EP4263896A1 - Beschichtung für thermisch und abrasiv beladene turbinenschaufeln - Google Patents

Beschichtung für thermisch und abrasiv beladene turbinenschaufeln

Info

Publication number
EP4263896A1
EP4263896A1 EP21801831.5A EP21801831A EP4263896A1 EP 4263896 A1 EP4263896 A1 EP 4263896A1 EP 21801831 A EP21801831 A EP 21801831A EP 4263896 A1 EP4263896 A1 EP 4263896A1
Authority
EP
European Patent Office
Prior art keywords
layer
coating
mcraly
layers
blade tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21801831.5A
Other languages
English (en)
French (fr)
Inventor
Bernhard KOHLHAUSER
Jürgen RAMM
Oliver HUNOLD
Edgar BALTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Surface Solutions AG Pfaeffikon
Original Assignee
Oerlikon Surface Solutions AG Pfaeffikon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Surface Solutions AG Pfaeffikon filed Critical Oerlikon Surface Solutions AG Pfaeffikon
Publication of EP4263896A1 publication Critical patent/EP4263896A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/067Borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/313Layer deposition by physical vapour deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/175Superalloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2118Zirconium oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/226Carbides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/228Nitrides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating

Definitions

  • Gas turbines have the task of moving a gas in one direction.
  • the gas turbine comprises at least one rotor which rotates about an axis and which has a carrier on the periphery of which a multiplicity of radially outwardly projecting turbine blades are arranged.
  • a turbine liner is provided to ensure a gap with a minimal gap distance between the turbine blade and the turbine liner.
  • inlet layers on the turbine lining side. These inlet layers serve to keep the gap distance between a turbine blade and the surrounding turbine liner as small as possible in order to prevent pressure losses.
  • the running-in layers are generally porous and only weakly bonded. The consequence of this is that the turbine blade tip, which at the beginning still frequently touches the running-in layer, wears it away until essentially contact-free concentricity is achieved with a minimal gap distance.
  • the turbine blades for example during their thermal expansion or vibration-induced deflection of the turbine from the center, can erode the porous and only weakly bonded running-in layer in an undesired manner and thus increase the gap spacing and reduce efficiency.
  • Blade tip coatings are used to protect the blade tip from wear. These blade tip coatings typically consist of abrasive particles (such as cubic boron nitride) embedded in a matrix (such as MCrAlY). “M” stands for a metal, which is usually cobalt, nickel or a cobalt-nickel alloy. “Cr” stands for chromium, “AI” for aluminum and “Y” stands for yttrium.
  • a disadvantage of the coatings produced in this way according to the prior art is the poor adhesion of the layers.
  • the energy input is relatively low and there are hardly any diffusion processes at the interface to the substrate surface, which normally ensure acceptable layer adhesion.
  • failure and delamination of the entire layer or the abrasive particles can already occur due to the forces occurring during rotation.
  • both the abrasive particles used in the prior art and the matrix are not resistant to oxidation at high temperatures and fail due to oxidation.
  • the abrasive particles typically used have a particle size in the order of magnitude of the layer thickness and can therefore reach from the surface to the interface between the coating and the substrate. If the particle is now oxidized, the blade material or the corresponding interface is directly attacked, which can lead to direct attack of the blade material or the interface between the blade material and the coating if the particle is oxidized.
  • the adhesion of blade tip coatings can be significantly improved through the use of reactive spark evaporation, since a higher energy input of the gas ions contributes to improved layer adhesion. Also the Manufacturing parameters can be chosen more freely, which means that deposition at higher temperatures is possible.
  • a bonding layer and/or matrix as well as abrasive phases such as oxides, borides, carbides or nitrides can be deposited in a single process. These phases can either be introduced as layers in a multilayer structure or as macroparticles in a matrix.
