer 110a and on this first integral or consolidated element 112a, then a region of the second layer 1 is heated by exposure to the laser beam 131 10b which is situated partially or completely above this first integral or consolidated element 112a in the case illustrated in FIG. 9, such that the powder particles of this region of the second layer 110b are fused with at least a part of the element 112a and form a second integral or consolidated element 112b, the set of these two elements 112a and 112b forming, in the case illustrated in FIG. 9, a single block.
  • connection section between these walls is thin in the radial direction, the surface occupied by this section can be large insofar as it can extend over the entire circumference of the room.
  • the connection section is found in a configuration
  • This presentation relates to an aeronautical part manufacturing process by additive manufacturing, the part to be manufactured extending around a central axis and comprising at least two walls inclined with respect to each other and connected between they via at least one connection section included in a connection plane perpendicular to the central axis, the method comprising:
  • connection section between the two walls inclined with respect to each other is understood as being, during additive manufacturing, the first layer of material making it possible to make the junction between these two walls.
  • connection section is the portion of this layer n+1 making it possible to fill this interstice existing at layer n.
  • This connection section therefore extends radially along a dimension corresponding to the width of the gap, and circumferentially around the central axis, when the connection section is curved.
  • tilting the central axis of the part by an angle P with respect to the direction of construction during the model orientation step also makes it possible to tilt the same angle 0 the connecting plane including the connecting section.
  • the angles 0 of inclination defined above are sufficient to allow the connection section to be formed not in one layer, but in several layers, in other words in several passages of the scraper.
  • the number of layers necessary to form the connection section is between 10 and 40.
  • connection section in several layers makes it possible to limit, at each of these layers, the cantilevered surface or without any other support than the volume of unsolidified powder located below, thus limiting the subsidence phenomenon.
  • the cantilevered surface encountered by the scraper will be less, and the vibrations generated on the latter will therefore be limited. Consequently, this inclination makes it possible to limit or even eliminate the presence of a jump on the final part, thus improving the surface condition of the latter.
  • the part to be manufactured is axisymmetric around the central axis.
  • connection section extends along an arc of a circle centered around the central axis.
  • connection section between these inclined walls has a circular shape around the central axis of the piece.
  • the inclination of the part makes it possible, during manufacture, to form this connection section in several layers, in other words, to close the circular gap existing between the two walls, in several passages of the scraper.
  • the step of orienting the digital model comprises the addition to the digital model of a wedge of inclination between a horizontal construction plane and a plane comprising a lower end of the part to be manufactured. , so as to tilt the central axis by the angle p with respect to the vertical construction direction.
  • construction plane is meant a plane orthogonal to the construction direction and substantially parallel to the construction plate. Tilting the plane comprising the lower end of the part to be manufactured with respect to the horizontal construction plane, by means of the tilting wedge, makes it possible to tilt the whole of the part by an angle 0, without modifying its geometry.
  • the tilt wedge is made of the same material as the part to be manufactured, during additive manufacturing.
  • the tilt wedge is an addition of material to the lower end of the part, making it possible, during manufacture, to orient the central axis of the part at an angle 0 relative to construction direction. It is therefore possible to improve the surface condition of the final part by simply adding material below the part, without modifying its overall geometry.
  • the tilt wedge is configured such that, in the plane comprising the lower end of the workpiece, a first radial end of the workpiece has an elevation £ with respect to at a second radial end opposite the first radial end.
  • the elevation £, allowing the part to be tilted at an angle P, is low, preferably from a few tenths of a millimeter to 20 mm for example. It is therefore possible to improve the surface condition of the final part by simply adding a small quantity of material below the part, thus limiting in particular the costs incurred.
  • the part to be manufactured comprises a substantially cylindrical outer casing, the outer casing comprising the lower end and the first and the second radial end, the first and the second radial end being diametrically opposite the one relative to the other.
  • substantially cylindrical it is understood that the inner envelope has the shape of a cylinder, or a shape similar to that of a cylinder, despite the presence of local irregularities, for example local thinnings of its section or the presence of fastening means. It is thus possible to tilt the part by the angle 0 by simply raising a radial end of the external envelope by the height s.
  • £ Dxarctan(P), where D is the diameter of the external envelope of the part to be manufactured.
  • the angle P can be predetermined according to the number of layers desired, necessary to connect the two inclined walls with respect to each other.
  • the method comprises, after the manufacturing step, a step of removing the tilting wedge, in which the tilting wedge having been used to tilt the part during manufacturing of it is removed in order to obtain the final piece.
  • the tilt wedge is thus a temporary alteration of the geometry of the part, serving only to tilt the central axis of the latter during manufacture. Once the inclination wedge has been removed, the part obtained thus has the desired geometry, the surface finish of the final part being also improved.
  • the tilt wedge is removed by machining.
  • a radial end of the lower end of the part obtained is machined over a height corresponding to the elevation s, to remove the portion corresponding to the tilt wedge, in other words to flatten and level the lower end of the room.
  • the central axis of the part is vertical, and is no longer inclined.
  • the part to be manufactured is a turbojet engine bearing support.
  • Figure 1 is a side view of a first example of a digital model of a part to be manufactured by the method of the invention
  • Figure 2 is a sectional view of the model of Figure 1, along a section plane A,
  • Figure 3 shows a detailed view of the sectional view of Figure 2, illustrating a connection section between two inclined walls of the part to be manufactured
  • FIG. 4A-4B Figures 4A and 4B represent a top view of the part of Figure 3, with two successive layers of additive manufacturing,
  • Figure 5 represents in a simplified way the model of figure 1, during the stage of orientation of the digital model of the part,
  • FIG. 6A-6D Figures 6A to 6D show, in a top view of the part, the formation of a connection section between two inclined walls, at successive layers of additive manufacturing,
  • Figure 7 is a diagram representing the different steps of the method of the invention
  • Figure 8 is a side view of a second example of a digital model of a part to be manufactured by the method of the invention
  • Figure 9 shows an overview of an additive manufacturing device by selective melting of powder beds.
  • the direction of construction Z is the direction in which the part is built, that is, in which the powder layers, or build layers, are stacked on top of each other.
  • the construction direction Z is therefore a direction orthogonal to the construction plane P, including in particular the construction plate, on which the part is intended to be manufactured.
  • the terms "axial”, “radial”, “lateral”, “interior”, “exterior”, “above” or “below” and their derivatives are defined with respect to the central axis X of part 1 to be manufactured.
  • the part to be manufactured is a bearing support, intended to be used in a turbomachine engine, in particular at the level of the engine exhaust casing.
  • the turbomachine output bearing support can in particular support the bearing of the rotatable shaft coupling the high pressure compressor and a high pressure turbine.
  • Figure 1 shows a side view of the part. More specifically, Figure 1 is a side view of the digital model 1 of the part to be manufactured. In the rest of the presentation, for convenience, the digital model of the part will simply be called "part 1".
  • Part 1 is axisymmetric around a central axis X.
  • the construction plane P corresponds to a horizontal plane, and represents the construction plate on which part 1 is intended to be manufactured.
  • a section plane A includes the central axis X, and is perpendicular to the construction plane P.
  • Figure 2 shows a sectional side view of the part 1 illustrated in Figure 1, in the section plane A, making it possible to illustrate various elements constituting the part 1 .
  • Exhibit 1 notably includes a external envelope 10 cylindrical, or substantially cylindrical.
  • a lower end 12 of the outer casing 10 is included in a plane B.
  • a flange 20, of frustoconical shape, is fixed to the outer casing 10, inside the latter.
  • the flange 20 is configured to carry, inside it, a plurality of support portions 30, 40, 50, each having a cylindrical internal face. The diameters of each of these cylindrical internal faces are different from each other.
  • These support portions 30, 40, 50 are intended to support rolling bearings making it possible to guide the shafts of the turbojet engine in rotation.
  • each of these elements is axisymmetric around the central axis X.
  • Each of the junction portions 32, 42 , 52 is connected to an internal face of the flange 20 at a connection zone, the connection zones being located by the circles in FIG. 2.
  • the wall of the flange 20 is inclined with respect to the central axis X, at an angle of between 40° and 60° for example.
  • junction portions 32, 42, 52 are also inclined with respect to the central axis X, at an angle opposite to that of the wall of the flange 20, and comprised between 40° and 60° for example.
  • each of the junction portions 32, 42, 52 is inclined with respect to the wall of the flange 20.
  • Figure 3 shows a detailed view of the part of Figure 2, at the connection between the junction portion 42, and the flange 20.
  • the view of FIG. 3 represents the part 1 during additive manufacturing, just after the deposition and melting of the layer of powder during which the connection section S is formed.
  • the connecting section S is the first layer of material making it possible to fill in the gap I existing between the two walls at the previous layer (FIG. 4A) and to make the junction between the connecting portion 42 and the flange 20.
  • the connecting section connection S is included in a connection plane R perpendicular to the central axis X. Furthermore, the connecting section S extends in an arc of a circle around the central axis X.
  • FIG. 4A represents a view from above of the section Sn between the junction portion 42 and the flange 20 at a stage n, that is to say at a layer n of the additive manufacturing, just before the material for connecting said junction portion 42 and said flange 20, is formed.
  • the actual connection section does not yet exist, and the junction portion 42 and said flange 20 are spaced radially by a thin gap I, between a few hundredths of a millimeter to 1 mm. approximately, for example 0.4 mm.
  • FIG. 4B represents the connection section Sn+1 between the junction portion 42 and the flange 20 at a step n+1, that is to say at an n+1 layer of additive manufacturing, in which the material for connecting said junction portion 42 and said flange 20 is formed.
  • a single layer is therefore necessary (layer n+1) to close the gap I existing between the junction portion 42 and the flange 20 at layer n.
  • the material making it possible to close this interstice I is not formed on any existing layer, other than the unfused powder arranged below.
  • the material of none of the layers formed in the previous steps makes it possible to support the connection section Sn+1 during its formation.
  • the connecting section Sn+1 is formed from the same material as the connecting portion 42 and said flange 20, the hatchings representing the connecting section Sn+1 in FIG. 4B are different from those of the walls 20, 42, indicating the presence of local subsidence on this section.
  • a first step makes it possible to provide a digital model of the part 1 to be manufactured (step S1), described previously.
  • a step of orientation of this digital model is then carried out (step S2).
  • a tilt wedge 80 is added to the digital model, so as to be placed, during the manufacture of the part 1, between the horizontal construction plane P, on which the part 1 is manufactured, and the plane B comprising the lower end 12 of the part 1, more precisely of the outer casing 10.
  • the lower end 12 of the outer casing 10 of part 1 does not rest directly on the construction plane P, given the presence of the tilt wedge 80 inserted between the plane B and the construction plane P.
  • the tilt wedge 80 comprises a first end 81 intended to rest horizontally on the construction plane P, and a second end 82 inclined with respect to the first end 81.
  • the lower end 12 of the outer casing 10 rests on the second end 82 of the tilt wedge 80, such that the part 1 itself has an inclination with respect to the construction plane P.
  • external casing 10 having a cylindrical shape with an X axis
  • the inclination wedge 80 itself has a cylindrical shape with an Z axis, the top of which (the second end 82) is inclined with respect to the base (the first end 81).
  • the tilt wedge 80 has the shape of an inclined ramp. Given this configuration, the presence of the tilt wedge 80 makes it possible to tilt the plane B comprising the lower end 12 of the outer envelope 10 of the part 1, by an angle P with respect to the construction plane P. Therefore, the central axis X is also inclined by an angle P with respect to the construction direction Z.
  • the angle of inclination ⁇ and the height of elevation ⁇ may vary depending on the diameter D of the part 1 to be manufactured. For example, for a diameter D of 400 mm, £ can be between 0.5 and 5 mm, and P can be between 0.1° and 1°.
  • the inclination wedge 80 is first manufactured, layer by layer, on the construction plate extending in the construction plane P, and the part 1 is manufactured in the continuity of the inclination wedge 80.
  • the tilt wedge 80 and the part 1 form one and the same part, and are formed from the same material.
  • connection plane R comprising the connection section S between the junction portion 42 and the flange 20
  • P the connection plane
  • Figures 6A to 6D illustrate the formation of the connection section S between the junction portion 42 and the flange 20 during additive manufacturing. Given the inclination of the connection plane R, several layers are necessary to form this connection section S, in other words, to fill the gap I existing between the junction portion 42 and the flange 20 at this stage. of the manufacture of the part 1 .
  • Figure 6A illustrates a connection section Sn to an n-layer of additive manufacturing.
  • Figure 6B illustrates a connecting section Sn+1 to the next n+1 layer of additive manufacturing. Given the inclination of the connection plane R, the portion of the connection section Sn+1 formed at this layer n+1 can be supported, at least in part, on the material already formed during the previous layer n.
  • Fig. 6C illustrates a section connecting Sn+2 to layer n+2
  • Fig. 6D illustrates a section of Sn+3 connection to the next n+3 layer of additive manufacturing, each surface formed in one layer being able to rest on the surface formed in the previous layer.
  • the number of layers necessary to completely form the connection section S is between 10 and 40.
  • the angle of inclination p and the elevation height £ are determined in such a way that the number of layers necessary to completely form the connecting section S is included in this interval.
  • connection section S between the junction portion 42 and the flange 20 relates to the connection section S between the junction portion 42 and the flange 20. Nevertheless, this description is of course valid for the other surfaces of connection concerned by the problem described, in particular the connection sections S between the junction portion 32 and 52, and the flange 20.
  • step S4 the tilting wedge 80 having made it possible to tilt part 1 during manufacture is removed.
  • This removal can be carried out by machining, for example, by removing the quantity of material corresponding to the dimensions of the tilt wedge 80, thus making it possible to obtain the final part 1 having the desired dimensions, and corresponding to the digital model existing before the orientation step S2, in which the tilt wedge 80 had been added.
  • Figure 8 shows a digital model of a second example of part 1 'to be manufactured, on which the method according to the invention can be applied.
  • the part 1′ to be manufactured is a bearing support of the SP5 NMA type, intended to be used in a turbojet engine, in particular at the level of the exhaust casing of an engine of the UHBR DD (“Ultra High Bypass Ratio Direct Drive”).
  • UHBR DD Ultra High Bypass Ratio Direct Drive

