EP4270363A1 - Method and system for operating an aircraft - Google Patents
Method and system for operating an aircraft Download PDFInfo
- Publication number
- EP4270363A1 EP4270363A1 EP23170272.1A EP23170272A EP4270363A1 EP 4270363 A1 EP4270363 A1 EP 4270363A1 EP 23170272 A EP23170272 A EP 23170272A EP 4270363 A1 EP4270363 A1 EP 4270363A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- aircraft
- volume
- trajectory
- flight
- volumes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000011084 recovery Methods 0.000 claims description 10
- 238000011217 control strategy Methods 0.000 claims description 3
- 230000000246 remedial effect Effects 0.000 claims description 3
- 230000001960 triggered effect Effects 0.000 claims description 3
- 238000011161 development Methods 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 5
- 238000013459 approach Methods 0.000 description 3
- 230000009194 climbing Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/0047—Navigation or guidance aids for a single aircraft
- G08G5/0069—Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/0017—Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
- G08G5/0021—Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located in the aircraft
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/0017—Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
- G08G5/0026—Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located on the ground
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/003—Flight plan management
- G08G5/0034—Assembly of a flight plan
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/0047—Navigation or guidance aids for a single aircraft
- G08G5/0052—Navigation or guidance aids for a single aircraft for cruising
Definitions
- the invention relates to a method for operating an aircraft according to claim 1, a system for operating an aircraft according to claim 11 and a correspondingly equipped aircraft according to claim 13.
- UAVs unmanned aerial vehicles
- limits of the airspace approved for a mission are defined using quantitative calculation methods. These methods use purely static, i.e. fixed volumes that are calculated based on conservative assumptions. The entire mission scope must remain within predetermined volumes, even if the mission gets out of control.
- the invention solves this problem by means of a method according to claim 1, a system according to claim 11 and an aircraft according to claim 13.
- a method for operating an aircraft provides that a volume enveloping the trajectory is determined for a predetermined trajectory or flight path of the aircraft, which volume comprises a first, inner volume and a second, outer volume, the second volume surrounding the first volume , preferably in every imaginary plane of the 3D space perpendicular to the trajectory, the first volume being composed of a plurality of first individual volumes and the second volume being composed of a number of second individual volumes, which individual volumes at each point of the trajectory based on Parameters of an actual flight status of the aircraft can be calculated at a particular point in time.
- this creates a system for operating an aircraft with a geocaging module, which according to the invention functions as a volume determination module that is located on board the aircraft or on the ground, the volume determination module in the second case being connected to the aircraft via a data link is which volume determination module is designed and intended to determine the volumes required to carry out the method according to the invention on the basis of a nominal trajectory, i.e. a pre-planned trajectory, and which for this purpose contains at least a current position, a current speed and a current heading as input data, i.e. the direction of flight of the aircraft.
- a nominal trajectory i.e. a pre-planned trajectory
- An aircraft according to the invention is characterized in that it is equipped with a system according to the invention for operating the aircraft.
- a geocage is calculated in the form of the above-mentioned volume, which geocage is calculated from a so-called flight geography (first volume) and a so-called contingency volume (second volume), and which geocage is based on a respective nominal flight condition along the named trajectory.
- first volume flight geography
- second volume contingency volume
- the geocage is preferably calculated at the time of flight; in the case of trajectories planned before departure, the geocage can also be calculated before the mission starts.
- the geocage includes first partial or individual volumes, which describe the nominal trajectory tracking quality of the aircraft, as well as second partial volumes, within which partial volumes so-called remedial or contingency measures can or must be carried out in order to determine a current flight path of the aircraft in the direction back to the to correct the planned trajectory.
- the calculation of the volumes mentioned is based on parameters of the actual flight condition, such as preferably a (planned) speed, flight altitude, trajectory angle or other factors (e.g. weather conditions).
- the direction of flight of the UAV can also be taken into account. This means that volumes are no longer scaled in an undirected manner. Boundaries of the geocage that are in the direction of flight can therefore be classified as more critical than boundaries that are, for example, parallel or opposite to the direction of flight. In this way an expansion of Flight Geography and contingency volumes must be larger in the direction of flight than against the direction of flight or in the sideways direction.
- the flight it is preferably checked whether the aircraft is still within the geocage around the nominal or reference trajectory. If the aircraft leaves the Flight Geography (first volume), priority countermeasures are initiated to save the mission. However, if the aircraft leaves the contingency volume (second volume), the mission is preferably aborted and immediate measures, such as an immediate safety landing, are most preferably initiated in order to protect people and/or material.
- flight geography and contingency volume are displayed to the pilot in a pilot display (e.g. a head-up display (HUD)) as an extension of a "tunnel-in-the-sky". If the flight geography is violated, for example, the pilot is asked (visually and/or acoustically) to return to the actual trajectory; In addition, the USSP (U-Space Service Provider) is preferably informed. If the contingency volume is violated, an immediate safety landing is preferably required. In this context, this means that the mission is aborted and a landing is carried out at the nearest alternative landing site. The priority of the aircraft can also be increased for so-called deconflicting measures (similar to, for example, a radio failure on the landing approach in order to avoid and resolve conflicts between the flight paths of several air traffic participants).
- deconflicting measures similar to, for example, a radio failure on the landing approach in order to avoid and resolve conflicts between the flight paths of several air traffic participants.
- recovery maneuvers which lead the aircraft back to flight geography
- recovery maneuvers can be triggered automatically or control can be taken over by a remote pilot, for example sitting at a flight control center.
- the operator and air traffic control are preferably additionally informed. Further measures or the remote pilot taking over control (if not already done, see above) are initiated when the contingency volume is exceeded.
- a change in the control strategy e.g. a fallback to a more robust and/or low-performance controller
- routes with lower demands on navigation performance should be made so that the aircraft can continue its mission as far as possible.
- the implementation of the volumes mentioned enables continuous and traceable monitoring of the tracking performance, which can also be visually displayed to a pilot.
- the tracking performance or path following performance describes how precisely the aircraft can follow a given path. This is usually determined by the navigation error (i.e. the inaccuracy in determining one's own position) and the flight technology error (i.e. the inaccuracy with which a controller or pilot follows a target trajectory). This trajectory performance must be monitored to determine whether it is within an expected range of values or whether countermeasures need to be taken.
- flight corridors result within which an aircraft is actually very likely to be during nominal operation, in contrast to conservatively estimated areas that are largely of no practical relevance.
- This information can be used in particular to plan multiple routes in the same airspace and to optimize airspace utilization.