  • abrasive phases such as oxides, borides, carbides or nitrides
  • These phases can either be introduced as layers in a multilayer structure or as macroparticles in a matrix.
  • very small particles or thin layers can be completely embedded in a matrix (e.g.
  • a protective effect of the blade tip against the running-in layer on the lining can be achieved, even in the event of contact or abrasion situations after a longer period of operation than with conventional blade tip coatings.
  • the layer can consist of several layers, whereby an adhesive layer can be adapted to the substrate material in order to enable optimal adhesion.
  • the abrasive phase of the blade tip coating can be matched to the break-in coating on the turbine liner. These abrasive phases can be built into the layer either as layers or as particles.
  • Layer thicknesses can be varied in order to adapt the coating to the thermal and abrasive stress profile and thus increase service life.
  • a thermally less stressable layer can be deposited over the blade tip coating, for example to increase the wear resistance of the entire blade tip coating in the initial break-in process.
  • FIG. 1 schematically shows a layer system according to the invention made up of an MCrAlY layer and an overlying oxide layer.
  • FIG. 2 schematically shows a multilayer coating system according to the invention.
  • FIG. 3 shows the schematic representation of a turbine
  • FIG. 4 shows an SEM of the cross-section of a multilayer coating system according to the invention after it had been exposed to a temperature of 1200° C. for 10 hours
  • FIG. 5 shows the X-ray diffractogram of an abrasive phase of an aluminum oxide-chromium oxide.
  • the turbine shown in Figure 3 has at least one turbine blade 5 on a rotating disk 3 with a blade base 7 and a blade tip 9.
  • Figure 3 also shows a running-in layer 11 on a turbine liner 1 opposite the blade tip 9 and separated from it by a gap G.
  • a superalloy blade tip (may for example be single crystal) is deposited a coating of composition MCrAlY - aluminum chromium oxide, or a multilayer coating of alternating layers of MCrAlY - aluminum chromium oxide.
  • the MCrAlY layer can have thicknesses of 0.1 - 100 microns according to the required
  • the oxide layer is now deposited on the MCrAlY adhesion and oxidation protection layer.
  • the aluminum chromium oxide layers are made of metallic AlCr Targets deposited by reactive cathodic spark evaporation in an oxygen atmosphere.
  • the oxide layer can be 0.5 to 50 microns thick.
  • the oxide layer can also be deposited as a multi-layer coating in which the MCrAlY layer alternates with an aluminum-chromium oxide layer at regular or other intervals of 0.1-20 microns.
  • the oxide coating provides a diffusion barrier, which also serves as an abrasive phase that is not sensitive to oxidation.
  • the MCrAlY layer adhering directly to the substrate also provides excellent adhesion to the blade tip and the sum of all MCrAlY layers in the entire blade tip coating prevent inwardly oriented diffusion processes and efficiently protect the substrate from oxidation.
  • the hardness of the overall layer system according to the invention can be adjusted by the ratio of abrasive phase to MCrAlY in order to enable optimal removal of the running-in layer.
  • abrasive phase for example, layers with oxide phases in the range of 7 to 25 GPa can be adjusted.
  • harder abrasive phases such as nitrides, borides or carbides are used, the hardness can be increased up to 45 GPa.
  • the layer in Figure 4 has a hardness of about 13 GPa.
  • aluminum oxide-chromium oxide is used as the abrasive phase, it forms a mixed crystal in the corundum structure with a strong preferred orientation in the cathodic spark evaporation, as can be seen in FIG.
  • the mixed oxide is in its thermally stable high-temperature modification and can therefore reach the high application temperatures without phase transformation. The volume changes associated with the phase transformation, which can lead to the failure of the layer, can thus be prevented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Vapour Deposition (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Beschichtung eines Substrates das eine Gasturbinenschaufel umfasst, umfassend die Schritte: - In einem ersten Schritt Aufbringen einer MCrAIY Matrix mittels PVD Verfahren; - In einem weiteren Schritt Aufbringen einer Oxidschicht mittels PVD Verfahren.