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Abstract

The invention relates to a method for manufacturing an aeronautical part by additive manufacturing, the part to be manufactured extending around a central axis (X) and comprising at least two walls (20, 42) angled with respect to one another and connected to one another by means of at least one connection section (S) comprised in a connection plane (R) perpendicular to the central axis (X), the method comprising: - providing a digital model (1) of the part to be manufactured, - orienting the digital model (1) with respect to a vertical construction direction (Z) of the part so that the central axis (X) of the part has an angle β of between 0.1° and 1°, preferably between 0.3° and 0.8°, with respect to the construction direction (Z), - manufacturing the part by additive manufacturing from the digital model (1) obtained in the orientation step.

Description

Description Description
Titre de l'invention : PROCEDE AMELIORE DE FABRICATION DE PIECE PAR FABRICATION ADDITIVE Title of the invention: IMPROVED PROCESS FOR MANUFACTURING PARTS BY ADDITIVE MANUFACTURING
Domaine Technique Technical area
[0001 ] Le présent exposé concerne un procédé de fabrication de pièce par fabrication additive permettant notamment d’améliorer l’état de surface des pièces obtenues. Un tel procédé de fabrication additive est particulièrement adapté pour fabriquer des pièces complexes, à destination notamment du domaine aéronautique. [0001] This presentation concerns a process for manufacturing parts by additive manufacturing, making it possible in particular to improve the surface condition of the parts obtained. Such an additive manufacturing process is particularly suitable for manufacturing complex parts, intended in particular for the aeronautical field.
Technique antérieure Prior technique
[0002] Il est désormais connu, dans le domaine aéronautique notamment, d’utiliser des méthodes de fabrication additive pour la réalisation de certaines pièces dont la géométrie est fine ou complexe. [0002] It is now known, in the aeronautical field in particular, to use additive manufacturing methods for the production of certain parts whose geometry is fine or complex.
[0003] Un exemple classique de fabrication additive est la fabrication par fusion ou frittage de particules de poudre au moyen d’un faisceau de haute énergie. Parmi ces faisceaux de haute énergie, on peut mentionner notamment le faisceau laser et le faisceau d’électrons. [0003] A classic example of additive manufacturing is manufacturing by melting or sintering powder particles using a high-energy beam. Among these high energy beams, we can mention in particular the laser beam and the electron beam.
[0004] Par "fusion sélective par laser", en anglais "Selective Laser Melting" (SLM), également connu sous le nom de procédé « Laser Beam Melting » (LBM), on entend un procédé dont les caractéristiques principales sont rappelées ci- après, en référence à la figure 9 illustrant un dispositif classique de fabrication de pièce par fusion sélective ou frittage sélectif de lits de poudre au moyen d’un faisceau laser. [0004] By "selective laser melting", in English "Selective Laser Melting" (SLM), also known as the "Laser Beam Melting" (LBM) process, is meant a process whose main characteristics are recalled below. after, with reference to FIG. 9 illustrating a conventional device for manufacturing a part by selective melting or selective sintering of powder beds by means of a laser beam.
[0005] On dépose, par exemple à l’aide d’un outil d’étalement 120 (par exemple un rouleau, ou un racleur), une première couche 110a de poudre d'un matériau sur un plateau de construction 121 (il peut s’agir d’un plateau seul ou surmonté d’un support massif, d’une partie d’une autre pièce ou d’une grille support utilisée pour faciliter la construction de certaines pièces). [0006] Cette poudre est transvasée depuis un bac d’alimentation 122 lors d’un mouvement aller du rouleau 120 puis elle est raclée, et éventuellement légèrement compactée, lors d’un (ou de plusieurs) mouvement(s) de retour du rouleau 120. La poudre est composée de particules 1 1 1. L’excédent de poudre est récupéré dans un bac de recyclage 123 situé de façon adjacente au bac de construction 124 dans lequel se déplace verticalement le plateau de construction 121. Is deposited, for example using a spreading tool 120 (for example a roller, or a scraper), a first layer 110a of powder of a material on a construction plate 121 (it can it may be a plate alone or surmounted by a solid support, part of another part or a support grid used to facilitate the construction of certain parts). This powder is decanted from a feed tray 122 during a forward movement of the roller 120 then it is scraped, and possibly slightly compacted, during one (or more) return movement(s) of the roller 120. The powder is made up of particles 1 1 1. The excess powder is collected in a recycling bin 123 located adjacent to the build bin 124 in which the build plate 121 moves vertically.
[0007] On utilise également un générateur 130 de faisceau laser 131 , et un système de pilotage 132 apte à diriger ce faisceau 131 sur n'importe quelle région du plateau de construction 121 de façon à balayer n'importe quelle région d'une couche de poudre préalablement déposée. La mise en forme du faisceau laser 131 et la variation de son diamètre sur le plan focal se font respectivement au moyen d’un dilatateur de faisceau ou système de focalisation 133 et d’un « Beam Expander » 134, l’ensemble constituant le système optique. [0007] A generator 130 of laser beam 131 is also used, and a control system 132 capable of directing this beam 131 onto any region of the build plate 121 so as to scan any region of a layer. of powder previously deposited. The shaping of the laser beam 131 and the variation of its diameter on the focal plane are done respectively by means of a beam expander or focusing system 133 and a "Beam Expander" 134, the whole constituting the system optical.
[0008] Ensuite, on porte une région de cette première couche 1 10a de poudre, par balayage avec un faisceau laser 131 , à une température supérieure à la température de fusion de cette poudre. Then, a region of this first layer 110a of powder is brought, by scanning with a laser beam 131, to a temperature above the melting temperature of this powder.
[0009] Ce type de procédé de fabrication additive peut utiliser n'importe quel faisceau de haute énergie à la place du faisceau laser 131 , et notamment un faisceau d’électrons, tant que ce faisceau est suffisamment énergétique pour fondre les particules de poudre et une partie du matériau sur lequel les particules reposent. [0009] This type of additive manufacturing process can use any high-energy beam instead of the laser beam 131, and in particular an electron beam, as long as this beam is sufficiently energetic to melt the powder particles and part of the material on which the particles sit.
[0010] Ce balayage du faisceau est effectué par exemple par une tête galvanométrique faisant partie d’un système de pilotage 132. Par exemple ce système de pilotage comprend au moins un miroir 135 orientable sur lequel le faisceau laser 131 se réfléchit avant d'atteindre une couche de poudre dont chaque point de la surface se trouve située toujours à la même hauteur par rapport à la lentille de focalisation, contenue dans le système de focalisation 134, la position angulaire de ce miroir étant pilotée par une tête galvanométrique pour que le faisceau laser balaye au moins une région de la première couche de poudre, et suive ainsi un profil de pièce préétabli. Pour ce faire, la tête galvanométrique est commandée selon les informations contenues dans la base de données de l’outil informatique utilisé pour la conception et la fabrication assistées par ordinateur de la pièce à fabriquer. This scanning of the beam is carried out for example by a galvanometric head forming part of a control system 132. For example, this control system comprises at least one adjustable mirror 135 on which the laser beam 131 is reflected before reaching a layer of powder, each point of the surface of which is always located at the same height with respect to the focusing lens, contained in the focusing system 134, the angular position of this mirror being controlled by a galvanometric head so that the beam laser scans at least a region of the first layer of powder, and thus follows a pre-established part profile. To do this, the galvanometric head is ordered according to the information contained in the base of data from the computer tool used for the computer-aided design and manufacture of the part to be manufactured.
[0011 ] Ainsi, les particules de poudre 1 1 1 de cette région de la première couche 100a sont fondues et forment un premier élément 112a d'un seul tenant, solidaire avec le plateau de construction 121. A ce stade, on peut également balayer avec le faisceau laser plusieurs régions indépendantes de cette première couche pour former, après fusion et solidification de la matière, plusieurs premiers éléments 120a disjoints les uns des autres. [0011] Thus, the powder particles 1 1 1 of this region of the first layer 100a are melted and form a first element 112a in one piece, integral with the construction plate 121. At this stage, it is also possible to sweep several independent regions of this first layer with the laser beam to form, after melting and solidification of the material, several first elements 120a disjointed from each other.
[0012] On abaisse le plateau de construction 121 d’une hauteur correspondant à l’épaisseur de la première couche de poudre 1 10a (20 à 100 pm et en général de 30 à 50 |im). [0012] The build plate 121 is lowered by a height corresponding to the thickness of the first layer of powder 110a (20 to 100 μm and in general from 30 to 50 μm).
[0013] On dépose ensuite une deuxième couche 1 10b de poudre sur la première couche 1 10a et sur ce premier élément d’un seul tenant ou consolidé 1 12a, puis on chauffe par exposition au faisceau laser 131 une région de la deuxième couche 1 10b qui est située partiellement ou complètement au-dessus de ce premier élément d’un seul tenant ou consolidé 1 12a dans le cas illustré à la figure 9, de telle sorte que les particules de poudre de cette région de la deuxième couche 1 10b sont fondues avec au moins une partie de l’élément 1 12a et forment un deuxième élément d’un seul tenant ou consolidé 1 12b, l’ensemble de ces deux éléments 1 12a et 1 12b formant, dans le cas illustré à la figure 9, un bloc d'un seul tenant. A second layer 110b of powder is then deposited on the first layer 110a and on this first integral or consolidated element 112a, then a region of the second layer 1 is heated by exposure to the laser beam 131 10b which is situated partially or completely above this first integral or consolidated element 112a in the case illustrated in FIG. 9, such that the powder particles of this region of the second layer 110b are fused with at least a part of the element 112a and form a second integral or consolidated element 112b, the set of these two elements 112a and 112b forming, in the case illustrated in FIG. 9, a single block.