- This can be implemented using a so-called geocaging module, which can be implemented both on board the aircraft and as part of a ground control station. In the latter case, communication with the aircraft preferably takes place via a critical data link.
- the parameters include at least one of the following influencing variables: planned speed of the aircraft, flight altitude, trajectory angle, weather conditions, in particular wind strength and wind direction, worst-case behavior of the aircraft in the event of loss of control and feasibility of a recovery maneuver respective point in time.
- planned speed of the aircraft flight altitude
- trajectory angle trajectory angle
- weather conditions in particular wind strength and wind direction
- worst-case behavior of the aircraft in the event of loss of control and feasibility of a recovery maneuver respective point in time worst-case behavior of the aircraft in the event of loss of control and feasibility of a recovery maneuver respective point in time.
- the planned speed is preferably taken into account when calculating the volumes to be monitored.
- the current speed is used to subsequently monitor the volumes calculated based on the target trajectory.
- the aforementioned trajectory angle (also climbing angle) describes the angle of the flight path relative to a tangential plane, which is spanned at the perpendicular point of the flight path on the earth's reference ellipsoid.
- the trajectory angle therefore describes how steeply the aircraft climbs or descends.
- Another development of the method according to the invention provides that the individual volumes are calculated taking into account a direction of flight of the aircraft. In this way, the volumes do not have to be scaled in an undirected manner, as was already pointed out in detail above.
- an embodiment is also possible in which the individual volumes are calculated before the start of a mission of the aircraft. In this way, the requirements for hardware on board the aircraft can be reduced in particular.
- another development of the method according to the invention provides that during a flight it is continuously checked whether the aircraft is within the volume, in particular within the first volume.
- recovery maneuvers are initiated when the aircraft detects that the first volume has left; and/or that if the aircraft is detected to be leaving the second volume, a current mission will be aborted and immediate measures, such as an immediate safety landing, will be initiated. In this way, catastrophic events can be avoided and people and materials can be protected.
- the first volume and the second volume can be graphically displayed to a pilot on board the aircraft in a display, in particular in a head -up display, preferably when the aircraft leaves the first volume, the pilot is optically (visually) and / or acoustically requested to return to the (nominal) trajectory, and most preferably a responsible U-space service provider is informed.
- recovery maneuvers can be triggered automatically and/or a remote pilot can request that control of the aircraft be taken over, with an operator of the aircraft and a responsible airspace surveillance preferably also being automatically informed.
- a remote pilot can request that control of the aircraft be taken over, with an operator of the aircraft and a responsible airspace surveillance preferably also being automatically informed.
- further measures or the remote pilot taking over control can be initiated. This has already been pointed out above.
- the volume determination module is designed to compare a respective geometry of the specific volumes with received navigation data of the aircraft and to command remedial measures specifically in the event of a violation of the first volume, i.e. to issue corresponding control commands.
- the speed represents a possible physical influencing variable or a possible parameter of an actual flight status of the aircraft 1 at a respective point in time, which is taken into account in the context of the method according to the invention.
- Volumes are defined for the trajectory NT, which indicate the path deviation of the aircraft 1 expected during nominal operation, ie its deviation from the trajectory NT. These (individual) volumes are in Figure 1 for each of the specified times indicated by a corresponding ellipse TVi . Together, the volumes TVi mentioned result in a first volume which envelops the trajectories NT and is also referred to in the present case as “flight geography”. In addition, a so-called contingency volume (second volume) is defined, which surrounds the first volume (in Figure 1 Not shown; see. Figure 2 ). The contingency volume refers to an area within which the aircraft 1 can be brought under control and/or back to the planned trajectory NT. According to the invention, the calculation of these volumes is made dependent on the actual flight status of the aircraft 1 and other influencing factors, which were pointed out in detail above. In the Figure 1 The specified speed represents only a special example of such an influencing factor.
- the geocage is derived using analytical models. As already mentioned, these models preferably take into account, among other things, the current speed of the aircraft 1, ⁇ i , an assumed worst-case behavior of the aircraft 1 in the event of loss of control and the feasibility of a recovery maneuver at the respective time. During the flight, it is preferably continuously checked whether the position of the aircraft 1 violates these limits, i.e. the limitations of the geocage.
- FIG 2 A resulting complete Geocage GC is shown in a simplified representation, which consists of a first volume enveloping the trajectory NT ("Flight Geography"; compare Figure 1 ) V1 and a second volume (“Contingency Volume”) V2 surrounding the first volume V1.
- the flight geography (volume V1) of a trajectory NT is the envelope of the flight geography determined at each state point, in particular with speed ⁇ i (compare the individual volumes TVi in Figure 1 ) calculated.
- the calculation of the contingency volume (volume V2) is carried out analogously from corresponding individual volumes and leads to the in Figure 2 Trajectory NT shown in simplified form, which trajectory NT is surrounded by the respective flight areas (volumes V1, V2).
- the calculation of the geocage GT can preferably also be carried out in three dimensions, so that a "tunnel" is created around the nominal trajectory NT, within which the aircraft 1 must remain.
- Figure 3 shows a direction-independent implementation of range scaling for the first volume (V1, inside) and the second volume (V2, outside) with unidirectional weighting heuristic ⁇ .
- Such a configuration is particularly suitable for small instantaneous speeds ⁇ of the aircraft (not shown).
- An expansion of the first volume or the second volume does not depend on an angle ⁇ based on a current flight direction of the aircraft.
- the right side of the Figure 3 shows an embodiment with direction-weighted geocage zones (first volume V1 or second volume V2) and corresponding weighting heuristic ⁇ .
- An expansion of the volumes mentioned is clear larger for small angles ⁇ based on a current flight direction of the aircraft than for large angles ⁇ .
- Such a configuration is particularly suitable for larger instantaneous speeds ⁇ of the aircraft (not shown).
- a second version of the system takes the direction of flight into account when evaluating the permissible flight areas. The approach is based on the assumption that the probability of a deviation from the nominal trajectory in a certain direction decreases as the angular difference ⁇ to the current flight direction (corresponding to the vector ⁇ ) increases.
- the method described can be implemented using a suitably designed geocaging module, as exemplified in Figure 4 is shown.
- the geocaging module (GCM) 2 interacts in terms of signaling with a navigation system 3 for the aircraft (in Figure 4 Not shown);
- the geocaging module 2 preferably receives the current position, the current speed and a current heading of the aircraft as input data ID from the navigation system 3.
- the geometry of the geocage is calculated based on the nominal trajectory (which is assumed to be known) (see above Figures 1 to 3 ) and compared with the received navigation data.