Description

Beschichtung für thermisch und abrasiv beladene Turbinenschaufeln
Gasturbinen haben die Aufgabe ein Gas in eine Richtung zu bewegen. Die Gasturbine umfasst zumindest einen Rotor der um eine Achse rotiert und der einen Träger aufweist an dessen Peripherie eine Vielzahl radial nach aussen ragender Turbinenschaufeln angeordnet sind. Um ein Rückströmen des Gases entgegen der gewünschten Richtung weitestgehend zu verhindern um damit eine möglichst hohe Effizienz von Gasturbinen zu erreichen, ist eine Turbinenauskleidung vorgesehen, um zwischen Turbinenschaufel und Turbinenauskleidung einen Spalt mit minimalem Spaltabstand zu gewährleisten.
Das wird durch sogenannte Einlaufschichten auf Seite der Turbinenauskleidung erreicht. Diese Einlaufschichten dienen dazu, den Spaltabstand zwischen einer Turbinenschaufel und der umgebenden Turbinenauskleidung so gering wie möglich zu halten um Druckverluste zu verhindern. Die Einlaufschichten sind in der Regel porös und nur schwach in sich gebunden. Das hat zur Folge, dass die am Anfang die Einlaufschicht noch häufig berührende Turbinenschaufelspitze diese soweit abträgt, bis ein im Wesentlichen berührungsloser Rundlauf bei minimalem Spaltabstand realisiert ist.
Allerdings können die Turbinenschaufeln, beispielsweise bei deren thermischer Ausdehnung oder durch Erschütterungen herbeigeführter Auslenkung der Turbine aus dem Zentrum, die poröse und nur schwach in sich gebundene Einlaufschicht in unerwünschter Weise abtragen und somit den Spaltabstand erhöhen und die Effizienz verkleinern.
Zum Schutz der Schaufelspitze gegen Verschleiss werden Schaufelspitzenbeschichtungen eingesetzt. Diese Schaufelspitzenbeschichtungen bestehen typischerweise aus abrasiven Partikeln (wie zum Beispiel kubisches Bornitrid) welche in einer Matrix (wie z.B. MCrAlY) eingebettet sind. Dabei steht „M“ für ein Metall, wobei es sich meistens um Kobalt, Nickel oder eine Kobalt-Nickel Legierung handelt. „Cr“ steht dabei für Chrom, „AI“ für Aluminium und „Y“ steht für Yttrium.
BESTÄTIGUNGSKOPIE Derartige Beschichtungen werden gemäss dem Stand der Technik durch komplexe und kostenintensive Prozesse wie elektrolytischer oder elektrophoretischer Abscheidung (US5935407A) aufgebracht.
Ein Nachteil der auf diese Weise gemäss dem Stand der Technik realisierten Beschichtungen ist die geringe Schichthaftung. Beim entsprechenden Beschichtungsprozess ist nämlich der Energieeintrag relativ gering und es kommt an der Grenzfläche zur Substratoberfläche kaum zu Diffusionsprozessen die normalerweise für eine akzeptable Schichthaftung sorgen. Als Resultat kann es bereits zu einem Versagen und Delamination der kompletten Schicht oder der abrasiven Partikel auf Grund der bei der Rotation auftretenden Kräfte kommen.
Es kommt hinzu, dass sowohl die im Stand der Technik verwendeten abrasiven Partikel als auch die Matrix bei hohen Temperaturen nicht oxidationsbeständig sind und auf Grund der Oxidation versagen. Die typischerweise eingesetzten abrasiven Partikel haben eine Partikelgrösse in der Grössenordnung der Schichtdicke und können daher von der Oberfläche bis an die Grenzfläche zwischen Beschichtung und Substrat reichen. Wird nun das Partikel oxidiert, so wird das Schaufelmaterial oder die entsprechende Grenzfläche direkt angegriffen was bei einer Oxidation des Partikels zu einem direkten Angriff des Schaufelmaterials oder der Grenzfläche zwischen Schaufelmaterial und Beschichtung führen kann.
Es besteht daher ein Bedürfnis, die aus dem Stand der Technik bekannte Beschichtung haftfester und oxidationsbeständiger zu machen. Diesem Bedürfnis liegt die Aufgabe der vorliegenden Erfindung zugrunde.
Die oben geschilderte Aufgabe wird erfindungsgemäss und entsprechend dem Anspruch 1 dadurch gelöst, dass für die Beschichtung Abscheidungen aus der Gasphase mittels PVD Verfahren eingesetzt werden. Besonders bevorzugt ist der Einsatz der reaktiven Funkenverdampfung.
Durch den Einsatz von reaktiver Funkenverdampfung kann nämlich die Haftung von Schaufelspitzenbeschichtungen deutlich verbessert werden, da ein höherer Energieeintrag der Gasionen zu einer verbesserten Schichthaftung beiträgt. Auch die Herstellungsparameter können freier gewählt werden, wodurch eine Abscheidung bei höheren Temperaturen möglich ist.
Durch den Einsatz unterschiedlicher Targetmaterialien und von Reaktivgasen können in einem einzelnen Verfahren eine Haftschicht und/oder Matrix als auch abrasive Phasen wie Oxide, Boride, Carbide oder Nitride abgeschieden werden. Diese Phasen können entweder als Schichten in einer Multilagenstruktur oder aber auch als Makroparikel in einer Matrix eingebracht werden. Im Gegensatz zu herkömmlichen Herstellungsverfahren für Schaufelspitzenbeschichtungen, die auf elektrolytischer oder elektrophoretischer Abscheidung beruhen, können dabei sehr kleine Partikel oder dünne Lagen in einer Matrix (z.B. umfassend ein MCrAlY Material und bevorzugt bestehend aus einem MCrAlY Material) komplett eingebettet werden, wodurch tiefer liegende abrasive Phasen, auch wenn sie nicht oxidationsbeständig sind (was jedoch nur auf manche zutrifft), von der darüber liegenden Matrix (z.B. MCrALY) geschützt werden. Damit kann ein Schutzeffekt der Schaufelspitze gegenüber der Einlaufschicht an der Auskleidung auch bei Kontakt- bzw. Abriebsituationen nach längerer Betriebsdauer als bei konventionellen Schaufelspitzenbeschichtungen erzielt werden.