[0014] Une telle technique de fabrication additive assure donc un excellent contrôle de la géométrie de la pièce à fabriquer et permet de réaliser des pièces possédant une grande complexité. [0014] Such an additive manufacturing technique therefore ensures excellent control of the geometry of the part to be manufactured and makes it possible to produce parts of great complexity.
[0015] Toutefois, lors de la réalisation de pièces à géométrie complexe, notamment des pièces cylindriques telles que des supports de paliers, certaines parois de la pièce sont inclinées les unes par rapport aux autres, et sont raccordées entre elles au niveau d’une zone de raccordement courbe, par exemple en arc de cercle. Bien que la section de raccordement entre ces parois soit fine dans la direction radiale, la surface occupée par cette section peut être importante dans la mesure où elle peut s’étendre sur toute la circonférence de la pièce. Or, lors de la fusion de la couche permettant de raccorder ces parois entre elles, la section de raccordement se retrouve dans une configuration [0015] However, during the production of parts with complex geometry, in particular cylindrical parts such as bearing supports, certain walls of the part are inclined with respect to each other, and are connected to each other at the level of a curved connection zone, for example in the arc of a circle. Although the connection section between these walls is thin in the radial direction, the surface occupied by this section can be large insofar as it can extend over the entire circumference of the room. However, during the fusion of the layer making it possible to connect these walls together, the connection section is found in a configuration
« downskin >>, c’est-à-dire momentanément en fort porte-à-faux, ou même sans aucun autre maintien que le volume de poudre non solidifiée situé au-dessous, et présentent donc un risque d’affaissement ou d’effondrement. Cette configuration « downskin » implique en outre des paramètres différents que les paramètres utilisés pour les couches précédentes, dites couches de cœur standards. "downskin", that is to say temporarily overhanging, or even without any support other than the volume of unsolidified powder located below, and therefore present a risk of subsidence or collapse. This "downskin" configuration also involves different parameters than the parameters used for the previous layers, called standard core layers.
[0016] Par conséquent, au moment de la mise en couche, lors du passage du racleur (ou rouleau), la présence de cet affaissement impliquant une irrégularité et s’étendant sur toute la section de raccordement, crée un effet « mur » entraînant une légère vibration du racleur. Cette vibration peut donner naissance à un ressaut sur la surface adjacente de la pièce, notamment la peau extérieure, et donc à un défaut de surface. Ce défaut, pouvant être caractérisé par microscopie optique 3D, peut se traduire par un ressaut pouvant atteindre une hauteur de l’ordre de 250pm, dans le cas d’une épaisseur de couche de 40pm. [0016] Consequently, at the time of layering, during the passage of the scraper (or roller), the presence of this subsidence involving an irregularity and extending over the entire connection section, creates a "wall" effect resulting in a slight vibration of the scraper. This vibration can give rise to a jump on the adjacent surface of the part, in particular the outer skin, and therefore to a surface defect. This defect, which can be characterized by 3D optical microscopy, can result in a jump that can reach a height of around 250 pm, in the case of a layer thickness of 40 pm.
[0017] Ces défauts peuvent être problématiques dans la mesure où ils sont difficiles à retirer, notamment sur les surfaces complexes des pièces évoquées ci-dessus. De plus, ils peuvent être à l’origine de concentrations de contraintes locales qui peuvent être néfastes d’un point de vue du dimensionnement de la pièce. [0017] These defects can be problematic insofar as they are difficult to remove, in particular on the complex surfaces of the parts mentioned above. In addition, they can be the source of local stress concentrations which can be detrimental from the dimensioning point of view of the part.
[0018] Il existe donc un réel besoin pour un procédé de fabrication de pièce par fabrication additive, permettant de s’affranchir au moins en partie des inconvénients précités, et ainsi d’améliorer l’état de surface des pièces obtenues.[0018] There is therefore a real need for a process for manufacturing parts by additive manufacturing, making it possible to overcome at least some of the aforementioned drawbacks, and thus to improve the surface condition of the parts obtained.
Exposé de l’invention Disclosure of Invention
[0019] Le présent exposé concerne un procédé de fabrication de pièce aéronautique par fabrication additive, la pièce à fabriquer s’étendant autour d’un axe central et comprenant au moins deux parois inclinées l’une par rapport à l’autre et raccordées entre elles par l’intermédiaire d’au moins une section de raccordement comprise dans un plan de raccordement perpendiculaire à l’axe central, le procédé comprenant: This presentation relates to an aeronautical part manufacturing process by additive manufacturing, the part to be manufactured extending around a central axis and comprising at least two walls inclined with respect to each other and connected between they via at least one connection section included in a connection plane perpendicular to the central axis, the method comprising:
- la fourniture d’un modèle numérique de la pièce à fabriquer, - l’orientation du modèle numérique par rapport à une direction de construction verticale de la pièce de manière à ce que l’axe central de la pièce présente un angle P compris entre 0,1 ° et 1 °, de préférence compris ertre 0,3° et 0,8° par rapport à la direction de construction, - the supply of a digital model of the part to be manufactured, - the orientation of the digital model with respect to a vertical construction direction of the part so that the central axis of the part has an angle P between 0.1° and 1°, preferably between 0, 3° and 0.8° in relation to the direction of construction,
- fabrication de la pièce par fabrication additive à partir du modèle numérique obtenu à l’étape d’orientation. - manufacturing of the part by additive manufacturing from the digital model obtained at the orientation stage.
[0020] Dans le présent exposé, par direction de construction, on comprend la direction dans laquelle la pièce est construite, c’est-à-dire dans laquelle les couches de poudre, ou couches de fabrication, sont empilées les unes sur les autres. Par exemple, lorsque la pièce est fabriquée sur un plateau de construction, la direction de construction correspond à une direction orthogonale audit plateau de construction, et est donc verticale. [0020] In this presentation, by direction of construction, we understand the direction in which the part is built, that is to say in which the layers of powder, or manufacturing layers, are stacked on top of each other. . For example, when the part is manufactured on a build plate, the build direction corresponds to a direction orthogonal to said build plate, and is therefore vertical.
[0021] De plus, dans le présent exposé, les termes « axial », « radial », « intérieur », « extérieur », « circonférentiel » et leurs dérivés sont définis par rapport à l’axe central de la pièce. Les termes « au-dessus » et « au-dessous » s’entendent suivant la direction de construction. [0021] In addition, in this presentation, the terms "axial", "radial", "inner", "outer", "circumferential" and their derivatives are defined with respect to the central axis of the part. The terms “above” and “below” are understood according to the direction of construction.
[0022] L’ensemble des éléments constituant la pièce, notamment les deux parois inclinées l’une par rapport à l’autre, sont fabriquées en un bloc et en un même matériau par fabrication additive. La « section de raccordement » entre les deux parois inclinées l’une par rapport à l’autre est comprise comme étant, au cours de la fabrication additive, la première couche de matière permettant de faire la jonction entre ces deux parois. [0022] All the elements constituting the part, in particular the two walls inclined with respect to each other, are manufactured in one block and from the same material by additive manufacturing. The "connection section" between the two walls inclined with respect to each other is understood as being, during additive manufacturing, the first layer of material making it possible to make the junction between these two walls.
[0023] En d’autres termes, à une couche n de la fabrication additive, les deux parois sont espacées l’une de l’autre par un mince interstice. La couche n+1 suivante permet de déposer et fusionner la matière permettant de combler cet interstice et ainsi de raccorder les deux parois entre elles. Ainsi, la section de raccordement est la portion de cette couche n+1 permettant de combler cet interstice existant à la couche n. Cette section de raccordement s’étend donc radialement selon une dimension correspondant à la largeur de l’interstice, et circonférentiellement autour de l’axe central, lorsque la section de raccordement est courbe. [0024] Dès lors que cette section de raccordement est formée à la couche n+1 , les couches ultérieures sont formées d’un seul tenant, en prenant appui notamment sur cette section de raccordement, pour former la zone de jonction entre les deux parois. Néanmoins, la première couche permettant de joindre ces parois, c’est-à-dire la section de raccordement, ne repose sur aucune couche solide, autre que le volume de poudre non solidifiée situé au-dessous. [0023] In other words, at layer n of the additive manufacturing, the two walls are spaced apart by a thin gap. The following n+1 layer makes it possible to deposit and merge the material making it possible to fill this interstice and thus to connect the two walls together. Thus, the connecting section is the portion of this layer n+1 making it possible to fill this interstice existing at layer n. This connection section therefore extends radially along a dimension corresponding to the width of the gap, and circumferentially around the central axis, when the connection section is curved. [0024] As soon as this connection section is formed at the n+1 layer, the subsequent layers are formed in one piece, bearing in particular on this connection section, to form the junction zone between the two walls. . Nevertheless, the first layer making it possible to join these walls, that is to say the connection section, does not rest on any solid layer, other than the volume of non-solidified powder situated below.