- the geocaging module 2 thus functions in particular as a volume determination module, which is designed and intended to determine the volumes required to carry out the method according to the invention on the basis of the nominal trajectory, and for this purpose preferably receives at least the above-mentioned input data. If a flight area is violated (the aircraft leaves the relevant area boundaries), the GCM 2 in particular commands appropriate contingency measures or initiates a mission abort.
- the invention closes accordingly Figure 4 the display of the geocage on a pilot display or a function for carrying out recovery maneuvers in the flight guidance system.
- a query is made as to whether the unmanned operating mode is active. If this query is answered in the affirmative (j), the reference symbol 5 the mentioned function for carrying out recovery maneuvers in the flight guidance system is activated. Otherwise (n), the geocage is shown at reference number 6 on the pilot display, for example a head-up display (HUD).
- HUD head-up display
- the geocaging module 2 does not have to be installed on board an aircraft, but can also be part of a ground station that communicates with an aircraft via a corresponding connection.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Traffic Control Systems (AREA)
Abstract
Vorgeschlagen wird ein Verfahren zum Betreiben eines Fluggeräts (1), bei dem für eine vorausbestimmte Trajektorie (NT) des Fluggeräts (1) ein die Trajektorie (NT) einhüllendes Volumen bestimmt wird, welches Volumen ein erstes, inneres Volumen und ein zweites, äußeres Volumen umfasst, wobei das zweite Volumen das erste Volumen umgibt, wobei das erste Volumen sich aus einer Mehrzahl erster Einzelvolumina (TVi) und das zweite Volumen sich aus einer Anzahl von zweiten Einzelvolumina zusammensetzt, welche Einzelvolumina (TVi) an jedem Punkt der Trajektorie (NT) auf Grundlage von Parametern (v<sub>i</sub>) eines tatsächlichen Flugzustands des Fluggeräts (1) zu einem jeweiligen Zeitpunkt berechnet werden.A method for operating an aircraft (1) is proposed, in which a volume enveloping the trajectory (NT) is determined for a predetermined trajectory (NT) of the aircraft (1), which volume is a first, inner volume and a second, outer volume comprises, wherein the second volume surrounds the first volume, the first volume being composed of a plurality of first individual volumes (TVi) and the second volume being composed of a number of second individual volumes, which individual volumes (TVi) at each point of the trajectory (NT). are calculated based on parameters (v<sub>i</sub>) of an actual flight status of the aircraft (1) at a respective point in time.
Description
Die Erfindung betrifft ein Verfahren zum Betreiben eines Fluggeräts gemäß Anspruch 1, ein System zum Betreiben eines Fluggeräts gemäß Anspruch 11 sowie ein entsprechend ausgestattetes Fluggerät gemäß Anspruch 13.The invention relates to a method for operating an aircraft according to
In Europa werden für den Betrieb von Fluggeräten, speziell sog. UAVs ("unmanned aerial vehicles" - unbemannte Luftfahrzeuge) Grenzen des für eine Mission freigegebenen Luftraums anhand quantitativer Berechnungsverfahren definiert. Diese Verfahren nutzen rein statische, d.h. fest vorgegeben Volumina, die anhand konservativer Annahmen berechnet werden. Der gesamte Missionsumfang muss innerhalb zuvor festgelegter Volumina verbleiben, also auch dann, wenn die Mission außer Kontrolle gerät.In Europe, for the operation of aircraft, especially so-called UAVs ("unmanned aerial vehicles"), limits of the airspace approved for a mission are defined using quantitative calculation methods. These methods use purely static, i.e. fixed volumes that are calculated based on conservative assumptions. The entire mission scope must remain within predetermined volumes, even if the mission gets out of control.
Für einen von einem menschlichen Piloten gesteuerten Flug können so genannte "Tunnels in the Sky" verwendet werden, um dem menschlichen Piloten das Abfliegen einer vorab definierten Trajektorie oder Flugbahn zu erleichtern, z.B. für Präzisionsanflüge. Diese "Tunnels in the Sky" werden dem Piloten zusammen mit einer Relativposition des Fluggeräts bezogen auf eine Referenztrajektorie über ein geeignetes Display angezeigt.For a flight controlled by a human pilot, so-called "tunnels in the sky" can be used to make it easier for the human pilot to follow a predefined trajectory or flight path, e.g. for precision approaches. These “tunnels in the sky” are shown to the pilot via a suitable display together with a relative position of the aircraft in relation to a reference trajectory.
Klassisches "Geocaging" umfasst die Beschränkung des Flugbetriebs auf ein zugelassenes geographisches "Volumen", d.h. einen bestimmten (Luftraum-) Bereich, den sog. "Geocage"; der Betrieb eines UAVs wird also auf Missionen innerhalb dieses Bereichs beschränkt. Eine bestimmte Trajektorie, welche innerhalb des Fluggebiets beflogen wird, wird nur dann in die Betrachtung einbezogen, wenn die Gefahr einer Verletzung der Außengrenzen des Bereichs besteht. Für Missionen in komplexen Umgebungen (z.B. Städte, Berge, Archipelgebiete etc.) oder in einem kontrollierten Luftraum ist es allerdings oft praktisch gar nicht möglich, größere zusammenhängende Betriebsgebiete zu definieren, innerhalb welcher sich ein UAV frei bewegen kann. Stattdessen muss eine vorab freigegebene Flugbahn (Sollbahn) möglichst exakt abgeflogen werden bzw. auf Abweichungen von der geplanten Flugbahn frühzeitig reagiert werden. Abweichungen von der Sollbahn, die größer ausfallen als erwartet, können dann dazu führen, dass bestimmte Abschnitte einer Trajektorie nicht mehr beflogen oder bestimmte Start-/Landeplätze (sog. Vertiports) nicht mehr angeflogen werden können.Classic "geocaging" involves limiting flight operations to an approved geographical "volume", ie a specific (airspace) area, the so-called "geocage"; The operation of a UAV is therefore limited to missions within this area. A specific trajectory that is flown within the flight area is only taken into account if there is a risk of violating the external boundaries of the area. However, for missions in complex environments (e.g. cities, mountains, archipelago areas, etc.) or in controlled airspace, it is often practically impossible to define larger, contiguous operating areas within which a UAV can be located can move freely. Instead, a pre-approved flight path (target path) must be flown as precisely as possible or any deviations from the planned flight path must be responded to as early as possible. Deviations from the target trajectory that are larger than expected can then mean that certain sections of a trajectory can no longer be flown or that certain take-off/landing areas (so-called vertiports) can no longer be approached.