Die Schicht kann aus mehreren Lagen bestehen wobei eine Haftschicht an das Substratmaterial angepasst werden kann um eine optimale Haftung zu ermöglichen.
Die abrasive Phase der Schaufelspitzenbeschichtung kann an die Einlaufschichtung auf der Turbinenverkleidung angepasst werden. Diese abrasiven Phasen können entweder als Lagen oder Partikel in der Schicht eingebaut werden.
Schichtdicken könne variiert werden, um die Beschichtung dem thermischen und abrasiven Beanspruchungsprofil anzupassen und damit die Standzeit zu erhöhen.
Eine thermisch weniger beanspruchbare Schicht kann über die Schaufelspitzenbeschichtung abgeschieden werden, um zum Beispiel die Verschleissbeständigkeit der gesamten Schaufelspitzenbeschichtung im initialen Einlaufprozess zu erhöhen. Die Erfindung wird nun anhand eines Beispiels und mit Hilfe der Figuren im Detail erläutert:
Figur 1 zeigt schematisch ein erfindungsgemässes Schichtsystem aus einer MCrAlY Schicht und einer darüber liegenden Oxidschicht.
Figur 2 zeigt schematisch ein erfindungsgemässes Multilagenschichtsystem.
Figur 3 zeigt die schematische Darstellung einer Turbine
Figur 4 zeigt ein SEM des Querschnitts eines erfindungsgemässen Multilagenschichtsystems, nachdem es für 10 Stunden einer Temperatur von 1200°C ausgesetzt worden war
Figur 5 zeigt das Röntgendiffraktogramm einer abrasiven Phase aus einem Aluminiumoxid-Chromoxid.
Die in Figur 3 dargestellte Turbine mindestens eine Turbinenschaufel 5 auf einer rotierenden Scheibe 3 mit einer Schaufelbasis 7 und einer Schaufelspitze 9. Die Figur 3zeigt auch eine Einlaufschicht 11 an einer Turbinenauskleidung 1 gegenüber der Schaufelspitze 9 und separiert von dieser mit einem Spalt G.
Auf einer Schaufelspitze aus einer Superlegierung (kann zum Beispiel einkristallin sein) wird eine Beschichtung des Aufbaues MCrAlY - Aluminium-Chrom-Oxid, oder eine Multilagenschicht aus abwechselnden MCrAlY - Aluminium-Chrom-Oxid Schichten abgeschieden.
Das MCrAlY wir dabei durch plasmaverstärkte kathodische Funkenverdampfung von einer MCrAlY Materialquelle ( = Target) abgeschieden. Dabei kann die MCrAlY Schicht Dicken von 0.1 - 100 Mikrometer entsprechend der geforderten
Oxidationsbeständigkeit aufweisen.
Auf der MCrAlY Haft- und Oxidationsschutzschicht wird nun die Oxidschicht abgeschieden. Die Aluminium-Chrom-Oxid Lagen werden von metallischen AlCr Targets mittels reaktiver kathodischer Funkenverdampfung in Sauerstoffatmosphäre abgeschieden. Die Oxidschicht kann dabei 0.5 bis 50 Mikrometer dick sein.
Um schädliche Diffusionsprozesse zu unterdrücken und damit die Lebensdauer zu erhöhen, kann die Oxidschicht auch als eine Multilagenschicht abgeschieden werden, in der die MCrAlY Schicht sich in regelmässigen oder sonstigen Abständen von 0.1- 20 Mikrometern mit einer Aluminium-Chrom-Oxidschicht abwechselt.
In diesem Konzept bietet die Oxidbeschichtung eine Diffusionsbarriere, welche zugleich auch als abrasive Phase dient, die nicht oxidationsempfindlich ist. Ebenso liefert die direkt an das Substrat anhaftende MCrAlY Lage eine ausgezeichnete Haftung zur Schaufelspitze und die Summe aller MCrAlY Lagen in der gesamten Schaufelspitzenbeschichtung verhindern nach innen orientierte Diffusionsprozesse und schützen das Substrat effizient vor Oxidation.
Ganz allgemein lässt sich sagen, das die Härte des erfindungsgemässen Gesamtschichtsystems durch das Verhältnis von abrasiver Phase zu MCrAlY eingestellt werden kann um einen optimalen Abtrag der Einlaufschicht zu ermöglichen. So können zum Beispiel Schichten mit Oxidphasen im Bereich 7 bis 25 GPa einestellt werden. Wenn jedoch härtere abrasive Phasen wie Nitride, Boride oder Carbide eingesetzt werden kann die Härte auf bis zu 45 GPa erhöht werden. Zum Beispiel hat die Schicht in Figur 4 eine Härte von ca. 13 GPa.
Wenn Aluminiumoxid-Chromoxid als abrasive Phase eingesetzt wird bildet es in der Kathodischen Funkenverdampfung einen Mischkristall in der Korrundstruktur mit einer starken Vorzugsorientierung, wie in der Figur 5 zu sehen ist. In der Korrundstruktur ist das Mischoxid in seiner thermisch stabilen Hochtemperaturmodifikation und kann damit die hohen Einsatztemperaturen ohne Phasenumwandlung erreichen. Die mit der Phasenumwandlung verbundenen Volumensänderungen welche zum Versagen der Schicht führen können, können damit verhindert werden.