[0025] Selon le présent exposé, le fait d’incliner d’un angle P l’axe central de la pièce par rapport à la direction de construction lors de l’étape d’orientation du modèle permet d’incliner également de ce même angle 0 le plan de raccordement comprenant la section de raccordement. Les angles 0 d’inclinaisons définis ci-dessus sont suffisants pour permettre de former la section de raccordement non pas en une couche, mais en plusieurs couches, autrement dit en plusieurs passages du racleur. De préférence, le nombre de couches nécessaires pour former la section de raccordement est compris entre 10 et 40. [0025] According to the present presentation, tilting the central axis of the part by an angle P with respect to the direction of construction during the model orientation step also makes it possible to tilt the same angle 0 the connecting plane including the connecting section. The angles 0 of inclination defined above are sufficient to allow the connection section to be formed not in one layer, but in several layers, in other words in several passages of the scraper. Preferably, the number of layers necessary to form the connection section is between 10 and 40.
[0026] Le fait de former la section de raccordement en plusieurs en couches permet de limiter, à chacune de ces couches, la surface en porte-à-faux ou sans aucun autre maintien que le volume de poudre non solidifiée situé au-dessous, limitant ainsi le phénomène d’affaissement. Ainsi, à chaque passage du racleur nécessaire à la formation de la section de raccordement, la surface en porte-à- faux rencontrée par le racleur sera moindre, et les vibrations engendrées sur ce dernier seront donc limitées. Par conséquent, cette inclinaison permet de limiter, voire supprimer la présence de ressaut sur la pièce finale, améliorant ainsi l’état de surface de cette dernière. The fact of forming the connection section in several layers makes it possible to limit, at each of these layers, the cantilevered surface or without any other support than the volume of unsolidified powder located below, thus limiting the subsidence phenomenon. Thus, with each passage of the scraper necessary for the formation of the connecting section, the cantilevered surface encountered by the scraper will be less, and the vibrations generated on the latter will therefore be limited. Consequently, this inclination makes it possible to limit or even eliminate the presence of a jump on the final part, thus improving the surface condition of the latter.
[0027] Dans certains modes de réalisation, la pièce à fabriquer est axisymétrique autour de l’axe central. [0027] In some embodiments, the part to be manufactured is axisymmetric around the central axis.
[0028] Dans certains modes de réalisation, la section de raccordement s’étend selon un arc de cercle centré autour de l’axe central. [0028] In some embodiments, the connection section extends along an arc of a circle centered around the central axis.
[0029] Compte tenu de cette forme, la plupart des éléments constituant la pièce, notamment les parois inclinées entre elles, sont également axisymétriques. Par conséquent, la section de raccordement entre ces parois inclinées présente une forme circulaire autour de l’axe central de la pièce. L’inclinaison de la pièce permet, au cours de la fabrication, de former cette section de raccordement en plusieurs couches, en d’autres termes, de refermer l’interstice circulaire existant entre les deux parois, en plusieurs passages du racleur. [0029] Given this shape, most of the elements constituting the part, in particular the walls inclined between them, are also axisymmetric. Therefore, the connection section between these inclined walls has a circular shape around the central axis of the piece. The inclination of the part makes it possible, during manufacture, to form this connection section in several layers, in other words, to close the circular gap existing between the two walls, in several passages of the scraper.
[0030] Dans certains modes de réalisation, l’étape d’orientation du modèle numérique comprend l’ajout au modèle numérique d’une cale d’inclinaison entre un plan de construction horizontal et un plan comprenant une extrémité inférieur de la pièce à fabriquer, de manière à incliner l’axe central de l’angle p par rapport à la direction de construction verticale. [0030] In certain embodiments, the step of orienting the digital model comprises the addition to the digital model of a wedge of inclination between a horizontal construction plane and a plane comprising a lower end of the part to be manufactured. , so as to tilt the central axis by the angle p with respect to the vertical construction direction.
[0031] On entend par plan de construction un plan orthogonal à la direction de construction et sensiblement parallèle au plateau de construction. Le fait d’incliner le plan comprenant l’extrémité inférieur de la pièce à fabriquer par rapport au plan de construction horizontal, par l’intermédiaire de la cale d’inclinaison, permet d’incliner l’ensemble de la pièce d’un angle 0, sans modifier la géométrie de celle-ci. By construction plane is meant a plane orthogonal to the construction direction and substantially parallel to the construction plate. Tilting the plane comprising the lower end of the part to be manufactured with respect to the horizontal construction plane, by means of the tilting wedge, makes it possible to tilt the whole of the part by an angle 0, without modifying its geometry.
[0032] Dans certains modes de réalisation, la cale d’inclinaison est fabriquée en un même matériau que la pièce à fabriquer, au cours de la fabrication additive. [0032] In some embodiments, the tilt wedge is made of the same material as the part to be manufactured, during additive manufacturing.
[0033] En d’autres termes, la cale d’inclinaison est un ajout de matière à l’extrémité inférieure de la pièce, permettant, au cours de la fabrication, d’orienter l’axe central de la pièce d’un angle 0 par rapport à la direction de construction. Il est donc possible d’améliorer l’état de surface de la pièce finale par un simple ajout de matière au-dessous de la pièce, sans modifier la géométrie globale de celle-ci. [0033] In other words, the tilt wedge is an addition of material to the lower end of the part, making it possible, during manufacture, to orient the central axis of the part at an angle 0 relative to construction direction. It is therefore possible to improve the surface condition of the final part by simply adding material below the part, without modifying its overall geometry.
[0034] Dans certains modes de réalisation, la cale d’inclinaison est configurée de telle sorte que, dans le plan comprenant l’extrémité inférieur de la pièce à fabriquer, une première extrémité radiale de la pièce à fabriquer présente une élévation £ par rapport à une deuxième extrémité radiale opposée à la première extrémité radiale. [0034] In some embodiments, the tilt wedge is configured such that, in the plane comprising the lower end of the workpiece, a first radial end of the workpiece has an elevation £ with respect to at a second radial end opposite the first radial end.
[0035] L’élévation £, permettant d’incliner la pièce d’un angle P, est faible, de préférence de quelques dixièmes de millimètres à 20 mm par exemple. Il est donc possible d’améliorer l’état de surface de la pièce finale par un simple ajout d’une faible quantité de matière au-dessous de la pièce, limitant ainsi notamment les coûts engendrés. The elevation £, allowing the part to be tilted at an angle P, is low, preferably from a few tenths of a millimeter to 20 mm for example. It is therefore possible to improve the surface condition of the final part by simply adding a small quantity of material below the part, thus limiting in particular the costs incurred.
[0036] Dans certains modes de réalisation, la pièce à fabriquer comprend une enveloppe externe sensiblement cylindrique, l’enveloppe externe comprenant l’extrémité inférieure et la première et la deuxième extrémité radiale, la première et la deuxième extrémité radiale étant diamétralement opposée l’une par rapport à l’autre. In some embodiments, the part to be manufactured comprises a substantially cylindrical outer casing, the outer casing comprising the lower end and the first and the second radial end, the first and the second radial end being diametrically opposite the one relative to the other.
[0037] Par « sensiblement cylindrique >>, on comprend que l’enveloppe interne présente la forme d’un cylindre, ou une forme similaire à celle d’un cylindre, malgré la présence d’irrégularités locales, par exemple des amincissements locaux de sa section ou la présence de moyens de fixation. Il est ainsi possible d’incliner la pièce de l’angle 0 en élevant simplement une extrémité radiale de l’enveloppe externe de la hauteur s. [0037] By "substantially cylindrical", it is understood that the inner envelope has the shape of a cylinder, or a shape similar to that of a cylinder, despite the presence of local irregularities, for example local thinnings of its section or the presence of fastening means. It is thus possible to tilt the part by the angle 0 by simply raising a radial end of the external envelope by the height s.
[0038] Dans certains modes de réalisation, £ = Dxarctan(P), où D est le diamètre de l’enveloppe externe de la pièce à fabriquer. [0038] In certain embodiments, £=Dxarctan(P), where D is the diameter of the external envelope of the part to be manufactured.
[0039] Il est ainsi possible, pour une valeur D donnée de diamètre de l’enveloppe externe, et donc de diamètre de la pièce, de déterminer la valeur d’élévation £ nécessaire, pour obtenir une inclinaison 0 prédéterminée. On notera que l’angle P peut être prédéterminé en fonction du nombre de couches souhaitées, nécessaires pour raccorder les deux parois inclinées l’une par rapport à l’autre. It is thus possible, for a given value D of diameter of the external envelope, and therefore of diameter of the part, to determine the elevation value £ necessary, to obtain a predetermined inclination 0. It will be noted that the angle P can be predetermined according to the number of layers desired, necessary to connect the two inclined walls with respect to each other.
[0040] Dans certains modes de réalisation, le procédé comprend, après l’étape de fabrication, une étape d’enlèvement de la cale d’inclinaison, dans laquelle la cale d’inclinaison ayant servi à incliner la pièce au cours de la fabrication de celle-ci est enlevée afin d’obtenir la pièce finale. [0040] In certain embodiments, the method comprises, after the manufacturing step, a step of removing the tilting wedge, in which the tilting wedge having been used to tilt the part during manufacturing of it is removed in order to obtain the final piece.