Es besteht daher die Notwendigkeit, ein Verfahren und ein System zum Betreiben eines Fluggeräts anzugeben, mit denen sich auch in schwierigen bzw. komplexen Flug-Umgebungen eine möglichst freie Flugbewegung speziell von UAV, aber auch von bemannten Fluggeräten erreichen lässt.There is therefore a need to specify a method and a system for operating an aircraft with which the freest possible flight movement can be achieved, especially of UAVs, but also of manned aircraft, even in difficult or complex flight environments.
Die Erfindung löst diese Aufgabe mittels eines Verfahrens gemäß Anspruch 1, eines Systems gemäß Anspruch 11 und eines Fluggeräts gemäß Anspruch 13.The invention solves this problem by means of a method according to
Vorteilhafte Weiterbildungen sind in den Unteransprüchen definiert.Advantageous further training is defined in the subclaims.
Erfindungsgemäß sieht ein Verfahren zum Betreiben eines Fluggeräts vor, dass für eine vorausbestimmte Trajektorie oder Flugbahn des Fluggeräts ein die Trajektorie einhüllendes Volumen bestimmt wird, welches Volumen ein erstes, inneres Volumen und ein zweites, äußeres Volumen umfasst, wobei das zweite Volumen das erste Volumen umgibt, und zwar bevorzugt in jeder gedachten Ebene des 3D-Raumes senkrecht zu der Trajektorie, wobei das erste Volumen sich aus einer Mehrzahl erster Einzelvolumina und das zweite Volumen sich aus einer Anzahl von zweiten Einzelvolumina zusammensetzt, welche Einzelvolumina an jedem Punkt der Trajektorie auf Grundlage von Parametern eines tatsächlichen Flugzustands des Fluggeräts zu einem jeweiligen Zeitpunkt berechnet werden.According to the invention, a method for operating an aircraft provides that a volume enveloping the trajectory is determined for a predetermined trajectory or flight path of the aircraft, which volume comprises a first, inner volume and a second, outer volume, the second volume surrounding the first volume , preferably in every imaginary plane of the 3D space perpendicular to the trajectory, the first volume being composed of a plurality of first individual volumes and the second volume being composed of a number of second individual volumes, which individual volumes at each point of the trajectory based on Parameters of an actual flight status of the aircraft can be calculated at a particular point in time.
Auf diese Weise ist es möglich, Metriken für die Güte der Bahnfolge zu definieren, diese anhand flugphysikalischer Parameter zu implementieren und kontinuierlich zu überwachen, sodass sich auch in schwierigen bzw. komplexen Flug-Umgebungen eine möglichst freie Flugbewegung erreichen lässt. Diese Möglichkeit besteht unabhängig davon, ob der Betrieb des Fluggeräts bemannt oder unbemannt durchgeführt wird.In this way, it is possible to define metrics for the quality of the path sequence, to implement them based on flight physics parameters and to monitor them continuously, so that the freest possible flight movement can be achieved even in difficult or complex flight environments. This possibility exists regardless of whether the aircraft is operated manned or unmanned.
Gemäß dem zweiten Aspekt der Erfindung schafft diese ein System zum Betreiben eines Fluggeräts mit einem Geocaging-Modul, welches erfindungsgemäß als Volumenbestimmungsmodul fungiert, das an Bord des Fluggeräts oder am Boden verortet ist, wobei das Volumenbestimmungsmodul im zweiten Fall über einen Datenlink mit dem Fluggerät verbunden ist, welches Volumenbestimmungsmodul dazu ausgebildet und vorgesehen ist, die zur Durchführung des erfindungsgemäßen Verfahrens erforderlichen Volumina auf Basis einer Nominaltrajektorie, d.h. einer vorausgeplanten Flugbahn zu bestimmen, und die zu diesem Zweck als Eingangsdaten zumindest eine aktuelle Position, eine aktuelle Geschwindigkeit und ein aktuelles Heading, also die Flugrichtung des Fluggeräts, erhält.According to the second aspect of the invention, this creates a system for operating an aircraft with a geocaging module, which according to the invention functions as a volume determination module that is located on board the aircraft or on the ground, the volume determination module in the second case being connected to the aircraft via a data link is which volume determination module is designed and intended to determine the volumes required to carry out the method according to the invention on the basis of a nominal trajectory, i.e. a pre-planned trajectory, and which for this purpose contains at least a current position, a current speed and a current heading as input data, i.e. the direction of flight of the aircraft.
Ein erfindungsgemäßes Fluggerät zeichnet sich dadurch aus, dass es mit einem erfindungsgemäßen System zum Betreiben des Fluggeräts ausgestattet ist.An aircraft according to the invention is characterized in that it is equipped with a system according to the invention for operating the aircraft.
Für jede Trajektorie wird ein Geocage in Form des o.g. Volumens berechnet, welcher Geocage aus einer sog. Flight Geography (erstes Volumen) und einem sog. Contingency Volumen (zweites Volumen) berechnet, und welcher Geocage auf einem jeweiligen Nominalflugzustand entlang der genannten Trajektorie basiert. Bei online geplanten Trajektorien wird der Geocage bevorzugt zur Flugzeit berechnet, im Falle vor Abflug geplanter Trajektorien kann auch die Berechnung des Geogaces vor Missionsstart erfolgen.For each trajectory, a geocage is calculated in the form of the above-mentioned volume, which geocage is calculated from a so-called flight geography (first volume) and a so-called contingency volume (second volume), and which geocage is based on a respective nominal flight condition along the named trajectory. For trajectories planned online, the geocage is preferably calculated at the time of flight; in the case of trajectories planned before departure, the geocage can also be calculated before the mission starts.
Der Geocage umfasst erste Teil- oder Einzelvolumina, welche die nominale Bahnfolgegüte des Fluggeräts beschreiben, sowie zweite Teilvolumina, innerhalb welcher Teilvolumina sog. Abhilfe- oder Contingency-Maßnahmen durchgeführt werden können bzw. müssen, um eine aktuelle Flugbahn des Fluggeräts in Richtung zurück auf die geplante Trajektorie zu korrigieren.The geocage includes first partial or individual volumes, which describe the nominal trajectory tracking quality of the aircraft, as well as second partial volumes, within which partial volumes so-called remedial or contingency measures can or must be carried out in order to determine a current flight path of the aircraft in the direction back to the to correct the planned trajectory.
Die Berechnung der genannten Volumina erfolgt auf Basis von Parametern des tatsächlichen Flugzustandes, wie vorzugsweise einer (geplanten) Geschwindigkeit, Flughöhe, Bahnwinkel oder anderer Faktoren (z.B. Wetterbedingungen).The calculation of the volumes mentioned is based on parameters of the actual flight condition, such as preferably a (planned) speed, flight altitude, trajectory angle or other factors (e.g. weather conditions).