Claims

6 Ansprüche:
1. Verfahren zur Beschichtung eines Substrates das eine Gasturbinenschaufel umfasst, umfassend die Schritte:
- In einem ersten Schritt Aufbringen einer MCrAlY Matrix mittels PVD Verfahren
- In einem weiteren Schritt Aufbringen einer Schicht mittels PVD Verfahren, wobei die Schicht zumindest ein Oxid und/oder Borid und/oder Carbid und/oder Nitrid umfasst.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das PVD Verfahren des ersten und/oder des weiteren Schrittes ein kathodisches Funkenverdampfungsverfahren ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, das die Materialquelle für das PVD Verfahren des weiteren Schrittes ein AlCr Target ist und das Beschichtungsverfahren eine reaktives Verfahren ist in dessen Verlauf Sauerstoff verwendet wird.
4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Beschichtung als Schichtsystem ausgeführt wird, das zwei Schichten umfasst oder dass die Beschichtung als Schichtsystem ausgeführt wird, dass ein Multilagen Wechselschichtsystem umfasst.
5. Schichtsystem für eine Gasturbinenschaufelspitze umfassend, wobei die Beschichtung zumindest eine erste Schicht mit MCrAlY Matrix umfasst und die Beschichtung zumindest eine zweite Schicht umfasst, wobei die zweite Schicht zumindest ein Oxid und/oder Borid und/oder Carbid und/oder Nitrid umfasst.
6. Schichtsystem nach Anspruch 5, dadurch gekennzeichnet, dass die Beschichtung als Multilagenschichtsystem ausgebildet ist in der sich erste und zweite Schicht abwechseln.
7. Gasturbinenschaufel mit einem Schichtsystem nach einem der Ansprüche 5 oder 6.
EP21801831.5A 2020-12-15 2021-10-27 Beschichtung für thermisch und abrasiv beladene turbinenschaufeln Pending EP4263896A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020007662 2020-12-15
PCT/EP2021/000134 WO2022128144A1 (de) 2020-12-15 2021-10-27 Beschichtung für thermisch und abrasiv beladene turbinenschaufeln