[0041] La cale d’inclinaison est ainsi une altération temporaire de la géométrie de la pièce, servant uniquement à incliner l’axe central de celle-ci au cours de la fabrication. La pièce obtenue présente ainsi, une fois la cale d’inclinaison enlevée, la géométrie souhaitée, l’état de surface de la pièce finale étant par ailleurs amélioré. [0041] The tilt wedge is thus a temporary alteration of the geometry of the part, serving only to tilt the central axis of the latter during manufacture. Once the inclination wedge has been removed, the part obtained thus has the desired geometry, the surface finish of the final part being also improved.
[0042] Dans certains modes de réalisation, l’enlèvement de la cale d’inclinaison est réalisé par usinage. [0043] En d’autres termes, une extrémité radiale de l’extrémité inférieure de la pièce obtenue est usinée sur une hauteur correspondant à l’élévation s, pour enlever la portion correspondant à la cale d’inclinaison, autrement dit pour aplanir et niveler l’extrémité inférieure de la pièce. De cette façon, après usinage, lorsque l’extrémité inférieure de la pièce est posée sur un support horizontal, l’axe central de la pièce se trouve à la verticale, et n’est plus incliné. [0042] In some embodiments, the tilt wedge is removed by machining. [0043] In other words, a radial end of the lower end of the part obtained is machined over a height corresponding to the elevation s, to remove the portion corresponding to the tilt wedge, in other words to flatten and level the lower end of the room. In this way, after machining, when the lower end of the part is placed on a horizontal support, the central axis of the part is vertical, and is no longer inclined.
[0044] Dans certains modes de réalisation, la pièce à fabriquer est un support de palier de turboréacteur. [0044] In certain embodiments, the part to be manufactured is a turbojet engine bearing support.
Brève description des dessins Brief description of the drawings
[0045] L'invention et ses avantages seront mieux compris à la lecture de la description détaillée faite ci-après de différents modes de réalisation de l'invention donnés à titre d'exemples non limitatifs. Cette description fait référence aux pages de figures annexées, sur lesquelles : The invention and its advantages will be better understood on reading the detailed description given below of various embodiments of the invention given by way of non-limiting examples. This description refers to the pages of appended figures, on which:
[0046] [Fig. 1] La figure 1 est une vue latérale d’un premier exemple d’un modèle numérique de pièce à fabriquer par le procédé de l’invention, [0046] [Fig. 1] Figure 1 is a side view of a first example of a digital model of a part to be manufactured by the method of the invention,
[0047] [Fig. 2] La figure 2 est une vue en coupe du modèle de la figure 1 , selon un plan de coupe A, [0047] [Fig. 2] Figure 2 is a sectional view of the model of Figure 1, along a section plane A,
[0048] [Fig. 3] La figure 3 représente une vue détaillée de la vue en coupe de la figure 2, illustrant une section de raccordement entre deux parois inclinées de la pièce à fabriquer, [0048] [Fig. 3] Figure 3 shows a detailed view of the sectional view of Figure 2, illustrating a connection section between two inclined walls of the part to be manufactured,
[0049] [Fig. 4A-4B] Les figures 4A et 4B représentent une vue de dessus de la pièce de la figure 3, à deux couches successives de la fabrication additive, [0049] [Fig. 4A-4B] Figures 4A and 4B represent a top view of the part of Figure 3, with two successive layers of additive manufacturing,
[0050] [Fig. 5] La figure 5 représente de manière simplifiée le modèle de la figure 1 , lors de l’étape d’orientation du modèle numérique de la pièce, [0050] [Fig. 5] Figure 5 represents in a simplified way the model of figure 1, during the stage of orientation of the digital model of the part,
[0051] [Fig. 6A-6D] Les figures 6A à 6D représentent, dans une vue de dessus de la pièce, la formation d’une section de raccordement entre deux parois inclinées, à des couches successives de la fabrication additive, [0051] [Fig. 6A-6D] Figures 6A to 6D show, in a top view of the part, the formation of a connection section between two inclined walls, at successive layers of additive manufacturing,
[0052] [Fig. 7] La figure 7 est un diagramme représentant les différentes étapes du procédé de l’invention, [0053] [Fig. 8] La figure 8 est une vue latérale d’un deuxième exemple d’un modèle numérique de pièce à fabriquer par le procédé de l’invention, [0052] [Fig. 7] Figure 7 is a diagram representing the different steps of the method of the invention, [0053] [Fig. 8] Figure 8 is a side view of a second example of a digital model of a part to be manufactured by the method of the invention,
[0054] [Fig. 9] La figure 9 représente une vue d'ensemble d'un dispositif de fabrication additive par fusion sélective de lits de poudre. [0054] [Fig. 9] Figure 9 shows an overview of an additive manufacturing device by selective melting of powder beds.
Description des modes de réalisation Description of embodiments
[0055] Un premier exemple d’un mode de réalisation de l’invention va être exposé dans la suite de la description, en référence aux figures 1 à 7. On notera que dans la suite de l’exposé, la direction de construction Z est la direction dans laquelle la pièce est construite, c’est-à-dire dans laquelle les couches de poudre, ou couches de fabrication, sont empilées les unes sur les autres. La direction de construction Z est donc une direction orthogonale au plan de construction P, comprenant notamment le plateau de construction, sur lequel la pièce est destinée à être fabriquée. De plus, dans la suite de l’exposé, les termes « axial », « radial », «latéral», « intérieur », « extérieur », « dessus » ou « dessous » et leurs dérivés sont définis par rapport à l’axe central X de la pièce 1 à fabriquer. A first example of an embodiment of the invention will be explained in the following description, with reference to Figures 1 to 7. It will be noted that in the rest of the presentation, the direction of construction Z is the direction in which the part is built, that is, in which the powder layers, or build layers, are stacked on top of each other. The construction direction Z is therefore a direction orthogonal to the construction plane P, including in particular the construction plate, on which the part is intended to be manufactured. In addition, in the rest of the description, the terms "axial", "radial", "lateral", "interior", "exterior", "above" or "below" and their derivatives are defined with respect to the central axis X of part 1 to be manufactured.
[0056] Dans cet exemple, la pièce à fabriquer est un support de palier, destiné à être utilisé dans un moteur de turbomachine, notamment au niveau du carter d’échappement du moteur. Le support de palier de sortie de turbomachine peut notamment supporter le palier de l’arbre mobile en rotation couplant le compresseur haute pression et une turbine haute pression. La figure 1 représente une vue latérale de la pièce. Plus précisément, la figure 1 est une vue latérale du modèle numérique 1 de la pièce à fabriquer. Dans la suite de l’exposé, par commodité, le modèle numérique de la pièce sera simplement nommé « la pièce 1 ». La pièce 1 est axisymétrique autour d’un axe central X. Le plan de construction P correspond à un plan horizontal, et représente le plateau de construction sur lequel la pièce 1 est destinée à être fabriquée. In this example, the part to be manufactured is a bearing support, intended to be used in a turbomachine engine, in particular at the level of the engine exhaust casing. The turbomachine output bearing support can in particular support the bearing of the rotatable shaft coupling the high pressure compressor and a high pressure turbine. Figure 1 shows a side view of the part. More specifically, Figure 1 is a side view of the digital model 1 of the part to be manufactured. In the rest of the presentation, for convenience, the digital model of the part will simply be called "part 1". Part 1 is axisymmetric around a central axis X. The construction plane P corresponds to a horizontal plane, and represents the construction plate on which part 1 is intended to be manufactured.
[0057] Un plan de coupe A comprend l’axe central X, et est perpendiculaire au plan de construction P. La figure 2 représente une vue latérale en coupe de la pièce 1 illustrée sur la figure 1 , dans le plan de coupe A, permettant d’illustrer différents éléments constituant la pièce 1 . La pièce 1 comprend notamment une enveloppe externe 10 cylindrique, ou sensiblement cylindrique. Une extrémité inférieure 12 de l’enveloppe externe 10 est comprise dans un plan B. [0057] A section plane A includes the central axis X, and is perpendicular to the construction plane P. Figure 2 shows a sectional side view of the part 1 illustrated in Figure 1, in the section plane A, making it possible to illustrate various elements constituting the part 1 . Exhibit 1 notably includes a external envelope 10 cylindrical, or substantially cylindrical. A lower end 12 of the outer casing 10 is included in a plane B.
[0058] Une bride 20, de forme tronconique est fixée à l’enveloppe externe 10, à l’intérieur de celle-ci. La bride 20 est configurée pour porter, à l’intérieur de celle- ci, une pluralité de portions de supports 30, 40, 50, présentant chacun une face interne cylindrique. Les diamètres de chacune de ces faces internes cylindriques sont différents les uns des autres. Ces portions de support 30, 40, 50 sont destinées à supporter des paliers de roulement permettant de guider en rotation des arbres du turboréacteur. A flange 20, of frustoconical shape, is fixed to the outer casing 10, inside the latter. The flange 20 is configured to carry, inside it, a plurality of support portions 30, 40, 50, each having a cylindrical internal face. The diameters of each of these cylindrical internal faces are different from each other. These support portions 30, 40, 50 are intended to support rolling bearings making it possible to guide the shafts of the turbojet engine in rotation.