In einer weiteren Ausgestaltung der Erfindung kann auch die Flugrichtung des UAVs berücksichtigt werden. Dadurch werden Volumina nicht mehr ungerichtet skaliert. Grenzen des Geocages, die in der Flugrichtung liegen, können dadurch kritischer eingestuft werden als solche Grenzen, die beispielsweise parallel oder entgegen der Flugrichtung liegen. Auf diese Weise kann eine Ausdehnung von Flight Geography und Contingency-Volumina in der Flugrichtung größer sein als entgegen der Flugrichtung oder in seitlicher Richtung.In a further embodiment of the invention, the direction of flight of the UAV can also be taken into account. This means that volumes are no longer scaled in an undirected manner. Boundaries of the geocage that are in the direction of flight can therefore be classified as more critical than boundaries that are, for example, parallel or opposite to the direction of flight. In this way an expansion of Flight Geography and contingency volumes must be larger in the direction of flight than against the direction of flight or in the sideways direction.
Während des Fluges wird vorzugsweise überprüft, ob sich das Fluggerät noch innerhalb des Geocages um die Nominal- oder Referenztrajektorie herum befindet. Verlässt das Fluggerät die Flight Geography (erstes Volumen), werden bevorzugt Gegenmaßnahmen eingeleitet, um die Mission zu retten. Verlässt das Fluggerät dagegen das Contingency-Volumen (zweites Volumen), wird die Mission vorzugsweise abgebrochen, und es werden höchst vorzugsweise Sofortmaßnahmen, wie eine sofortige Sicherheitslandung, eingeleitet, um Menschen und/oder Material zu schonen.During the flight, it is preferably checked whether the aircraft is still within the geocage around the nominal or reference trajectory. If the aircraft leaves the Flight Geography (first volume), priority countermeasures are initiated to save the mission. However, if the aircraft leaves the contingency volume (second volume), the mission is preferably aborted and immediate measures, such as an immediate safety landing, are most preferably initiated in order to protect people and/or material.
Dabei wird bevorzugt zwischen zwei Betriebsformen unterschieden: Bei einem bemannten Betrieb werden Flight Geography und Contingency-Volumen dem Piloten in einem Pilotendisplay (z.B. einem Head-up-Display (HUD)) als Erweiterung eines "Tunnel-in-the-sky" angezeigt. Bei Verletzung der Flight Geography wird z.B. der Pilot (visuell und/oder akustisch) aufgefordert, auf die eigentliche Trajektorie zurückzukehren; außerdem wird vorzugsweise der USSP (U-Space Service Provider) informiert. Bei Verletzung des Contingency-Volumens wird vorzugsweise eine sofortige Sicherheitslandung erforderlich. Dies bedeutet in diesem Kontext, dass die Mission abgebrochen und eine Landung an einem nächstgelegenen Ausweichlandeplatz durchgeführt wird. Es kann außerdem eine Priorität des Fluggeräts für sog. Deconflicting-Maßnahmen erhöht werden (ähnlich wie z.B. bei einem Funkausfall im Landeanflug zwecks Konfliktvermeidung und -lösung zwischen den Flugbahnen mehrerer Luftverkehrsteilnehmer).A preferred distinction is made between two forms of operation: In a manned operation, flight geography and contingency volume are displayed to the pilot in a pilot display (e.g. a head-up display (HUD)) as an extension of a "tunnel-in-the-sky". If the flight geography is violated, for example, the pilot is asked (visually and/or acoustically) to return to the actual trajectory; In addition, the USSP (U-Space Service Provider) is preferably informed. If the contingency volume is violated, an immediate safety landing is preferably required. In this context, this means that the mission is aborted and a landing is carried out at the nearest alternative landing site. The priority of the aircraft can also be increased for so-called deconflicting measures (similar to, for example, a radio failure on the landing approach in order to avoid and resolve conflicts between the flight paths of several air traffic participants).
Liegt dagegen ein unbemannter Betrieb vor, und befliegt das Fluggerät das Contingency-Volumen, können automatisiert sog. Recovery-Manöver (die das Fluggerät zurück zur Flight Geography führen) ausgelöst oder die Übernahme der Steuerung durch einen Remotepilot, der beispielsweise bei einer Flugleitstelle sitzt, angefordert werden. Der Betreiber und die Luftraumüberwachung werden vorzugsweise zusätzlich informiert. Weitere Maßnahmen oder die Übernahme der Steuerung durch den Remotepilot (sofern nicht bereits erfolgt, s.o.) werden bei einem Verlassen des Contingency-Volumens eingeleitet.If, on the other hand, there is an unmanned operation and the aircraft is flying within the contingency volume, so-called recovery maneuvers (which lead the aircraft back to flight geography) can be triggered automatically or control can be taken over by a remote pilot, for example sitting at a flight control center. be requested. The operator and air traffic control are preferably additionally informed. Further measures or the remote pilot taking over control (if not already done, see above) are initiated when the contingency volume is exceeded.
Potentiell kann zusätzlich oder alternativ auch eine Änderung der Regelungsstrategie (z.B. ein Fallback auf einen robusteren und/oder niederperformanten Regler) oder ein Ausweichen auf Routen mit geringeren Anforderungen an die Navigationsleistung erfolgen, damit das Fluggerät seine Mission möglichst fortsetzen kann.Potentially, additionally or alternatively, a change in the control strategy (e.g. a fallback to a more robust and/or low-performance controller) can also be possible. or an alternative to routes with lower demands on navigation performance should be made so that the aircraft can continue its mission as far as possible.
Durch die Implementierung der genannten Volumina wird eine kontinuierliche und nachvollziehbare Überwachung der Trackingperformance ermöglicht, welche zudem einem Piloten visuell dargestellt werden kann. Die Trackingperformance oder auch Bahnfolgeperformance beschreibt, wie genau das Fluggerät einer vorgegebenen Bahn folgen kann. Diese wird in der Regel durch den Navigationsfehler (also die Ungenauigkeit der Bestimmung der Eigenposition) und den flugtechnischen Fehler (also die Ungenauigkeit, mit der ein Regler oder Pilot einer Sollbahn folgt) bestimmt. Diese Bahnfolgeperformance muss überwacht werden, um zu bestimmen, ob sie innerhalb eines erwarteten Wertebereichs liegt oder Gegenmaßnahmen eingeleitet werden müssen.The implementation of the volumes mentioned enables continuous and traceable monitoring of the tracking performance, which can also be visually displayed to a pilot. The tracking performance or path following performance describes how precisely the aircraft can follow a given path. This is usually determined by the navigation error (i.e. the inaccuracy in determining one's own position) and the flight technology error (i.e. the inaccuracy with which a controller or pilot follows a target trajectory). This trajectory performance must be monitored to determine whether it is within an expected range of values or whether countermeasures need to be taken.