Publications (1)

Publication Number Publication Date
EP4263896A1 true EP4263896A1 (de) 2023-10-25

Family

ID=78500592

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21801831.5A Pending EP4263896A1 (de) 2020-12-15 2021-10-27 Beschichtung für thermisch und abrasiv beladene turbinenschaufeln

Country Status (7)

Country Link
US (1) US20240026793A1 (de)
EP (1) EP4263896A1 (de)
JP (1) JP2023554044A (de)
KR (1) KR20230122015A (de)
CN (1) CN117083411A (de)
CA (1) CA3206459A1 (de)
WO (1) WO2022128144A1 (de)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935407A (en) 1997-11-06 1999-08-10 Chromalloy Gas Turbine Corporation Method for producing abrasive tips for gas turbine blades
DE102015212588A1 (de) * 2015-07-06 2017-01-12 Oerlikon Surface Solutions Ag, Trübbach Konturtreue Schutzschicht für Verdichterbauteile von Gasturbinen
TW201945566A (zh) * 2018-04-24 2019-12-01 瑞士商歐瑞康表面處理普法菲康有限公司 包含mcral-x塗層之塗布物

Also Published As

Publication number Publication date
KR20230122015A (ko) 2023-08-22
CN117083411A (zh) 2023-11-17
US20240026793A1 (en) 2024-01-25
WO2022128144A1 (de) 2022-06-23
CA3206459A1 (en) 2022-06-23
JP2023554044A (ja) 2023-12-26

Similar Documents

Publication Publication Date Title
KR102630007B1 (ko) 터빈 틈새 제어 코팅 및 방법
DE69831779T2 (de) Keramische Ueberzuege mit mehrschichtiger Porositaet
EP2398936B1 (de) Erosionsschutz-beschichtungssystem fur gasturbinenbauteile
US5876572A (en) Multiple layer erosion resistant coating and a method for its production
DE2829369C3 (de) Verfahren zum Ausbilden von harten, verschleißfestenMetallkarbide enthaltenden Überzügen
DE60038355T2 (de) Verfahren zur Herstellung von Beschichtungen aus Keramik
US10041361B2 (en) Turbine blade coating composition
EP2084307B1 (de) Merhlagige beschichtung enthaltend nitride
EP1637622A1 (de) Verfahren zum Aufbringen einer Schutzschicht
CH704833A1 (de) Komponente für eine Turbomaschine und ein Verfahren zum Herstellen einer derartigen Komponente.
EP3320127B1 (de) Konturtreue schutzschicht für verdichterbauteile von gasturbinen
DE102015114981A1 (de) Eine Einlaufdichtung und Verfahren zur Herstellung einer Einlaufdichtung
Houdková et al. The high-temperature wear and oxidation behavior of CrC-based HVOF coatings
DE112009002430T5 (de) Verfahren zur Abscheidung einer Beschichtung auf eine Blisk
EP1260602B1 (de) Verfahren zum Erzeugen eines wärmedämmenden Schichtsystems auf einem metallischen Substrat
EP3572551B1 (de) Verfahren zur beschichtung eines substrates mit einer hohlraumstruktur
DE102016002630A1 (de) Haftvermittlerschicht zur Anbindung einer Hochtemperaturschutzschicht auf einem Substrat, sowie Verfahren zur Herstellung derselben
EP4263896A1 (de) Beschichtung für thermisch und abrasiv beladene turbinenschaufeln
EP1892311B1 (de) Turbinenschaufel mit einem Beschichtungssystem
EP3728695A1 (de) Korrosions- und erosionsbeständige beschichtung für turbinenschaufeln von gasturbinen
WO2018209374A1 (de) VERFAHREN ZUR VERBESSERUNG DER VERSCHLEIßBESTÄNDIGKEIT EINES BAUTEILS
WO2012038217A1 (de) Turbinenschaufel mit keramischer erosionsschutzschicht für eine niederdruckstufe einer dampfturbine
US20230160316A1 (en) Abrasive material, a method for manufacturing an abrasive material and a substrate coated with an abrasive material
WO2020177999A1 (de) Zweilagige abrasive schicht für laufschaufelspitze, verfahren, bauteil und turbinenanordnung
DE69835208T2 (de) Haftbeschichtung für wärmedämmendes Beschichtungssystem

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230615

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)