[0059] Ces portions de support 30, 40, 50 sont chacune portée par la bride 20, par l’intermédiaire d’une portion de jonction 32, 42, 52 respectivement. On notera que chacun de ces éléments (la bride 20, les portions de support 30, 40, 50, les portions de jonction 32, 42, 52) est axisymétrique autour de l’axe central X. Chacune des portions de jonction 32, 42, 52 est reliée à une face interne de la bride 20 au niveau d’une zone de raccordement, les zones de raccordement étant localisées par les cercles sur la figure 2. La paroi de la bride 20 est inclinée par rapport à l’axe central X, d’un angle compris entre 40° et 60° par exemple. Les parois des portions de jonction 32, 42, 52 sont également inclinées par rapport à l’axe central X, d’un angle opposé à celui de la paroi de la bride 20, et compris entre 40° et 60° par exemple. Ainsi, chacui® des portions de jonction 32, 42, 52 est inclinée par rapport à la paroi de la bride 20. These support portions 30, 40, 50 are each carried by the flange 20, via a junction portion 32, 42, 52 respectively. It will be noted that each of these elements (the flange 20, the support portions 30, 40, 50, the junction portions 32, 42, 52) is axisymmetric around the central axis X. Each of the junction portions 32, 42 , 52 is connected to an internal face of the flange 20 at a connection zone, the connection zones being located by the circles in FIG. 2. The wall of the flange 20 is inclined with respect to the central axis X, at an angle of between 40° and 60° for example. The walls of the junction portions 32, 42, 52 are also inclined with respect to the central axis X, at an angle opposite to that of the wall of the flange 20, and comprised between 40° and 60° for example. Thus, each of the junction portions 32, 42, 52 is inclined with respect to the wall of the flange 20.
[0060] La figure 3 représente une vue détaillée de la pièce de la figure 2, au niveau du raccordement entre la portion de jonction 42, et la bride 20. Un cylindre creux de fixation 22, permettant de fixer la pièce 1 à un élément du turboréacteur, est également visible. La vue de la figure 3 représente la pièce 1 au cours de la fabrication additive, juste après le dépôt et la fusion de la couche de poudre au cours de laquelle la section de raccordement S est formée. La section de raccordement S est la première couche de matière permettant de combler l’interstice I existant entre les deux parois à la couche précédente (figure 4A) et de faire la jonction entre la portion de jonction 42 et la bride 20. La section de raccordement S est comprise dans un plan de raccordement R perpendiculaire à l’axe central X. Par ailleurs, la section de raccordement S s’étend en arc de cercle autour de l’axe central X. [0060] Figure 3 shows a detailed view of the part of Figure 2, at the connection between the junction portion 42, and the flange 20. A hollow fixing cylinder 22, for fixing the part 1 to an element of the turbojet, is also visible. The view of FIG. 3 represents the part 1 during additive manufacturing, just after the deposition and melting of the layer of powder during which the connection section S is formed. The connecting section S is the first layer of material making it possible to fill in the gap I existing between the two walls at the previous layer (FIG. 4A) and to make the junction between the connecting portion 42 and the flange 20. The connecting section connection S is included in a connection plane R perpendicular to the central axis X. Furthermore, the connecting section S extends in an arc of a circle around the central axis X.
[0061 ] La figure 4A représente une vue du dessus de la section Sn entre la portion de jonction 42 et la bride 20 à une étape n, c’est-à-dire à une couche n de la fabrication additive, juste avant que la matière permettant de relier ladite portion de jonction 42 et ladite bride 20, ne soit formée. En d’autres termes, à ce stade, la section de raccordement proprement dite n’existe pas encore, et la portion de jonction 42 et ladite bride 20 sont espacées radialement par un mince interstice I, compris entre quelques centièmes de millimètres à 1 mm environ, par exemple 0,4 mm. [0061] FIG. 4A represents a view from above of the section Sn between the junction portion 42 and the flange 20 at a stage n, that is to say at a layer n of the additive manufacturing, just before the material for connecting said junction portion 42 and said flange 20, is formed. In other words, at this stage, the actual connection section does not yet exist, and the junction portion 42 and said flange 20 are spaced radially by a thin gap I, between a few hundredths of a millimeter to 1 mm. approximately, for example 0.4 mm.
[0062] La figure 4B représente la section de raccordement Sn+1 entre la portion de jonction 42 et la bride 20 à une étape n+1 , c’est-à-dire à une couche n+1 de la fabrication additive, dans laquelle la matière permettant de relier ladite portion de jonction 42 et ladite bride 20 est formée. En l’absence d’orientation du modèle, une seule couche est donc nécessaire (la couche n+1 ) pour refermer l’interstice I existant entre la portion de jonction 42 et la bride 20 à la couche n. Selon cette configuration, la matière permettant de refermer cet interstice I n’est formée sur aucune couche existante, autre que la poudre non fusionnée disposée en- dessous. En d’autres termes, la matière d’aucune des couches formées aux étapes précédentes ne permet de supporter la section de raccordement Sn+1 au cours de sa formation. Bien que la section de raccordement Sn+1 soit formée en un même matériau que la portion de jonction 42 et ladite bride 20, les hachures représentant la section de raccordement Sn+1 sur la figure 4B sont différentes de celles des parois 20, 42, indiquant la présence d’un affaissement local sur cette section. [0062] FIG. 4B represents the connection section Sn+1 between the junction portion 42 and the flange 20 at a step n+1, that is to say at an n+1 layer of additive manufacturing, in which the material for connecting said junction portion 42 and said flange 20 is formed. In the absence of orientation of the model, a single layer is therefore necessary (layer n+1) to close the gap I existing between the junction portion 42 and the flange 20 at layer n. According to this configuration, the material making it possible to close this interstice I is not formed on any existing layer, other than the unfused powder arranged below. In other words, the material of none of the layers formed in the previous steps makes it possible to support the connection section Sn+1 during its formation. Although the connecting section Sn+1 is formed from the same material as the connecting portion 42 and said flange 20, the hatchings representing the connecting section Sn+1 in FIG. 4B are different from those of the walls 20, 42, indicating the presence of local subsidence on this section.
[0063] Le procédé selon l’invention décrit ci-dessous permet de pallier cet inconvénient. The method according to the invention described below overcomes this drawback.
[0064] Une première étape permet de fournir un modèle numérique de la pièce 1 à fabriquer (étape S1 ), décrite précédemment. Une étape d’orientation de ce modèle numérique est ensuite réalisée (étape S2). [0065] Au cours de cette étape, une cale d’inclinaison 80 est ajoutée au modèle numérique, de manière à être disposée, au cours de la fabrication de la pièce 1 , entre le plan horizontal de construction P, sur lequel la pièce 1 est fabriquée, et le plan B comprenant l’extrémité inférieure 12 de la pièce 1 , plus précisément de l’enveloppe externe 10. En d’autres termes, au cours de la fabrication, l’extrémité inférieure 12 de l’enveloppe externe 10 de la pièce 1 ne repose pas directement sur le plan de construction P, compte tenu de la présence de la cale d’inclinaison 80 intercalée entre le plan B et le plan de construction P. A first step makes it possible to provide a digital model of the part 1 to be manufactured (step S1), described previously. A step of orientation of this digital model is then carried out (step S2). [0065] During this step, a tilt wedge 80 is added to the digital model, so as to be placed, during the manufacture of the part 1, between the horizontal construction plane P, on which the part 1 is manufactured, and the plane B comprising the lower end 12 of the part 1, more precisely of the outer casing 10. In other words, during manufacture, the lower end 12 of the outer casing 10 of part 1 does not rest directly on the construction plane P, given the presence of the tilt wedge 80 inserted between the plane B and the construction plane P.
[0066] La cale d’inclinaison 80 comprend une première extrémité 81 destinée à reposer horizontalement sur le plan de construction P, et une deuxième extrémité 82 inclinée par rapport à la première extrémité 81 . L’extrémité inférieure 12 de l’enveloppe externe 10 repose sur la deuxième extrémité 82 de la cale d’inclinaison 80, de telle sorte que la pièce 1 présente elle-même une inclinaison par rapport au plan de construction P. Par ailleurs, l’enveloppe externe 10 ayant une forme cylindrique d’axe X, la cale d’inclinaison 80 présente elle-même une forme cylindrique d’axe Z, dont le sommet (la deuxième extrémité 82), est incliné par rapport à la base (la première extrémité 81 ). The tilt wedge 80 comprises a first end 81 intended to rest horizontally on the construction plane P, and a second end 82 inclined with respect to the first end 81. The lower end 12 of the outer casing 10 rests on the second end 82 of the tilt wedge 80, such that the part 1 itself has an inclination with respect to the construction plane P. external casing 10 having a cylindrical shape with an X axis, the inclination wedge 80 itself has a cylindrical shape with an Z axis, the top of which (the second end 82) is inclined with respect to the base (the first end 81).
[0067] Selon une vue latérale de la pièce 1 (figure 5), la cale d’inclinaison 80 présente la forme d’une rampe inclinée. Compte tenu de cette configuration, la présence de la cale d’inclinaison 80 permet d’incliner le plan B comprenant l’extrémité inférieure 12 de l’enveloppe externe 10 de la pièce 1 , d’un angle P par rapport au plan de construction P. Par conséquent, l’axe central X est également incliné d’un angle P par rapport à la direction de construction Z. According to a side view of part 1 (Figure 5), the tilt wedge 80 has the shape of an inclined ramp. Given this configuration, the presence of the tilt wedge 80 makes it possible to tilt the plane B comprising the lower end 12 of the outer envelope 10 of the part 1, by an angle P with respect to the construction plane P. Therefore, the central axis X is also inclined by an angle P with respect to the construction direction Z.