Des Weiteren resultieren Flugkorridore, innerhalb welcher sich ein Fluggerät während des nominalen Betriebs tatsächlich mit einer großen Wahrscheinlichkeit aufhält, im Gegensatz zu konservativ abgeschätzten Bereichen, die größtenteils ohne praktische Relevanz sind. Diese Information kann insbesondere auch für die Planung mehrerer Routen im gleichen Luftraum sowie die Optimierung der Luftraumauslastung genutzt werden.Furthermore, flight corridors result within which an aircraft is actually very likely to be during nominal operation, in contrast to conservatively estimated areas that are largely of no practical relevance. This information can be used in particular to plan multiple routes in the same airspace and to optimize airspace utilization.
Implementiert werden kann dies mittels eines sog. Geocaging-Moduls, das sowohl an Bord des Fluggeräts implementiert als auch als Teil einer Bodenkontrollstation ausgeführt werden kann. In letzterem Fall erfolgt eine Kommunikation mit dem Fluggerät bevorzugt über einen kritischen Datenlink.This can be implemented using a so-called geocaging module, which can be implemented both on board the aircraft and as part of a ground control station. In the latter case, communication with the aircraft preferably takes place via a critical data link.
Nachfolgend sei nochmals explizit auf besondere vorteilhafte Ausgestaltungen der Erfindung hingewiesen:
Eine Weiterbildung des erfindungsgemäßen Verfahrens sieht vor, dass die Parameter wenigstens eine der folgenden Einflussgrößen umfassen: geplante Geschwindigkeit des Fluggeräts, Flughöhe, Bahnwinkel, Wetterbedingungen, insbesondere Windstärke und Windrichtung, worst-case-Verhalten des Fluggeräts bei Kontrollverlust und Durchführbarkeit eines Recovery-Manövers zum jeweiligen Zeitpunkt. Dadurch lassen sich die genannten (Einzel-) Volumina möglichst gut an eine jeweilige Situation anpassen und müssen nicht durch konservative Abschätzungen übermäßig groß ausgelegt werden.Special, advantageous embodiments of the invention are explicitly pointed out below:
A further development of the method according to the invention provides that the parameters include at least one of the following influencing variables: planned speed of the aircraft, flight altitude, trajectory angle, weather conditions, in particular wind strength and wind direction, worst-case behavior of the aircraft in the event of loss of control and feasibility of a recovery maneuver respective point in time. This means that the (individual) volumes mentioned can be adapted as best as possible to a given situation and do not have to be made excessively large using conservative estimates.
In die Berechnung der zu überwachenden Volumina fließt dabei vorzugsweise die geplante Geschwindigkeit ein. Die aktuelle Geschwindigkeit dient dagegen der anschließenden Überwachung der auf Basis der Sollbahn berechneten Volumina.The planned speed is preferably taken into account when calculating the volumes to be monitored. The current speed, on the other hand, is used to subsequently monitor the volumes calculated based on the target trajectory.
Der genannte Bahnwinkel (auch Steigwinkel) beschreibt den Winkel der Flugbahn relativ zu einer tangentialen Ebene, welche am Lotpunkt der Flugbahn auf das Referenzellipsoid der Erde aufgespannt wird. Der Bahnwinkel beschreibt demnach, wie steil das Fluggerät steigt oder sinkt.The aforementioned trajectory angle (also climbing angle) describes the angle of the flight path relative to a tangential plane, which is spanned at the perpendicular point of the flight path on the earth's reference ellipsoid. The trajectory angle therefore describes how steeply the aircraft climbs or descends.
Eine andere Weiterbildung des erfindungsgemäßen Verfahrens sieht vor, dass die Einzelvolumina unter Berücksichtigung einer Flugrichtung des Fluggeräts berechnet werden. Auf diese Weise müssen die Volumina nicht ungerichtet skaliert werden, worauf weiter oben bereits detailliert hingewiesen wurde.Another development of the method according to the invention provides that the individual volumes are calculated taking into account a direction of flight of the aircraft. In this way, the volumes do not have to be scaled in an undirected manner, as was already pointed out in detail above.
Um eine möglichst flexible Bahnplanung zu ermöglichen, sieht eine wieder andere Weiterbildung des erfindungsgemäßen Verfahrens vor, dass die Einzelvolumina zur Flugzeit berechnet werden.In order to enable path planning to be as flexible as possible, another development of the method according to the invention provides that the individual volumes are calculated based on the flight time.
Alternativ ist jedoch auch eine Ausgestaltung möglich, bei der die Einzelvolumina vor Beginn einer Mission des Fluggeräts berechnet werden. Auf diese Weise lassen sich insbesondere die Anforderungen an eine an Bord des Fluggeräts vorhandene Hardware reduzieren.Alternatively, however, an embodiment is also possible in which the individual volumes are calculated before the start of a mission of the aircraft. In this way, the requirements for hardware on board the aircraft can be reduced in particular.
Um möglichst schnell auf äußere Umstände reagieren zu können, sieht wieder eine andere Weiterbildung erfindungsgemäßen Verfahrens vor, dass während eines Fluges laufend überprüft wird, ob sich das Fluggerät innerhalb des Volumens, insbesondere innerhalb des ersten Volumens, befindet.In order to be able to react as quickly as possible to external circumstances, another development of the method according to the invention provides that during a flight it is continuously checked whether the aircraft is within the volume, in particular within the first volume.
Vorteilhafterweise ist bei entsprechender Weiterbildung des erfindungsgemäßen Verfahrens vorgesehen, dass bei einem festgestellten Verlassen des ersten Volumens durch das Fluggerät Recovery-Manöver eingeleitet werden; und/oder dass bei einem festgestellten Verlassen des zweiten Volumens durch das Fluggerät ein Abbruch einer gegenwärtigen Mission erfolgt und Sofortmaßnahmen, wie eine sofortige Sicherheitslandung, eingeleitet werden. Auf diese Weise lassen sich katastrophale Ereignisse vermeiden und Mensch bzw. Material schonen.Advantageously, with a corresponding development of the method according to the invention, it is provided that recovery maneuvers are initiated when the aircraft detects that the first volume has left; and/or that if the aircraft is detected to be leaving the second volume, a current mission will be aborted and immediate measures, such as an immediate safety landing, will be initiated. In this way, catastrophic events can be avoided and people and materials can be protected.
Es wurde bereits darauf hingewiesen, dass im Rahmen des erfindungsgemäßen Verfahrens zwei mögliche Fälle unterschieden werden: im Falle eines bemannten Betriebs des Fluggeräts kann einem Piloten an Bord des Fluggeräts das erste Volumen und das zweite Volumen in einem Display grafisch angezeigt werden, insbesondere in einem Head-up-Display, wobei vorzugsweise bei Verlassen des ersten Volumens durch das Fluggerät der Pilot optisch (visuell) und/oder akustisch aufgefordert wird, auf die (Nominal-) Trajektorie zurückzukehren, sowie höchst vorzugsweise ein zuständiger U-Space Service Provider informiert wird.It has already been pointed out that two possible cases are distinguished within the scope of the method according to the invention: in the case of manned operation of the aircraft, the first volume and the second volume can be graphically displayed to a pilot on board the aircraft in a display, in particular in a head -up display, preferably when the aircraft leaves the first volume, the pilot is optically (visually) and / or acoustically requested to return to the (nominal) trajectory, and most preferably a responsible U-space service provider is informed.
Dagegen können im Falle eines unbemannten Betriebs des Fluggeräts bei einem Verlassen des ersten Volumens automatisiert Recovery-Manöver ausgelöst und/oder eine Übernahme der Steuerung des Fluggeräts durch einen Remotepilot angefordert werden, wobei vorzugsweise zusätzlich ein Betreiber des Fluggeräts und eine zuständige Luftraumüberwachung automatisch informiert werden. Des Weiteren können höchst vorzugsweise bei Verlassen des zweiten Volumens weitere Maßnahmen oder die Übernahme der Steuerung durch den Remotepilot, sofern nicht bereits erfolgt, eingeleitet werden. Hierauf wurde weiter oben bereits hingewiesen.On the other hand, in the case of unmanned operation of the aircraft when it leaves the first volume, recovery maneuvers can be triggered automatically and/or a remote pilot can request that control of the aircraft be taken over, with an operator of the aircraft and a responsible airspace surveillance preferably also being automatically informed. Furthermore, most preferably when leaving the second volume, further measures or the remote pilot taking over control, if not already done, can be initiated. This has already been pointed out above.
Eine zusätzliche oder alternative Maßnahme besteht bei entsprechender Weiterbildung des erfindungsgemäßen Verfahrens in Form einer Änderung einer Regelungsstrategie des Fluggeräts, insbesondere ein Ausweichen auf einen robusteren, niederperformanten Regler, und/oder ein Ausweichen auf eine Trajektorie mit geringeren Anforderungen an eine Navigationsleistung des Fluggeräts. Auch hierauf wurde weiter oben bereits hingewiesen.With appropriate development of the method according to the invention, an additional or alternative measure exists in the form of a change in a control strategy of the aircraft, in particular a switch to a more robust, low-performance controller, and / or a switch to a trajectory with lower demands on the navigation performance of the aircraft. This has also already been pointed out above.
Bei einer Weiterbildung des erfindungsgemäßen Systems kann darüber hinaus vorgesehen sein, dass das Volumenbestimmungsmodul dazu ausgebildet ist, eine jeweilige Geometrie der bestimmten Volumina mit empfangenen Navigationsdaten des Fluggeräts zu vergleichen und speziell bei Verletzung des ersten Volumens Abhilfemaßnahmen zu kommandieren, d.h. entsprechende Steuerbefehle auszugeben.In a further development of the system according to the invention, it can also be provided that the volume determination module is designed to compare a respective geometry of the specific volumes with received navigation data of the aircraft and to command remedial measures specifically in the event of a violation of the first volume, i.e. to issue corresponding control commands.
Weitere Eigenschaften und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnung.
-
zeigt ein Fluggerät mitsamt Nominaltrajektorie und mehreren ersten Einzelvolumina;Figur 1 -
zeigt eine Flugbahn mitsamt den sie einhüllenden ersten und zweiten Volumina;Figur 2 -
zeigt verschiedene Möglichkeiten der Skalierung eines Geocage; undFigur 3 -
zeigt eine mögliche konstruktive Ausgestaltung des erfindungsgemäßen Systems.Figur 4
-
Figure 1 shows an aircraft including the nominal trajectory and several initial individual volumes; -
Figure 2 shows a trajectory including the first and second volumes that envelop it; -
Figure 3 shows different ways to scale a geocage; and -
Figure 4 shows a possible structural design of the system according to the invention.
In
Zu der Trajektorie NT werden Volumina definiert, welche die während des nominalen Betriebs erwartete Bahnabweichung des Fluggeräts 1, d.h. dessen Abweichung von der Trajektorie NT angeben. Diese (Einzel-) Volumina sind in
Für jeden tatsächlichen Zustand des Fluggeräts 1 entlang der geplanten Trajektorie NT wird somit der Geocage mittels analytischer Modelle abgeleitet. Diese Modelle berücksichtigen vorzugsweise, wie bereits erwähnt, u.a. die aktuelle Geschwindigkeit des Fluggeräts 1, νi , ein angenommenes worst-case-Verhalten des Fluggeräts 1 bei Kontrollverlust und die Durchführbarkeit eines Recovery-Manövers zum jeweiligen Zeitpunkt. Während des Fluges wird bevorzugt laufend überprüft, ob die Position des Fluggeräts 1 diese Grenzen, also die Begrenzungen des Geocage, verletzt.For each actual state of the
In
Obwohl dies in
Die rechte Seite der
Während mit ersterer Ausprägung auch eine Skalierung des Geocages in Richtungen berücksichtigt wird, die aus physikalischer Sicht nicht relevant sind oder nur mit sehr geringer Wahrscheinlichkeit relevant werden, berücksichtigt eine zweite Ausführung des Systems die Flugrichtung bei der Auswertung der zulässigen Flugbereiche. Dem Ansatz liegt die Annahme zugrunde, dass die Wahrscheinlichkeit einer Abweichung von der Nominaltrajektorie in eine bestimmte Richtung mit zunehmender Winkeldifferenz ΔΨ zur aktuellen Flugrichtung (entsprechend dem Vektor ν) abnimmt.While the first version also takes into account scaling of the geocage in directions that are not relevant from a physical point of view or only have a very low probability of becoming relevant, a second version of the system takes the direction of flight into account when evaluating the permissible flight areas. The approach is based on the assumption that the probability of a deviation from the nominal trajectory in a certain direction decreases as the angular difference ΔΨ to the current flight direction (corresponding to the vector ν ) increases.