[0068] Selon cette configuration, une première extrémité radiale 14 de la pièce 1 , dans le plan B comprenant l’extrémité inférieure 12, est surélevée d’une hauteur d’élévation £ par rapport à une deuxième extrémité radiale 16, diamétralement opposée à la première extrémité radiale 14, de telle sorte que £ = Dxarctan(P), où D est le diamètre de l’enveloppe externe 10, en particulier de l’extrémité inférieure 12 de la pièce 1 à fabriquer. L’angle d’inclinaison 0, et la hauteur d’élévation £ peuvent varier en fonction du diamètre D de la pièce 1 à fabriquer. Par exemple, pour un diamètre D de 400 mm, £ peut être compris entre 0,5 et 5 mm, et P peut être compris entre 0,1 ° et 1 °. [0069] Après l’ajout de la cale d’inclinaison 80 au modèle numérique, la pièce 1 est fabriquée par fabrication additive (étape S3). Plus précisément, la cale d’inclinaison 80 est fabriquée dans un premier temps, couche par couche, sur le plateau de construction s’étendant dans le plan de construction P, et la pièce 1 est fabriquée dans la continuité de la cale d’inclinaison 80. En d’autres termes, au cours de la fabrication, la cale d’inclinaison 80 et la pièce 1 forment une seule et même pièce, et sont formées dans le même matériau. According to this configuration, a first radial end 14 of the part 1, in the plane B comprising the lower end 12, is raised by a height of elevation £ with respect to a second radial end 16, diametrically opposite to the first radial end 14, such that £=Dxarctan(P), where D is the diameter of the outer casing 10, in particular of the lower end 12 of the part 1 to be manufactured. The angle of inclination θ and the height of elevation ε may vary depending on the diameter D of the part 1 to be manufactured. For example, for a diameter D of 400 mm, £ can be between 0.5 and 5 mm, and P can be between 0.1° and 1°. After the addition of the inclination wedge 80 to the digital model, the part 1 is manufactured by additive manufacturing (step S3). More precisely, the inclination wedge 80 is first manufactured, layer by layer, on the construction plate extending in the construction plane P, and the part 1 is manufactured in the continuity of the inclination wedge 80. In other words, during manufacture, the tilt wedge 80 and the part 1 form one and the same part, and are formed from the same material.
[0070] Compte tenu de l’ajout de la cale d’inclinaison 80 au cours de l’étape S2, lors de la fabrication de l’ensemble cale/pièce dans la direction de construction Z verticale, l’axe central X de la pièce 1 présente un angle d’inclinaison 0 par rapport à la direction de construction Z. Par conséquent, le plan de raccordement R précité, comprenant la section de raccordement S entre la portion de jonction 42 et la bride 20, est également incliné d’un angle P par rapport au plan de construction P. Ainsi, le raccordement entre la portion de jonction 42 et la bride 20 ne s’effectue pas en une couche, contrairement à la configuration illustrée sur les figures 4A et 4B en l’absence de cale d’inclinaison 80, mais en plusieurs couches. Le raccordement entre la portion de jonction 42 et la bride 20 est donc progressif. [0070] Given the addition of the tilt wedge 80 during step S2, during the manufacture of the wedge/part assembly in the vertical construction direction Z, the central axis X of the part 1 has an angle of inclination 0 with respect to the construction direction Z. Consequently, the aforementioned connection plane R, comprising the connection section S between the junction portion 42 and the flange 20, is also inclined by an angle P relative to the construction plane P. Thus, the connection between the junction portion 42 and the flange 20 does not take place in one layer, unlike the configuration illustrated in FIGS. 4A and 4B in the absence of tilt wedge 80, but in several layers. The connection between the junction portion 42 and the flange 20 is therefore progressive.
[0071 ] Les figures 6A à 6D illustrent la formation de la section de raccordement S entre la portion de jonction 42 et la bride 20 au cours de la fabrication additive. Compte tenu de l’inclinaison du plan de raccordement R, plusieurs couches sont nécessaires pour former cette section de raccordement S, en d’autres termes, pour reboucher l’interstice I existant entre la portion de jonction 42 et la bride 20 à ce stade de la fabrication de la pièce 1 . La figure 6A illustre une section de raccordement Sn à une couche n de la fabrication additive. La figure 6B illustre une section de raccordement Sn+1 à la couche n+1 suivante de la fabrication additive. Compte tenu de l’inclinaison du plan de raccordement R, la portion de la section de raccordement Sn+1 formée à cette couche n+1 peut prendre appui, au moins en partie, sur la matière déjà formée lors de la couche n précédente. Cela permet de limiter le phénomène d’affaissement, et donc la présence de ressauts sur la pièce finale. De la même façon, la figure 6C illustre une section de raccordement Sn+2 à la couche n+2, et la figure 6D illustre une section de raccordement Sn+3 à la couche n+3 suivante de la fabrication additive, chaque surface formée à une couche pouvant prendre appui sur la surface formée à la couche précédente. [0071] Figures 6A to 6D illustrate the formation of the connection section S between the junction portion 42 and the flange 20 during additive manufacturing. Given the inclination of the connection plane R, several layers are necessary to form this connection section S, in other words, to fill the gap I existing between the junction portion 42 and the flange 20 at this stage. of the manufacture of the part 1 . Figure 6A illustrates a connection section Sn to an n-layer of additive manufacturing. Figure 6B illustrates a connecting section Sn+1 to the next n+1 layer of additive manufacturing. Given the inclination of the connection plane R, the portion of the connection section Sn+1 formed at this layer n+1 can be supported, at least in part, on the material already formed during the previous layer n. This makes it possible to limit the phenomenon of subsidence, and therefore the presence of bumps on the final part. Similarly, Fig. 6C illustrates a section connecting Sn+2 to layer n+2, and Fig. 6D illustrates a section of Sn+3 connection to the next n+3 layer of additive manufacturing, each surface formed in one layer being able to rest on the surface formed in the previous layer.
[0072] De préférence, le nombre de couches nécessaires pour former totalement la section de raccordement S est compris entre 10 et 40. De préférence, l’angle d’inclinaison p et la hauteur d’élévation £ sont déterminés de manière à ce que le nombre de couches nécessaires pour former totalement la section de raccordement S soit compris dans cet intervalle. [0072] Preferably, the number of layers necessary to completely form the connection section S is between 10 and 40. Preferably, the angle of inclination p and the elevation height £ are determined in such a way that the number of layers necessary to completely form the connecting section S is included in this interval.
[0073] On notera que la description ci-dessus, en référence aux figures 3 à 6D, porte sur la section de raccordement S entre la portion de jonction 42 et la bride 20. Néanmoins, cette description est bien entendu valable pour les autres surfaces de raccordement concernées par la problématique décrite, notamment les sections de raccordement S entre la portion de jonction 32 et 52, et la bride 20. It will be noted that the above description, with reference to FIGS. 3 to 6D, relates to the connection section S between the junction portion 42 and the flange 20. Nevertheless, this description is of course valid for the other surfaces of connection concerned by the problem described, in particular the connection sections S between the junction portion 32 and 52, and the flange 20.
[0074] Lorsque la fabrication de la pièce 1 est achevée, la cale d’inclinaison 80 ayant permis d’incliner la pièce 1 au cours de la fabrication est enlevée (étape S4). Cet enlèvement peut être effectué par usinage, par exemple, en enlevant la quantité de matière correspondant aux dimensions de la cale d’inclinaison 80, permettant ainsi d’obtenir la pièce 1 finale présentant les dimensions souhaitées, et correspondant au modèle numérique existant avant l’étape S2 d’orientation, dans laquelle la cale d’inclinaison 80 avait été ajoutée. [0074] When the manufacture of part 1 is completed, the tilting wedge 80 having made it possible to tilt part 1 during manufacture is removed (step S4). This removal can be carried out by machining, for example, by removing the quantity of material corresponding to the dimensions of the tilt wedge 80, thus making it possible to obtain the final part 1 having the desired dimensions, and corresponding to the digital model existing before the orientation step S2, in which the tilt wedge 80 had been added.
[0075] La figure 8 présente un modèle numérique d’un deuxième exemple de pièce 1 ’ à fabriquer, sur laquelle le procédé selon l’invention peut être appliqué. Dans cet exemple, la pièce 1 ’ à fabriquer est un support de palier de type SP5 NMA, destiné à être utilisé dans un moteur de turboréacteur, notamment au niveau du carter d’échappement d’un moteur de type UHBR DD (« Ultra High Bypass Ratio Direct Drive »). Les zones de raccordement entre des parois inclinées les unes par rapport aux autres, et impliquant les mêmes problématiques que la pièce 1 du premier exemple, sont localisées par des cercles sur la figure 8, et les sections de raccordement S’ correspondantes sont également indiquées. [0076] Bien que la présente invention ait été décrite en se référant à des exemples de réalisation spécifiques, il est évident que des modifications et des changements peuvent être effectués sur ces exemples sans sortir de la portée générale de l'invention telle que définie par les revendications. En particulier, des caractéristiques individuelles des différents modes de réalisation illustrés/mentionnés peuvent être combinées dans des modes de réalisation additionnels. Par conséquent, la description et les dessins doivent être considérés dans un sens illustratif plutôt que restrictif. [0075] Figure 8 shows a digital model of a second example of part 1 'to be manufactured, on which the method according to the invention can be applied. In this example, the part 1′ to be manufactured is a bearing support of the SP5 NMA type, intended to be used in a turbojet engine, in particular at the level of the exhaust casing of an engine of the UHBR DD (“Ultra High Bypass Ratio Direct Drive”). The connection zones between walls inclined with respect to each other, and involving the same problems as part 1 of the first example, are located by circles in FIG. 8, and the corresponding connection sections S′ are also indicated. Although the present invention has been described with reference to specific embodiments, it is obvious that modifications and changes can be made to these examples without departing from the general scope of the invention as defined by the revendications. In particular, individual features of the different illustrated/mentioned embodiments can be combined in additional embodiments. Accordingly, the description and the drawings should be considered in an illustrative rather than restrictive sense.

Claims

Revendications Claims
[Revendication 1] Procédé de fabrication de pièce aéronautique par fabrication additive, la pièce à fabriquer s'étendant autour d'un axe central (X) et comprenant au moins deux parois (20, 42) inclinées l'une par rapport à l'autre et raccordées entre elles par l'intermédiaire d'au moins une section de raccordement (S) comprise dans un plan de raccordement (R) perpendiculaire à l'axe central (X), le procédé comprenant: [Claim 1] Method of manufacturing an aeronautical part by additive manufacturing, the part to be manufactured extending around a central axis (X) and comprising at least two walls (20, 42) inclined one with respect to the another and connected to each other via at least one connection section (S) included in a connection plane (R) perpendicular to the central axis (X), the method comprising:
- la fourniture d'un modèle numérique (1) de la pièce à fabriquer, - the supply of a digital model (1) of the part to be manufactured,
- l'orientation du modèle numérique (1) par rapport à une direction de construction (Z) verticale de la pièce de manière à ce que l'axe central (X) de la pièce présente un angle P compris entre 0,1° et 1°, de préférence compris entre 0,3° et 0,8° par rapport à la direction de construction (Z), - the orientation of the digital model (1) with respect to a vertical construction direction (Z) of the part so that the central axis (X) of the part has an angle P between 0.1° and 1°, preferably between 0.3° and 0.8° relative to the direction of construction (Z),
- fabrication de la pièce par fabrication additive à partir du modèle numérique (1) obtenu à l'étape d'orientation. - manufacturing of the part by additive manufacturing from the digital model (1) obtained at the orientation stage.
[Revendication 2] Procédé selon la revendication 1, dans lequel la pièce à fabriquer est axisymétrique autour de l'axe central (X), et la section de raccordement (S) s'étend selon un arc de cercle centré autour de l'axe central (X). [Claim 2] Method according to claim 1, in which the workpiece is axisymmetric about the central axis (X), and the connecting section (S) extends according to an arc of a circle centered about the axis central (X).
[Revendication 3] Procédé selon la revendication 1 ou 2, dans lequel l'étape d'orientation du modèle numérique (1) comprend l'ajout au modèle numérique d'une cale d'inclinaison (80) entre un plan de construction (P) horizontal et un plan (B) comprenant une extrémité inférieur (12) de la pièce à fabriquer, de manière à incliner l'axe central (X) de l'angle P par rapport à la direction de construction (Z) verticale. [Claim 3] The method of claim 1 or 2, wherein the step of orienting the digital model (1) includes adding to the digital model a tilt wedge (80) between a construction plane (P ) horizontal and a plane (B) comprising a lower end (12) of the workpiece, so as to incline the central axis (X) by the angle P relative to the construction direction (Z) vertical.
[Revendication 4] Procédé selon la revendication 3, dans lequel la cale d'inclinaison (80) est fabriquée en un même matériau que la pièce à fabriquer, au cours de la fabrication additive. [Claim 4] A method according to claim 3, wherein the tilt wedge (80) is fabricated from the same material as the workpiece, during additive manufacturing.
[Revendication 5] Procédé selon la revendication 3 ou 4, dans lequel la cale d'inclinaison (80) est configurée de telle sorte que, dans le plan (B) comprenant l'extrémité inférieure (12) de la pièce à fabriquer, une première extrémité radiale (14) de la pièce à fabriquer présente une élévation E par rapport à une deuxième extrémité radiale (16) opposée à la première extrémité radiale (14). [Claim 5] A method according to claim 3 or 4, wherein the tilt wedge (80) is configured such that, in the plane (B) comprising the lower end (12) of the workpiece, a first radial end (14) of the workpiece has an elevation E relative to a second radial end (16) opposite the first radial end (14).
[Revendication 6] Procédé selon la revendication 5, dans lequel la pièce à fabriquer comprend une enveloppe externe (10) sensiblement cylindrique, l'enveloppe externe (10) comprenant l'extrémité inférieure (12) et la première et la deuxième extrémité radiale (14, 16), la première et la deuxième extrémité radiale (14, 16) étant diamétralement opposée l'une par rapport à l'autre. [Claim 6] A method according to claim 5, wherein the workpiece comprises a substantially cylindrical outer shell (10), the outer shell (10) comprising the lower end (12) and the first and second radial ends ( 14, 16), the first and the second radial end (14, 16) being diametrically opposite with respect to each other.
[Revendication 7] Procédé selon la revendication 6, dans lequel s = Dxarctan(P), où D est le diamètre de l'enveloppe externe (10) de la pièce à fabriquer. [Claim 7] A method according to claim 6, wherein s = Dxarctan(P), where D is the diameter of the outer shell (10) of the workpiece.
[Revendication 8] Procédé selon l'une quelconque des revendications 3 à 7, comprenant, après l'étape de fabrication, une étape d'enlèvement de la cale d'inclinaison (80), dans laquelle la cale d'inclinaison (80) ayant servie à incliner la pièce au cours de la fabrication de celle-ci est enlevée, afin d'obtenir la pièce finale. [Claim 8] A method according to any one of claims 3 to 7, comprising, after the manufacturing step, a step of removing the tilt wedge (80), in which the tilt wedge (80) used to tilt the part during its manufacture is removed, in order to obtain the final part.
[Revendication 9] Procédé selon la revendication 8, dans lequel l'enlèvement de la cale d'inclinaison (80) est réalisé par usinage. [Claim 9] A method according to claim 8, wherein the removal of the tilt wedge (80) is accomplished by machining.
[Revendication 10] Procédé selon l'une quelconque des revendications précédentes, dans lequel la pièce à fabriquer est un support de palier de turboréacteur. [Claim 10] A method according to any preceding claim, wherein the workpiece is a turbojet engine bearing support.
EP22702757.0A 2021-01-18 2022-01-11 Improved method for manufacturing a part by additive manufacturing Pending EP4277762A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2100451A FR3118892B1 (en) 2021-01-18 2021-01-18 Improved part manufacturing process by additive manufacturing
PCT/FR2022/050057 WO2022153004A1 (en) 2021-01-18 2022-01-11 Improved method for manufacturing a part by additive manufacturing

Publications (1)

Publication Number Publication Date
EP4277762A1 true EP4277762A1 (en) 2023-11-22

Family

ID=76159472

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22702757.0A Pending EP4277762A1 (en) 2021-01-18 2022-01-11 Improved method for manufacturing a part by additive manufacturing

Country Status (5)

Country Link
US (1) US20240066601A1 (en)
EP (1) EP4277762A1 (en)
CN (1) CN116940427A (en)
FR (1) FR3118892B1 (en)
WO (1) WO2022153004A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3425461A1 (en) * 2017-07-07 2019-01-09 Siemens Aktiengesellschaft Method for creating instructions for additive production of a workpiece, computer program product for carrying out this method and method for additive production of a workpiece
CN108247055B (en) * 2018-02-12 2019-01-29 成都优材科技有限公司 The digitlization integrated molding method of dentistry attachment
FR3079151B1 (en) * 2018-03-23 2020-10-30 Safran Aircraft Engines OPTIMIZATION OF SUPPORTS FOR ADDITIVE PART MANUFACTURING WITH A RECESS

Also Published As

Publication number Publication date
US20240066601A1 (en) 2024-02-29
FR3118892A1 (en) 2022-07-22
CN116940427A (en) 2023-10-24
WO2022153004A1 (en) 2022-07-21
FR3118892B1 (en) 2023-01-20

Similar Documents

Publication Publication Date Title
WO2017118806A1 (en) Method for manufacturing a workpiece by additive manufacturing
CA2908960C (en) Method for manufacturing an asymmetric component using additive manufacturing
EP1870192B1 (en) Device for clamping workpieces for a method of repairing a blade of an integrally bladed turbine rotor
CA3003368A1 (en) Method for manufacturing a blade preform, a blade and a nozzle segment by selective powder-bed fusion
EP3600727B1 (en) Specimen for the validation of operating parameters of an additive manufacturing process of a part by laser powder bed fusion
FR3054799A1 (en) PROCESS FOR REPAIRING BY RECHARGING A PLURALITY OF TURBOMACHINE PARTS
EP3749840B1 (en) Bearing support for an aircraft engine manufactured by additive manufacturing
EP3509774B1 (en) Method for manufacturing a part of electroconductive material by additive manufacturing
EP4277762A1 (en) Improved method for manufacturing a part by additive manufacturing
FR3064519A1 (en) PROCESS FOR MANUFACTURING A METAL PIECE BY ADDITIVE MANUFACTURE
FR3062439A1 (en) INTEGRATED FILTER TURBOMACHINE CAP AND METHOD FOR PRODUCING THE SAME
FR2631268A1 (en) Method of repairing blades for bladed rotor discs of a turbo- machine and bladed rotor wheel obtained by the said method
FR3060608A1 (en) METHOD FOR MANUFACTURING ABRADABLE STRUCTURE FOR TURBOMACHINE
EP3624967B1 (en) Aircraft turbomachine vane and its method of fabrication using additive manufacturing
FR3062438A1 (en) TURBOMACHINE ROD WITH INTEGRATED FILTER AND METHOD FOR PRODUCING THE SAME
FR3058767A1 (en) VIBRATION DAMPER FOR A TURBOMACHINE ROTOR BLADE
FR3082129A1 (en) PROCESS FOR THE MANUFACTURE OF A TURBINE, PARTICULARLY FOR A TURBOPUMP
EP3818463A1 (en) Improved method for manufacturing a workpiece by additive manufacturing
EP3724453A1 (en) Vibration damper for a turbomachine rotor vane
FR3026034A1 (en) PROCESS FOR PRODUCING A HOLLOW PIECE BY SELECTIVE FUSION OF POWDER
BE1023377B1 (en) AXIAL TURBOMACHINE COMPRESSOR BOSS CASING
FR3098742A1 (en) SELECTIVE ADDITIVE MANUFACTURING ON BED OF POWDER, ESPECIALLY FOR TURBOMOTOR PARTS
FR3095365A1 (en) SUPPORT AND SYSTEM FOR ADDITIVE MANUFACTURING AND ADDITIVE MANUFACTURING PROCESS IMPLEMENTING SUCH A SUPPORT
FR3053631A1 (en) ADDITIVE MANUFACTURING METHOD USING DISCRETE SURFACE ELEMENTS
FR3030332A1 (en) PROCESS FOR THE LASER PRODUCTION OF A TURBOMACHINE PIECE

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)