Das beschriebene Verfahren kann mittels eines geeignet ausgebildeten Geocaging-Moduls implementiert werden, wie exemplarisch in
Abhängig vom jeweiligen Betriebsmodus (benannt/unbemannt) schließt die Erfindung entsprechend
Das Geocaging-Modul 2 muss nicht an Bord eines Fluggeräts installiert sein, sondern kann auch Teil einer Bodenstation sein, die mit einem Fluggerät über eine entsprechende Verbindung kommuniziert.The
Claims (13)
bei dem bei einem festgestellten Verlassen des zweiten Volumens (V2) durch das Fluggerät (1) ein Abbruch einer gegenwärtigen Mission erfolgt und Sofortmaßnahmen, wie eine sofortige Sicherheitslandung, eingeleitet werden.Method according to one of claims 1 to 6, in which recovery maneuvers are initiated when the aircraft (1) detects that the first volume (V1) has left; and or
in which, if the aircraft (1) is detected leaving the second volume (V2), a current mission is aborted and immediate measures, such as an immediate safety landing, are initiated.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102022110344.7A DE102022110344A1 (en) | 2022-04-28 | 2022-04-28 | Method and system for operating an aircraft |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4270363A1 true EP4270363A1 (en) | 2023-11-01 |
Family
ID=86272253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP23170272.1A Pending EP4270363A1 (en) | 2022-04-28 | 2023-04-27 | Method and system for operating an aircraft |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230351904A1 (en) |
EP (1) | EP4270363A1 (en) |
CN (1) | CN116974296A (en) |
DE (1) | DE102022110344A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050273223A1 (en) * | 2004-05-18 | 2005-12-08 | Airbus France | Method and device for ensuring the safety of a low-altitude flight of an aircraft |
US20130261850A1 (en) * | 2012-04-03 | 2013-10-03 | The Boeing Company | Instruction Visualization System |
US20220108619A1 (en) * | 2020-10-05 | 2022-04-07 | Rockwell Collins, Inc. | Safety monitor |
US20220111962A1 (en) * | 2020-10-12 | 2022-04-14 | Volocopter Gmbh | Aerial vehicle and method and computer-aided system for controlling an aerial vehicle |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10490088B2 (en) | 2015-12-30 | 2019-11-26 | United States Of America As Represented By The Administrator Of Nasa | Assured geo-containment system for unmanned aircraft |
WO2017147142A1 (en) | 2016-02-22 | 2017-08-31 | Unmanned Innovation Inc. | Unmanned aerial vehicle visual line of sight control |
DE102019103173A1 (en) | 2019-02-08 | 2020-08-13 | Volocopter Gmbh | Method and system for movement planning for aircraft, in particular for load-carrying and / or person-carrying VTOL aircraft |
-
2022
- 2022-04-28 DE DE102022110344.7A patent/DE102022110344A1/en active Pending
-
2023
- 2023-04-27 EP EP23170272.1A patent/EP4270363A1/en active Pending
- 2023-04-27 US US18/307,962 patent/US20230351904A1/en active Pending
- 2023-04-28 CN CN202310479735.6A patent/CN116974296A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050273223A1 (en) * | 2004-05-18 | 2005-12-08 | Airbus France | Method and device for ensuring the safety of a low-altitude flight of an aircraft |
US20130261850A1 (en) * | 2012-04-03 | 2013-10-03 | The Boeing Company | Instruction Visualization System |
US20220108619A1 (en) * | 2020-10-05 | 2022-04-07 | Rockwell Collins, Inc. | Safety monitor |
US20220111962A1 (en) * | 2020-10-12 | 2022-04-14 | Volocopter Gmbh | Aerial vehicle and method and computer-aided system for controlling an aerial vehicle |
Also Published As
Publication number | Publication date |
---|---|
CN116974296A (en) | 2023-10-31 |
US20230351904A1 (en) | 2023-11-02 |
DE102022110344A1 (en) | 2023-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3151080B1 (en) | Method for secure landing of an unmanned aircraft | |
EP3982349B1 (en) | Flight device and method and computer aided system for controlling an aircraft | |
DE102019103173A1 (en) | Method and system for movement planning for aircraft, in particular for load-carrying and / or person-carrying VTOL aircraft | |
EP3181422B1 (en) | Method and system for automatically guiding a follow vehicle with a scout vehicle | |
DE69508381T2 (en) | THREAT PREVENTION METHOD FOR AIRCRAFT | |
DE19849857C2 (en) | Remote control method for an unmanned aircraft | |
DE602004004146T2 (en) | LATERAL ROUTE RETRACTING METHOD AND SYSTEM USING A FLIGHT CONTROL COMPUTER | |
EP0886847B1 (en) | Method of detecting a collision risk and preventing air collisions | |
DE602005000521T2 (en) | Method and device for modifying a flight plan of an aircraft | |
DE69915039T2 (en) | METHOD FOR RECONFIGURING IN REAL-TIME AIRPLANE FLIGHTS | |
EP3181423B1 (en) | Method and system for automatically guiding a follow vehicle with a scout vehicle | |
DE102015213743B4 (en) | Method and system for the automatic control of at least one following vehicle with a scout vehicle | |
EP1913569B1 (en) | Method for flight control of a plurality of aircraft flying in formation | |
DE69915773T2 (en) | Limitation method for automatic control of the rollage by means of shear change | |
EP3271231B1 (en) | Method and device for monitoring a target trajectory to be travelled by a vehicle for absence of collisions | |
EP2485107A2 (en) | Unmanned aircraft with installed collision warning system | |
WO2020015923A1 (en) | Method for operating an autonomous vehicle, and autonomous vehicle | |
EP3948466B1 (en) | Method and device for teleoperatively driving a vehicle | |
DE19604931A1 (en) | Procedure for correcting the flight sequence of an aircraft | |
DE4313403A1 (en) | Procedure for guiding an aircraft with the aim of preventing its collision with the ground | |
EP4269945A1 (en) | Method and system for flight path control in an aircraft | |
EP1495457A1 (en) | Safety system for aircraft | |
CN105303894A (en) | Method and device for automatically managing air operations requiring a guarantee of navigation and guidance performance of an aircraft | |
EP1419088B1 (en) | Path guidance systems for a parachute/paraglider and flight path planning devices for planning the use of at least one parachute or paraglider, and system for carrying out said path guidance and planning | |
EP4270363A1 (en) | Method and system for operating an aircraft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: VOLOCOPTER GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20240308 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |